WorldWideScience

Sample records for satellite-based radiation model

  1. Satellite Based Downward Long Wave Radiation by Various Models in Northeast Asia

    Directory of Open Access Journals (Sweden)

    Chanyang Sur

    2014-01-01

    Full Text Available Satellite-based downward long wave radiation measurement under clear sky conditions in Northeast Asia was conducted using five well-known physical models (Brunt 1932, Idso and Jackson 1969, Brutsaert 1975, Satterlund 1979, Prata 1996 with a newly proposed global Rld model (Abramowitz et al. 2012. Data from two flux towers in South Korea were used to validate downward long wave radiation. Moderate resolution imaging spectroradiometer (MODIS atmospheric profile products were used to develop the Rld models. The overall root mean square error (RMSE of MODIS Rld with respect to two ecosystem-type flux towers was determined to be ≈ 20 W m-2. Based on the statistical analyses, MODIS Rld estimates with Brutsaert (1975 and Abramowitz et al. (2012 models were the most applicable for evaluating Rld for clear sky conditions in Northeast Asia. The Abramowitz Rld maps with MODIS Ta and ea showed reasonable seasonal patterns, which were well-aligned with other biophysical variables reported by previous studies. The MODIS Rld map developed in this study will be very useful for identifying spatial patterns that are not detectable from ground-based Rld measurement sites.

  2. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  3. A satellite-based global landslide model

    Directory of Open Access Journals (Sweden)

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  4. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  5. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    Science.gov (United States)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  6. Satellite-based trends of solar radiation and cloud parameters in Europe

    Science.gov (United States)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  7. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  8. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  9. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  10. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  11. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  12. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  13. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  14. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  15. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  16. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    Science.gov (United States)

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  17. A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands

    Directory of Open Access Journals (Sweden)

    Rong Ge

    2018-01-01

    Full Text Available It is important to accurately evaluate ecosystem respiration (RE in the alpine grasslands of the Tibetan Plateau and the temperate grasslands of the Inner Mongolian Plateau, as it serves as a sensitivity indicator of regional and global carbon cycles. Here, we combined flux measurements taken between 2003 and 2013 from 16 grassland sites across northern China and the corresponding MODIS land surface temperature (LST, enhanced vegetation index (EVI, and land surface water index (LSWI to build a satellite-based model to estimate RE at a regional scale. First, the dependencies of both spatial and temporal variations of RE on these biotic and climatic factors were examined explicitly. We found that plant productivity and moisture, but not temperature, can best explain the spatial pattern of RE in northern China’s grasslands; while temperature plays a major role in regulating the temporal variability of RE in the alpine grasslands, and moisture is equally as important as temperature in the temperate grasslands. However, the moisture effect on RE and the explicit representation of spatial variation process are often lacking in most of the existing satellite-based RE models. On this basis, we developed a model by comprehensively considering moisture, temperature, and productivity effects on both temporal and spatial processes of RE, and then, we evaluated the model performance. Our results showed that the model well explained the observed RE in both the alpine (R2 = 0.79, RMSE = 0.77 g C m−2 day−1 and temperate grasslands (R2 = 0.75, RMSE = 0.60 g C m−2 day−1. The inclusion of the LSWI as the water-limiting factor substantially improved the model performance in arid and semi-arid ecosystems, and the spatialized basal respiration rate as an indicator for spatial variation largely determined the regional pattern of RE. Finally, the model accurately reproduced the seasonal and inter-annual variations and spatial variability of RE, and it avoided

  18. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  19. Satellite-based ET estimation using Landsat 8 images and SEBAL model

    Directory of Open Access Journals (Sweden)

    Bruno Bonemberger da Silva

    Full Text Available ABSTRACT Estimation of evapotranspiration is a key factor to achieve sustainable water management in irrigated agriculture because it represents water use of crops. Satellite-based estimations provide advantages compared to direct methods as lysimeters especially when the objective is to calculate evapotranspiration at a regional scale. The present study aimed to estimate the actual evapotranspiration (ET at a regional scale, using Landsat 8 - OLI/TIRS images and complementary data collected from a weather station. SEBAL model was used in South-West Paraná, region composed of irrigated and dry agricultural areas, native vegetation and urban areas. Five Landsat 8 images, row 223 and path 78, DOY 336/2013, 19/2014, 35/2014, 131/2014 and 195/2014 were used, from which ET at daily scale was estimated as a residual of the surface energy balance to produce ET maps. The steps for obtain ET using SEBAL include radiometric calibration, calculation of the reflectance, surface albedo, vegetation indexes (NDVI, SAVI and LAI and emissivity. These parameters were obtained based on the reflective bands of the orbital sensor with temperature surface estimated from thermal band. The estimated ET values in agricultural areas, native vegetation and urban areas using SEBAL algorithm were compatible with those shown in the literature and ET errors between the ET estimates from SEBAL model and Penman Monteith FAO 56 equation were less than or equal to 1.00 mm day-1.

  20. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    Science.gov (United States)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid

  1. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  2. Regionalization Study of Satellite based Hydrological Model (SHM) in Hydrologically Homogeneous River Basins of India

    Science.gov (United States)

    Kumari, Babita; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghvendra P.

    2017-04-01

    A new semi-distributed conceptual hydrological model, namely Satellite based Hydrological Model (SHM), has been developed under 'PRACRITI-2' program of Space Application Centre (SAC), Ahmedabad for sustainable water resources management of India by using data from Indian Remote Sensing satellites. Entire India is divided into 5km x 5km grid cells and properties at the center of the cells are assumed to represent the property of the cells. SHM contains five modules namely surface water, forest, snow, groundwater and routing. Two empirical equations (SCS-CN and Hargreaves) and water balance method have been used in the surface water module; the forest module is based on the calculations of water balancing & dynamics of subsurface. 2-D Boussinesq equation is used for groundwater modelling which is solved using implicit finite-difference. The routing module follows a distributed routing approach which requires flow path and network with the key point of travel time estimation. The aim of this study is to evaluate the performance of SHM using regionalization technique which also checks the usefulness of a model in data scarce condition or for ungauged basins. However, homogeneity analysis is pre-requisite to regionalization. Similarity index (Φ) and hierarchical agglomerative cluster analysis are adopted to test the homogeneity in terms of physical attributes of three basins namely Brahmani (39,033 km km^2)), Baitarani (10,982 km km^2)) and Kangsabati (9,660 km km^2)) with respect to Subarnarekha (29,196 km km^2)) basin. The results of both homogeneity analysis show that Brahmani basin is the most homogeneous with respect to Subarnarekha river basin in terms of physical characteristics (land use land cover classes, soiltype and elevation). The calibration and validation of model parameters of Brahmani basin is in progress which are to be transferred into the SHM set up of Subarnarekha basin and results are to be compared with the results of calibrated and validated

  3. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  4. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  5. On the ability of RegCM4 to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations

    Science.gov (United States)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Zanis, Prodromos; Tsikerdekis, Athanasios; Katragkou, Eleni; Kourtidis, Konstantinos; Meleti, Charikleia

    2015-04-01

    We assess here the ability of RegCM4 to simulate the surface solar radiation (SSR) patterns over the European domain. For the needs of this work, a decadal (1999-2009) simulation was implemented at a horizontal resolution of 50km using the first year as a spin-up. The model is driven by emissions from CMIP5 while ERA-interim data were used as lateral boundary conditions. The RegCM4 SSR fields were validated against satellite-based SSR observations from Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) sensors (CM SAF SIS product). The RegCM4 simulations slightly overestimate SSR compared to CM SAF over Europe with the bias being +1.54% in case of MFG (2000-2005) and +3.34% in case of MSG (2006-2009). SSR from RegCM4 is much closer to SSR from CM SAF over land (bias of -1.59% for MFG and +0.66% for MSG) than over ocean (bias of +7.20% for MFG and 8.07% for MSG). In order to understand the reasons of this bias, we proceeded to a detailed assessment of various parameters that define the SSR levels (cloud fractional cover - CFC, cloud optical thickness - COT, cloud droplet effective radius - Re, aerosol optical thickness - AOD, asymmetry factor - ASY, single scattering albedo - SSA, water vapor - WV and surface albedo - ALB). We validated the simulated CFC, COT and Re from RegCM4 against satellite-based observations from MSG and we found that RegCM4 significantly underestimates CFC and Re, and overestimates COT over Europe. The aerosol-related parameters from RegCM4 were compared with values from the aerosol climatology taken into account within CM SAF SSR estimates. AOD is significantly underestimated in our simulations which leads to a positive SSR bias. The RegCM4 WV and ALB were compared with WV values from ERA-interim and ALB climatological observations from CERES which are also taken into account within CM SAF SSR estimates. Finally, with the use of a radiative transfer model (SBDART) we manage to quantify the relative contribution of each of

  6. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently

  7. Assessment of the most recent satellite based digital elevation models of Egypt

    Science.gov (United States)

    Rabah, Mostafa; El-Hattab, Ahmed; Abdallah, Mohamed

    2017-12-01

    Digital Elevation Model (DEM) is crucial to a wide range of surveying and civil engineering applications worldwide. Some of the DEMs such as ASTER, SRTM1 and SRTM3 are freely available open source products. In order to evaluate the three DEMs, the contribution of EGM96 are removed and all DEMs heights are becoming ellipsoidal height. This step was done to avoid the errors occurred due to EGM96. 601 points of observed ellipsoidal heights compared with the three DEMs, the results show that the SRTM1 is the most accurate one, that produces mean height difference and standard deviations equal 2.89 and ±8.65 m respectively. In order to increase the accuracy of SRTM1 in EGYPT, a precise Global Geopotential Model (GGM) is needed to convert the SRTM1 ellipsoidal height to orthometric height, so that, we quantify the precision of most-recent released GGM (five models). The results show that, the GECO model is the best fit global models over Egypt, which produces a standard deviation of geoid undulation differences equals ±0.42 m over observed 17 HARN GPS/leveling stations. To confirm an enhanced DEM in EGYPT, the two orthometric height models (SRTM1 ellipsoidal height + EGM96) and (SRTM1 ellipsoidal height + GECO) are assessment with 17 GPS/leveling stations and 112 orthometric height stations, the results show that the estimated height differences between the SRTM1 before improvements and the enhanced model are at rate of 0.44 m and 0.06 m respectively.

  8. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  9. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  10. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  11. The Added Utility of Hydrological Model and Satellite Based Datasets in Agricultural Drought Analysis over Turkey

    Science.gov (United States)

    Bulut, B.; Hüsami Afşar, M.; Yilmaz, M. T.

    2017-12-01

    Analysis of agricultural drought, which causes substantial socioeconomically costs in Turkey and in the world, is critical in terms of understanding this natural disaster's characteristics (intensity, duration, influence area) and research on possible precautions. Soil moisture is one of the most important parameters which is used to observe agricultural drought, can be obtained using different methods. The most common, consistent and reliable soil moisture datasets used for large scale analysis are obtained from hydrologic models and remote sensing retrievals. On the other hand, Normalized difference vegetation index (NDVI) and gauge based precipitation observations are also commonly used for drought analysis. In this study, soil moisture products obtained from different platforms, NDVI and precipitation datasets over several different agricultural regions under various climate conditions in Turkey are obtained in growth season period. These datasets are later used to investigate agricultural drought by the help of annual crop yield data of selected agricultural lands. The type of vegetation over these regions are obtained using CORINE Land Cover (CLC 2012) data. The crop yield data were taken from the record of related district's statistics which is provided by Turkish Statistical Institute (TÜİK). This project is supported by TÜBİTAK project number 114Y676.

  12. Hydrological real-time modelling in the Zambezi river basin using satellite-based soil moisture and rainfall data

    Directory of Open Access Journals (Sweden)

    P. Meier

    2011-03-01

    Full Text Available Reliable real-time forecasts of the discharge can provide valuable information for the management of a river basin system. For the management of ecological releases even discharge forecasts with moderate accuracy can be beneficial. Sequential data assimilation using the Ensemble Kalman Filter provides a tool that is both efficient and robust for a real-time modelling framework. One key parameter in a hydrological system is the soil moisture, which recently can be characterized by satellite based measurements. A forecasting framework for the prediction of discharges is developed and applied to three different sub-basins of the Zambezi River Basin. The model is solely based on remote sensing data providing soil moisture and rainfall estimates. The soil moisture product used is based on the back-scattering intensity of a radar signal measured by a radar scatterometer. These soil moisture data correlate well with the measured discharge of the corresponding watershed if the data are shifted by a time lag which is dependent on the size and the dominant runoff process in the catchment. This time lag is the basis for the applicability of the soil moisture data for hydrological forecasts. The conceptual model developed is based on two storage compartments. The processes modeled include evaporation losses, infiltration and percolation. The application of this model in a real-time modelling framework yields good results in watersheds where soil storage is an important factor. The lead time of the forecast is dependent on the size and the retention capacity of the watershed. For the largest watershed a forecast over 40 days can be provided. However, the quality of the forecast increases significantly with decreasing prediction time. In a watershed with little soil storage and a quick response to rainfall events, the performance is relatively poor and the lead time is as short as 10 days only.

  13. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  14. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals

    International Nuclear Information System (INIS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If τ(1–ϖ) and τ(1–ϖg) are conserved where τ is optical thickness, ϖ the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1–ϖg) factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1–ϖ)/(1–ϖg)]"1"/"2, also tend to be similar. - Highlights: • Similarity relations are theoretically analyzed and validated. • Similarity relations are verified with the MODIS Level 2 Collection 5 and 6 ice cloud property products. • The product of ice cloud optical thickness and (1–ϖg) is approximately invariant. • The similarity parameter derived from the MODIS ice cloud effective radius retrieval tends to be invariant.

  15. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-01-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  16. SAT-MAP-CLIMATE project results[SATellite base bio-geophysical parameter MAPping and aggregation modelling for CLIMATE models

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.; Woetmann Nielsen, N.; Soegaard, H.; Boegh, E.; Hesselbjerg Christensen, J.; Jensen, N.O.; Schultz Rasmussen, M.; Astrup, P.; Dellwik, E.

    2002-08-01

    Earth Observation (EO) data from imaging satellites are analysed with respect to albedo, land and sea surface temperatures, land cover types and vegetation parameters such as the Normalized Difference Vegetation Index (NDVI) and the leaf area index (LAI). The observed parameters are used in the DMI-HIRLAM-D05 weather prediction model in order to improve the forecasting. The effect of introducing actual sea surface temperatures from NOAA AVHHR compared to climatological mean values, shows a more pronounced land-sea breeze effect which is also observable in field observations. The albedo maps from NOAA AVHRR are rather similar to the climatological mean values so for the HIRLAM model this is insignicant, yet most likely of some importance in the HIRHAM regional climate model. Land cover type maps are assigned local roughness values determined from meteorological field observations. Only maps with a spatial resolution around 25 m can adequately map the roughness variations of the typical patch size distribution in Denmark. A roughness map covering Denmark is aggregated (ie area-average non-linearly) by a microscale aggregation model that takes the non-linear turbulent responses of each roughness step change between patches in an arbitrary pattern into account. The effective roughnesses are calculated into a 15 km by 15 km grid for the HIRLAM model. The effect of hedgerows is included as an added roughness effect as a function of hedge density mapped from a digital vector map. Introducing the new effective roughness maps into the HIRLAM model appears to remedy on the seasonal wind speed bias over land and sea in spring. A new parameterisation on the effective roughness for scalar surface fluxes is developed and tested on synthetic data. Further is a method for the estimation the evapotranspiration from albedo, surface temperatures and NDVI succesfully compared to field observations. The HIRLAM predictions of water vapour at 12 GMT are used for atmospheric correction of

  17. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  18. Towards a more objective evaluation of modelled land-carbon trends using atmospheric CO2 and satellite-based vegetation activity observations

    Directory of Open Access Journals (Sweden)

    D. Dalmonech

    2013-06-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular the net land–atmosphere carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to better understand the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely sensed vegetation activity to provide a novel set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given that the uncertainty of both data and evaluation methodology is largely unknown or difficult to quantify. Based on these considerations, we introduce a baseline benchmark – a minimum test that any model has to pass – to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI Earth System Model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite-based vegetation activity data allows pinpointing of specific model deficiencies that would not be possible by the sole use of atmospheric CO2 observations.

  19. Application of a satellite based rainfall - runoff model : a case study of the Trans Boundary Cuvelai Basin in Southern Africa

    NARCIS (Netherlands)

    Mufeti, P.; Rientjes, T.H.M.; Mabande, P.; Maathuis, B.H.P.

    2013-01-01

    Applications of distributed hydrological models are often constrained by poor data availability. Models rely on distributed inputs for meteorological forcing and land surface parameterization. In this pilot the rainfall runoff model LISFLOOD for large scale streamflow simulation is tested for the

  20. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    Science.gov (United States)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  1. Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Directory of Open Access Journals (Sweden)

    R. Zubieta

    2017-07-01

    Full Text Available In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG (product/final run as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015 when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively. In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ∼  20 %. Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin. GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins, probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  2. Seasonal Habitat Patterns of Japanese Common Squid (Todarodes Pacificus Inferred from Satellite-Based Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Irene D. Alabia

    2016-11-01

    Full Text Available The understanding of the spatio-temporal distributions of the species habitat in the marine environment is central to effectual resource management and conservation. Here, we examined the potential habitat distributions of Japanese common squid (Todarodes pacificus in the Sea of Japan during a four-year period. The seasonal patterns of preferential habitat were inferred from species distribution models, built using squid occurrences detected from night-time visible images and remotely-sensed environmental factors. The predicted squid habitat (i.e., areas with high habitat suitability revealed strong seasonal variability, characterized by a reduction of potential habitat, confined off of the southern part of the basin during the winter–spring period (December–May. Apparent expansion of preferential habitat occurred during summer–autumn months (June–November, concurrent with the formation of highly suitable habitat patches in certain regions of the Sea of Japan. These habitat distribution patterns were in response to changes in oceanographic conditions and synchronous with seasonal migration of squid. Moreover, the most important variables regulating the spatio-temporal patterns of suitable habitat were sea surface temperature, depth, sea surface height anomaly, and eddy kinetic energy. These variables could affect the habitat distributions through their impacts on growth and survival of squid, local nutrient transport, and the availability of favorable spawning and feeding grounds.

  3. Optical Properties of the Urban Aerosol Particles Obtained from Ground Based Measurements and Satellite-Based Modelling Studies

    Directory of Open Access Journals (Sweden)

    Genrik Mordas

    2015-01-01

    Full Text Available Applications of satellite remote sensing data combined with ground measurements and model simulation were applied to study aerosol optical properties as well as aerosol long-range transport under the impact of large scale circulation in the urban environment in Lithuania (Vilnius. Measurements included the light scattering coefficients at 3 wavelengths (450, 550, and 700 nm measured with an integrating nephelometer and aerosol particle size distribution (0.5–12 μm and number concentration (Dpa > 0.5 μm registered by aerodynamic particle sizer. Particle number concentration and mean light scattering coefficient varied from relatively low values of 6.0 cm−3 and 12.8 Mm−1 associated with air masses passed over Atlantic Ocean to relatively high value of 119 cm−3 and 276 Mm−1 associated with South-Western air masses. Analysis shows such increase in the aerosol light scattering coefficient (276 Mm−1 during the 3rd of July 2012 was attributed to a major Sahara dust storm. Aerosol size distribution with pronounced coarse particles dominance was attributed to the presence of dust particles, while resuspended dust within the urban environment was not observed.

  4. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  5. Analysis of Groundwater Anomalies Estimated by GRACE and GLDAS Satellite-based Hydrological Model in the Gulf of Mexico

    Science.gov (United States)

    Lotfata, A.; Ambinakudige, S.

    2017-12-01

    Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.

  6. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  7. Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX

    Science.gov (United States)

    Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...

  8. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability.

    Science.gov (United States)

    Wu, Chih-Da; Chen, Yu-Cheng; Pan, Wen-Chi; Zeng, Yu-Ting; Chen, Mu-Jean; Guo, Yue Leon; Lung, Shih-Chun Candice

    2017-05-01

    This study utilized a long-term satellite-based vegetation index, and considered culture-specific emission sources (temples and Chinese restaurants) with Land-use Regression (LUR) modelling to estimate the spatial-temporal variability of PM 2.5 using data from Taipei metropolis, which exhibits typical Asian city characteristics. Annual average PM 2.5 concentrations from 2006 to 2012 of 17 air quality monitoring stations established by Environmental Protection Administration of Taiwan were used for model development. PM 2.5 measurements from 2013 were used for external data verification. Monthly Normalized Difference Vegetation Index (NDVI) images coupled with buffer analysis were used to assess the spatial-temporal variations of greenness surrounding the monitoring sites. The distribution of temples and Chinese restaurants were included to represent the emission contributions from incense and joss money burning, and gas cooking, respectively. Spearman correlation coefficient and stepwise regression were used for LUR model development, and 10-fold cross-validation and external data verification were applied to verify the model reliability. The results showed a strongly negative correlation (r: -0.71 to -0.77) between NDVI and PM 2.5 while temples (r: 0.52 to 0.66) and Chinese restaurants (r: 0.31 to 0.44) were positively correlated to PM 2.5 concentrations. With the adjusted model R 2 of 0.89, a cross-validated adj-R 2 of 0.90, and external validated R 2 of 0.83, the high explanatory power of the resultant model was confirmed. Moreover, the averaged NDVI within a 1750 m circular buffer (p < 0.01), the number of Chinese restaurants within a 1750 m buffer (p < 0.01), and the number of temples within a 750 m buffer (p = 0.06) were selected as important predictors during the stepwise selection procedures. According to the partial R 2 , NDVI explained 66% of PM 2.5 variation and was the dominant variable in the developed model. We suggest future studies

  9. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor is...

  10. Satellite Based Cropland Carbon Monitoring System

    Science.gov (United States)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  11. Mental models of radiation

    International Nuclear Information System (INIS)

    Saito, Kiyoko

    2005-01-01

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  12. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  13. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  14. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  15. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  16. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  17. ATHENA radiation model

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs

  18. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  19. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  20. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  1. Invitation to a forum: architecting operational `next generation' earth monitoring satellites based on best modeling, existing sensor capabilities, with constellation efficiencies to secure trusted datasets for the next 20 years

    Science.gov (United States)

    Helmuth, Douglas B.; Bell, Raymond M.; Grant, David A.; Lentz, Christopher A.

    2012-09-01

    Architecting the operational Next Generation of earth monitoring satellites based on matured climate modeling, reuse of existing sensor & satellite capabilities, attention to affordability and evolutionary improvements integrated with constellation efficiencies - becomes our collective goal for an open architectural design forum. Understanding the earth's climate and collecting requisite signatures over the next 30 years is a shared mandate by many of the world's governments. But there remains a daunting challenge to bridge scientific missions to 'operational' systems that truly support the demands of decision makers, scientific investigators and global users' requirements for trusted data. In this paper we will suggest an architectural structure that takes advantage of current earth modeling examples including cross-model verification and a first order set of critical climate parameters and metrics; that in turn, are matched up with existing space borne collection capabilities and sensors. The tools used and the frameworks offered are designed to allow collaborative overlays by other stakeholders nominating different critical parameters and their own treaded connections to existing international collection experience. These aggregate design suggestions will be held up to group review and prioritized as potential constellation solutions including incremental and spiral developments - including cost benefits and organizational opportunities. This Part IV effort is focused on being an inclusive 'Next Gen Constellation' design discussion and is the natural extension to earlier papers.

  2. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    Science.gov (United States)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  3. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    Science.gov (United States)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  4. Investigation of CO, C2H6 and aerosols over Eastern Canada during BORTAS 2011 using ground-based and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, Debora; Franklin, Jonathan; Parrington, Mark; Whaley, Cynthia; Hopper, Jason; Lesins, Glen; Tereszchuk, Keith; Walker, Kaley A.; Drummond, James R.; Palmer, Paul; Strong, Kimberly; Duck, Thomas J.; Abboud, Ihab; Dan, Lin; O'Neill, Norm; Clerbaux, Cathy; Coheur, Pierre; Bernath, Peter F.; Hyer, Edward; Kliever, Jenny

    2013-04-01

    We present the results of total column measurements of CO and C2H6 and aerosol optical depth (AOD) during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. They were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and in Toronto, Ontario. Measurements of enhanced fine mode AOD were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this study, we will focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre (CMC) as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto did originate from forest fires in Northwestern Ontario, that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6-CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. The C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to other geographical regions. The ground-based CO and C2H6 observations were compared with output from the 3-D global chemical transport model GEOS-Chem, using the inventory of the Fire Locating And Monitoring of Burning Emissions (FLAMBE). Good agreement was found for

  5. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  6. Evaluation of Refuge Life Risk using Geographical and Social Grid-Models with Satellite-Based House Ratio and Flood Depth by Tsunami Simulation

    Science.gov (United States)

    Kaneko, D.; Hosoyamada, T.

    2017-12-01

    The authors have developed social and geographical models for evaluating and applying life risk to the Kamakura coast near the south-western part of the metropolitan areas of Tokyo. The coastline close to the seismic center of the South Kanto earthquake is in the riskiest belt in the metropolitan area with a high possibility of house collapse and tsunami run-up. Kamakura is an important historical city, visited by many tourists who are not familiar with seismic dangers. There is a high probability of loss of human life during an evacuation of the city during tsunami waves. To evaluate the distribution of life risk characteristics in the area, models for citizens and sightseers are developed that includes social data such as population density, wooden-house ratio, and geographical evacuation distance and tsunami-flooding depth. The population of Kamakura City is 174,050 and the risk of tsunami evacuation is high in the area from the southern part of Kamakura Station to Zaimokuza block, where the population is approximately 15,310 people. There are about 26,000 tourists visiting this area on weekdays and about 100,000 sightseers visiting the area on Saturdays and Sundays. On weekdays the population per mesh will increase by half of the 2,000 inhabitants. On Saturdays and Sundays the population density will be 4 thousand who will double those of the inhabitants. A disaster prevention hill is proposed as a tsunami countermeasure on the coast of Kamakura City. The hill is covered by pine forest with a high-standard road, evacuation center, and sightseeing parking lots embedded in the hilly bank. In normal times, tourists and citizens use this area as a seaside pine park. Long concrete box structures strengthen the hill inside the mound, which has two levels, the lower equipped with high-standard-width roads on the ground level. The parking areas will resolve daily traffic congestion issues along the Kamakura main streets. The evaluation of over-flooding tsunamis and

  7. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    Epidemiologic and health impact studies have examined the chemical composition of ambient PM2.5 in China but have been constrained by the paucity of long-term ground measurements. Using the GEOS-Chem chemical transport model and satellite-derived PM2.5 data, sulfate and ammonium levels were estimated over China from 2004 to 2014. A comparison of the satellite-estimated dataset with model simulations based on ground measurements obtained from the literature indicated our results are more accurate. Using satellite-derived PM2.5 data with a spatial resolution of 0.1° × 0.1°, we further presented finer satellite-estimated sulfate and ammonium concentrations in anthropogenic polluted regions, including the NCP (the North China Plain), the SCB (the Sichuan Basin) and the PRD (the Pearl River Delta). Linear regression results obtained on a national scale yielded an r value of 0.62, NMB of -35.9 %, NME of 48.2 %, ARB_50 % of 53.68 % for sulfate and an r value of 0.63, slope of 0.67, and intercept of 5.14 for ammonium. In typical regions, the satellite-derived dataset was significantly robust. Based on the satellite-derived dataset, the spatial-temporal variation of 11-year annual average satellite-derived SO42- and NH4+ concentrations and time series of monthly average concentrations were also investigated. On a national scale, both exhibited a downward trend each year between 2004 and 2014 (SO42-: -0.61 %; NH4+: -0.21 %), large values were mainly concentrated in the NCP and SCB. For regions captured at a finer resolution, the inter-annual variation trends presented a positive trend over the periods 2004-2007 and 2008-2011, followed by a negative trend over the period 2012-2014, and sulfate concentrations varied appreciably. Moreover, the seasonal distributions of the 11-year satellite-derived dataset over China were presented. The distribution of both sulfate and ammonium concentrations exhibited seasonal characteristics, with the seasonal concentrations ranking as

  8. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  9. Radiation dependent ionization model

    International Nuclear Information System (INIS)

    Busquet, M.

    1991-01-01

    For laser created plasma simulation, hydrodynamics codes need a non-LTE atomic physics package for both EOS and optical properties (emissivity and opacity). However in XRL targets as in some ICF targets, high Z material can be found. In these cases radiation trapping can induce a significant departure from the optically thin ionization description. The authors present a method to change an existing LTE code into a non-LTE code with coupling of ionization to radiation. This method has very low CPU cost and can be used in 2D simulations

  10. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  11. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  12. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  13. Models for infrared atmospheric radiation

    Science.gov (United States)

    Tiwari, S. N.

    1976-01-01

    Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.

  14. Biophysical models in radiation oncology

    International Nuclear Information System (INIS)

    Cohen, L.

    1984-01-01

    The paper examines and describes dose-time relationships in clinical radiation oncology. Realistic models and parameters for specific tissues, organs, and tumor types are discussed in order to solve difficult problems which arise in radiation oncology. The computer programs presented were written to: derive parameters from experimental and clinical data; plot normal- and tumor-cell survival curves; generate iso-effect tables of tumor-curative doses; identify alternative, equally effective procedures for fraction numbers and treatment times; determine whether a proposed course of treatment is safe and adequate, and what adjustments are needed should results suggest that the procedure is unsafe or inadequate; combine the physical isodose distribution with computed cellular surviving fractions for the tumor and all normal tissues traversed by the beam, estimating the risks of recurrence or complications at various points in the irradiated volume, and adjusting the treatment plan and fractionation scheme to minimize these risks

  15. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM MEASURED AIR TEMPERATURE AND ... Nigerian Journal of Technology ... Solar radiation measurement is not sufficient in Nigeria for various reasons such as maintenance and ...

  16. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  17. SCROLL, a superconfiguration collisional radiative model with external radiation

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Klapisch, M.

    2000-01-01

    A collisional radiative model for calculating non-local thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed. It takes into account the numerous excited an autoionizing states by using superconfigurations. These are split systematically until the populations converge. The influence of an impinging radiation field has recently been added to the model. The effect can be very important. (author)

  18. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  19. Dissemination of satellite-based river discharge and flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite

  20. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  1. Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes

    Science.gov (United States)

    Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.

    2013-12-01

    The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory

  2. Mutiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1979-01-01

    Theoretical Radiobiology and Risk Estimates includes reports on: Multiple Simultaneous Event Model for Radiation Carcinogenesis; Cancer Risk Estimates and Neutron RBE Based on Human Exposures; A Rationale for Nonlinear Dose Response Functions of Power Greater or Less Than One; and Rationale for One Double Event in Model for Radiation Carcinogenesis

  3. Modeling of diamond radiation detectors

    International Nuclear Information System (INIS)

    Milazzo, L.; Mainwood, A.

    2004-01-01

    We have built up a computer simulation of the detection mechanism in the diamond radiation detectors. The diamond detectors can be fabricated from a chemical vapour deposition polycrystalline diamond film. In this case, the trapping-detrapping and recombination at the defects inside the grains and at the grain boundaries degrade the transport properties of the material and the charge induction processes. These effects may strongly influence the device's response. Previous simulations of this kind of phenomena in the diamond detectors have generally been restricted to the simple detector geometries and homogeneous distribution of the defects. In our model, the diamond film (diamond detector) is simulated by a grid. We apply a spatial and time discretization, regulated by the grid resolution, to the equations describing the charge transport and, by using the Shockley-Ramo theorem, we calculate the signal induced on the electrodes. In this way, we can simulate the effects of the nonhomogeneous distributions of the trapping, recombination, or scattering centers and can investigate the differences observed when different particles, energies, and electrode configurations are used. The simulation shows that the efficiency of the detector increases linearly with the average grain size, that the charge collection distance is small compared to the dimensions of a single grain, and that for small grains, the trapping at the intragrain defects is insignificant compared to the effect of the grain boundaries

  4. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  5. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  6. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  7. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  8. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  9. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  10. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  11. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  12. The dynamic radiation environment assimilation model (DREAM)

    International Nuclear Information System (INIS)

    Reeves, Geoffrey D.; Koller, Josef; Tokar, Robert L.; Chen, Yue; Henderson, Michael G.; Friedel, Reiner H.

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  13. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  14. Improving satellite-based post-fire evapotranspiration estimates in semi-arid regions

    Science.gov (United States)

    Poon, P.; Kinoshita, A. M.

    2017-12-01

    Climate change and anthropogenic factors contribute to the increased frequency, duration, and size of wildfires, which can alter ecosystem and hydrological processes. The loss of vegetation canopy and ground cover reduces interception and alters evapotranspiration (ET) dynamics in riparian areas, which can impact rainfall-runoff partitioning. Previous research evaluated the spatial and temporal trends of ET based on burn severity and observed an annual decrease of 120 mm on average for three years after fire. Building upon these results, this research focuses on the Coyote Fire in San Diego, California (USA), which burned a total of 76 km2 in 2003 to calibrate and improve satellite-based ET estimates in semi-arid regions affected by wildfire. The current work utilizes satellite-based products and techniques such as the Google Earth Engine Application programming interface (API). Various ET models (ie. Operational Simplified Surface Energy Balance Model (SSEBop)) are compared to the latent heat flux from two AmeriFlux eddy covariance towers, Sky Oaks Young (US-SO3), and Old Stand (US-SO2), from 2000 - 2015. The Old Stand tower has a low burn severity and the Young Stand tower has a moderate to high burn severity. Both towers are used to validate spatial ET estimates. Furthermore, variables and indices, such as Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) are utilized to evaluate satellite-based ET through a multivariate statistical analysis at both sites. This point-scale study will able to improve ET estimates in spatially diverse regions. Results from this research will contribute to the development of a post-wildfire ET model for semi-arid regions. Accurate estimates of post-fire ET will provide a better representation of vegetation and hydrologic recovery, which can be used to improve hydrologic models and predictions.

  15. Decomposition of radiational effects of model feedbacks

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.

    1981-08-01

    Three separate doubled CO 2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport

  16. Assessment of satellite-based precipitation estimates over Paraguay

    Science.gov (United States)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  17. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2013-10-01

    Full Text Available We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6 observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE inventory

  18. Investigation of CO, C2H6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    Science.gov (United States)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    2013-10-01

    We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio - that is, in this case equivalent to the emission ratio (ERC2H6/CO) - was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the

  19. Handbook of anatomical models for radiation dosimetry

    CERN Document Server

    Eckerman, Keith F

    2010-01-01

    Covering the history of human model development, this title presents the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. It explores how these models have evolved and the role that modern technologies have played in this development.

  20. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  1. [Surveying a zoological facility through satellite-based geodesy].

    Science.gov (United States)

    Böer, M; Thien, W; Tölke, D

    2000-06-01

    In the course of a thesis submitted for a diploma degree within the Fachhochschule Oldenburg the Serengeti Safaripark was surveyed in autumn and winter 1996/97 laying in the planning foundations for the application for licences from the controlling authorities. Taking into consideration the special way of keeping animals in the Serengeti Safaripark (game ranching, spacious walk-through-facilities) the intention was to employ the outstanding satellite based geodesy. This technology relies on special aerials receiving signals from 24 satellites which circle around the globe. These data are being gathered and examined. This examination produces the exact position of this aerial in a system of coordinates which allows depicting this point on a map. This procedure was used stationary (from a strictly defined point) as well as in the movement (in a moving car). Additionally conventional procedures were used when the satellite based geodesy came to its limits. Finally a detailed map of the Serengeti Safaripark was created which shows the position and size of stables and enclosures as well as wood and water areas and the sectors of the leisure park. Furthermore the established areas of the enclosures together with an already existing animal databank have flown into an information system with the help of which the stock of animals can be managed enclosure-orientated.

  2. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    H. Jethva

    2011-10-01

    Full Text Available We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI during 2005–2007. In the current near-UV OMI aerosol algorithm (OMAERUV, it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September. Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols. The use of a new set of aerosol models assuming wavelength-dependent aerosol absorption in the near-UV region (Absorption Angstrom Exponent λ−2.5 to −3.0 improved the OMAERUV retrieval results by significantly reducing the AOD bias observed when gray aerosols were assumed. In addition, the new retrieval of single-scattering albedo is in better agreement with those of AERONET within the uncertainties (ΔSSA = ±0.03. The new colored carbonaceous aerosol model was also found to

  3. Development of natural radiation model for evaluation of background radiation in radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, Jin Hyung; Moon, Myung Kook [Radioisotope Research and Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-15

    In ports and airports, radiation portal monitors (RPM) are deployed to detect illicit radioactive materials. Detected gamma rays in a RPM include background radiation and radiation from a freight. As a vehicle moves through the RPM, the vehicle causes the fluctuations in the natural background radiation signal, which ranges of up to 30%. The fluctuation increases the uncertainty of detection signal and can be a cause of RPM false alarm. Therefore, it is important to evaluate background radiation as well as radiation from a container. In this paper, a natural background radiation model was developed to evaluate RPM. To develop natural background radiation model, a Monte Carlo simulation was performed and compared with experimental measurements from a RPM for {sup 40}K, {sup 232}Th series, and {sup 235}U series, which are major sources of natural background radiation. For a natural radiation source, we considered a cylindrical soil volume with 300 m radius and 1 m depth, which was estimated as the maximum range affecting the RPM by MCNP6 simulation. The volume source model was converted to surface source by using MCNP SSW card for computational efficiency. The computational efficiency of the surface source model was improved to approximately 200 times better than that of the volume source model. The surface source model is composed of a hemisphere with 20 m radius in which the RPM and container are modelled. The natural radiation spectrum from the simulation was best fitted to the experimental measurement when portions of {sup 40}K, {sup 232}Th series, and {sup 235}U series were 0.75, 0.0636, and 0.0552 Bq·g{sup -1}, respectively. For gross counting results, the difference between simulation and experiment was around 5%. The background radiation model was used to evaluate background suppression from a 40 ft container with 7.2 m·s{sup -1} speed. In further study, background models and freight models for RPM in real container ports will be developed and applied to

  4. The JPL Uranian Radiation Model (UMOD)

    Science.gov (United States)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.

  5. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  6. Radiation induced peroxidation in model lipid systems

    International Nuclear Information System (INIS)

    Dahlan, K.Z.B.H.M.

    1981-08-01

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of O 2 and N 2 O/O 2 (80/20 v/v). The peroxidation was initiated using gamma radiation from 60 Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The oxidation products were also identified by GLC and GLC-MS analysis. (author)

  7. Modeling transient radiation effects in power MOSFETS

    International Nuclear Information System (INIS)

    Hoffman, J.R.; Hall, W.E.; Dunn, D.E.

    1987-01-01

    Using standard device specifications and simple assumptions, the transient radiation response of VDMOS MOSFETs can be modeled in a standard circuit analysis program. The device model consists of a body diode, a parasitic bipolar transistor, and elements to simulate high-current reduced breakdown. The attached photocurrent model emulates response to any pulse shape and accounts for bias-dependent depletion regions. The model can be optimized to best fit available test data

  8. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  9. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  10. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  11. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  12. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... Application Facility' of EUMETSAT and is based on multispectral images from the SEVIRI sensor of the Meteosat-8 platform. Of special interest is the 'Precipitating Clouds' product, which uses the spectral information coupled with surface temperatures from Numerical Weather Predictions to assign probabilities...

  13. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  14. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    Science.gov (United States)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  15. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  16. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    Science.gov (United States)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  17. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  18. Status of Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-01-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.

  19. Radiation enhanced conduction in insulators: computer modelling

    International Nuclear Information System (INIS)

    Fisher, A.J.

    1986-10-01

    The report describes the implementation of the Klaffky-Rose-Goland-Dienes [Phys. Rev. B.21 3610,1980] model of radiation-enhanced conduction and describes the codes used. The approach is demonstrated for the data for alumina of Pells, Buckley, Hill and Murphy [AERE R.11715, 1985]. (author)

  20. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  1. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  2. A two stream radiative transfer model for scaling solar induced fluorescence from leaf to canopy

    Science.gov (United States)

    Quaife, T. L.

    2017-12-01

    Solar induced fluorescence (SIF) is becoming widely used as a proxy for gross primary productivity (GPP), in particular with the advent of its measurement by Earth Observation satellites such as OCO and GOSAT. A major attraction of SIF is that it is independent of the assumptions embedded in light use efficiency based GPP products derived from satellite missions such as MODIS. The assumptions in such products are likely not compatible with any given land surface model and hence comparing the two is problematic. On the other hand to compare land surface model predictions of GPP to satellite based SIF data requires either (a) translation of SIF into estimates of GPP, or (b) direct predictions of SIF from the land surface model itself. The former typically relies on empirical relationships, whereas the latter can make direct use of our physiological understanding of the link between photosynthesis and fluorescence at the leaf scale and is therefore preferable. Here I derive a two stream model for fluorescence that is capable of translating between leaf scale models of SIF and the canopy leaving radiance taking into account all levels of photon scattering. Other such models have been developed previously but the model described here is physically consistent with the Sellers' two stream radiative transfer scheme which is widely used in modern land surface models. Consequently any model that already employs the Sellers's scheme can use the new model without requiring modification. This includes, for example, JULES, the land surface model of the new UK Earth System Model (UKESM) and CLM, the US Community Land Model (part of the NCAR Earth System Model). The new canopy SIF model is extremely computationally efficient and can be applied to vertically inhomogeneous canopies.

  3. Dark radiation confronting LHC in Z′ models

    International Nuclear Information System (INIS)

    Solaguren-Beascoa, A.; Gonzalez-Garcia, M.C.

    2013-01-01

    Recent cosmological data favour additional relativistic degrees of freedom beyond the three active neutrinos and photons, often referred to as “dark radiation”. Extensions of the SM involving TeV-scale Z ′ gauge bosons generically contain superweakly interacting light right-handed neutrinos which can constitute this dark radiation. In this Letter we confront the requirement on the parameters of the E 6 Z ′ models to account for the present evidence of dark radiation with the already existing constraints from searches for new neutral gauge bosons at LHC7

  4. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  5. The NSSDC trapped radiation model facility

    International Nuclear Information System (INIS)

    Gaffey, J.D. Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described. 17 refs

  6. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  7. Sigmoidal response model for radiation risk

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    From epidemiologic studies, we find no measurable increase in the incidences of birth defects and cancer after low-level exposure to radiation. Based on modern understanding of the molecular basis of teratogenesis and cancer, I attempt to explain thresholds observed in atomic bomb survivors, radium painters, uranium workers and patients injected with Thorotrast. Teratogenic injury induced by doses below threshold will be completely eliminated as a result of altruistic death (apoptosis) of injured cells. Various lines of evidence obtained show that oncomutations produced in cancerous cells after exposure to radiation are of spontaneous origin and that ionizing radiation acts not as an oncomutation inducer but as a tumor promoter by induction of chronic wound-healing activity. The tissue damage induced by radiation has to be repaired by cell growth and this creates opportunity for clonal expansion of a spontaneously occurring preneoplastic cell. If the wound-healing error model is correct, there must be a threshold dose range of radiation giving no increase in cancer risk. (author)

  8. A modeling perspective on cloud radiative forcing

    International Nuclear Information System (INIS)

    Potter, G.L.; Corsetti, L.; Slingo, J.M.

    1993-02-01

    Radiation fields from a perpetual July integration of a T106 version of the ECM-WF operational model are used to identify the most appropriate way to diagnose cloud radiative forcing in a general circulation model, for the purposes of intercomparison between models. Differences between the Methods I and II of Cess and Potter (1987) and a variant method are addressed. Method I is shown to be the least robust of all methods, due to the potential uncertainties related to persistent cloudiness, length of the sampling period and biases in retrieved clear-sky quantities due to insufficient sampling of the diurnal cycle. Method II is proposed as an unambiguous way to produce consistent radiative diagnostics for intercomparing model results. The impact of the three methods on the derived sensitivities and cloud feedbacks following an imposed change in sea surface temperature is discussed. The sensitivity of the results to horizontal resolution is considered by using the diagnostics from parallel integrations with T21 version of the model

  9. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  10. Satellite-based Drought Reporting on the Navajo Nation

    Science.gov (United States)

    McCullum, A. J. K.; Schmidt, C.; Ly, V.; Green, R.; McClellan, C.

    2017-12-01

    The Navajo Nation (NN) is the largest reservation in the US, and faces challenges related to water management during long-term and widespread drought episodes. The Navajo Nation is a federally recognized tribe, which has boundaries within Arizona, New Mexico, and Utah. The Navajo Nation has a land area of over 70,000 square kilometers. The Navajo Nation Department of Water Resources (NNDWR) reports on drought and climatic conditions through the use of regional Standardized Precipitation Index (SPI) values and a network of in-situ rainfall, streamflow, and climate data. However, these data sources lack the spatial detail and consistent measurements needed to provide a coherent understanding of the drought regime within the Nation's regional boundaries. This project, as part of NASA's Western Water Applications Office (WWAO), improves upon the recently developed Drought Severity Assessment Tool (DSAT) to ingest satellite-based precipitation data to generate SPI values for specific administrative boundaries within the reservation. The tool aims to: (1) generate SPI values and summary statistics for regions of interest on various timescales, (2) to visualize SPI values within a web-map application, and (3) produce maps and comparative statistical outputs in the format required for annual drought reporting. The co-development of the DSAT with NN partners is integral to increasing the sustained use of Earth Observations for water management applications. This tool will provide data to support the NN in allocation of drought contingency dollars to the regions most adversely impacted by declines in water availability.

  11. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  12. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  13. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    Daly, E.J.; Lemaire, J.; Heynderickx, D.; Rodgers, D.J.

    1996-01-01

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  14. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  15. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  16. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  17. Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island

    Directory of Open Access Journals (Sweden)

    Julien Morel

    2014-07-01

    Full Text Available Estimating sugarcane biomass is difficult to achieve when working with highly variable spatial distributions of growing conditions, like on Reunion Island. We used a dataset of in-farm fields with contrasted climatic conditions and farming practices to compare three methods of yield estimation based on remote sensing: (1 an empirical relationship method with a growing season-integrated Normalized Difference Vegetation Index NDVI, (2 the Kumar-Monteith efficiency model, and (3 a forced-coupling method with a sugarcane crop model (MOSICAS and satellite-derived fraction of absorbed photosynthetically active radiation. These models were compared with the crop model alone and discussed to provide recommendations for a satellite-based system for the estimation of yield at the field scale. Results showed that the linear empirical model produced the best results (RMSE = 10.4 t∙ha−1. Because this method is also the simplest to set up and requires less input data, it appears that it is the most suitable for performing operational estimations and forecasts of sugarcane yield at the field scale. The main limitation is the acquisition of a minimum of five satellite images. The upcoming open-access Sentinel-2 Earth observation system should overcome this limitation because it will provide 10-m resolution satellite images with a 5-day frequency.

  18. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  19. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  20. Track models and radiation chemical yields

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1987-01-01

    The authors are concerned only with systems in which single track effects dominate and radiation chemical yields are sums of yields for individual tracks. The authors know that the energy deposits of heavy particle tracks are composed of spurs along the particle trajectory (about one-half of the energy) and a more diffuse pattern composed of the tracks of knock-on electrons, called the penumbra (about one-half of the energy). The simplest way to introduce the concept of a unified track model for heavy particles is to consider the special case of the track of a heavy particle with an LET below 0.2-0.3eV/A, which in practice limits us to protons, deuterons, or particles with energy above 100 MeV per nucleon. At these LET values, to a good approximation, spurs formed by the main particle track can be considered to remain isolated throughout the radiation chemical reactions

  1. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  2. Operational Satellite-based Surface Oil Analyses (Invited)

    Science.gov (United States)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as

  3. Two dimensional model for coherent synchrotron radiation

    Science.gov (United States)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  4. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  5. Radiation Modeling with Direct Simulation Monte Carlo

    Science.gov (United States)

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  6. Multiple simultaneous event model for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Baum, J.W.

    1976-01-01

    A mathematical model is proposed which postulates that cancer induction is a multi-event process, that these events occur naturally, usually one at a time in any cell, and that radiation frequently causes two of these events to occur simultaneously. Microdosimetric considerations dictate that for high LET radiations the simultaneous events are associated with a single particle or track. The model predicts: (a) linear dose-effect relations for early times after irradiation with small doses, (b) approximate power functions of dose (i.e. Dsup(x)) having exponent less than one for populations of mixed age examined at short times after irradiation with small doses, (c) saturation of effect at either long times after irradiation with small doses or for all times after irradiation with large doses, and (d) a net increase in incidence which is dependent on age of observation but independent of age at irradiation. Data of Vogel, for neutron induced mammary tumors in rats, are used to illustrate the validity of the formulation. This model provides a quantitative framework to explain several unexpected results obtained by Vogel. It also provides a logical framework to explain the dose-effect relations observed in the Japanese survivors of the atomic bombs. (author)

  7. A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2017-05-01

    Full Text Available Besides 2 m - temperature and precipitation, sunshine duration is one of the most important and commonly used parameter in climatology, with measured time series of partly more than 100 years in length. EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF presents a climate data record for daily and monthly sunshine duration (SDU for Europe and Africa. Basis for the advanced retrieval is a highly resolved satellite product of the direct solar radiation from measurements by Meteosat satellites 2 to 10. The data record covers the time period 1983 to 2015 with a spatial resolution of 0.05° × 0.05°. The comparison against ground-based data shows high agreement but also some regional differences. Sunshine duration is overestimated by the satellite-based data in many regions, compared to surface data. In West and Central Africa, low clouds seem to be the reason for a stronger overestimation of sunshine duration in this region (up to 20% for monthly sums. For most stations, the overestimation is low, with a bias below 7.5 h for monthly sums and below 0.4 h for daily sums. A high correlation of 0.91 for daily SDU and 0.96 for monthly SDU also proved the high agreement with station data. As SDU is based on a stable and homogeneous climate data record of more than 30 years length, it is highly suitable for climate applications, such as trend estimates.

  8. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  9. Highlights of satellite-based forest change recognition and tracking using the ForWarn System

    Science.gov (United States)

    Steven P. Norman; William W. Hargrove; Joseph P. Spruce; William M. Christie; Sean W. Schroeder

    2013-01-01

    For a higher resolution version of this file, please use the following link: www.geobabble.orgSatellite-based remote sensing can assist forest managers with their need to recognize disturbances and track recovery. Despite the long...

  10. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  11. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  12. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  13. Recent advances in modelling diffuse radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, Univ. of South Australia, Mawson Lakes, SA (Australia)

    2008-07-01

    Boland et al (2001) developed a validated model for Australian conditions, using a logistic function instead of piecewise linear or simple nonlinear functions. Recently, Jacovides et al (2006) have verified that this model performs well for locations in Cyprus. Their analysis includes using moving average techniques to demonstrate the form of the relationship, which corresponds well to a logistic relationship. We have made significant advances in both the intuitive and theoretical justification of the use of the logistic function. In the theoretical development of the model utilising advanced non-parametric statistical methods. We have also constructed a method of identifying values that are likely to be erroneous. Using quadratic programming, we can eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. Additionally, this is a first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors (see Boland and Ridley 2007). Our more recent investigations focus on examining the effects of adding additional explanatory variables to enhance the predictability of the model. Examples for Australian and other locations will be presented. (orig.)

  14. Satellite-based emission constraint for nitrogen oxides: Capability and uncertainty

    Science.gov (United States)

    Lin, J.; McElroy, M. B.; Boersma, F.; Nielsen, C.; Zhao, Y.; Lei, Y.; Liu, Y.; Zhang, Q.; Liu, Z.; Liu, H.; Mao, J.; Zhuang, G.; Roozendael, M.; Martin, R.; Wang, P.; Spurr, R. J.; Sneep, M.; Stammes, P.; Clemer, K.; Irie, H.

    2013-12-01

    Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from satellite remote sensing have been employed widely to constrain emissions of nitrogen oxides (NOx). A major strength of satellite-based emission constraint is analysis of emission trends and variability, while a crucial limitation is errors both in satellite NO2 data and in model simulations relating NOx emissions to NO2 columns. Through a series of studies, we have explored these aspects over China. We separate anthropogenic from natural sources of NOx by exploiting their different seasonality. We infer trends of NOx emissions in recent years and effects of a variety of socioeconomic events at different spatiotemporal scales including the general economic growth, global financial crisis, Chinese New Year, and Beijing Olympics. We further investigate the impact of growing NOx emissions on particulate matter (PM) pollution in China. As part of recent developments, we identify and correct errors in both satellite NO2 retrieval and model simulation that ultimately affect NOx emission constraint. We improve the treatments of aerosol optical effects, clouds and surface reflectance in the NO2 retrieval process, using as reference ground-based MAX-DOAS measurements to evaluate the improved retrieval results. We analyze the sensitivity of simulated NO2 to errors in the model representation of major meteorological and chemical processes with a subsequent correction of model bias. Future studies will implement these improvements to re-constrain NOx emissions.

  15. Radiative models for the evaluation of the UV radiation at the ground

    International Nuclear Information System (INIS)

    Koepke, P.

    2009-01-01

    The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. (authors)

  16. [Induced thymus aging: radiation model and application perspective for low intensive laser radiation].

    Science.gov (United States)

    Sevost'ianova, N N; Trofimov, A V; Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The influence of gamma-radiation on morphofunctional state of thymus is rather like as natural thymus aging. However gamma-radiation model of thymus aging widely used to investigate geroprotectors has many shortcomings and limitations. Gamma-radiation can induce irreversible changes in thymus very often. These changes are more intensive in comparison with changes, which can be observed at natural thymus aging. Low intensive laser radiation can not destroy structure of thymus and its effects are rather like as natural thymus aging in comparison with gamma-radiation effects. There are many parameters of low intensive laser radiation, which can be changed to improve morphofunctional thymus characteristics in aging model. Using low intensive laser radiation in thymus aging model can be very perspective for investigations of aging immune system.

  17. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  18. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  19. Lepton radiative decays in supersymmetric standard model

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.

    1988-01-01

    Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available

  20. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  1. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  2. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  3. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    Science.gov (United States)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  4. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  5. A mathematical model for radiation hydrodynamics

    Directory of Open Access Journals (Sweden)

    Sebastiano Pennisi

    1990-11-01

    Full Text Available We adopt here the idea of describing a radiation field by means of the radiation energy density E and the radiative flux vector F which must satisfy a set of evolution equations; in these equations an unknown tensorial function P(E,F appears that is determined by the methods of extended thermodynamics.

  6. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  7. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  8. Radiative Symmetry Breaking in Brane Models

    CERN Document Server

    Antoniadis, Ignatios; Quirós, Mariano

    2000-01-01

    We propose a way to generate the electroweak symmetry breaking radiatively in non-supersymmetric type I models with string scale in the TeV region. By identifying the Higgs field with a tree-level massless open string state, we find that a negative squared mass term can be generated at one loop. It is finite, computable and typically a loop factor smaller than the string scale, that acts as an ultraviolet cutoff in the effective field theory. When the Higgs open string has both ends confined on our world brane, its mass is predicted to be around 120 GeV, i.e. that of the lightest Higgs in the minimal supersymmetric model for large $\\tan\\beta$ and $m_A$. Moreover, the string scale turns out to be one to two orders of magnitude higher than the weak scale. We also discuss possible effects of higher order string threshold corrections that might increase the string scale and the Higgs mass.

  9. A simplified model exploration research of new anisotropic diffuse radiation model

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin

    2016-01-01

    Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for

  10. Long-term change analysis of satellite-based evapotranspiration over Indian vegetated surface

    Science.gov (United States)

    Gupta, Shweta; Bhattacharya, Bimal K.; Krishna, Akhouri P.

    2016-05-01

    In the present study, trend of satellite based annual evapotranspiration (ET) and natural forcing factors responsible for this were analyzed. Thirty years (1981-2010) of ET data at 0.08° grid resolution, generated over Indian region from opticalthermal observations from NOAA PAL and MODIS AQUA satellites, were used. Long-term data on gridded (0.5° x 0.5°) annual rainfall (RF), annual mean surface soil moisture (SSM) ERS scatterometer at 25 km resolution and annual mean incoming shortwave radiation from MERRA-2D reanalysis were also analyzed. Mann-Kendall tests were performed with time series data for trend analysis. Mean annual ET loss from Indian ago-ecosystem was found to be almost double (1100 Cubic Km) than Indian forest ecosystem (550 Cubic Km). Rainfed vegetation systems such as forest, rainfed cropland, grassland showed declining ET trend @ - 4.8, -0.6 &-0.4 Cubic Kmyr-1, respectively during 30 years. Irrigated cropland initially showed ET decline upto 1995 @ -0.8 cubic Kmyr-1 which could possibly be due to solar dimming followed by increasing ET @ 0.9 cubic Kmyr-1 after 1995. A cross-over point was detected between forest ET decline and ET increase in irrigated cropland during 2008. During 2001-2010, the four agriculturally important Indian states eastern, central, western and southern showed significantly increasing ET trend with S-score of 15-25 and Z-score of 1.09-2.9. Increasing ET in western and southern states was found to be coupled with increase in annual rainfall and SSM. But in eastern and central states no significant trend in rainfall was observed though significant increase in ET was noticed. The study recommended to investigate the influence of anthropogenic factors such as increase in area under irrigation, increased use of water for irrigation through ground water pumping, change in cropping pattern and cultivars on increasing ET.

  11. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  12. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    Energy Technology Data Exchange (ETDEWEB)

    Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  13. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  14. Does Urban Form Affect Urban NO2? Satellite-Based Evidence for More than 1200 Cities.

    Science.gov (United States)

    Bechle, Matthew J; Millet, Dylan B; Marshall, Julian D

    2017-11-07

    Modifying urban form may be a strategy to mitigate urban air pollution. For example, evidence suggests that urban form can affect motor vehicle usage, a major contributor to urban air pollution. We use satellite-based measurements of urban form and nitrogen dioxide (NO 2 ) to explore relationships between urban form and air pollution for a global data  set of 1274 cities. Three of the urban form metrics studied (contiguity, circularity, and vegetation) have a statistically significant relationship with urban NO 2 ; their combined effect could be substantial. As illustration, if findings presented here are causal, that would suggest that if Christchurch, New Zealand (a city at the 75th percentile for all three urban-form metrics, and with a network of buses, trams, and bicycle facilities) was transformed to match the urban form of Indio - Cathedral City, California, United States (a city at the 25th percentile for those same metrics, and exhibiting sprawl-like suburban development), our models suggest that Christchurch's NO 2 concentrations would be ∼60% higher than its current level. We also find that the combined effect of urban form on NO 2 is larger for small cities (β × IQR = -0.46 for cities urban population and are where much of the future urban growth is expected to occur. This work highlights the need for future study of how changes in urban form and related land use and transportation policies impact urban air pollution, especially for small cities.

  15. Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness

    Science.gov (United States)

    Kirschbaum, Dalia; Stanley, Thomas

    2018-03-01

    Determining the time, location, and severity of natural disaster impacts is fundamental to formulating mitigation strategies, appropriate and timely responses, and robust recovery plans. A Landslide Hazard Assessment for Situational Awareness (LHASA) model was developed to indicate potential landslide activity in near real-time. LHASA combines satellite-based precipitation estimates with a landslide susceptibility map derived from information on slope, geology, road networks, fault zones, and forest loss. Precipitation data from the Global Precipitation Measurement (GPM) mission are used to identify rainfall conditions from the past 7 days. When rainfall is considered to be extreme and susceptibility values are moderate to very high, a "nowcast" is issued to indicate the times and places where landslides are more probable. When LHASA nowcasts were evaluated with a Global Landslide Catalog, the probability of detection (POD) ranged from 8% to 60%, depending on the evaluation period, precipitation product used, and the size of the spatial and temporal window considered around each landslide point. Applications of the LHASA system are also discussed, including how LHASA is used to estimate long-term trends in potential landslide activity at a nearly global scale and how it can be used as a tool to support disaster risk assessment. LHASA is intended to provide situational awareness of landslide hazards in near real-time, providing a flexible, open-source framework that can be adapted to other spatial and temporal scales based on data availability.

  16. Land Data Assimilation of Satellite-Based Soil Moisture Products Using the Land Information System Over the NLDAS Domain

    Science.gov (United States)

    Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.

    2011-01-01

    This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.

  17. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  18. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  19. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  20. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  1. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  2. An integrated model for radiation induced cancer

    International Nuclear Information System (INIS)

    Hall, E.J.; Varma, M.

    1994-01-01

    Risk estimates for radiation induced cancer are based on epidemiological data, principally the Japanese A bomb survivors. These estimates for radiation are better known than for any other environmental pollutant, but they do not relate directly to exposure to low doses and low dose rate. Recent rapid advances in molecular genetics, coupled with steady gains in cellular biology, radiation physics and chemistry led to the notion that the time may not be far off when it may be possible to arrive at human cancer risk estimates entirely from laboratory data. Whether risk estimates based on laboratory data will ever replace estimates based on epidemiological studies is an open question. What is clear is that laboratory data can supplement the present risk estimates by providing information on the relative effectiveness of high LET radiations, the importance of dose rate and dose protraction, and by identifying subpopulations which are unusually sensitive or resistant to radiation carcinogenesis. (author)

  3. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  4. The radiation performance standard. A presentation model for ionizing radiation in the living environment

    International Nuclear Information System (INIS)

    Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.

    1998-01-01

    By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs

  5. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  6. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  7. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  8. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  9. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  10. Estimation of snowpack matching ground-truth data and MODIS satellite-based observations by using regression kriging

    Science.gov (United States)

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In

  11. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  12. Extended equivalent dipole model for radiated emissions

    OpenAIRE

    Obiekezie, Chijioke S.

    2016-01-01

    This work is on the characterisation of radiated fields from electronic devices. An equivalent dipole approach is used. Previous work showed that this was an effective approach for single layer printed circuit boards where an infinite ground plane can be assumed. In this work, this approach is extended for the characterisation of more complex circuit boards or electronic systems.\\ud For complex electronic radiators with finite ground planes, the main challenge is characterising field diffract...

  13. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  14. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  15. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  16. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  17. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  18. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  19. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  20. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  1. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  2. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  3. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  4. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  5. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  6. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  7. Satellite-Based actual evapotranspiration over drying semiarid terrain in West-Africa

    NARCIS (Netherlands)

    Schuttemeyer, D.; Schillings, Ch.; Moene, A.F.; Bruin, de H.A.R.

    2007-01-01

    A simple satellite-based algorithm for estimating actual evaporation based on Makkink¿s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the drier northern region. The required input for the

  8. Assessing satellite-based start-of-season trends in the US High Plains

    International Nuclear Information System (INIS)

    Lin, X; Sassenrath, G F; Hubbard, K G; Mahmood, R

    2014-01-01

    To adequately assess the effects of global warming it is necessary to address trends and impacts at the local level. This study examines phenological changes in the start-of-season (SOS) derived from satellite observations from 1982–2008 in the US High Plains region. The surface climate-based SOS was also evaluated. The averaged profiles of SOS from 37° to 49°N latitude by satellite- and climate-based methods were in reasonable agreement, especially for areas where croplands were masked out and an additional frost date threshold was adopted. The statistically significant trends of satellite-based SOS show a later spring arrival ranging from 0.1 to 4.9 days decade −1 over nine Level III ecoregions. We found the croplands generally exhibited larger trends (later arrival) than the non-croplands. The area-averaged satellite-based SOS for non-croplands (i.e. mostly grasslands) showed no significant trends. We examined the trends of temperatures, precipitation, and standardized precipitation index (SPI), as well as the strength of correlation between the satellite-based SOS and these climatic drivers. Our results indicate that satellite-based SOS trends are spatially and primarily related to annual maximum normalized difference vegetation index (NDVI, mostly in summertime) and/or annual minimum NDVI (mostly in wintertime) and these trends showed the best correlation with six-month SPI over the period 1982–2008 in the US High Plains region. (letter)

  9. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  10. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    Science.gov (United States)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  11. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  12. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    Directory of Open Access Journals (Sweden)

    Haris Akram Bhatti

    2016-06-01

    Full Text Available With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA Climate Prediction Centre (CPC morphing technique (CMORPH satellite rainfall product (CMORPH in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW sizes and for sequential windows (SW’s of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE. To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r and standard deviation (SD. Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  13. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  14. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  15. MODELING ACUTE EXPOSURE TO SOLAR RADIATION

    Science.gov (United States)

    One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...

  16. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  17. Radiative transitions in mesons within a non relativistic quark model

    International Nuclear Information System (INIS)

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2002-01-01

    An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained

  18. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  19. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the

  20. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  1. The virtual enhancements - solar proton event radiation (VESPER) model

    Science.gov (United States)

    Aminalragia-Giamini, Sigiava; Sandberg, Ingmar; Papadimitriou, Constantinos; Daglis, Ioannis A.; Jiggens, Piers

    2018-02-01

    A new probabilistic model introducing a novel paradigm for the modelling of the solar proton environment at 1 AU is presented. The virtual enhancements - solar proton event radiation model (VESPER) uses the European space agency's solar energetic particle environment modelling (SEPEM) Reference Dataset and produces virtual time-series of proton differential fluxes. In this regard it fundamentally diverges from the approach of existing SPE models that are based on probabilistic descriptions of SPE macroscopic characteristics such as peak flux and cumulative fluence. It is shown that VESPER reproduces well the dataset characteristics it uses, and further comparisons with existing models are made with respect to their results. The production of time-series as the main output of the model opens a straightforward way for the calculation of solar proton radiation effects in terms of time-series and the pairing with effects caused by trapped radiation and galactic cosmic rays.

  2. Empirical investigation on modeling solar radiation series with ARMA–GARCH models

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Yan, Dong; Zhao, Na; Zhou, Jianzhong

    2015-01-01

    Highlights: • Apply 6 ARMA–GARCH(-M) models to model and forecast solar radiation. • The ARMA–GARCH(-M) models produce more accurate radiation forecasting than conventional methods. • Show that ARMA–GARCH-M models are more effective for forecasting solar radiation mean and volatility. • The ARMA–EGARCH-M is robust and the ARMA–sGARCH-M is very competitive. - Abstract: Simulation of radiation is one of the most important issues in solar utilization. Time series models are useful tools in the estimation and forecasting of solar radiation series and their changes. In this paper, the effectiveness of autoregressive moving average (ARMA) models with various generalized autoregressive conditional heteroskedasticity (GARCH) processes, namely ARMA–GARCH models are evaluated for their effectiveness in radiation series. Six different GARCH approaches, which contain three different ARMA–GARCH models and corresponded GARCH in mean (ARMA–GARCH-M) models, are applied in radiation data sets from two representative climate stations in China. Multiple evaluation metrics of modeling sufficiency are used for evaluating the performances of models. The results show that the ARMA–GARCH(-M) models are effective in radiation series estimation. Both in fitting and prediction of radiation series, the ARMA–GARCH(-M) models show better modeling sufficiency than traditional models, while ARMA–EGARCH-M models are robustness in two sites and the ARMA–sGARCH-M models appear very competitive. Comparisons of statistical diagnostics and model performance clearly show that the ARMA–GARCH-M models make the mean radiation equations become more sufficient. It is recommended the ARMA–GARCH(-M) models to be the preferred method to use in the modeling of solar radiation series

  3. Parameterization of clouds and radiation in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Roeckner, E. [Max Planck Institute for Meterology, Hamburg (Germany)

    1995-09-01

    Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.

  4. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  5. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  6. Program description of FIBRAM (Fiber Optic Radiation Attenuation Model): a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber-optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate outputs. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphic programs. The program was written in FORTRAN 77 for the IBM PC/AT/XT computers. Flow charts and program listings are included in the report

  7. On an incompressible model in radiation hydrodynamics

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2015-01-01

    Roč. 38, č. 4 (2015), s. 765-774 ISSN 0170-4214 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation hydrodynamics * incompressible Navier-Stokes-Fourier system * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.002, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/mma.3107/abstract

  8. Radiative Transfer Model for Contaminated Rough Surfaces

    Science.gov (United States)

    2013-02-01

    reflectance of potassium chlorate and ammonium nitrate contaminated surfaces in mid-wavelength and long-wavelength infrared for detection. Our framework...obtained excellent or good results for lab measurements of potassium chlorate on most aluminum surfaces; however, ammonium nitrate on painted aluminum...misidentify potassium chlorate as ammonium nitrate and vice versa). We also observed moderate success on field data. 15. SUBJECT TERMS radiative

  9. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  10. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  11. Radiation transport modelling for the interpretation of oblique ECE measurements

    Directory of Open Access Journals (Sweden)

    Denk Severin S.

    2017-01-01

    Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  12. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    Science.gov (United States)

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  13. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  14. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  15. Animal Models of Ionizing Radiation Damage

    Science.gov (United States)

    1992-01-01

    194. Stepanovic, S.R., and J.L. Nikolic, The Effect of X -irradiation on the Amount of Dopamine in Corpus Striatum of the Rat, Experientia, 35:111...Effect of X -irradiation on the Fragility of Rat Spleen Lysosomes, Radiat. Res., 20:741-750, 1963. 324. Rappaport, D.A., Influence of Total-body X -rays...NUMER C DOMB No. 0704-0188 Pubk€ "mt burden for Vft collectio al 0.0oni is san i jo avwa I how nemeai m n k x W o rqvWin srucilim seard" af da sources

  16. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  17. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  18. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  19. Modeling of the Martian environment for radiation analysis

    International Nuclear Information System (INIS)

    De Angelis, G.; Wilson, J.W.; Clowdsley, M.S.; Qualls, G.D.; Singleterry, R.C.

    2006-01-01

    A model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) has been developed. Solar modulated primary particles rescaled for conditions at Mars are transported through the Martian atmosphere down to the surface, with altitude and backscattering patterns taken into account. The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g. CO 2 and H 2 O ices) along with its time variations throughout the Martian year. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. This site has been developed to provide the scientific and engineering communities with an interactive site containing a variety of environmental models, shield evaluation codes, and radiation response models to allow a thorough assessment of ionizing radiation risk for current and future space missions

  20. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  1. SRADLIB: A C Library for Solar Radiation Modelling

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As result of this study and revision, a C library (SRADLIB) is presented as a key tool for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. Some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs

  2. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  3. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.

    2007-01-01

    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a

  4. Third Radiation Transfer Model Intercomparison (RAMI) exercise : Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P.E.; Martin, E.; Mottus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Xie, D.; Thompson, R.

    2007-01-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well‐controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary

  5. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  6. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  7. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  8. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  9. Improved Statistical Model Of 10.7-cm Solar Radiation

    Science.gov (United States)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  10. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom

    Science.gov (United States)

    Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.

    2018-04-01

    As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.

  11. Spatial and temporal interpolation of satellite-based aerosol optical depth measurements over North America using B-splines

    Science.gov (United States)

    Pfister, Nicolas; O'Neill, Norman T.; Aube, Martin; Nguyen, Minh-Nghia; Bechamp-Laganiere, Xavier; Besnier, Albert; Corriveau, Louis; Gasse, Geremie; Levert, Etienne; Plante, Danick

    2005-08-01

    Satellite-based measurements of aerosol optical depth (AOD) over land are obtained from an inversion procedure applied to dense dark vegetation pixels of remotely sensed images. The limited number of pixels over which the inversion procedure can be applied leaves many areas with little or no AOD data. Moreover, satellite coverage by sensors such as MODIS yields only daily images of a given region with four sequential overpasses required to straddle mid-latitude North America. Ground based AOD data from AERONET sun photometers are available on a more continuous basis but only at approximately fifty locations throughout North America. The object of this work is to produce a complete and coherent mapping of AOD over North America with a spatial resolution of 0.1 degree and a frequency of three hours by interpolating MODIS satellite-based data together with available AERONET ground based measurements. Before being interpolated, the MODIS AOD data extracted from different passes are synchronized to the mapping time using analyzed wind fields from the Global Multiscale Model (Meteorological Service of Canada). This approach amounts to a trajectory type of simplified atmospheric dynamics correction method. The spatial interpolation is performed using a weighted least squares method applied to bicubic B-spline functions defined on a rectangular grid. The least squares method enables one to weight the data accordingly to the measurement errors while the B-splines properties of local support and C2 continuity offer a good approximation of AOD behaviour viewed as a function of time and space.

  12. A mathematical model of radiation effect on the immunity system

    International Nuclear Information System (INIS)

    Smirnova, O.A.

    1984-01-01

    A mathematical model, simulating the effect of ionizing radiation on the dynamics of humoral immune reaction is suggested. It represents the system of nonlinear differential equations and is realized in the form of program in Fortran computer language. The model describes the primary immune reaction of nonirradiated organism on T-independent antigen, reflects the postradiation lymphopoiesis dynamics in nonimmunized mammals, simulates the processes of injury and recovery of the humoral immunity system under the combined effect of ionizing radiation and antigenic stimulation. The model can be used for forecasting imminity state in irradiated mammals

  13. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    International Nuclear Information System (INIS)

    Sannibale, F.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  14. A model describing stable coherent synchrotron radiation in storage rings

    International Nuclear Information System (INIS)

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wuestefeld, G.; Huebers, H.-W.; Warnock, R.

    2004-01-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission

  15. Numerical model of solar dynamic radiator for parametric analysis

    Science.gov (United States)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  16. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  17. Mathematical models of the theory of the radiative transfer

    International Nuclear Information System (INIS)

    Lin, Ch.

    2007-06-01

    We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)

  18. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  19. Radiation-induced segregation in model alloys

    Science.gov (United States)

    Ezawa, T.; Wakai, E.; Oshima, R.

    2000-12-01

    The dependence of the size factor of solutes on radiation-induced segregation (RIS) was studied. Ni-Si, Ni-Co, Ni-Cu, Ni-Mn, Ni-Pd, and Ni-Nb binary solid solution alloys were irradiated with electrons in a high voltage electron microscope at the same irradiation conditions. A focused beam and a grain boundary were utilized to generate a flow of point defects to cause RIS. From the concentration profile obtained by an energy dispersive X-ray analysis, the amount of RIS was calculated. The amount of RIS decreased as the size of the solute increased up to about 10%. However, as the size increased further, the amount of RIS increased. This result shows that RIS is not simply determined by the size effect rule.

  20. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  1. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  2. Dose loading mathematical modelling of moving through heterogeneous radiation fields

    International Nuclear Information System (INIS)

    Batyij, Je.V.; Kotlyarov, V.T.

    2006-01-01

    Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example

  3. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  4. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.

    1985-01-01

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  5. Mechanistic models for cancer development after short time radiation exposure

    International Nuclear Information System (INIS)

    Kottbauer, M. M.

    1997-12-01

    In this work two biological based models were developed. First the single-hit model for solid tumors (SHM-S) and second the single-hit model for leukemia (SHM-L). These models are a further development of the Armitage-Doll model for the special case of a short time radiation exposure. The basis of the models is the multistage process of carcinogeneses. The single-hit models provide simultaneously the age-dependent cancer-rate of spontaneous and radiation induced tumors as well as the dose-effect relationships at any age after exposure. The SHM-S leads to a biological based dose-effect relationship, which is similar to the relative risk model suggested by the ICRP 60. The SHM-S describes the increased mortality rate of the bomb survivors more accurate than the relative risk model. The SHM-L results in an additive dose-effect relationship. It is shown that only small differences in the derivation of the two models lead to the two dose-effect relationships. Beside the radiation exposure the new models consider the decrease of the cancer mortality rate at higher ages (age>75) which can be traced back mainly to three causes: competitive causes of death, reduction of cell proliferation and reduction of risk groups. The single-hit models also consider children cancer, the different rates of incidence and mortality, influence of the immune system and the cell-killing effect. (author)

  6. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  7. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  8. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  9. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  10. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  11. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  12. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  13. Using multistage models to describe radiation-induced leukaemia

    International Nuclear Information System (INIS)

    Little, M.P.; Muirhead, C.R.; Boice, J.D. Jr.; Kleinerman, R.A.

    1995-01-01

    The Armitage-Doll model of carcinogenesis is fitted to data on leukaemia mortality among the Japanese atomic bomb survivors with the DS86 dosimetry and on leukaemia incidence in the International Radiation Study of Cervical Cancer patients. Two different forms of model are fitted: the first postulates up to two radiation-affected stages and the second additionally allows for the presence at birth of a non-trivial population of cells which have already accumulated the first of the mutations leading to malignancy. Among models of the first form, a model with two adjacent radiation-affected stages appears to fit the data better than other models of the first form, including both models with two affected stages in any order and models with only one affected stage. The best fitting model predicts a linear-quadratic dose-response and reductions of relative risk with increasing time after exposure and age at exposure, in agreement with what has previously been observed in the Japanese and cervical cancer data. However, on the whole it does not provide an adequate fit to either dataset. The second form of model appears to provide a rather better fit, but the optimal models have biologically implausible parameters (the number of initiated cells at birth is negative) so that this model must also be regarded as providing an unsatisfactory description of the data. (author)

  14. A clinical intranet model for radiation oncology

    International Nuclear Information System (INIS)

    Brooks, Ken; Fox, Tim; Davis, Larry

    1997-01-01

    Purpose: A new paradigm in computing is being formulated from advances in client-server technology. This new way of accessing data in a network is referred to variously as Web-based computing, Internet computing, or Intranet computing. The difference between an internet and intranet being that the former is for global access and the later is only for intra-departmental access. Our purpose with this work is to develop a clinically useful radiation oncology intranet for accessing physically disparate data sources. Materials and Methods: We have developed an intranet client-server system using Windows-NT Server 4.0 running Internet Information Server (IIS) on the back-end and client PCs using a typical World Wide Web (WWW) browser. The clients also take advantage of the Microsoft Open Database Connectivity (ODBC) standard for accessing commercial database systems. The various data sources used include: a traditional Radiation Oncology Information (ROIS) System (VARiS 1.3 tm ); a 3-D treatment planning system (CAD Plan tm ); a beam scanning system (Wellhoffer tm ); as well as an electronic portal imaging device (PortalVision tm ) and a CT-Simulator providing digitally reconstructed radiographs (DRRs) (Picker AcQsim tm ). We were able to leverage previously developed Microsoft Visual C++ applications without major re-writing of source code for this. Results: With the data sources and development materials used, we were able to develop a series of WWW-based clinical tool kits. The tool kits were designed to provide profession-specific clinical information. The physician's tool kit provides a treatment schedule for daily patients along with a dose summary from VARiS and the ability to review portal images and prescription images from the EPID and Picker. The physicists tool kit compares dose summaries from VARiS with an independent check against RTP beam data and serves as a quick 'chart-checker'. Finally, an administrator tool kit provides a summary of periodic charging

  15. Convenient models of the atmosphere: optics and solar radiation

    Science.gov (United States)

    Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov

    2017-11-01

    Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.

  16. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  17. Atmospheric transmittance model for photosynthetically active radiation

    International Nuclear Information System (INIS)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-01-01

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms

  18. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  19. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: ► Zinc is an essential trace element with numerous functions in the human body. ► Several biokinetic models for zinc have been developed from tracer studies on humans. ► More rudimentary biokinetic models for zinc have been developed in radiation protection. ► Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. ► The proposed model may also be useful for investigation of zinc physiology and homeostasis.

  20. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  1. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-01-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  2. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  3. Managing a national radiation oncologist workforce: A workforce planning model

    International Nuclear Information System (INIS)

    Stuckless, Teri; Milosevic, Michael; Metz, Catherine de; Parliament, Matthew; Tompkins, Brent; Brundage, Michael

    2012-01-01

    Purpose: The specialty of radiation oncology has experienced significant workforce planning challenges in many countries. Our purpose was to develop and validate a workforce-planning model that would forecast the balance between supply of, and demand for, radiation oncologists in Canada over a minimum 10-year time frame, to identify the model parameters that most influenced this balance, and to suggest how this model may be applicable to other countries. Methods: A forward calculation model was created and populated with data obtained from national sources. Validation was confirmed using a historical prospective approach. Results: Under baseline assumptions, the model predicts a short-term surplus of RO trainees followed by a projected deficit in 2020. Sensitivity analyses showed that access to radiotherapy (proportion of incident cases referred), individual RO workload, average age of retirement and resident training intake most influenced balance of supply and demand. Within plausible ranges of these parameters, substantial shortages or excess of graduates is possible, underscoring the need for ongoing monitoring. Conclusions: Workforce planning in radiation oncology is possible using a projection calculation model based on current system characteristics and modifiable parameters that influence projections. The workload projections should inform policy decision making regarding growth of the specialty and training program resident intake required to meet oncology health services needs. The methods used are applicable to workforce planning for radiation oncology in other countries and for other comparable medical specialties.

  4. Mechanistic issues for modeling radiation-induced segregation

    International Nuclear Information System (INIS)

    Simonen, E.P.; Bruemmer, S.M.

    1993-03-01

    Model calculations of radiation-induced chromium depletion and radiation-induced nickel enrichment at grain boundaries are compared to measured depletions and enrichments. The model is calibrated to fit chromium depletion in commercial purity 304 stainless steel irradiated in boiling water reactor (BWR) environments. Predicted chromium depletion profiles and the dose dependence of chromium concentration at grain boundaries are in accord with measured trends. Evaluation of chromium and nickel profiles in three neutron, and two ion, irradiation environments reveal significant inconsistencies between measurements and predictions

  5. Radiation Background and Attenuation Model Validation and Development

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santiago, Claudio P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  6. Study on radiation modifiers with zebrafish as a vertebrate model

    International Nuclear Information System (INIS)

    Lei Jixiao; Ni Jin; Cai Jianming; Shen Jianliang

    2010-01-01

    Zebrafish (Danio rerio) as a vertebrate model system has been used in a series of biomedical experiments by scientists. It offers distinctive benefits as a laboratory model system, especially for embryonic development, gene expression, drug screening and human disease model. In this paper, the typical radiation modifiers, such as Amifostine, DF-1, AG1478, Flavopiridol and DNA repair proteins involved in biomedical process by use of zebrafish have been reviewed. (authors)

  7. Radiative transfer model for contaminated rough slabs.

    Science.gov (United States)

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.

  8. Radiative heating in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  9. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  10. Model study of radiation effects on the gastrointestinal cell system

    International Nuclear Information System (INIS)

    Kicherer, G.

    1983-03-01

    Since it is now possible to calculate the radiation fields used for medicinal purposes by means of radiation transport programs it was started to determine with mathematical models of radioeffects not only the physical effects or irradiation, but also the resulting biological radioresponses. This supplementary biologic information is not only of large general importance, but particularly valuable for the medicinal application of the biologically highly effective neutron radiation. With support by the Institute for Medicinal Radiophysics and Radiobiology of Essen University Hospital, and of two biomathematical working groups of Ulm University and Cologne University Hospital, who are experienced in the field of establishing mathematical models of the hematogenic cellular system, we developed out of experimental fundamental findings a cellkinetic, kybernetic model of the intestinal mucosa, which is highly sensitive to radiation. With this newly established model we succeeded for the first time in simulating comprehensively and quantitatively the time-dependent acute radioresponse of such a radiosensitive cellular system. For the first time we successfully used the computer simulation languages DARE-P and GASP, which are principally employed for solving problems in automatic control technology, and set up a radioresponse model. (orig.) [de

  11. Radiative transfer model for heterogeneous 3-D scenes

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms

  12. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  13. Radiation, ecology and the invalid LNT model: the evolutionary imperative.

    Science.gov (United States)

    Parsons, Peter A

    2006-09-27

    Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-no threshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substantially beyond common background levels, can be explained by metabolic interactions among multiple abiotic stresses. Demographic and experimental data are mainly in accord with this expectation. Therefore, non-linearity becomes the primary model for assessing risks from low-dose ionizing radiation. This is the evolutionary imperative upon which risk assessment for radiation should be based.

  14. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  15. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  16. Infrared radiation parameterizations in numerical climate models

    Science.gov (United States)

    Chou, Ming-Dah; Kratz, David P.; Ridgway, William

    1991-01-01

    This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.

  17. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 4. Operational Description and Qualitative Assessment.

    Science.gov (United States)

    1974-02-01

    The volume presents a description of how the Satellite-Based Advanced Air Traffic Management System (SAATMS) operates and a qualitative assessment of the system. The operational description includes the services, functions, and tasks performed by the...

  18. Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...

  19. Plasmonic-cavity model for radiating nano-rod antennas

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2014-01-01

    In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition and the ......In this paper, we propose the analytical solution of nano-rod antennas utilizing a cylindrical harmonics expansion. By treating the metallic nano-rods as plasmonic cavities, we derive closed-form expressions for both the internal and the radiated fields, as well as the resonant condition...... and the radiation efficiency. With our theoretical model, we show that besides the plasmonic resonances, efficient radiation takes advantage of (a) rendering a large value of the rods' radius and (b) a central-fed profile, through which the radiation efficiency can reach up to 70% and even higher in a wide...... frequency band. Our theoretical expressions and conclusions are general and pave the way for engineering and further optimization of optical antenna systems and their radiation patterns....

  20. Mathematical models for radiation effects on human health

    International Nuclear Information System (INIS)

    Negi, U.S.; Petwal, K.C.

    2015-01-01

    In this paper, we are proposing a theoretical approach of basic mathematical models for radiation effect on human health. The largest natural sources of radiation exposure to humans are radon gas. While radon gas has always been in the environment, awareness of its contribution to human radiation exposure has increased in recent years. Radon's primary pathway is through air space in soil and rock. Pressure differences between the soil and the inside of buildings may cause radon gas to move indoors. Radon decays to radon daughters, some of which emit alpha radiation. Alpha-emitting radon daughters are adsorbed on to dust particles which, when inhaled, are trapped in the lungs and may cause gene damage, mutations and finally cancer. Exposure to excess UV radiation increases risk of skin cancer but there is also a dark side. The incidence of all types of skin cancer is related to exposure to UV radiation. Non-melanoma skin cancer, eye melanoma, and lip cancer have also been related to natural UV light

  1. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  2. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  3. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    Science.gov (United States)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  4. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  5. new model for solar radiation estimation from measured air

    African Journals Online (AJOL)

    HOD

    RMSE) and correlation ... countries due to the unavailability of measured data in place [3-5]. ... models were used to predict solar radiation in Nigeria by. [12-15]. However ..... "Comparison of Gene Expression Programming with neuro-fuzzy and ...

  6. Radiation therapy: model standards for determination of need

    International Nuclear Information System (INIS)

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact

  7. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Schell, W.R.; Linkov, I.; Belinkaia, E.; Rimkevich, V.; Zmushko, Yu.; Lutsko, A.; Fifield, F.W.; Flowers, A.G.; Wells, G.

    1996-01-01

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  8. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  9. New radiative transfer models for obscuring tori in active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Dullemond, CP

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed

  10. Modeling of chronic radiation-induced cystitis in mice

    Directory of Open Access Journals (Sweden)

    Bernadette M.M. Zwaans, PhD

    2016-10-01

    Conclusions: We developed an RC model that mimics the human pathology and functional changes. Furthermore, radiation exposure attenuates the urothelial integrity long-term, allowing for potential continuous irritability of the bladder wall from exposure to urine. Future studies will focus on the underlying molecular changes associated with this condition and investigate novel treatment strategies.

  11. Experimental data available for radiation damage modelling in reactor materials

    International Nuclear Information System (INIS)

    Wollenberger, H.

    Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants

  12. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite...

  13. Realistic modeling of radiation transmission inspection systems

    International Nuclear Information System (INIS)

    Sale, K.E.

    1993-01-01

    We have applied Monte Carlo particle transport methods to assess a proposed neutron transmission inspection system for checked luggage. The geometry of the system and the time, energy and angle dependence of the source have been modeled in detail. A pulsed deuteron beam incident on a thick Be target generates a neutron pulse with a very broad energy spectrum which is detected after passage through the luggage item by a plastic scintillator detector operating in current mode (as opposed to pulse counting mode). The neutron transmission as a function of time information is used to infer the densities of hydrogen, carbon, oxygen and nitrogen in the volume sampled. The measured elemental densities can be compared to signatures for explosives or other contraband. By using such computational modeling it is possible to optimize many aspects of the design of an inspection system without costly and time consuming prototyping experiments or to determine that a proposed scheme will not work. The methods applied here can be used to evaluate neutron or photon schemes based on transmission, scattering or reaction techniques

  14. Yearly, seasonal and monthly daily average diffuse sky radiation models

    International Nuclear Information System (INIS)

    Kassem, A.S.; Mujahid, A.M.; Turner, D.W.

    1993-01-01

    A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs

  15. Simple classical model for Fano statistics in radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.

  16. Phenomenological modelling of second cancer incidence for radiation treatment planning

    International Nuclear Information System (INIS)

    Pfaffenberger, Asja; Oelfke, Uwe; Schneider, Uwe; Poppe, Bjoern

    2009-01-01

    It is still an unanswered question whether a relatively low dose of radiation to a large volume or a higher dose to a small volume produces the higher cancer incidence. This is of interest in view of modalities like IMRT or rotation therapy where high conformity to the target volume is achieved at the cost of a large volume of normal tissue exposed to radiation. Knowledge of the shape of the dose response for radiation-induced cancer is essential to answer the question of what risk of second cancer incidence is implied by which treatment modality. This study therefore models the dose response for radiation-induced second cancer after radiation therapy of which the exact mechanisms are still unknown. A second cancer risk estimation tool for treatment planning is presented which has the potential to be used for comparison of different treatment modalities, and risk is estimated on a voxel basis for different organs in two case studies. The presented phenomenological model summarises the impact of microscopic biological processes into effective parameters of mutation and cell sterilisation. In contrast to other models, the effective radiosensitivities of mutated and non-mutated cells are allowed to differ. Based on the number of mutated cells present after irradiation, the model is then linked to macroscopic incidence by summarising model parameters and modifying factors into natural cancer incidence and the dose response in the lower-dose region. It was found that all principal dose-response functions discussed in the literature can be derived from the model. However, from the investigation and due to scarcity of adequate data, rather vague statements about likelihood of dose-response functions can be made than a definite decision for one response. Based on the predicted model parameters, the linear response can probably be rejected using the dynamics described, but both a flattening response and a decrease appear likely, depending strongly on the effective cell

  17. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  18. A collisional-radiative average atom model for hot plasmas

    International Nuclear Information System (INIS)

    Rozsnyai, B.F.

    1996-01-01

    A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab

  19. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  20. Compendium of Material Composition Data for Radiation Transport Modeling

    International Nuclear Information System (INIS)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-01-01

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  1. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Biophysical models for the induction of cancer by radiation. Final report

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Ballarini, F.; Brugmans, M.

    2000-01-01

    The overall project is organised into seven work packages. WP1 concentrates on the development of mechanistic, quantitative models for radiation oncogenesis using selected data sets from radiation epidemiology and from experimental animal studies. WP2 concentrates on the development of mechanistic, mathematical models for the induction of chromosome aberrations. WP3 develops mechanistic models for radiation mutagenesis, particularly using the HPRT-mutation as a paradigm. WP4 will develop mechanistic models for damage and repair of DNA, and compare these with experimentally derived data. WP5 concentrates on the improvement of our knowledge on the chemical reaction pathways of initial radiation chemical species in particular those that migrate to react with the DNA and on their simulation in track structure codes. WP6 models by track structure simulation codes the production of initial physical and chemical species, within DNA, water and other components of mammalian cells, in the tracks of charged particles following the physical processes of energy transfer, migration, absorption, and decay of excited states. WP7 concentrates on the determination of the start spectra of those tracks considered in WP6 for different impinging radiation fields and different irradiated biological objects. (orig.)

  2. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  3. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  4. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  5. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  6. SMRT: A new, modular snow microwave radiative transfer model

    Science.gov (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  7. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.

  8. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  9. Development of a programming model for radiation-resistant software

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1984-01-01

    The adverse effects of ionizing radiation on microelectronic systems include cumulative dosage effects, single-event upsets (SEU's) and latch-up. Most frequent, especially when the radiation environment includes heavy ions, are SEU's. Unfortunately SEU's are difficult to detect since they can be read (in RAM or ROM) as valid addresses. They can however be handled in software by proper techniques. The authors refer to their method as MRS - Maximally Redundant Software. The MRS programming model which the authors are developing uses multiply redundant boot blocks, majority voting, periodic refresh, and error recovery techniques to minimize the deleterious effects of SEU's. 1 figure

  10. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  11. Parameter resolution in two models for cell survival after radiation

    International Nuclear Information System (INIS)

    Di Cera, E.; Andreasi Bassi, F.; Arcovito, G.

    1989-01-01

    The resolvability of model parameters for the linear-quadratic and the repair-misrepair models for cell survival after radiation has been studied by Monte Carlo simulations as a function of the number of experimental data points collected in a given dose range and the experimental error. Statistical analysis of the results reveals the range of experimental conditions under which the model parameters can be resolved with sufficient accuracy, and points out some differences in the operational aspects of the two models. (orig.)

  12. Reduction of collisional-radiative models for transient, atomic plasmas

    Science.gov (United States)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  13. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  14. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  15. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  16. Modelling of radiation impact on ITER Beryllium wall

    Science.gov (United States)

    Landman, I. S.; Janeschitz, G.

    2009-04-01

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  17. Modelling of radiation impact on ITER Beryllium wall

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: igor.landman@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, IHM, FUSION, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-04-30

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  18. INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Rogov

    2017-03-01

    Full Text Available The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems. A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object. The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems.

  19. Modeling of the response under radiation of electronic dosemeters

    International Nuclear Information System (INIS)

    Menard, S.

    2003-01-01

    The simulation with with calculation codes the interactions and the transport of primary and secondary radiations in the detectors allows to reduce the number of developed prototypes and the number of experiments under radiation. The simulation makes possible the determination of the response of the instrument for exposure configurations more extended that these ones of references radiations produced in laboratories. The M.C.N.P.X. allows to transport, over the photons, electrons and neutrons, the charged particles heavier than the electrons and to simulate the radiation - matter interactions for a certain number of particles. The present paper aims to present the interest of the use of the M.C.N.P.X. code in the study, research and evaluation phases of the instrumentation necessary to the dosimetry monitoring. To do that the presentation gives the results of the modeling of a prototype of a equivalent tissue proportional counter (C.P.E.T.) and of the C.R.A.M.A.L. ( radiation protection apparatus marketed by the Eurisys Mesures society). (N.C.)

  20. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  1. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  2. Modeling of MOS radiation and post irradiation effects

    International Nuclear Information System (INIS)

    Neamen, D.A.

    1984-01-01

    The radiation response and long term recovery effects in a n-channel MOSFET due to a pulse of ionizing radiation were modeled assuming that electron tunneling from the semiconductor into the oxide and the buildup of interface states were the postirradiation recovery mechanisms. The modeling used convolution theory and took into account the effects of bias changes during the recovery period and charge yield effects. Changing the bias condition during the post-irradiation recovery period changed the recovery rate. The charge yield effects changed the density of trapped positive charge in the oxide but did not change the recovery characteristics for a given oxide thickness. The modeling results were compared to previous experimental results

  3. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  4. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  5. In-vivo models for radiation mitigator agents

    International Nuclear Information System (INIS)

    Macchiarini, Francesca

    2014-01-01

    The US Department of Health and Human Services assigned the National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), with the responsibility to identify, characterize and develop new medical countermeasure (MCM) products against radiological and nuclear attacks that may cause-a public health emergency. MCMs must be developed within the criteria of the U.S. Food and Drug Administration's (FDA) 'animal rule' (AR) which requires the design and conduct of validated animal models to define the major sequelae of the Acute Radiation Syndrome (ARS) and Delayed Effects of Acute Radiation Exposure (DEARE). To this end, the NIAID-funded Product Development Support Services Program has established an ARS/DEARE animal model research platform which includes several basic animal models for hematopoietic and gastrointestinal ARS in the mouse and nonhuman primate (NHP) using total-body irradiation (TBI), whole-thorax lung irradiation (WTLI), or a multi-organ dysfunction model defined by partial-body irradiation with 5% bone marrow sparing (PBI/ BM5). These specific models will be discussed as well as ongoing observational studies NIAID is funding to assess the long-term effects of radiation in NHPs and A-Bomb survivors. (author)

  6. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  7. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  8. From extended integrity monitoring to the safety evaluation of satellite-based localisation system

    International Nuclear Information System (INIS)

    Legrand, Cyril; Beugin, Julie; Marais, Juliette; Conrard, Blaise; El-Koursi, El-Miloudi; Berbineau, Marion

    2016-01-01

    Global Navigation Satellite Systems (GNSS) such as GPS, already used in aeronautics for safety-related applications, can play a major role in railway safety by allowing a train to locate itself safely. However, in order to implement this positioning solution in any embedded system, its performances must be evaluated according to railway standards. The evaluation of GNSS performances is not based on the same attributes class than RAMS evaluation. Face to these diffculties, we propose to express the integrity attribute, performance of satellite-based localisation. This attribute comes from aeronautical standards and for a hybridised GNSS with inertial system. To achieve this objective, the integrity attribute must be extended to this kind of system and algorithms initially devoted to GNSS integrity monitoring only must be adapted. Thereafter, the formalisation of this integrity attribute permits us to analyse the safety quantitatively through the probabilities of integrity risk and wrong-side failure. In this paper, after an introductory discussion about the use of localisation systems in railway safety context together with integrity issues, a particular integrity monitoring is proposed and described. The detection events of this algorithm permit us to conclude about safety level of satellite-based localisation system.

  9. Neutrino masses from SUSY breaking in radiative seesaw models

    International Nuclear Information System (INIS)

    Figueiredo, Antonio J.R.

    2015-01-01

    Radiatively generated neutrino masses (m ν ) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY EWSB contributions), and which are manifest from left angle F H † right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum H left angle H † x H H right angle ≠ 0, radiatively generated m ν can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY EWS contributions). We point out that recent literature overlooks pure-SUSY EWSB contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY EWS . We show that there exist realistic radiative seesaw models in which the leading order contribution to m ν is proportional to SUSY EWS . To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m soft /M 3 or m soft 2 /M 3 . We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m ν can be quite small without conflicting with lower limits on the mass of new particles. (orig.)

  10. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  11. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  12. Solar radiation modelling using ANNs for different climates in China

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Wan, Kevin K.W.; Yang, Liu

    2008-01-01

    Artificial neural networks (ANNs) were used to develop prediction models for daily global solar radiation using measured sunshine duration for 40 cities covering nine major thermal climatic zones and sub-zones in China. Coefficients of determination (R 2 ) for all the 40 cities and nine climatic zones/sub-zones are 0.82 or higher, indicating reasonably strong correlation between daily solar radiation and the corresponding sunshine hours. Mean bias error (MBE) varies from -3.3 MJ/m 2 in Ruoqiang (cold climates) to 2.19 MJ/m 2 in Anyang (cold climates). Root mean square error (RMSE) ranges from 1.4 MJ/m 2 in Altay (severe cold climates) to 4.01 MJ/m 2 in Ruoqiang. The three principal statistics (i.e., R 2 , MBE and RMSE) of the climatic zone/sub-zone ANN models are very close to the corresponding zone/sub-zone averages of the individual city ANN models, suggesting that climatic zone ANN models could be used to estimate global solar radiation for locations within the respective zones/sub-zones where only measured sunshine duration data are available. (author)

  13. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  14. Approximate models for broken clouds in stochastic radiative transfer theory

    International Nuclear Information System (INIS)

    Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models

  15. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  16. Radiative redistribution modeling for hot and dense plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Talin, B.; Stamm, R.; Lee, R. W.; Klein, L.

    1999-01-01

    A model based on an extension of the Frequency Fluctuation Model (FFM) is developed to investigate the two-photon processes and particularly the radiative redistribution functions for complex emitters in a wide range of plasmas conditions. The FFM, originally, designed as a fast and reliable numerical procedure for the calculation of the spectral shape of the Stark broadened lines emitted by multi-electron ions, relies on the hypothesis that the emitter-plasma system can be well represented by a set of 'Stark Dressed Transitions', SDT. These transitions connected to each others through a stochastic mixing process accounting for the local microfield random fluctuations, form the basis for the extension of the FFM to computation of non-linear response functions. The formalism of the second order radiative redistribution function is presented and examples are shown

  17. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Andreev, S. G.; Eidelman, Y. A.; Salnikov, I. V.; Khvostunov, I. K.

    2006-01-01

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  18. ADAS tools for collisional–radiative modelling of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F., E-mail: francisco.guzman@cea.fr [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); CEA, IRFM, Saint-Paul-lez-Durance 13108 (France); O’Mullane, M.; Summers, H.P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2013-07-15

    New theoretical and computational tools for molecular collisional–radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H{sub 2} are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional–radiative) rate coefficients versus temperature and density are presented.

  19. ADAS tools for collisional-radiative modelling of molecules

    Science.gov (United States)

    Guzmán, F.; O'Mullane, M.; Summers, H. P.

    2013-07-01

    New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.

  20. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  1. Two radiative inverse seesaw models, dark matter, and baryogenesis

    International Nuclear Information System (INIS)

    Baldes, Iason; Bell, Nicole F.; Petraki, Kalliopi; Volkas, Raymond R.

    2013-01-01

    The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe

  2. Radiative corrections to the Higgs couplings in the triplet model

    International Nuclear Information System (INIS)

    KIKUCHI, M.

    2014-01-01

    The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson (h). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of h, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this paper, we give our comprehensive study for radiative corrections to various Higgs boson couplings of h in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; gγγ, hWW, hZZ and hhh at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are substantial as compared to their expected measurement accuracies at the ILC. Therefore the HTM has a possibility to be distinguished from the other models by comparing the pattern of deviations in the Higgs boson couplings.

  3. Structural acoustics model of the violin radiativity profile.

    Science.gov (United States)

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  4. Models for cell survival with low LET radiation

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1975-01-01

    A model for cell survival under low LET irradiation was developed in which the cell is considered to have N 0 -independent sensitive sites, each of which can exist in either an undamaged state (state A) or one of two damaged states. Radiation can change the sensitive sites from the undamaged state to either of two damaged states. The first damaged state (state B) can either be repaired or be promoted on the second damaged state (state C), which is irreparable. The promotion from the first damaged state to the second can occur due to any of the following: (1) further radiation damage, (2) an abortive attempt to repair the site, or (3) the arrival at a part of the cell cycle where the damage is ''fixed.'' Subject to the further assumptions that radiation damage can occur either indirectly (i.e., through radiation products) or due to direct interaction, and that repair of the first damaged state is a one-step process, expressions can be derived for P(N/sub A/, N/sub B/,t) = probability that after time t a cell will have N/sub A/ sites in state A and N/sub B/ in state B. The problem of determining P(N/sub A/, N/sub B/, t) is formulated for arbitrary time dependences of the radiation field and of all rate coefficients. A large family of cell-survival models can be described by interpreting the sensitive sites in different ways and by making different choices of rate coefficients and of the combinations of numbers of sites in different states that will lead to cell death. (U.S.)

  5. Radiation, Ecology and the Invalid LNT Model: The Evolutionary Imperative

    OpenAIRE

    Parsons, Peter A.

    2006-01-01

    Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-nothreshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substanti...

  6. Canonical Ensemble Model for Black Hole Radiation Jingyi Zhang

    Indian Academy of Sciences (India)

    Canonical Ensemble Model for Black Hole Radiation. 575. For entropy, there is no corresponding thermodynamical quantity, without loss of generalization. Let us define an entropy operator. ˆS = −KB ln ˆρ. (11). Then, the mean value of entropy is. S ≡〈ˆS〉 = tr( ˆρ ˆS) = −KBtr( ˆρ ln ˆρ). (12). For ideal gases, let y = V , then the ...

  7. New radiative transfer models for obscuring tori in active galaxies

    OpenAIRE

    van Bemmel, I. M.; Dullemond, C. P.

    2003-01-01

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed for different orientations of the toroid. Colour-colour comparisons with observational data are consistent with previous observations that the emission longward of 60 micron is produced by star-fo...

  8. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  9. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  10. Experimental model of cutaneous radiation injury in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Meirelles, Rafael Panisi de Campos [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Medicina; Hochman, Bernardo [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Cirurgia; Helene Junior, Americo; Fraga, Murillo Francisco Pires [Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo (FCMSCSP), SP (Brazil). Dept. de Cirurgia. Divisao de Cirurgia Plastica; Lellis, Rute [Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo (FCMSCSP), SP (Brazil). Divisao de Patologia; Ferreira, Lydia Masako, E-mail: rpcmeirelles@yahoo.com.br, E-mail: lydia.dcir@epm.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Mediciana. Divisao de Cirugia Plastica

    2013-07-01

    Purpose: to describe an experimental model of cutaneous radiation injury in rabbits. Methods: on this study eight six-month-old New Zealand male rabbits, with an average weight of 2.5kg were used. They were distributed in four groups (n=2 per group). The control group did not receive radiotherapy and the others received one radiotherapy session of 2000, 3000 and 4500 cGy, respectively. Photographic analysis and histopathological evaluation of the irradiated areas were carried out. Results: after 30 days, the animals from the control group had all their hair grown. In spite of that, the animals from group 2000 cGy had a 60-day alopecia and from group 3000 cGy, a 90-day alopecia. After the 30th day, the 3000cGy group demonstrated 90-day cutaneous radiation injuries, graded 3 and 4. One of the animals from group 4500 cGy died on the 7th day with visceral necrosis. The other from the same group had total skin necrosis. A progressive reduction of glands and blood vessels count and an increase on collagen deposition was observed. Conclusion: The proposed experimental model is reproducible. This study suggests that the dosage 4500cGy is excessive and the 3000 cGy is the most effective for this experimental model of cutaneous radiation injury in rabbits. (author)

  11. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  12. A 3-D radiation model for non-grey gases

    International Nuclear Information System (INIS)

    Selcuk, Nevin; Doner, Nimeti

    2009-01-01

    A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon dioxide mixture. Predictive accuracy of the code was evaluated by benchmarking its steady-state predictions against accurate results, calculated by ray tracing method with statistical narrow band model, available in the literature. Comparative testing with solutions of other methods is also provided. Comparisons reveal that MOL solution of DOM with SLW model provides accurate solutions for radiative heat fluxes and source terms and can be used with confidence in conjunction with CFD codes based on MOL

  13. Radiation damage of DNA. Model for direct ionization of DNA

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Tagawa, Seiichi

    2004-01-01

    Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)

  14. Cerebral radiation necrosis: limits and prospects of experimental models

    International Nuclear Information System (INIS)

    Lefaix, J.L.

    1992-01-01

    Cerebral radiation necrosis is the major CNS hazard of clinical treatment therapy involving delivery of high doses of radiation to the brain. It is generally irreversible and frequently leads to death from brain necrosis. Necrosis has been reported with total doses of 60 Gy, delivered in conventional fractions. Symptoms depend upon the volume of brain irradiated and are frequently those of an intracranial mass and may be present as an area of gliosis or frank necrosis. Possible causes include some direct effect of radiation on glial cells, vascular changes and the action of an immunological mechanism. The weight of evidence suggests that demyelination is important in the early delayed reaction, and that vascular changes gradually become more important in the late delayed reactions, from several months to years after treatment. The advent of sophisticated radiographic technologies such as computed tomography, magnetic resonance imaging and spectroscopy, and positron emission tomography have facilitated serial non invasive examination of morphologic or physiologic parameters within the brain after irradiation. Limits and prospects of these technologies are reviewed in experimental animal models of late radiation injuries of the brain, which were carried out in many species ranging from mouse to monkey

  15. Multiscale modeling of radiation effects in nuclear reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Most problems in irradiated materials originate from the atomic collision of high-energy particles and lattice atoms. This collision leads to displacement cascades through the energy transfer reaction and causes various types of defects such as vacancies, interstitials, and clusters. The behavior of the point defects created in the displacement cascades is important because these defects play a major role in a microstructural evolution and further affect the changes in material properties. Rapid advances have been made in the computational capabilities for a realistic simulation of complex physical phenomena, such as irradiation and aging effects. At the same time, progress has been made in understanding the effect of radiation in metals, especially iron-based alloys. In this work, we present some of our ongoing work in this area, which illustrates a multiscale modeling for evaluating a microstructural evolution and mechanical property changes during irradiation. Multiscale modeling approaches are briefly presented here in the following order: nuclear interaction, atomic-level interaction, atomistic modeling, microstructural evolution modeling and mechanical property modeling. This is one of many possible methods for classifying techniques. The effort in developing physical multiscale models applied to radiation damage has been focused on a single crystal or single-grain materials.

  16. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  17. Direct detection of darkmatter in radiative seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Daniel; Schwetz, Thomas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Toma, Takashi [Institute for Theoretical Physics, Kanazawa University (Japan)

    2012-07-01

    In the radiative seesaw model proposed by Ma, we assume that the lightest right-handed neutrino is the Dark Matter candidate and almost degenerated with the second lightest right-handed neutrino. Thus, elastic Dark Matter-nucleus scattering is suppressed. Inelastic scattering is induced by a lepton-loop coupled to the photon. Effectively, there are charge-charge, dipole-charge and dipole-dipole interactions. We present the event rate of the model and compare it with existing data. Moreover, monochromatic photons from the decay of the excited Dark Matter state are discussed.

  18. On radiative gauge symmetry breaking in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.; Zwirner, F.

    1990-01-01

    We present a critical reappraisal of radiative gauge symmetry breaking in the minimal supersymmetric standard model. We show that a naive use of the renormalization group improved tree-level potential can lead to incorrect conclusions. We specify the conditions under which the above method gives reliable results, by performing a comparison with the results obtained from the full one-loop potential. We also point out how the stability constraint and the conditions for the absence of charge- and colour-breaking minima should be applied. Finally, we comment on the uncertainties affecting the model predictions for physical observables, in particular for the top quark mass. (orig.)

  19. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  20. Radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Tabachenko, A.N.

    1988-01-01

    A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment

  1. Mathematical models for calculating radiation dose to the fetus

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    Estimates of radiation dose from radionuclides inside the body are calculated on the basis of energy deposition in mathematical models representing the organs and tissues of the human body. Complex models may be used with radiation transport codes to calculate the fraction of emitted energy that is absorbed in a target tissue even at a distance from the source. Other models may be simple geometric shapes for which absorbed fractions of energy have already been calculated. Models of Reference Man, the 15-year-old (Reference Woman), the 10-year-old, the five-year-old, the one-year-old, and the newborn have been developed and used for calculating specific absorbed fractions (absorbed fractions of energy per unit mass) for several different photon energies and many different source-target combinations. The Reference woman model is adequate for calculating energy deposition in the uterus during the first few weeks of pregnancy. During the course of pregnancy, the embryo/fetus increases rapidly in size and thus requires several models for calculating absorbed fractions. In addition, the increases in size and changes in shape of the uterus and fetus result in the repositioning of the maternal organs and in different geometric relationships among the organs and the fetus. This is especially true of the excretory organs such as the urinary bladder and the various sections of the gastrointestinal tract. Several models have been developed for calculating absorbed fractions of energy in the fetus, including models of the uterus and fetus for each month of pregnancy and complete models of the pregnant woman at the end of each trimester. In this paper, the available models and the appropriate use of each will be discussed. (Author) 19 refs., 7 figs

  2. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  3. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  4. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  5. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  6. [The model of radiation shielding of the service module of the International space station].

    Science.gov (United States)

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model.

  7. The establishment of animal model of radiation-skin-burn and its changes of tissue metabolism

    International Nuclear Information System (INIS)

    Lu Xingan; Wu Shiliang; Wang Xiuzhen; Zhou Yinghui; Feng Yizhong; Tian Ye; Peng Miao

    2001-01-01

    The biochemistry metabolic changes of the tissues induced by 60 Co γ radiation or by accelerator β radiation on the animal local tissues were observed. The experiment results were shown as follows: (1) 60 Co γ radiation can induce the metabolic changes of the local tissue and led to ulcer or death. (2) Accelerator β radiation at the same dose of γ radiation can only produce ulcer but no death. (3) The biochemistry metabolic changes of the tissues induced by 60 Co γ radiation are similar to that by β radiation, but as a radiation-burn animal model, the latter is better

  8. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    Science.gov (United States)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  9. Current trends in satellite based emergency mapping - the need for harmonisation

    Science.gov (United States)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within

  10. A comparative review of radiation-induced cancer risk models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hee; Kim, Ju Youl [FNC Technology Co., Ltd., Yongin (Korea, Republic of); Han, Seok Jung [Risk and Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    With the need for a domestic level 3 probabilistic safety assessment (PSA), it is essential to develop a Korea-specific code. Health effect assessments study radiation-induced impacts; in particular, long-term health effects are evaluated in terms of cancer risk. The objective of this study was to analyze the latest cancer risk models developed by foreign organizations and to compare the methodology of how they were developed. This paper also provides suggestions regarding the development of Korean cancer risk models. A review of cancer risk models was carried out targeting the latest models: the NUREG model (1993), the BEIR VII model (2006), the UNSCEAR model (2006), the ICRP 103 model (2007), and the U.S. EPA model (2011). The methodology of how each model was developed is explained, and the cancer sites, dose and dose rate effectiveness factor (DDREF) and mathematical models are also described in the sections presenting differences among the models. The NUREG model was developed by assuming that the risk was proportional to the risk coefficient and dose, while the BEIR VII, UNSCEAR, ICRP, and U.S. EPA models were derived from epidemiological data, principally from Japanese atomic bomb survivors. The risk coefficient does not consider individual characteristics, as the values were calculated in terms of population-averaged cancer risk per unit dose. However, the models derived by epidemiological data are a function of sex, exposure age, and attained age of the exposed individual. Moreover, the methodologies can be used to apply the latest epidemiological data. Therefore, methodologies using epidemiological data should be considered first for developing a Korean cancer risk model, and the cancer sites and DDREF should also be determined based on Korea-specific studies. This review can be used as a basis for developing a Korean cancer risk model in the future.

  11. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  12. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  13. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  14. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  15. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  16. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  17. RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Fromang, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Benisty, M., E-mail: mflock@caltech.edu [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France)

    2016-08-20

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  18. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  19. Age dependencies in the modelling of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kellerer, A.M.; GSF, Neuherberg; Barclay, D.

    1992-01-01

    Models for the dose and age dependence of radiation induced cancer have been based primarily on the follow-up of the atomic bomb survivors. Two different concepts have been deduced for leukaemias and for other cancers. The excess leukaemias appear in a distinct temporal wave with a maximum 5 to 10 years after radiation exposure; the distribution is more narrow for younger ages, but there is little dependence of the total attributable risk on age at exposure. For other cancers the latent periods are longer and, according to the current interpretation, the excess rates are then proportional to the age specific spontaneous rates, so that most excess cases would arise at old age. The factors of proportionality, and thus the attributable risks, are assumed to be markedly higher for young ages at exposure. It is argued here, that there is no firm support for this interpretation. (author)

  20. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  1. Modeling of spectral atmosphere transmission for infrared radiation

    International Nuclear Information System (INIS)

    Wiecek, B.; Olbrycht, R.

    2009-01-01

    IR radiation transmission of the atmosphere is an important factor during the thermovision remote sensing and measurement. Transmission coefficient of the atmosphere depends on its content and it is attenuated mainly due to the vapor concentration. Every calibrated thermal camera should be equipped with the digital system which implements the transmission model of the atmosphere. The model presented in this work is based on Beer and Bouguer laws. The proposed simplified model of transmission atmosphere is suitable for implementation in the thermal cameras. A simple digital controller of the camera can calculate the transmission coefficient and correct the temperature measurement. The model takes in account both scattering and absorption due the quantum effects when the photons are interacting with the molecules. (author)

  2. Solar radiation data - statistical analysis and simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Mustacchi, C; Cena, V; Rocchi, M; Haghigat, F

    1984-01-01

    The activities consisted in collecting meteorological data on magnetic tape for ten european locations (with latitudes ranging from 42/sup 0/ to 56/sup 0/ N), analysing the multi-year sequences, developing mathematical models to generate synthetic sequences having the same statistical properties of the original data sets, and producing one or more Short Reference Years (SRY's) for each location. The meteorological parameters examinated were (for all the locations) global + diffuse radiation on horizontal surface, dry bulb temperature, sunshine duration. For some of the locations additional parameters were available, namely, global, beam and diffuse radiation on surfaces other than horizontal, wet bulb temperature, wind velocity, cloud type, cloud cover. The statistical properties investigated were mean, variance, autocorrelation, crosscorrelation with selected parameters, probability density function. For all the meteorological parameters, various mathematical models were built: linear regression, stochastic models of the AR and the DAR type. In each case, the model with the best statistical behaviour was selected for the production of a SRY for the relevant parameter/location.

  3. A quality management model for radiation oncology physics

    International Nuclear Information System (INIS)

    Sternick, E.S.

    1991-01-01

    State-of-the-art radiation physics quality programs operate in a data rich environment. Given the abundance of recordable events, any formalism that serves to identify and monitor a set of attributes correlated with quality is to be regarded as an important management tool. The hierarchical tree structure model describes one such useful planning method. Of the several different types of tree structures, one of the most appropriate for quality management is the pyramid model. In this model, the associations between an overall program objective and the intermediate steps leading to its attainment, are indicated by both horizontal and vertical connectors. The overall objective of the system under study occupies the vertex of the pyramid, while the level immediately below contains its principal components. Further subdivisions of each component occur in successively lower levels. The tree finally terminates at a base level consisting of actions or requirements that must be fulfilled in order to satisfy the overall objective. A pyramid model for a radiation oncology physics quality program is discussed in detail. (author). 21 refs., 4 figs., 6 tabs

  4. Radiative Transfer Modeling in Proto-planetary Disks

    Science.gov (United States)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  5. Relaxation model of radiation-induced conductivity in polymers

    Science.gov (United States)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  6. Radiation doses by radiation diagnostics at the border of a hospital. Calculation model for Nuclear Energy Law regulations

    International Nuclear Information System (INIS)

    Shapiro, B.; Thijssen, T.; De Jong, R.

    2000-01-01

    According to the Nuclear Energy Law in the Netherlands radiation doses at the border of a specific institute (e.g. hospitals) must be determined which can not simply be done by measurements. In this article a model calculation for radiation diagnostics is described

  7. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  8. A model investigation of annual surface ultraviolet radiation in Iran

    International Nuclear Information System (INIS)

    Sabziparvar, A.-A.

    2003-01-01

    In recent years, there has been some concern regarding solar ultraviolet (UV) radiation received at the earth,s surface because of its biological hazards affecting living organisms. Although the geographical distribution of ground-based UV network is relatively good in some continents,but over Asia, the number of UV instruments are not sufficient for meteorological and biological purposes. Iran, as an Asian country, is also suffering from the lack of UV monitoring network with the exception of one ground-based UV spectrophotometer site (Brower III) at Esfahan. Using a complex radiative transfer model and various meteorological data (for 8 years) such as total column ozone, cloudiness, surface albedo, surface air pressure, relative humidity, visibility and daily total solar radiation (TSR), the geographical distribution of annual integrated biological surface UV irradiances such as UVB, erythema and cataracts are calculated. The comparison is made for cloud-free and all-sky conditions for eight selected cities distributed from the southern tip of the country (25 N-60 E) to the northern border (39 N-48 E). It is shown that the difference between the annual UV at south and north in all-sky condition is larger than the differences in cloud-free condition. The ratio of some biological UV irradiances at southern cities to the same component at northern cities shows a factor of two and more which is quite significant. The possible reasons which might cause such differences are discussed

  9. Evaluation of radiation damping using 3-D finite element models

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1983-01-01

    The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)

  10. On a radiative origin of the Standard Model from trinification

    Science.gov (United States)

    Camargo-Molina, José Eliel; Morais, António P.; Pasechnik, Roman; Wessén, Jonas

    2016-09-01

    In this work, we present a trinification-based grand unified theory incorporating a global SU(3) family symmetry that after a spontaneous breaking leads to a left-right symmetric model. Already at the classical level, this model can accommodate the matter content and the quark Cabbibo mixing in the Standard Model (SM) with only one Yukawa coupling at the unification scale. Considering the minimal low-energy scenario with the least amount of light states, we show that the resulting effective theory enables dynamical breaking of its gauge group down to that of the SM by means of radiative corrections accounted for by the renormalisation group evolution at one loop. This result paves the way for a consistent explanation of the SM breaking scale and fermion mass hierarchies.

  11. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  12. Modeling of electron time variations in the radiation belts

    International Nuclear Information System (INIS)

    Chan, K.W.; Teague, M.J.; Schofield, N.J.; Vette, J.I.

    1979-01-01

    A review of the temporal variation in the trapped electron population of the inner and outer radiation zones is presented. Techniques presently used for modeling these zones are discussed and their deficiencies identified. An intermediate region is indicated between the zones in which the present modeling techniques are inadequate due to the magnitude and frequency of magnetic storms. Future trends are examined, and it is suggested that modeling of individual magnetic storms may be required in certain L bands. An analysis of seven magnetic storms is presented, establishing the independence of the depletion time of the storm flux and the storm magnitude. Provisional correlation between the storm magnitude and the Dst index is demonstrated

  13. Radiatively induced neutrino mass model with flavor dependent gauge symmetry

    Science.gov (United States)

    Lee, SangJong; Nomura, Takaaki; Okada, Hiroshi

    2018-06-01

    We study a radiative seesaw model at one-loop level with a flavor dependent gauge symmetry U(1) μ - τ, in which we consider bosonic dark matter. We also analyze the constraints from lepton flavor violations, muon g - 2, relic density of dark matter, and collider physics, and carry out numerical analysis to search for allowed parameter region which satisfy all the constraints and to investigate some predictions. Furthermore we find that a simple but adhoc hypothesis induces specific two zero texture with inverse mass matrix, which provides us several predictions such as a specific pattern of Dirac CP phase.

  14. Radiation from an excited vortex in the Abelian Higgs model

    Science.gov (United States)

    Arodź, H.; Hadasz, L.

    1996-09-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found.

  15. Radiation from an excited vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1996-01-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found. copyright 1996 The American Physical Society

  16. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    Science.gov (United States)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  17. Simplified models for radiational losses calculating a tokamak plasma

    International Nuclear Information System (INIS)

    Arutiunov, A.B.; Krasheninnikov, S.I.; Prokhorov, D.Yu.

    1990-01-01

    To determine the magnitudes and profiles of radiational losses in a Tokamak plasma, particularly for high plasma densities, when formation of MARFE or detached-plasma takes place, it is necessary to know impurity distribution over the ionization states. Equations describing time evolution of this distribution are rather cumbersome, besides that, transport coefficients as well as rate constants of the processes involving complex ions are known nowadays with high degree of uncertainty, thus it is believed necessary to develop simplified, half-analytical models describing time evolution of the impurities analysis of physical processes taking place in a Tokamak plasma on the base of the experimental data. (author) 6 refs., 2 figs

  18. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  19. Computer Modeling of Radiation Portal Monitors for Homeland Security Applications

    International Nuclear Information System (INIS)

    Pagh, Richard T.; Kouzes, Richard T.; McConn, Ronald J.; Robinson, Sean M.; Schweppe, John E.; Siciliano, Edward R.

    2005-01-01

    Radiation Portal Monitors (RPMs) are currently being used at our nation's borders to detect potential nuclear threats. At the Pacific Northwest National Laboratory (PNNL), realistic computer models of RPMs are being developed to simulate the screening of vehicles and cargo. Detailed models of the detection equipment, vehicles, cargo containers, cargos, and radioactive sources are being used to determine the optimal configuration of detectors. These models can also be used to support work to optimize alarming algorithms so that they maximize sensitivity for items of interest while minimizing nuisance alarms triggered by legitimate radioactive material in the commerce stream. Proposed next-generation equipment is also being modeled to quantify performance and capability improvements to detect potential nuclear threats. A discussion of the methodology used to perform computer modeling for RPMs will be provided. In addition, the efforts to validate models used to perform these scenario analyses will be described. Finally, areas where improved modeling capability is needed will be discussed as a guide to future development efforts

  20. RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS

    International Nuclear Information System (INIS)

    Moscibrodzka, Monika; Gammie, Charles F.; Dolence, Joshua C.; Shiokawa, Hotaka; Leung, Po Kin

    2009-01-01

    Using flow models based on axisymmetric general relativistic magnetohydrodynamics simulations, we construct radiative models for Sgr A*. Spectral energy distributions (SEDs) that include the effects of thermal synchrotron emission and absorption, and Compton scattering, are calculated using a Monte Carlo technique. Images are calculated using a ray-tracing scheme. All models are scaled so that the 230 GHz flux density is 3.4 Jy. The key model parameters are the dimensionless black hole spin a * , the inclination i, and the ion-to-electron temperature ratio T i /T e . We find that (1) models with T i /T e = 1 are inconsistent with the observed submillimeter spectral slope; (2) the X-ray flux is a strongly increasing function of a * ; (3) the X-ray flux is a strongly increasing function of i; (4) 230 GHz image size is a complicated function of i, a * , and T i /T e , but the T i /T e = 10 models are generally large and at most marginally consistent with the 230 GHz very long baseline interferometry (VLBI) data; (5) for models with T i /T e = 10 and i = 85 deg. the event horizon is cloaked behind a synchrotron photosphere at 230 GHz and will not be seen by VLBI, but these models overproduce near-infrared and X-ray flux; (6) in all models whose SEDs are consistent with observations, the event horizon is uncloaked at 230 GHz; (7) the models that are most consistent with the observations have a * ∼ 0.9. We finish with a discussion of the limitations of our model and prospects for future improvements.

  1. Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel L.; Debeb, Bisrat G. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thames, Howard D. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-09-01

    Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. An independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.

  2. Model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach

    International Nuclear Information System (INIS)

    Michaels, H.B.; Hunt, J.W.

    1978-01-01

    A model is presented to describe the contributions of direct and indirect effects to the radiation damage of cells. The model is derived using principles of radiation chemistry and of pulse radiolysis in particular. From data available in the literature, parameters for cellular composition and values of rate constants for indirect action have been used in preliminary applications of the model. The results obtained in calculations of the protective effect of .OH and .H scavengers are consistent with experimental data. Possible modifications and improvements to the model are suggested, along with proposed future applications of the model in radiobiological studies

  3. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  4. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  5. Efficient all solid-state UV source for satellite-based lidar applications.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2003-07-01

    A satellite-based UV-DIAL measurement system would allow continuous global monitoring of ozone concentration in the upper atmosphere. However such systems remain difficult to implement because aerosol-scattering return signals for satellite-based lidars are very weak. A suitable system must produce high-energy UV pulses at multiple wavelengths with very high efficiency. For example, a nanosecond system operating at 10 Hz must generate approximately 1 J per pulse at 308-320 nm. An efficient space-qualified wavelength-agile system based on a single UV source that can meet this requirement is probably not available using current laser technology. As an alternative, we're pursuing a multi-source approach employing all-solid-state modules that individually generate 300-320 nm light with pulse energies in the range of 50-200 mJ, with transform-limited bandwidths and good beam quality. Pulses from the individual sources can be incoherently summed to obtain the required single-pulse energy. These sources use sum-frequency mixing of the 532 nm second harmonic of an Nd:YAG pump laser with 731-803 nm light derived from a recently-developed, state-of-the-art, nanosecond optical parametric oscillator. Two source configurations are under development, one using extra-cavity sum-frequency mixing, and the other intra-cavity sum-frequency mixing. In either configuration, we hope to obtain sum-frequency mixing efficiency approaching 60% by carefully matching the spatial and temporal properties of the laser and OPO pulses. This ideal balance of green and near-IR photons requires an injection-seeded Nd:YAG pump-laser with very high beam quality, and an OPO exhibiting unusually high conversion efficiency and exceptional signal beam quality. The OPO employs a singly-resonant high-Fresnel-number image-rotating self-injection-seeded nonplanar-ring cavity that achieves pump depletion > 65% and produces signal beams with M{sup 2} {approx} 3 at pulse energies exceeding 50 mJ. Pump beam

  6. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  7. Providing satellite-based early warnings of fires to reduce fire flashovers on South Africa’s transmission lines

    CSIR Research Space (South Africa)

    Frost, PE

    2007-07-01

    Full Text Available The Advanced Fire Information System (AFIS) is the first near real time operational satellite-based fire monitoring system of its kind in Africa. The main aim of AFIS is to provide information regarding the prediction, detection and assessment...

  8. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  9. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  10. Development of a murine model of acute radiation encephalopathy

    International Nuclear Information System (INIS)

    Xing Yigang; Tang Yamei; Liu Jun; Sun Ying

    2003-01-01

    Objective: To develop a murine model of acute radiation encephalopathy. Methods: A total of 40 rats were subjected to local γ-irradiation to the brain with the dosage of 7 Gy/d for 6 consecutive days. The amount of food intake, hairs and skin of irradiated field, body weight, general activities, CNS symptoms and signs were examined and recorded after irradiation. On day 3, 7, 14 and 30, the brain tissue was removed to observe histopathologic changes. Results: During the first two days after irradiation, the irradiated rats were agitated, and the amount of food intake decreased from day 2 onwards. No serious skin reaction to irradiation was observed. Survived rats had normal activities without any abnormal nervous signs. Histopathologic changes showed slight neuronal degeneration, smaller cell body, red-colored cytoplasm, disappearance of Nissl body, vacuolation, typical cell shrinkage, chromatin condensation and nuclear divergence. On the 14th and 30th days, hypochromatism, loose and reticular necrotic foci were found in some samples. Conclusion: The murine model of acute radiation encephalopathy is useful and practical in radiobiological studies

  11. Simulation of cloud/radiation interaction using a second-order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.; Smith, W.S.

    1994-01-01

    Extended sheets of low-level stratus and stratocumulus clouds are a persistent feature over the eastern parts of the major ocean basins associated with the quasi-permanent subtropical high-pressure systems. These clouds exert a strong influence on climate through their high albedo, compared with the underlying surface, and their low altitude. The former leads to a reduction of the net shortwave flux entering the atmosphere, and the latter leads to an infrared loss in a way essentially the same as the cloud-free conditions. This paper is a modeling study with the current understanding of the important physical processes associated with a cloud-capped boundary layer. The numerical model is a high-resolution one-dimensional version of the second-order turbulence convective/radiative model developed at the Los Alamos National Laboratory. Future work includes sensitivity tests to ascertain the model validity as well as to systematically include all the possible ambient atmospheric and surface conditions. Detailed budget analyses are also useful in categorizing the cloud-capped boundary layers into a few classes

  12. Measuring and modeling exposure from environmental radiation on tidal flats

    International Nuclear Information System (INIS)

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  13. Quantum Black Hole Model and HAWKING’S Radiation

    Science.gov (United States)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  14. A revised model of Jupiter's inner electron belts: Updating the Divine radiation model

    Science.gov (United States)

    Garrett, Henry B.; Levin, Steven M.; Bolton, Scott J.; Evans, Robin W.; Bhattacharya, Bidushi

    2005-02-01

    In 1983, Divine presented a comprehensive model of the Jovian charged particle environment that has long served as a reference for missions to Jupiter. However, in situ observations by Galileo and synchrotron observations from Earth indicate the need to update the model in the inner radiation zone. Specifically, a review of the model for 1 MeV data. Further modifications incorporating observations from the Galileo and Cassini spacecraft will be reported in the future.

  15. Developing Information Services and Tools to Access and Evaluate Data Quality in Global Satellite-based Precipitation Products

    Science.gov (United States)

    Liu, Z.; Shie, C. L.; Meyer, D. J.

    2017-12-01

    Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide precipitation data on a global scale, especially in remote continents and over oceans. Over the years, satellite-based precipitation products have evolved from single sensor and single algorithm to multi-sensors and multi-algorithms. As a result, many satellite-based precipitation products have been enhanced such as spatial and temporal coverages. With inclusion of ground-based measurements, biases of satellite-based precipitation products have been significantly reduced. However, data quality issues still exist and can be caused by many factors such as observations, satellite platform anomaly, algorithms, production, calibration, validation, data services, etc. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As data service providers, it is necessary to provide an easy access to data quality information, however, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present challenges and activities at the GES DISC to address precipitation data quality issues.

  16. Comparison of Different Machine Learning Approaches for Monthly Satellite-Based Soil Moisture Downscaling over Northeast China

    Directory of Open Access Journals (Sweden)

    Yangxiaoyue Liu

    2017-12-01

    Full Text Available Although numerous satellite-based soil moisture (SM products can provide spatiotemporally continuous worldwide datasets, they can hardly be employed in characterizing fine-grained regional land surface processes, owing to their coarse spatial resolution. In this study, we proposed a machine-learning-based method to enhance SM spatial accuracy and improve the availability of SM data. Four machine learning algorithms, including classification and regression trees (CART, K-nearest neighbors (KNN, Bayesian (BAYE, and random forests (RF, were implemented to downscale the monthly European Space Agency Climate Change Initiative (ESA CCI SM product from 25-km to 1-km spatial resolution. During the regression, the land surface temperature (including daytime temperature, nighttime temperature, and diurnal fluctuation temperature, normalized difference vegetation index, surface reflections (red band, blue band, NIR band and MIR band, and digital elevation model were taken as explanatory variables to produce fine spatial resolution SM. We chose Northeast China as the study area and acquired corresponding SM data from 2003 to 2012 in unfrozen seasons. The reconstructed SM datasets were validated against in-situ measurements. The results showed that the RF-downscaled results had superior matching performance to both ESA CCI SM and in-situ measurements, and can positively respond to precipitation variation. Additionally, the RF was less affected by parameters, which revealed its robustness. Both CART and KNN ranked second. Compared to KNN, CART had a relatively close correlation with the validation data, but KNN showed preferable precision. Moreover, BAYE ranked last with significantly abnormal regression values.

  17. A New Temperature-Vegetation Triangle Algorithm with Variable Edges (TAVE for Satellite-Based Actual Evapotranspiration Estimation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-09-01

    Full Text Available The estimation of spatially-variable actual evapotranspiration (AET is a critical challenge to regional water resources management. We propose a new remote sensing method, the Triangle Algorithm with Variable Edges (TAVE, to generate daily AET estimates based on satellite-derived land surface temperature and the vegetation index NDVI. The TAVE captures heterogeneity in AET across elevation zones and permits variability in determining local values of wet and dry end-member classes (known as edges. Compared to traditional triangle methods, TAVE introduces three unique features: (i the discretization of the domain as overlapping elevation zones; (ii a variable wet edge that is a function of elevation zone; and (iii variable values of a combined-effect parameter (that accounts for aerodynamic and surface resistance, vapor pressure gradient, and soil moisture availability along both wet and dry edges. With these features, TAVE effectively addresses the combined influence of terrain and water stress on semi-arid environment AET estimates. We demonstrate the effectiveness of this method in one of the driest countries in the world—Jordan, and compare it to a traditional triangle method (TA and a global AET product (MOD16 over different land use types. In irrigated agricultural lands, TAVE matched the results of the single crop coefficient model (−3%, in contrast to substantial overestimation by TA (+234% and underestimation by MOD16 (−50%. In forested (non-irrigated, water consuming regions, TA and MOD16 produced AET average deviations 15.5 times and −3.5 times of those based on TAVE. As TAVE has a simple structure and low data requirements, it provides an efficient means to satisfy the increasing need for evapotranspiration estimation in data-scarce semi-arid regions. This study constitutes a much needed step towards the satellite-based quantification of agricultural water consumption in Jordan.

  18. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    OpenAIRE

    Alexandre Bryan Heinemann; Pepijn A.J. van Oort; Diogo Simões Fernandes; Aline de Holanda Nunes Maia

    2012-01-01

    Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, ...

  19. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  20. New perspectives for satellite-based archaeological research in the ancient territory of Hierapolis (Turkey

    Directory of Open Access Journals (Sweden)

    R. Lasaponara

    2008-11-01

    Full Text Available This paper deals with the use of satellite QuickBird images to find traces of past human activity in the ancient territory of Hierapolis (Turkey. This is one of the most important archaeological sites in Turkey, and in 1988 it was inscribed in the UNESCO World Heritage list. Although over the years the archaeological site of Hierapolis has been excavated, restored and well documented, up to now the territory around the ancient urban area is still largely unknown. The current research project, still in progress, aims to search the area neighbouring Hierapolis believed to have been under the control of the city for a long time and, therefore, expected to be very rich in archaeological evidence. In order to investigate a large area around the ancient Hierapolis and discover potential archaeological remains, QuickBird images were adopted.

    Results from satellite-based analysis allowed us to find several unknown rural settlements dating back to early Imperial Roman and the Byzantine age. Two significant test sites were focused on in this paper in order to characterize the different spectral responses observed for different types of archaeological features (shadow and soil marks. Principal Component Analysis and spectral indices were computed to enhance archaeological marks and make identification easier. The capability of the QuickBird data set (panchromatic, multispectral channel, PCA and spectral indices in searching for archaeological marks was assessed in a quantitative way by using a specific indicator.

  1. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  2. The attitude inversion method of geostationary satellites based on unscented particle filter

    Science.gov (United States)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  3. Satellite based hydroclimatic understanding of evolution of Dengue and Zika virus

    Science.gov (United States)

    Khan, R.; Jutla, A.; Colwell, R. R.

    2017-12-01

    Vector-borne diseases are prevalent in tropical and subtropical regions especially in Africa, South America, and Asia. Vector eradication is perhaps not possible since pathogens adapt to local environment. In absence of appropriate vaccinations for Dengue and Zika virus, burden of these two infections continue to increase in several geographical locations. Aedes spp. is one of the major vectors for Dengue and Zika viruses. Etiologies on Dengue and Zika viruses are evolving, however the key question remains as to how one species of mosquito can transmit two different infections? We argue that a set of conducive environmental condition, modulated by regional climatic and weather processes, may lead to abundance of a specific virus. Using satellite based rainfall (TRMM/GPM), land surface temperature (MODIS) and dew point temperature (AIRS/MERRA), we have identified appropriate thresholds that can provide estimate on risk of abundance of Dengue or Zika viruses at least few weeks in advance. We will discuss a framework coupling satellite derived hydroclimatic and societal processes to predict environmental niches of favorability of conditions of Dengue or Zika risk in human population on a global scale.

  4. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    International Nuclear Information System (INIS)

    Mangin, A.; Morel, M.; Fanton d'Andon, O.

    2000-01-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  5. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  6. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  7. An approach to modelling radiation damage by fast ionizing particles

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1987-01-01

    The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)

  8. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    International Nuclear Information System (INIS)

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  9. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation

    Directory of Open Access Journals (Sweden)

    Alexandre Bryan Heinemann

    2012-01-01

    Full Text Available Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs data severely limits site-specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, biomass, leaf area (LAI and total accumulated solar radiation (SRA during the crop cycle. The accuracy of the 5 models for estimated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no irrigation, crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

  10. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial

  11. Sensitivity study of cloud/radiation interaction using a second order turbulence radiative-convective model

    International Nuclear Information System (INIS)

    Kao, C.Y.J.; Smith, W.S.

    1993-01-01

    A high resolution one-dimensional version of a second order turbulence convective/radiative model, developed at the Los Alamos National Laboratory, was used to conduct a sensitivity study of a stratocumulus cloud deck, based on data taken at San Nicolas Island during the intensive field observation marine stratocumulus phase of the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE IFO), conducted during July, 1987. Initial profiles for liquid water potential temperature, and total water mixing ratio were abstracted from the FIRE data. The dependence of the diurnal behavior in liquid water content, cloud top height, and cloud base height were examined for variations in subsidence rate, sea surface temperature, and initial inversion strength. The modelled diurnal variation in the column integrated liquid water agrees quite well with the observed data, for the case of low subsidence. The modelled diurnal behavior for the height of the cloud top and base show qualitative agreement with the FIRE data, although the overall height of the cloud layer is about 200 meters too high

  12. Monturaqui meteorite impact crater, Chile: A field test of the utility of satellite-based mapping of ejecta at small craters

    Science.gov (United States)

    Rathbun, K.; Ukstins, I.; Drop, S.

    2017-12-01

    Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This

  13. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  14. Solar radiation, cloudiness and longwave radiation over low-latitude glaciers: implications for mass-balance modelling

    Science.gov (United States)

    Mölg, Thomas; Cullen, Nicolas J.; Kaser, Georg

    Broadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G) and incoming longwave radiation (L↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff, so G or L↓ can be modelled based on neff derived from measured L↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L↓ increases by 45-65% (depending on altitude) relative to clear-sky L↓. Validation for a 1 year dataset of G and L↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L↓ is measured.

  15. Sensitivity to plant modelling uncertainties in optimal feedback control of sound radiation from a panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1997-01-01

    Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...

  16. Central nervous system radiation injury in small animal models

    International Nuclear Information System (INIS)

    Kogel, A.J. van der

    1991-01-01

    Experimental studies on radiation injury in the central nervous system have been carried out in many species ranging from mouse to monkey. This review is restricted to studies in rodents irradiated with low linear energy transfer (LET) radiation. In this paper, the various rodent models of brain and spinal cord injury are described with particular emphasis on the pathology of different types of lesions and theories of their pathogenesis. Many of the initial studies were limited to relatively high single doses, but in later work more clinically relevant fractionated irradiation schemes were employed. This has led to the recognition of various types of early and late delayed injury that are analogous to the syndromes observed in humans. Two main pathways have been suggested for the pathogenesis, one involving predominantly the progressive loss of glial cells and the other involving vascular injury. The relative importance of both mechanisms will be discussed with respect to treatment conditions and to dose level in particular. An hypothesis is presented concerning the possible role of different cell types in the development of specific syndromes

  17. Collisional-radiative model: a plasma spectroscopy theory for experimentalists

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Kyoto Univ. (Japan); Sawada, Keiji

    1997-01-01

    The rate equation describing the population n(p) of an excited (and the ground state) level p of ions immersed in plasma is shown. In 1962, the method of quasi-steady state solution (collisional-radiative model) was proposed. Its idea is explained. The coupled differential equations reduce to a set of coupled linear equations for excited levels. The solution of these coupled equations is presented. The equations giving the ionization and recombination of this system of ions under consideration are described in terms of the effective rate coefficients. The collisional-radiative ionization and recombination rate coefficients are expressed in terms of the population coefficients for p > 1. As for ionizing plasma, the excited level populations, the populations, the population distribution among the excited levels, two regimes of the excited levels, the dominant flows of electrons among the levels and so on are shown. As for recombining plasma, the excited level populations, the population distribution among the excited levels, the dominant flows of electrons and so on are shown. Ionization balance plasma may be considered. (K.I.)

  18. Structural model of radiation effects in living cells

    International Nuclear Information System (INIS)

    Neyman, J.; Puri, P.S.

    1976-01-01

    The chance mechanism of cell damage and of repair in the course of irradiation involves two details familiar to biologists that thus far seem to have been overlooked in mathematical treatment. One of these details is that, generally, the passage of a single ''primary'' radiation particle generates a ''cluster'' of secondaries which can produce ''hits'' that damage the living cell. With high linear energy transfer, each cluster contains very many secondary particles. With low linear energy transfer, the number of secondaries per cluster is generally small. The second overlooked detail of the chance mechanism is concerned with what may be called the time scales of radiation damage and of the subsequent repair. The generation of a cluster of secondary particles and the possible hits occur so rapidly that, for all practical purposes, they may be considered as occurring instantly. On the other hand, the subsequent changes in the damaged cells appear to require measurable amounts of time. The constructed stochastic model embodies these details, the clustering of secondary particles and the time scale difference. The results explain certain details of observed phenomena

  19. Volume-based geometric modeling for radiation transport calculations

    International Nuclear Information System (INIS)

    Li, Z.; Williamson, J.F.

    1992-01-01

    Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed

  20. Modeling Background Radiation in our Environment Using Geochemical Data

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L.; Marsac, Kara [University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Hausrath, Elisabeth [Uniiversity of Nevada, Las Vegas; Haber, Daniel [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  1. Mesoscale modeling of smoke radiative feedback over the Sahel region

    Science.gov (United States)

    Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.

    2013-12-01

    This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.

  2. Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait)

    International Nuclear Information System (INIS)

    Berbigier, P.; Bonnefond, J.M.

    1995-01-01

    A semi-empirical model of radiation penetration in a maritime pine canopy was developed so that mean solar (and net) radiation absorption by crowns and understorey could be estimated from above-canopy measurements only. Beam radiation Rb was assumed to penetrate the canopy according to Beer's law with an extinction coefficient of 0.32; this figure was found using non-linear regression techniques. For diffuse sky radiation, Beer's law was integrated over the sky vault assuming a SOC (standard overcast sky) luminance model; the upward and downward scattered radiative fluxes were obtained using the Kubelka-Munk equations and measurements of needle transmittance and reflectance. The penetration of net radiation within the canopy was also modelled. The model predicts the measured albedo of the stand very well. The estimation of solar radiation transmitted by the canopy was also satisfactory with the maximum difference between this and the mean output of mobile sensors at ground level being only 18 W m -2 . Due to the poor precision of net radiometers, the net radiation model could not be tested critically. However, as the modelled longwave radiation balance under the canopy is always between -10 and -20 Wm -2 , the below-canopy net radiation must be very close to the solar radiation balance. (author) [fr

  3. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  4. Expression and significance of Bax protein in model of radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Feng Yizhong; Mo Yahong

    2002-01-01

    Objective: The study is to find some valuable criteria for diagnosis and treatment of radiation injury in skin. Methods: The expression of Bax protein was studied by SP immunohistochemistry in 40 cases of model of radiation injury in mouse skin. Their relationship relating to radiation dose was also investigated. Results: The expression rates of Bax were 30%, 30%, 70%, 70% in 5 Gy group, 15 Gy group, 30 Gy group, 45 Gy group respectively. There was no significant correlation between the expression of Bax and radiation groups. Conclusions: The experiment shows that radiation can increase the expression of Bax protein which might be related to poor healing in radiation skin injury

  5. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    radiation . 3.6.1 Ionizing Radiation Damage. Some of the ROS’ discussed in Section 3.3 cause indirect damage to the spore’s DNA. They can produce... ionizing radiation damage has focused on the effects of charged particles in their tracks. The charged particles create radiation - induced products and...3.8.1 Reaction-Diffusion of ROS Within the Spore. A demonstrative scenario will be explored in order to simulate the indirect effects of ionizing

  6. Radiation Environment Model of Protons and Heavier Ions at Jupiter

    Science.gov (United States)

    Sierra, Luz Maria Martinez; Garrett, Henry B.; Jun, Insoo

    2015-01-01

    We performed an in depth study of the methods used to review the geometric factors (GF) and sensitivity to charge particles of the Energetic Particle Detector instrument on board the Galileo Spacecraft. Monte Carlo simulations were performed to understand the interactions of electrons and ions (i. e., protons and alphas) with the sensitive regions of the instrument. The DC0 and B0 channels were studied with the intention of using them to update the jovian proton radiation model. The results proved that the B0 is a clean proton chanel without any concerns for contamination by heavier ions and electrons. In contrast, DC0 was found to be contaminated by electrons. Furthermore, we also found out that the B2 channel is a clean alpha particle channel (in other words, no contamination by electrons and/or protons).

  7. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  8. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  9. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.

    Science.gov (United States)

    Brandt, Martin; Mbow, Cheikh; Diouf, Abdoul A; Verger, Aleixandre; Samimi, Cyrus; Fensholt, Rasmus

    2015-04-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. © 2014 John Wiley & Sons Ltd.

  10. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  11. Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes

    Science.gov (United States)

    Williams, Jack G.; Rosser, Nick J.; Kincey, Mark E.; Benjamin, Jessica; Oven, Katie J.; Densmore, Alexander L.; Milledge, David G.; Robinson, Tom R.; Jordan, Colm A.; Dijkstra, Tom A.

    2018-01-01

    Landslides triggered by large earthquakes in mountainous regions contribute significantly to overall earthquake losses and pose a major secondary hazard that can persist for months or years. While scientific investigations of coseismic landsliding are increasingly common, there is no protocol for rapid (hours-to-days) humanitarian-facing landslide assessment and no published recognition of what is possible and what is useful to compile immediately after the event. Drawing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we consider how quickly a landslide assessment based upon manual satellite-based emergency mapping (SEM) can be realistically achieved and review the decisions taken by analysts to ascertain the timeliness and type of useful information that can be generated. We find that, at present, many forms of landslide assessment are too slow to generate relative to the speed of a humanitarian response, despite increasingly rapid access to high-quality imagery. Importantly, the value of information on landslides evolves rapidly as a disaster response develops, so identifying the purpose, timescales, and end users of a post-earthquake landslide assessment is essential to inform the approach taken. It is clear that discussions are needed on the form and timing of landslide assessments, and how best to present and share this information, before rather than after an earthquake strikes. In this paper, we share the lessons learned from the Gorkha earthquake, with the aim of informing the approach taken by scientists to understand the evolving landslide hazard in future events and the expectations of the humanitarian community involved in disaster response.

  12. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  13. Non-exponential extinction of radiation by fractional calculus modelling

    International Nuclear Information System (INIS)

    Casasanta, G.; Ciani, D.; Garra, R.

    2012-01-01

    Possible deviations from exponential attenuation of radiation in a random medium have been recently studied in several works. These deviations from the classical Beer-Lambert law were justified from a stochastic point of view by Kostinski (2001) . In his model he introduced the spatial correlation among the random variables, i.e. a space memory. In this note we introduce a different approach, including a memory formalism in the classical Beer-Lambert law through fractional calculus modelling. We find a generalized Beer-Lambert law in which the exponential memoryless extinction is only a special case of non-exponential extinction solutions described by Mittag-Leffler functions. We also justify this result from a stochastic point of view, using the space fractional Poisson process. Moreover, we discuss some concrete advantages of this approach from an experimental point of view, giving an estimate of the deviation from exponential extinction law, varying the optical depth. This is also an interesting model to understand the meaning of fractional derivative as an instrument to transmit randomness of microscopic dynamics to the macroscopic scale.

  14. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  15. Application of Interval Predictor Models to Space Radiation Shielding

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy,Daniel P.; Norman, Ryan B.; Blattnig, Steve R.

    2016-01-01

    This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.

  16. Local stem cell depletion model for radiation myelitis

    International Nuclear Information System (INIS)

    Yaes, R.J.; Kalend, A.

    1988-01-01

    We propose a model for normal tissue damage based on the assumption that adult mammalian stem cells have limited mobility and, consequently, for each organ, there is a maximum volume (the critical volume, Vc), that can be repopulated and repaired by a single surviving stem cell. This concept is applied to a simple, 1-dimensional model of the spinal cord, where the critical volume is a slice of thickness, t, assumed to be small compared to lengths of spinal cord usually irradiated clinically. The probability of myelitis is explicitly obtained as a function of the dose, dose per fraction, length of cord irradiated, slice thickness, number of stem cells per slice and parameters alpha and beta of the stem cell survival curve. The complication probability is expressed as a triple negative exponential function of dose analogous to the double negative exponential function for tumor control, resulting in a steep dose-response curve with short tails in both the high dose and low dose regions. We show that the model predictions are compatible with the experimental data for radiation myelitis in the rat. We discuss how this concept can be applied to other organs such as skin and to organs composed of structurally and functionally distinct subunits, such as the kidney

  17. Advanced Machine Learning Emulators of Radiative Transfer Models

    Science.gov (United States)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  18. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  19. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Samin, Adib; Cao, Lei

    2015-01-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  20. Monte Carlo study of radiation-induced demagnetization using the two-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Cao, Lei

    2015-10-01

    A simple radiation-damage model based on the Ising model for magnets is proposed to study the effects of radiation on the magnetism of permanent magnets. The model is studied in two dimensions using a Monte Carlo simulation, and it accounts for the radiation through the introduction of a localized heat pulse. The model exhibits qualitative agreement with experimental results, and it clearly elucidates the role that the coercivity and the radiation particle’s energy play in the process. A more quantitative agreement with experiment will entail accounting for the long-range dipole–dipole interactions and the crystalline anisotropy.

  1. On uniform world models with matter and radiation

    International Nuclear Information System (INIS)

    Wojciulewitsch, E.

    1977-01-01

    Some properties of a universe containing matter with density and radiation with density have been investigated. The use of a density parameter for matter strongly suggests the use of an analogous parameter for radiation. Both parameters are associated with deceleration and their evolution in time can be calculated. The definition of a radiation density paramater allows for a generalization of the Stabell-Refsdal classification of uniform matter universes to universes containing both matter and radiation. In this paper no interaction between matter and radiation has been assumed. The effect of an interaction will be investigated in a future paper. (Author)

  2. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  3. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  4. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  5. Aspects of radiative electroweak breaking in supergravity models

    International Nuclear Information System (INIS)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H.; Yuan, K.

    1993-01-01

    We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential V 1 =V 0 +ΔV, in particular how its renormalization-scale (Q) independence is affected by the approximation used to calculate ΔV and by the presence of a Higgs-field-independent term which makes V 1 (0)≠0. We show that the latter must be subtracted out to achieve Q-independence. We also discuss our own approach to the exploration of the five-dimensional parameter space and the fine-tuning constraints within this approach. We apply our methods to the determination of the allowed region in parameter space of two models which we argue to be the prototypes for conventional (SSM) and string (SISM) unified models. To this end we impose the electroweak breaking constraint by minimizing the one-loop effective potential and study the shifts in μ and B relative to the values obtained using the tree-level potential. These shifts are most significant for small values