WorldWideScience

Sample records for satellite-based advanced air

  1. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  2. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders...... for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  3. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  4. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  5. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  6. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  7. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  8. Advanced air distribution

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2011-01-01

    The aim of total volume air distribution (TVAD) involves achieving uniform temperature and velocity in the occupied zone and environment designed for an average occupant. The supply of large amounts of clean and cool air are needed to maintain temperature and pollution concentration at acceptable....... Ventilation in hospitals is essential to decrease the risk of airborne cross-infection. At present, mixing air distribution at a minimum of 12 ach is used in infection wards. Advanced air distribution has the potential to aid in achieving healthy, comfortable and productive indoor environments at levels...... higher than what can be achieved today with the commonly used total volume air distribution principles....

  9. A Satellite-Based Multi-Pollutant Index of Global Air Quality

    Science.gov (United States)

    Cooper, Mathew J.; Martin, Randall V.; vanDonkelaar, Aaron; Lamsal, Lok; Brauer, Michael; Brook, Jeffrey R.

    2012-01-01

    Air pollution is a major health hazard that is responsible formillions of annual excess deaths worldwide. Simpleindicators are useful for comparative studies and to asses strends over time. The development of global indicators hasbeen impeded by the lack of ground-based observations in vast regions of the world. Recognition is growing of the need for amultipollutant approach to air quality to better represent human exposure. Here we introduce the prospect of amultipollutant air quality indicator based on observations from satellite remote sensing.

  10. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    Science.gov (United States)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  11. AQA-PM: Extension of the Air-Quality Model For Austria with Satellite based Particulate Matter Estimates

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia

    2013-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  12. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  13. A Newly Distributed Satellite-based Global Air-sea Surface Turbulent Fluxes Data Set -- GSSTF2b

    Science.gov (United States)

    Shie, C.; Nelkin, E.; Ardizzone, J.; Savtchenko, A.; Chiu, L. S.; Adler, R. F.; Lin, I.; Gao, S.

    2010-12-01

    Accurate sea surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The recently revived and produced daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2008) is currently under processing for an official distribution by NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) due by the end of this month (September, 2010). Like its predecessor product GSSTF2, GSSTF2b is expected to provide the scientific community a longer-period and useful turbulent surface flux dataset for global energy and water cycle research, as well as regional and short period data analyses. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b dataset has lately been produced using upgraded and improved input datasets such as the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for producing the GSSTF2 product were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. The newly produced GSSTF2b was found to generally agree better with available ship measurements obtained from several field experiments in 1999 than its counterpart

  14. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    Science.gov (United States)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  15. A national satellite-based land-use regression model for air pollution exposure assessment in Australia.

    Science.gov (United States)

    Knibbs, Luke D; Hewson, Michael G; Bechle, Matthew J; Marshall, Julian D; Barnett, Adrian G

    2014-11-01

    Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006-2011. We are making our model predictions freely available for research. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. LTE-advanced air interface technology

    CERN Document Server

    Zhang, Xincheng

    2012-01-01

    Opportunities are at hand for professionals eager to learn and apply the latest theories and practices in air interface technologies. Written by experienced researchers and professionals, LTE-Advanced Air Interface Technology thoroughly covers the performance targets and technology components studied by 3GPP for LTE-Advanced. Besides being an explanatory text about LTE-Advanced air interface technology, this book exploits the technical details in the 3GPP specification, and explains the motivation and implication behind the specifications.After a general description of wireless cellular techno

  17. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  18. Classification Studies in an Advanced Air Classifier

    Science.gov (United States)

    Routray, Sunita; Bhima Rao, R.

    2016-10-01

    In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.

  19. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  20. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  1. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  2. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  3. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-185 AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) As of FY 2017 President’s...17, 2013 Program Information Program Name AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) DoD Component Air Force Joint Participants...December 2015 SAR March 23, 2016 16:04:24 UNCLASSIFIED 5 Mission and Description The Advanced Medium Range Air-to-Air Missile (AMRAAM) AIM-120

  4. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  5. 77 FR 65395 - Air Cargo Advance Screening (ACAS) Pilot Program

    Science.gov (United States)

    2012-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Air Cargo Advance Screening (ACAS) Pilot Program Correction In notice document 2012-26031 appearing on pages 65006-65009 in the issue of October 24, 2012 make...

  6. 77 FR 65006 - Air Cargo Advance Screening (ACAS) Pilot Program

    Science.gov (United States)

    2012-10-24

    ... SECURITY U.S. Customs and Border Protection Air Cargo Advance Screening (ACAS) Pilot Program AGENCY: U.S...) pilot program which revises the time frame for transmission by pilot participants of a subset of... States for all other locations. The ACAS pilot is a voluntary test in which participants agree to submit...

  7. Pure Air`s advanced flue gas desulfurization clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1998-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generating Station. This project received a $60 million grant from the DOE Clean Coal II program. Included in this was a three year DOE demonstration period. The facility was designed, built and is owned and operated by Pure Air of Allentown, Pennsylvania, through its project company, Pure Air on the Lake, Limited Partnership. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum.

  8. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  9. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    Full Text Available Abstract Production efficiency models (PEMs are based on the theory of light use efficiency (LUE which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP monitoring. The objectives of this review are as follows: 1 to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS identified in the literature; 2 to review each model to determine potential improvements to the general PEM methodology; 3 to review the related literature on satellite-based gross primary productivity (GPP and NPP modeling for additional possibilities for improvement; and 4 based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra; there is an urgent need for

  10. Pure Air`s Advanced Flue Gas Desulfurization Clean Coal Project

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.R. [Pure Air Bailly Station, Chesterton, IN (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project successfully completed four and a half years of operation in December 1996 at Northern Indiana Public Service Company`s (NIPSCO) Bailly Generation Station. Included in this was a three year DOE demonstration period. The project was built by a joint venture company of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc., utilizing Mitsubishi`s wet limestone flue gas desulfurization technology. The project met or exceeded all performance criteria. It has averaged 95.3% SO{sub 2} removal, 99.9% availability and produced 936,000 metric tons of high quality commercial gypsum during this four and a half year period. It demonstrated many advanced technology features including a single, large absorber module serving two boilers, a wastewater evaporation system, an air rotary sparger for oxidation, and a new technology for agglomerating gypsum. The AFGD system was designed, built, owned and operated by Pure Air and will continue to serve NIPSCO`s Bailly Station for at least another 15{1/2} years under an Own and Operate contract. The project enabled NIPSCO to cost effectively achieve full system wide compliance with the Phase 2 emission requirements for SO{sub 2} of the Clean Air Act Amendments (CAAA) of 1990 almost eight years before the target date. The project was the recipient of the Outstanding Engineering Achievement Award from the National Society of Professional Engineers in 1993 and the 1993 Powerplant Award from Power magazine. The data presented in this paper are based on performance during the first three years of operation.

  11. 75 FR 57549 - Fisker Automotive; Grant of Application for Temporary Exemption From Advanced Air Bag...

    Science.gov (United States)

    2010-09-21

    ... Manufacturers In 2000, NHTSA upgraded the requirements for air bags in passenger cars and light trucks... Exemption From Advanced Air Bag Requirements of FMVSS No. 208 AGENCY: National Highway Traffic Safety... advanced air bag requirements of FMVSS No. 208, for the Karma model. The basis for the application is that...

  12. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  13. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  14. Advanced air distribution: Improving health and comfort while reducing energy use

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    -quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing...

  15. Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2010-01-01

    Full Text Available Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s, phase(s, and delay(s of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK- and Sine Binary Offset Carrier- (SinBOC- modulated signals is also analyzed in closed loop model with the new Composite BOC (CBOC modulation chosen for Galileo E1 signal. The simulation results show that the RSSML achieves the best multipath mitigation performance in a uniformly distributed two-to-four paths Rayleigh fading channel model for all three modulated signals.

  16. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  17. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  18. 76 FR 33406 - Lotus Cars Ltd. Receipt of Petition for Renewal of Temporary Exemption From the Advanced Air Bag...

    Science.gov (United States)

    2011-06-08

    ... Cars Ltd. has petitioned the agency for renewal of a temporary exemption from certain advanced air bag... cars and light trucks, requiring what are commonly known as ``advanced air bags.'' \\2\\ The upgrade was... Exemption From the Advanced Air Bag Requirements of FMVSS No. 208 AGENCY: National Highway Traffic Safety...

  19. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  20. Detachment of deposited colloids by advancing and receding air-water interfaces.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B

    2011-08-16

    Moving air-water interfaces can detach colloidal particles from stationary surfaces. The objective of this study was to quantify the effects of advancing and receding air-water interfaces on colloid detachment as a function of interface velocity. We deposited fluorescent, negatively charged, carboxylate-modified polystyrene colloids (diameter of 1 μm) into a cylindrical glass channel. The colloids were hydrophilic with an advancing air-water contact angle of 60° and a receding contact angle of 40°. After colloid deposition, two air bubbles were sequentially introduced into the glass channel and passed through the channel at different velocities (0.5, 7.7, 72, 982, and 10,800 cm/h). The passage of the bubbles represented a sequence of receding and advancing air-water interfaces. Colloids remaining in the glass channel after each interface passage were visualized with confocal microscopy and quantified by image analysis. The advancing air-water interface was significantly more effective in detaching colloids from the glass surface than the receding interface. Most of the colloids were detached during the first passage of the advancing air-water interface, while the subsequent interface passages did not remove significant amounts of colloids. Forces acting on the colloids calculated from theory corroborate our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface movement were stronger than during the receding movement. Theory indicates that, for hydrophilic colloids, the advancing interface movement generally exerts a stronger detachment force than the receding, except when the hysteresis of the colloid-air-water contact angle is small and that of the channel-air-water contact angle is large.

  1. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  2. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    Energy Technology Data Exchange (ETDEWEB)

    Arlan Burdick

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  3. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  4. Advanced air distribution: improving health and comfort while reducing energy use.

    Science.gov (United States)

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Advanced Air Evaporation System with Reusable Wicks for Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  6. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  7. Co-Channel Interference Mitigation Using Satellite Based Receivers

    Science.gov (United States)

    2014-12-01

    While there is some phase noise present in the continuous time-shifted signal, it is important to recognize that this signal is plotted over the [−π...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S

  8. Acquisition: Air Force Transition of Advanced Technology Programs to Military Applications

    Science.gov (United States)

    2006-05-31

    Requirements Review and Assessment process examines capabilities in Global Strike, Homeland Security, Global Response, Global Mobility , Air and Space...Sum m ary of A dvanced T echnology D evelopm ent Projects R eview ed 23 Note: See footnotes at the end of the appendix. Advanced Technology...Armaments Center (AAC) Yes Yes No Yes Yes n/a10 (Cat 2B) Yes Yes Global Air Mobility Advanced Technologies

  9. Providing satellite-based early warnings of fires to reduce fire flashovers on South Africa’s transmission lines

    CSIR Research Space (South Africa)

    Frost, PE

    2007-07-01

    Full Text Available The Advanced Fire Information System (AFIS) is the first near real time operational satellite-based fire monitoring system of its kind in Africa. The main aim of AFIS is to provide information regarding the prediction, detection and assessment...

  10. The satellite-based remote sensing of particulate matter (PM) in support to urban air quality: PM variability and hot spots within the Cordoba city (Argentina) as revealed by the high-resolution MAIAC-algorithm retrievals applied to a ten-years dataset (2

    Science.gov (United States)

    Della Ceca, Lara Sofia; Carreras, Hebe A.; Lyapustin, Alexei I.; Barnaba, Francesca

    2016-04-01

    Particulate matter (PM) is one of the major harmful pollutants to public health and the environment [1]. In developed countries, specific air-quality legislation establishes limit values for PM metrics (e.g., PM10, PM2.5) to protect the citizens health (e.g., European Commission Directive 2008/50, US Clean Air Act). Extensive PM measuring networks therefore exist in these countries to comply with the legislation. In less developed countries air quality monitoring networks are still lacking and satellite-based datasets could represent a valid alternative to fill observational gaps. The main PM (or aerosol) parameter retrieved from satellite is the 'aerosol optical depth' (AOD), an optical parameter quantifying the aerosol load in the whole atmospheric column. Datasets from the MODIS sensors on board of the NASA spacecrafts TERRA and AQUA are among the longest records of AOD from space. However, although extremely useful in regional and global studies, the standard 10 km-resolution MODIS AOD product is not suitable to be employed at the urban scale. Recently, a new algorithm called Multi-Angle Implementation of Atmospheric Correction (MAIAC) was developed for MODIS, providing AOD at 1 km resolution [2]. In this work, the MAIAC AOD retrievals over the decade 2003-2013 were employed to investigate the spatiotemporal variation of atmospheric aerosols over the Argentinean city of Cordoba and its surroundings, an area where a very scarce dataset of in situ PM data is available. The MAIAC retrievals over the city were firstly validated using a 'ground truth' AOD dataset from the Cordoba sunphotometer operating within the global AERONET network [3]. This validation showed the good performances of the MAIAC algorithm in the area. The satellite MAIAC AOD dataset was therefore employed to investigate the 10-years trend as well as seasonal and monthly patterns of particulate matter in the Cordoba city. The first showed a marked increase of AOD over time, particularly evident in

  11. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    Science.gov (United States)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  12. Assessment of the impact of advanced air-transport technology

    Science.gov (United States)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  13. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  14. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  15. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  16. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  17. Comparison between the Chinese EIA Guidelines for Air Dispersion Modelling and the Advanced Air Dispersion Model ADMS

    Institute of Scientific and Technical Information of China (English)

    David Carruthers; Sheng Xiangyu; Christine McHugh

    2005-01-01

    This paper makes comparisons between Chinese Environmental Impact Assessment (EIA)Guidelines for Air dispersion modelling and the advanced air dispersion model ADMS. Since 2001 the ADMS model has been the first and only foreign model that has been approved by the Appraisal Center for Environment and Engineering (ACEE) to be used in EIA projects in China (http://www. china-eia.com/inden_content/rjrz/rjrz_ADMS/htm). In the paper the following sections provide brief descriptions of the main features of the Chinese Guidelines for Air Dispersion (Section 2) and ADMS (Section 3);Section 4 provides a comparison of the two modelling methods for some simple cases and conclusions and discussion are given in Section 5.

  18. Leveraging Advanced Technology in Army and Air Force Readiness and Sustainment Training

    Science.gov (United States)

    2007-11-02

    USAWC STRATEGY RESEARCH PROJECT LEVERAGING ADVANCED TECHNOLOGY IN ARMY AND AIR FORCE READINESS AND SUSTAINMENT TRAINING by Kathy Lindsey Department...of Air Force Colonel Richard M. Meinhart Project Advisor The views expressed in this academic research paper are those of the author and do not...necessarily reflect the official policy or position of the U.S. Government, the Department of Defense, or any of its agencies. U.S. Army War College CARLISLE

  19. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  20. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement

    Science.gov (United States)

    Xu, M.; Ivey, D. G.; Xie, Z.; Qu, W.

    2015-06-01

    Zn-air batteries, which are cost-effective and have high energy density, are promising energy storage devices for renewable energy and power sources for electric transportation. Nevertheless, limited charge and discharge cycles and low round-trip efficiency have long been barriers preventing the large-scale deployment of Zn-air batteries in the marketplace. Technology advancements for each battery component and the whole battery/cell assembly are being pursued, with some key milestones reached during the past 20 years. As an example, commercial Zn-air battery products with long lifetimes and high energy efficiencies are being considered for grid-scale energy storage and for automotive markets. In this review, we present our perspectives on improvements in Zn-air battery technology through the exploration and utilization of different electrolyte systems. Recent studies ranging from aqueous electrolytes to nonaqueous electrolytes, including solid polymer electrolytes and ionic liquids, as well as hybrid electrolyte systems adopted in Zn-air batteries have been evaluated. Understanding the benefits and drawbacks of each electrolyte, as well as the fundamental electrochemistry of Zn and air electrodes in different electrolytes, are the focus of this paper. Further consideration is given to detailed Zn-air battery configurations that have been studied and applied in commercial or nearing commercial products, with the purpose of exposing state-of-the-art technology innovations and providing insights into future advancements.

  1. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)

    Science.gov (United States)

    2013-12-01

    Cost BA - Budget Authority/Budget Activity BY - Base Year DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate...lilA (DAB) DAE Program Review Start Production Deliveries Complete DAOT&E (Air Force) Complete IOT &E!Captive Ca ... Initial EQuipage Milestone... IOT &E OCT 1983 N/A N/A OCT 1983 Certification FEB 1986 FEB 1986 AUG 1986 FEB 1986 Milestone IIIA (DAB) JUN 1987 JUN 1987 DEC 1987 JUN 1987 DAE

  2. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  3. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  4. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  5. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  6. 76 FR 47641 - Pagani Automobili SpA; Denial of Application for Temporary Exemption From Advanced Air Bag...

    Science.gov (United States)

    2011-08-05

    ..., NHTSA published a final rule that upgraded the requirements for air bags in passenger cars and light... working with a supplier to develop advanced air bag system); Notice of Receipt of Petition of Lotus Cars... indicated that all exempted cars will have standard air bags which comply with the pre-S14 provisions of...

  7. A satellite based telemetry link for a UAV application

    Science.gov (United States)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  8. Advanced Methods for Air Distribution in Occupied Spaces for Reduced Risk from Air-Borne Diseases and Improved Air Quality

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov

    rates to reduce the concentration of pollutants/pathogens to levels that would not deteriorate the air quality or be harmful for the occupants. It is also connected to certain energy limitation issues. Filtration and UVGI are efficient in protecting occupants provided the sources are located outdoors......, airplanes, etc. The second part of the thesis focuses on a novel ventilation strategy for reduction the risk of cross-infection for medical staff, visitors, and patients in hospital wards. The novel ventilation strategy is implemented by a specially developed device, named Hospital Bed Integrated...

  9. Linkage between an advanced air quality model and a mechanistic watershed model

    Directory of Open Access Journals (Sweden)

    K. Vijayaraghavan

    2010-09-01

    Full Text Available An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1 the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ model and (2 the Watershed Analysis Risk Management Framework (WARMF. The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP that processes meteorology simulated by the fifth generation Mesoscale Model (MM5 or the Weather Research and Forecast (WRF model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  10. Linkage between an advanced air quality model and a mechanistic watershed model

    Science.gov (United States)

    Vijayaraghavan, K.; Herr, J.; Chen, S.-Y.; Knipping, E.

    2010-09-01

    An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1) the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM) (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ) model) and (2) the Watershed Analysis Risk Management Framework (WARMF). The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP) that processes meteorology simulated by the fifth generation Mesoscale Model (MM5) or the Weather Research and Forecast (WRF) model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  11. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    Science.gov (United States)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  12. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  13. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    Science.gov (United States)

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  14. Air Force Policy for Advanced Education: Production of Human Capital or Cheap Signals?

    Science.gov (United States)

    2011-01-01

    many reasons to be discouraged or dissatis­ fied with our current system —limited PME in-residence slots, limited advanced degree opportunities, or...improve their ability to serve the Air Force—or both. To help dissect and answer this question about the role of AADs in our promotion systems , the...analyzed promotion data, a perusal of the list of off-duty education programs mar­ keted to military personnel, such as those offered by American

  15. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  16. Satellite-Based EMI Detection, Identification, and Mitigation

    Science.gov (United States)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  17. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  18. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    Science.gov (United States)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  19. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  20. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Science.gov (United States)

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  1. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  2. PROFILE: Potential for Advanced Technology to Improve Air Quality and Human Health in Shanghai.

    Science.gov (United States)

    STREETS; HEDAYAT; CARMICHAEL; ARNDT; CARTER

    1999-04-01

    / Air quality in most Asian cities is poor and getting worse. It will soon become impossible to sustain population, economic, and industrial growth without severe deterioration of the atmospheric environment. This paper addresses the city of Shanghai, the air-quality problems it faces over the next 30 years, and the potential of advanced technology to alleviate these problems. Population, energy consumption, and emission profiles are developed for the city at 0.1 degrees x 0.1 degrees resolution and extrapolated from 1990 to 2020 using sector-specific economic growth factors. Within the context of the RAINS-Asia model, eight technology scenarios are examined for their effects on ambient concentrations of sulfur dioxide and sulfate and their emission control costs. Without new control measures, it is projected that the number of people exposed to sulfur dioxide concentrations in excess of guidelines established by the World Health Organization will rise from 650,000 in 1990 to more than 14 million in 2020. It is apparent that efforts to reduce emissions are likely to have significant health benefits, measured in terms of the cost of reducing the number of people exposed to concentrations in excess of the guidelines ($10-50 annually per person protected). Focusing efforts on the control of new coal-fired power plants and industrial facilities has the greatest benefit. However, none of the scenarios examined is alone capable of arresting the increases in emissions, concentrations, and population exposure. It is concluded that combinations of stringent scenarios in several sectors will be necessary to stabilize the situation, at a potential cost of $500 million annually by the year 2020. KEY WORDS: Coal; China; Shanghai; Sulfur dioxide; Air quality; Health effects

  3. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Schultz, Anna Charlotte; Koivisto, A. J.

    2017-01-01

    Exposure to bioaerosols can pose a health risk to workers at wastewater treatment plants (WWTPs) and to habitants of their surroundings. The main objective of this study was to examine the presence of harmful microorganisms in the air emission from a new type of hospital WWTP employing advanced...... wastewater treatment technologies. Air particle measurements and sampling of inhalable bacteria, endotoxin and noroviruses (NoVs) were performed indoor at the WWTP and outside at the WWTP ventilation air exhaust, downwind of the air exhaust, and upwind of the WWTP. No significant differences were seen...... in particle and endotoxin concentrations between locations. Bacterial concentrations were comparable or significantly lower in the exhaust air than inside the WWTP and in the upwind reference. Bacterial isolates were identified using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry...

  4. 19 CFR 103.31a - Advance electronic information for air, truck, and rail cargo; Importer Security Filing...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Advance electronic information for air, truck, and rail cargo; Importer Security Filing information for vessel cargo. 103.31a Section 103.31a Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE...

  5. 76 FR 60118 - Tesla Motors, Inc. Grant of Petition for Renewal of a Temporary Exemption From the Advanced Air...

    Science.gov (United States)

    2011-09-28

    ... National Highway Traffic Safety Administration Tesla Motors, Inc. Grant of Petition for Renewal of a... (FMVSS) No. 208, Occupant Crash Protection. SUMMARY: This notice grants the petition of Tesla Motors, Inc. (Tesla) for the renewal of a temporary exemption of its Roadster model from the advanced air bag...

  6. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  7. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for load following operation in regions where dry air cooling is a requirement

  8. Advanced air quality modeling system for the simulation of photochemical ozone formation over North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Jang, C.; Wheeler, N.; Dolwick, P.; Olerud, D.; Houyoux, M. [MCNC-North Carolina Supercomputing Center, Research Triangle Park, NC (United States); Timin, B.; Lawrimore, J.; Holman, S. [North Carolina Dept. of Environment and Natural Resources, Raleigh, NC (United States). Div. of Air Quality; Jeffries, H. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1998-12-31

    An advanced air quality modeling system is used to simulate the formation of photochemical oxidants, mainly ozone, over North Carolina. The objective of this modeling study is to successfully model the formation processes of ozone in North Carolina to lead to effective ozone control strategy developments for both 1-hour and 8-hour standards and eventually to address the particulate matter issue. The modeling system selected for this ongoing project is the North Carolina Supercomputing Center`s Environmental Decision Support System (EDSS), which evolved from a working prototype of EPA`s Third Generation Modeling System, or Models-3. The EDSS consists of three major modeling components : the Multiscale Air Quality SImulation Platform (MAQSIP) for chemistry/transport modeling, Mesoscale Model Version 5 (MM5) for meteorological modeling, and Sparse Matrix Operator Kernel Emissions (SMOKE) system for emission modeling. Two inner subdomains at 12-km and 4-km grid resolutions centered over Charlotte are nested inside a coarse domain at a 36-km resolution. Sixteen vertical layers with a denser grid at lower altitude are used to better resolve the mixing layer. The CB-IV chemistry mechanism with updated isoprene chemistry and radical-radical reactions is used to simulate the chemical transformations of reacting species. Preliminary results show that the MAQSIP has reasonably simulated the temporal and spatial distribution of ozone as compared to observations in the first 6-day episode during July 10--15, 1995. Improved ozone predictions are shown in the model using finer grid resolution. Various ozone sensitivity studies on the model inputs such as initial and boundary conditions and the existence of clouds are under testing. An innovative analysis tool for model evaluation and error detection, the Process Analysis method, is also applied to help understand the regulating processes that lead to formation of ozone.

  9. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    include pyroclastic deposits or ashfall, which are included in the DEM subtraction approach. However the pyroclastics should only account for a small amount of the extruded volume. In spite of its limitations, satellite based extrusion modeling provides a reasonable and safe method to monitor volcanoes and detect change in eruption style in near real time.

  10. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  11. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  12. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  13. Satellite-based Studies on Large-Scale Vegetation Changes in China

    Institute of Scientific and Technical Information of China (English)

    Xia Zhao; Daojing Zhou; Jingyun Fang

    2012-01-01

    Remotely-sensed vegetation indices,which indicate the density and photosynthetic capacity of vegetation,have been widely used to monitor vegetation dynamics over broad areas.In this paper,we reviewed satellite-based studies on vegetation cover changes,biomass and productivity variations,phenological dynamics,desertification,and grassland degradation in China that occurred over the past 2-3 decades.Our review shows that the satellite-derived index (Normalized Difference Vegetation Index,NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests,grasslands,shrubs,and croplands) have significantly increased,while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline.The start of the growing season continually advanced in China's temperate regions until the 1990s,with a large spatial heterogeneity.We also found that the coverage of sparsely-vegetated areas declined,and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas.However,these results depend strongly not only on the periods chosen for investigation,but also on factors such as data sources,changes in detection methods,and geospatial heterogeneity.Therefore,we should be cautious when applying remote sensing techniques to monitor vegetation structures,functions,and changes.

  14. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  15. Household Air Pollution Exposures of Pregnant Women Receiving Advanced Combustion Cookstoves in India: Implications for Intervention.

    Science.gov (United States)

    Balakrishnan, Kalpana; Sambandam, Sankar; Ghosh, Santu; Mukhopadhyay, Krishnendu; Vaswani, Mayur; Arora, Narendra K; Jack, Darby; Pillariseti, Ajay; Bates, Michael N; Smith, Kirk R

    2015-01-01

    Household air pollution (HAP) resulting from the use of solid cooking fuels is a leading contributor to the burden of disease in India. Advanced combustion cookstoves that reduce emissions from biomass fuels have been considered potential interventions to reduce this burden. Relatively little effort has been directed, however, to assessing the concentration and exposure changes associated with the introduction of such devices in households. The aim of this study was to describe HAP exposure patterns in pregnant women receiving a forced-draft advanced combustion cookstove (Philips model HD 4012) in the SOMAARTH Demographic Development & Environmental Surveillance Site (DDESS) Palwal District, Haryana, India. The monitoring was performed as part of a feasibility study to inform a potential large-scale HAP intervention (Newborn Stove trial) directed at pregnant women and newborns. This was a paired comparison exercise study with measurements of 24-hour personal exposures and kitchen area concentrations of carbon monoxide (CO) and particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), before and after the cookstove intervention. Women (N = 65) were recruited from 4 villages of SOMAARTH DDESS. Measurements were performed between December 2011 and March 2013. Ambient measurements of PM2.5 were also performed throughout the study period. Measurements showed modest improvements in 24-hour average concentrations and exposures for PM2.5 and CO (ranging from 16% to 57%) with the use of the new stoves. Only those for CO showed statistically significant reductions. Results from the present study did not support the widespread use of this type of stove in this population as a means to reliably provide health-relevant reductions in HAP exposures for pregnant women compared with open biomass cookstoves. The feasibility assessment identified multiple factors related to user requirements and scale of adoption within communities that affect the field efficacy of

  16. Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal.

    Science.gov (United States)

    Marková, Zdenka; Šišková, Karolína Machalová; Filip, Jan; Čuda, Jan; Kolář, Milan; Šafářová, Klára; Medřík, Ivo; Zbořil, Radek

    2013-05-21

    We report on new magnetic bimetallic Fe-Ag nanoparticles (NPs) which exhibit significant antibacterial and antifungal activities against a variety of microorganisms including disease causing pathogens, as well as prolonged action and high efficiency of phosphorus removal. The preparation of these multifunctional hybrids, based on direct reduction of silver ions by commercially available zerovalent iron nanoparticles (nZVI) is fast, simple, feasible in a large scale with a controllable silver NP content and size. The microscopic observations (transmission electron microscopy, scanning electron microscopy/electron diffraction spectroscopy) and phase analyses (X-ray diffraction, Mössbauer spectroscopy) reveal the formation of Fe₃O₄/γ-FeOOH double shell on a "redox" active nZVI surface. This shell is probably responsible for high stability of magnetic bimetallic Fe-Ag NPs during storage in air. Silver NPs, ranging between 10 and 30 nm depending on the initial concentration of AgNO₃, are firmly bound to Fe NPs, which prevents their release even during a long-term sonication. Taking into account the possibility of easy magnetic separation of the novel bimetallic Fe-Ag NPs, they represent a highly promising material for advanced antimicrobial and reductive water treatment technologies.

  17. RADEM: An Air Launched, Rocket Demonstrator for Future Advanced Launch Systems

    Science.gov (United States)

    Parkinson, R. C.; Skorodelov, V. A.; Serdijk, I. I.; Neiland, V. Ya.

    1995-10-01

    Critical features associated with future reusable launch vehicles include reduction of turn around effort, use of integral liquid hydrogen tanks, advanced structures and thermal protection, and re-usable LOx-hydrogen propulsion with low maintenance overheads. Many doubts associated with such designs could be removed by a sub-orbital demonstrator. An air launched vehicle would fulfil many of the objectives for such demonstration. British Aerospace, NPO Molnija, TsAGI and DB Antonov have made an initial study for ESA for such a demonstrator (RADEM), using earlier studies of operational launch systems with the An-225 /Hotol and MAKS proposals. The paper describes the results of this study, including the selection of two potential vehicle designs, and an approach to sub-system design and vehicle development to minimize the costs. It appears that such a vheicle, capable of flying to Mach 12 or beyond using currently available technology, could have a cost an order of magnitude less than that required for development of an operational vehicle.

  18. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  19. Operational Testing of Satellite based Hydrological Model (SHM)

    Science.gov (United States)

    Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2017-04-01

    Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow

  20. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  1. Saving energy and improving IAQ through application of advanced air cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  2. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    Science.gov (United States)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  3. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    Science.gov (United States)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  4. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO

  5. Recent advances in improvement of forecast skill and understanding climate processes using AIRS Version-5 products

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert

    2012-10-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) generates products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. This paper shows results of some of our research using Version-5 products from the points of view of improving forecast skill as well as aiding in the understanding of climate processes.

  6. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    Science.gov (United States)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations

  7. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    Science.gov (United States)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  8. [Research on advance of health effects of nanoparticles on air pollution in China].

    Science.gov (United States)

    Xiong, Lilin; Wu, Tianshu; Tang, Meng

    2015-09-01

    The adverse health effects of fine particles in the air pollution has been confirmed, and health consequences induced by ultrafine particles (mass media aerodynamic diameter biological effects and potential toxicity mechanisms of some common nanoparticles in the atmosphere on the major tissues and organs. Finally, the research focus of the nano particles in air pollutants was also presented.

  9. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  10. 19 CFR 122.48a - Electronic information for air cargo required in advance of arrival.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic information for air cargo required in... OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members...

  11. A proposal to use satellite-based air pollution mapping for standardising the siting of bioindicators

    Energy Technology Data Exchange (ETDEWEB)

    Sifakis, N.I. [National Observatory of Athens, Pendeli (Greece). Inst. for Space Applications and Remote Sensing

    2002-07-01

    Satellite Earth observation (EO) data, providing synoptic and repetitive views of environmental phenomena, can be used to detect pollution palls, assess the pollution load and map its dispersion around urban areas. The pollution assessment by EO is carried out in terms of 'optical thickness' quantifiable by optical atmospheric effects on the satellite imagery. Visual photointerpretation and digital processing of satellite images of the Greater Athens Area allowed obtaining, for the first time, synoptic views of the pollution dispersion in an around the Athens basin. These 'satellite pollution maps' matched very well with the results from bioindication studies carried out in the same area. (orig.)

  12. Advanced fire information system

    CSIR Research Space (South Africa)

    Frost, PE

    2007-01-01

    Full Text Available The South African Advanced Fire Information System (AFIS) is the first near real-time satellite-based fire monitoring system in Africa. It was originally developed for, and funded by, the electrical power utility Eskom, to reduce the impact of wild...

  13. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  14. Efficient enhancing scheme for TCP performance over satellite-based internet

    Institute of Scientific and Technical Information of China (English)

    Wang Lina; Gu Xuemai

    2007-01-01

    Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Intemet is accomplished by protocol transition gateways at each end ora satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Intemet and ensure that the available bandwidth resources of the satellite link are fully utilized.

  15. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  16. Variable-Fidelity Conceptual Design System for Advanced Unconventional Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing work in unconventional air-vehicles, i.e. deformable mold-lines and bio-mimetics, is beginning to provide the insight necessary to exploit performance...

  17. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  18. Satellite-Based actual evapotranspiration over drying semiarid terrain in West-Africa

    NARCIS (Netherlands)

    Schuttemeyer, D.; Schillings, Ch.; Moene, A.F.; Bruin, de H.A.R.

    2007-01-01

    A simple satellite-based algorithm for estimating actual evaporation based on Makkink¿s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the drier northern region. The required input for the algo

  19. Advanced Crash Survivable Flight Data Recorder And Accident Information Retrieval System (AIRS).

    Science.gov (United States)

    1981-08-01

    95 31 NARROW-BAND CONDUCTED EMISSIONS ON THE AIRS 24 VDC POWER RETURN (CE04 TESI ) ......................... 96 32 BROAD-BAND...three layers of vulcanized synthetic rubber containing an intumescent ceramic material and includes a wire mesh reinforcement between the outermost

  20. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  1. Utility and Value of Satellite-Based Frost Forecasting for Kenya's Tea Farming Sector

    Science.gov (United States)

    Morrison, I.

    2016-12-01

    Frost damage regularly inflicts millions of dollars of crop losses in the tea-growing highlands of western Kenya, a problem that the USAID/NASA Regional Visualization and Monitoring System (SERVIR) program is working to mitigate through a frost monitoring and forecasting product that uses satellite-based temperature and soil moisture data to generate up to three days of advanced warning before frost events. This paper presents the findings of a value of information (VOI) study assessing the value of this product based on Kenyan tea farmers' experiences with frost and frost-damage mitigation. Value was calculated based on historic trends of frost frequency, severity, and extent; likelihood of warning receipt and response; and subsequent frost-related crop-loss aversion. Quantification of these factors was derived through inferential analysis of survey data from 400 tea-farming households across the tea-growing regions of Kericho and Nandi, supplemented with key informant interviews with decision-makers at large estate tea plantations, historical frost incident and crop-loss data from estate tea plantations and agricultural insurance companies, and publicly available demographic and economic data. At this time, the product provides a forecasting window of up to three days, and no other frost-prediction methods are used by the large or small-scale farmers of Kenya's tea sector. This represents a significant opportunity for preemptive loss-reduction via Earth observation data. However, the tea-growing community has only two realistic options for frost-damage mitigation: preemptive harvest of available tea leaves to minimize losses, or skiving (light pruning) to facilitate fast recovery from frost damage. Both options are labor-intensive and require a minimum of three days of warning to be viable. As a result, the frost forecasting system has a very narrow margin of usefulness, making its value highly dependent on rapid access to the warning messages and flexible access

  2. Towards a protocol for validating satellite-based Land Surface Temperature: Theoretical considerations

    Science.gov (United States)

    Schneider, Philipp; Ghent, Darren J.; Corlett, Gary C.; Prata, Fred; Remedios, John J.

    2013-04-01

    Land Surface Temperature (LST) and emissivity are important parameters for environmental monitoring and earth system modelling. LST has been observed from space for several decades using a wide variety of satellite instruments with different characteristics, including both platforms in low-earth orbit and in geostationary orbit. This includes for example the series of Advanced Very High Resolution Radiometers (AVHRR) delivering a continuous thermal infrared (TIR) data stream since the early 1980s, the series of Along-Track Scanning Radiometers (ATSR) providing TIR data since 1991, and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA's Terra and Aqua platforms, providing data since the year 2000. In addition, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard of the geostationary Meteosat satellites is now providing LST at unprecedented sub-hour frequency. The data record provided by such instruments is extremely valuable for a wide variety of applications, including climate change, land/atmosphere feedbacks, fire monitoring, modelling, land cover change, geology, crop- and water management. All of these applications, however, require a rigorous validation of the data in order to assess the product quality and the associated uncertainty. Here we report on recent work towards developing a protocol for validation of satellite-based Land Surface Temperature products. Four main validation categories are distinguished within the protocol: A) Comparison with in situ observations, B) Radiance-based validation, C) Inter-comparison with similar LST products, and D) Time-series analysis. Each category is further subdivided into several quality classes, which approximately reflect the validation accuracy that can be achieved by the different approaches, as well as the complexity involved with each method. Advice on best practices is given for methodology common to all categories. For each validation category, recommendations

  3. Navy Should Join the Air Force and Army Program to Develop an Advanced Integrated Avionics System.

    Science.gov (United States)

    1985-06-17

    1990s. Advanced development is expected to cost about $131 million. Full-scale engineering and production costs have not yet been estimated. INTEGRATED...effectiveness, .i tle !CNIA system could be a viable candidate for retrofitting cider aircraft. Finally, the ICNIA program is a laboratory and fliqnt

  4. An Evaluation of the Air Force Logistics Career Area Advanced Academic Degree Position Validation Process.

    Science.gov (United States)

    Biehl, Aleck L.; Sonnier, Ronald J.

    Reduced funding for educational programs indicated that a thorough review should be made of the Advanced Academic Degree (AAD) validation process. This reduction in funding necessitates more effective management of the AAD program in the logistics career areas to insure that officers in these career areas require those skills learned through these…

  5. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  6. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates

    Science.gov (United States)

    Schlitzer, Reiner

    The use of dissolved nutrients and carbon for photosynthesis in the euphotic zone and the subsequent downward transport of particulate and dissolved organic material strongly affect carbon concentrations in surface water and thus the air-sea exchange of CO 2. Efforts to quantify the downward carbon flux for the whole ocean or on basin-scales are hampered by the sparseness of direct productivity or flux measurements. Here, a global ocean circulation, biogeochemical model is used to determine rates of export production and vertical carbon fluxes in the Southern Ocean. The model exploits the existing large sets of hydrographic, oxygen, nutrient and carbon data that contain information on the underlying biogeochemical processes. The model is fitted to the data by systematically varying circulation, air-sea fluxes, production, and remineralization rates simultaneously. Use of the adjoint method yields model property simulations that are in very good agreement with measurements. In the model, the total integrated export flux of particulate organic matter necessary for the realistic reproduction of nutrient data is significantly larger than export estimates derived from primary productivity maps. Of the 10,000 TgC yr -1(10 GtC yr -1) required globally, the Southern Ocean south of 30°S contributes about 3000 TgC yr -1 (33%), most of it occurring in a zonal belt along the Antarctic Circumpolar Current and in the Peru, Chile and Namibia coastal upwelling regions. The export flux of POC for the area south of 50°S amounts to 1000±210 TgC yr -1, and the particle flux in 1000 m for the same area is 115±20 TgC yr -1. Unlike for the global ocean, the contribution of the downward flux of dissolved organic carbon is significant in the Southern Ocean in the top 500 m of the water column. Comparison with satellite-based productivity estimates (CZCS and SeaWiFS) shows a relatively good agreement over most of the ocean except for the Southern Ocean south of 50°S, where the model

  7. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    Science.gov (United States)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  8. Using Advanced Tabu Search Approaches to Perform Enhanced Air Mobility Command Operational Airlift Analyses

    Science.gov (United States)

    2009-02-28

    Ramirez, 2008, "A Study of Current & Future Methodologies Of The Pallet Loading Problem in U.S. Military Logistics " 15. Yogesh Dashora, 2008, "A...Mechanical Engineering Academy of Distinguished Alumni. In addition to the continuing work on the end-to-end United States Military Logistics problem...methods of stochastic optimization using classical and advanced tabu search methods [4]. 15. SUBJECT TERMS Military logistics , landscape theory

  9. Advanced Flight Simulator: Utilization in A-10 Conversion and Air-to-Surface Attack Training.

    Science.gov (United States)

    1981-01-01

    CLASSIFIC.TION OF THIS PAGE(1Whl Data Emiterd) Item 20 (Continued) -" blocks of instruction on the Advanced Simulator for Pilot Training ( ASPT ). The first...training, the transfer of training from the ASPT to the A-10 is nearly 100 percent. therefore, in the early phases of AiS training, one simulator... ASPT ) could be suitably modified, an alternative to initially dangerous and expensive aircraft training would exist which also offered considerable

  10. Satellite-based assessment of climate controls on US burned area

    OpenAIRE

    D. C. Morton; G. J. Collatz; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burne...

  11. FAA Air Traffic Control Operations Concepts. Volume 4. TAAS (Terminal Advanced Automation System) Terminal Controllers

    Science.gov (United States)

    1988-07-29

    entry message* Al 1.6.11 ENTER FDE NOTATIONS TASK TYPE: E COORD MEDIA: FREQUENCY: HI CRITICALITY! 1.24 A1.1.6.11.1 INITIATE EnterEFDE- Natation message...Stat-bsilndicotor. Aircraft Type. Assigned Altitude or Interim ... ( Sea SLS). 48.3.7.1.2.1.1.I-8 SI7UATIUN DISPLAY 779 󈧯.3.7.1.2.1.1.1-01 The...Ind:mctor’, Air’crc’ft Type, Assigned Altitude or, nteriri ... ( Sea 2S5). 40.3.7.1.2.1.1.1-00 SITUATION DISPLAY 7T9 40.3.7.1.2.1.1.1-01 The r’ouir .mtotý .,f

  12. Advanced air distribution method combined with deodorant material for exposure reduction to bioeffluents contaminants in hospitals

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor

    2015-01-01

    -bed hospital patient room at reduced background ventilation rare of 1.6 air changes per hour. The bed of the patient was equipped with the ventilated mattress (VM) having an exhaust opening from which bioeffluents generated from human body were sucked and discharged from the room. To enhance the pollutant......The separate and combined effect of a ventilated mattress and acid-treated activated carbon fibre (ACF) fabric on reducing the exposure to body generated gaseous pollutants in hospital environment was studied. Full-scale experiments were performed in a climate chamber furnished as a single...... removal, acid-treated activated carbon fibre material was used in some of the experiments in the form of patient’s cover. The simulated pollution source was ammonia gas released from the patient’s groins. The results show that when using the ventilated mattress the ammonia gas concentration in the room...

  13. Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Pershing, D.W.; Lighty, J.; Veranth, J. [Utah Univ., Salt Lake City, UT (United States). Coll. of Engineering; Sarofim, A.; Goel, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1995-04-28

    The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer of This technology, a major manufacturer (ABB) and a combustion model supplier (REI) have been included as part of the team from the early conception of the proposal. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sup x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultralow NO{sub x} conditions. Accomplishments for this quarter are presented to the solid sampling system and char nitrogen modeling.

  14. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  15. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    Science.gov (United States)

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  16. Relation between Ocean SST Dipoles and Downwind Continental Croplands Assessed for Early Management Using Satellite-based Photosynthesis Models

    Science.gov (United States)

    Kaneko, Daijiro

    2015-04-01

    Crop-monitoring systems with the unit of carbon-dioxide sequestration for environmental issues related to climate adaptation to global warming have been improved using satellite-based photosynthesis and meteorological conditions. Early management of crop status is desirable for grain production, stockbreeding, and bio-energy providing that the seasonal climate forecasting is sufficiently accurate. Incorrect seasonal forecasting of crop production can damage global social activities if the recognized conditions are unsatisfied. One cause of poor forecasting related to the atmospheric dynamics at the Earth surface, which reflect the energy budget through land surface, especially the oceans and atmosphere. Recognition of the relation between SST anomalies (e.g. ENSO, Atlantic Niño, Indian dipoles, and Ningaloo Niño) and crop production, as expressed precisely by photosynthesis or the sequestrated-carbon rate, is necessary to elucidate the mechanisms related to poor production. Solar radiation, surface air temperature, and water stress all directly affect grain vegetation photosynthesis. All affect stomata opening, which is related to the water balance or definition by the ratio of the Penman potential evaporation and actual transpiration. Regarding stomata, present data and reanalysis data give overestimated values of stomata opening because they are extended from wet models in forests rather than semi-arid regions commonly associated with wheat, maize, and soybean. This study applies a complementary model based on energy conservation for semi-arid zones instead of the conventional Penman-Monteith method. Partitioning of the integrated Net PSN enables precise estimation of crop yields by modifying the semi-closed stomata opening. Partitioning predicts production more accurately using the cropland distribution already classified using satellite data. Seasonal crop forecasting should include near-real-time monitoring using satellite-based process crop models to avoid

  17. Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region

    Science.gov (United States)

    Sioris, Christopher E.; McLinden, Chris A.; Shephard, Mark W.; Fioletov, Vitali E.; Abboud, Ihab

    2017-02-01

    Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate Resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local Aerosol Robotic Network (AERONET) (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002-2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (˜ 5 % year-1) is observed in this northern mining region using some of the satellite AOD products.

  18. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ally, Moonis Raza [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  19. Experimental development of advanced air filtration media based on electrospun polymer fibers

    Science.gov (United States)

    Ghochaghi, Negar

    Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology. This study is divided into three focus areas: unimodal and bimodal microscale fibrous media with aligned, orthogonal and random fiber orientations; unimodal and bimodal nanoscale fibers in random orientations; bimodal micrometer and nanometer fiber media with orthogonally aligned orientations. The results indicate that the most efficient filters, which are those with the highest ratio of particle collection efficiency divided by pressure drop, can be obtained through fabricating filters in orthogonal layers of aligned fibers with two different fiber diameters. Moreover, our results show that increasing the number of layers increases the performance of orthogonally layered fibers. Also, controlling fiber spacing in orthogonally layered micrometer fiber media can be an alternative way to study the filtration performance. Finally, such coatings presented throughout this research study can be designed and placed up-stream, down-stream, and/or in between conventional filters.

  20. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Directory of Open Access Journals (Sweden)

    B. Ford

    2015-09-01

    Full Text Available The negative impacts of fine particulate matter (PM2.5 exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004–2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure, which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  1. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Science.gov (United States)

    Ford, Bonne; Heald, Colette L.

    2016-03-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  2. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    . Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction

  3. Source mass eruption rate retrieved from satellite-based data using statistical modelling

    Science.gov (United States)

    Gouhier, Mathieu; Guillin, Arnaud; Azzaoui, Nourddine; Eychenne, Julia; Valade, Sébastien

    2015-04-01

    Ash clouds emitted during volcanic eruptions have long been recognized as a major hazard likely to have dramatic consequences on aircrafts, environment and people. Thus, the International Civil Aviation Organization (ICAO) established nine Volcanic Ash Advisory Centers (VAACs) around the world, whose mission is to forecast the location and concentration of ash clouds over hours to days, using volcanic ash transport and dispersion models (VATDs). Those models use input parameters such as plume height (PH), particle size distribution (PSD), and mass eruption rate (MER), the latter being a key parameter as it directly controls the amount of ash injected into the atmosphere. The MER can be obtained rather accurately from detailed ground deposit studies, but this method does not match the operational requirements in case of a volcanic crisis. Thus, VAACs use empirical laws to determine the MER from the estimation of the plume height. In some cases, this method can be difficult to apply, either because plume height data are not available or because uncertainties related to this method are too large. We propose here an alternative method based on the utilization of satellite data to assess the MER at the source, during explosive eruptions. Satellite-based techniques allow fine ash cloud loading to be quantitatively retrieved far from the source vent. Those measurements can be carried out in a systematic and real-time fashion using geostationary satellite, in particular. We tested here the relationship likely to exist between the amount of fine ash dispersed in the atmosphere and of coarser tephra deposited on the ground. The sum of both contributions yielding an estimate of the MER. For this purpose we examined 19 eruptions (of known duration) in detail for which both (i) the amount of fine ash dispersed in the atmosphere, and (ii) the mass of tephra deposited on the ground have been estimated and published. We combined these data with contextual information that may

  4. Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data

    Science.gov (United States)

    López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis

    2017-01-01

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months

  5. Addressing Houston's Bad Air Days: Advancing Environmental Justice Advocacy with Geospatial Analysis and Science Communication

    Science.gov (United States)

    Johnson, C.; White, R.; Phartiyal, P.

    2016-12-01

    Evidence indicates that chronic exposure to chemical pollutants contributes to and exacerbates negative health impacts, and that the burden of exposure falls disproportionately upon low-income, Black, and Latino communities. These data, however, are often inaccessible or too technical for the community groups who need it to raise public awareness and to inform decision makers. Recognizing the many challenges of communicating science to a non-technical audience, the Center for Science and Democracy at the Union of Concerned Scientists, a science-based policy and advocacy organization, partnered with Texas Environmental Justice Advocacy Services (TEJAS), an environmental justice organization based in Manchester in Houston, to develop products that would visualize the technical information needed to strengthen TEJAS' advocacy work. The products were created with the intention of educating and engaging community members and to raise the profile of these issues with community residents, local government and regional EPA officials. Together, we were able to map the geographic distribution of contaminants, health risks, and demographic information to tell the story of inequity in Houston. Our spatial analysis accounts for multiple sources of air pollution exposure and associated health risks, overlaid with demographic information in Manchester. The talk will discuss the various ways we used maps to display high level data to be accessible for community members. The analysis will ultimately be used by TEJAS to strengthen its advocacy around chemical safety by: 1) educating community members on the hazards and health risks of local pollutants, 2) increasing community awareness of local emergency planning and response procedures, and 3) providing scientific evidence to decision makers to demand prevention and reduction in chemical exposure for their community.

  6. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  7. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    Directory of Open Access Journals (Sweden)

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  8. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  9. Biomaterials Out of Thin Air: in Situ, On-Demand Printing of Advanced Biocomposites

    Science.gov (United States)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available

  10. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    Science.gov (United States)

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  11. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  12. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    Science.gov (United States)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  13. Satellite-based assessment of yield variation and its determinants in smallholder African systems

    Science.gov (United States)

    Lobell, David B.

    2017-01-01

    The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728

  14. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    Science.gov (United States)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  15. Iron Sharpens Iron: A Comparative Study of the Advanced Military Studies Program and the School of Advanced Air and Space Studies

    Science.gov (United States)

    2012-05-17

    Mintzberg , The Rise and Fall of Strategic Planning: Reconceiving Roles for Planning, Plans, Planners (New York: Free...69-80. Meilinger, Philip. “10 Propositions Regarding Air Power.” Washington DC: Air Force Historical Studies Office, 1995. Mintzberg , Henry. The

  16. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  17. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  18. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  19. Assessing the performance of satellite-based precipitation products over the Mediterranean region

    Science.gov (United States)

    Xaver, Angelika; Dorigo, Wouter; Brocca, Luca; Ciabatta, Luca

    2017-04-01

    Detailed knowledge about the spatial and temporal patterns and quantities of precipitation is of high importance. This applies especially in the Mediterranean region, where water demand for agricultural, industrial and touristic needs is growing and climate projections foresee a decrease of precipitation amounts and an increase in variability. In this region, ground-based rain gauges are available only limited in number, particularly in northern Africa and the Middle East and lack to capture the high spatio-temporal character of precipitation over large areas. This has motivated the development of a large number of remote sensing products for monitoring rainfall. Satellite-based precipitation products are based on various observation principles and retrieval approaches, i.e. from thermal infra-red and microwaves. Although, many individual validation studies on the performance of these precipitation datasets exist, they mostly examine only one or a few of these rainfall products at the same time and are not targeted at the Mediterranean basin as a whole. Here, we present an extensive comparative study of seven different satellite-based precipitation products, namely CMORPH 30-minutes, CMORPH 3-hourly, GPCP, PERSIANN, SM2Rain CCI, TRMM TMPA 3B42, and TRMM TMPA 3B42RT, focusing on the whole Mediterranean region and on individual Mediterranean catchments. The time frame of investigation is restricted by the common availability of all precipitation products and covers the period 2000-2013. We assess the skill of the satellite products against gridded gauge-based data provided by GPCC and E-OBS. Apart from common characteristics like biases and temporal correlations we evaluate several sophisticated dataset properties that are of particular interest for Mediterranean hydrology, including the capability of the remotely sensed products to capture extreme events and trends. A clear seasonal dependency of the correlation results can be observed for the whole Mediterranean

  20. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    Science.gov (United States)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to validate. The validation are test with statistical

  1. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  2. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  3. Estimating crop yield using a satellite-based light use efficiency model

    DEFF Research Database (Denmark)

    Yuan, Wenping; Chen, Yang; Xia, Jiangzhou

    2016-01-01

    for simulating crops’ GPP. At both irrigated and rainfed sites, the EC-LUE model exhibits a similar level of performance. However, large errors are found when simulating yield based on crop harvest index. This analysis highlights the need to improve the representation of the harvest index and carbon allocation...... primary production (GPP) and yield of crops. The EC-LUE model can explain on average approximately 90% of the variability in GPP for 36 FLUXNET sites globally. The results indicate that a universal set of parameters, independent of crop species (except for C4 crops), can be adopted in the EC-LUE model...... for improving crop yield estimations from satellite-based methods....

  4. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  5. DIGITAL VIDEO BROADCAST RETURN CHANNEL VIA SATELLITE (DVB-RCS HUB FOR SATELLITE BASED E-LEARNING

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  6. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2011-02-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved estimates of surface soil moisture at global scale. We develop and evaluate a methodology that takes advantage of the retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates to produce an improved soil moisture product. First, volumetric soil water content (m3 m−3 from AMSR-E and degree of saturation (% from ASCAT are rescaled against a reference land surface model data set using a cumulative distribution function matching approach. While this imposes any bias of the reference on the rescaled satellite products, it adjusts them to the same range and preserves the dynamics of original satellite-based products. Comparison with in situ measurements demonstrates that where the correlation coefficient between rescaled AMSR-E and ASCAT is greater than 0.65 ("transitional regions", merging the different satellite products increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT, respectively, are used for the merged product. Therefore the merged product carries the advantages of better spatial coverage overall and increased number of observations, particularly for the transitional regions. The combination method developed has the potential to be applied to existing microwave satellites as well as to new missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  7. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  8. Validation of the Global NASA Satellite-based Flood Detection System in Bangladesh

    Science.gov (United States)

    Moffitt, C. B.

    2009-12-01

    Floods are one of the most destructive natural forces on earth, affecting millions of people annually. Nations lying in the downstream end of an international river basin often suffer the most damage during flooding and could benefit from the real-time communication of rainfall and stream flow data from countries upstream. This is less likely to happen among developing nations due to a lack of freshwater treaties (Balthrop and Hossain, Water Policy, 2009). A more viable option is for flood-prone developing nations to utilize the global satellite rainfall and modeled runoff data that is independently and freely available from the NASA Satellite-based Global Flood Detection System. Although the NASA Global Flood Detection System has been in operation in real-time since 2006, the ‘detection’ capability of flooding has only been validated against qualitative reports in news papers and other types of media. In this study, a more quantitative validation against in-situ measurements of the flood detection system over Bangladesh is presented. Using ground-measured stream flow data as well as satellite-based flood potential and rainfall data, the study looks into the relationship between rainfall and flood potential, rainfall and stream flow, and stream flow and flood potential for three very distinct river systems in Bangladesh - 1) Ganges- a snow-fed river regulated by upstream India 2) Brahmaputra - a snow-fed river that is also braided 3) Meghna - a rain-fed river. The quantitative assessment will show the effectiveness of the NASA Global Flood Detection System for a very humid and flood prone region like Bangladesh that is also faced with tremendous transboundary hurdles that can only be resolved from the vantage of space.

  9. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  10. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  11. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    Science.gov (United States)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  12. An Advanced Open-Source Aircraft Design Platform for Personal Air Vehicle Geometry, Aerodynamics, and Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovators working to revolutionize air travel through personal aviation pioneers need innovative aircraft design tools. Vehicle Sketch Pad (VSP) is an aircraft...

  13. GIO-EMS and International Collaboration in Satellite based Emergency Mapping

    Science.gov (United States)

    Kucera, Jan; Lemoine, Guido; Broglia, Marco

    2013-04-01

    During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different

  14. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  15. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A.

    2013-01-01

    In this study, streamflow (Qs) and satellite-based actual evapotranspiration (ETa) are used in a multi-variable calibration framework to reproduce the catchment water balance. The application is for the HBV rainfall–runoff model at daily time-step for the Karkheh River Basin (51,000 km2) in Iran. Mo

  16. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  17. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    Science.gov (United States)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  18. Fatigue Behavior of an Advanced SiC/SiC Composite at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2009-12-01

    dispersion and failure modes in the final composite [3:460; 4:1]. The use of composite materials dates to ancient Egypt where straw reinforced the clay ...are divisible into two classes: traditional and advanced. Traditional ceramics are items such as bricks, pottery , or tiles. Advanced ceramics are

  19. Advance of air cathode catalysts for zinc-air batteries%锌空电池空气电极催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    李山梅; 刘丹宪

    2011-01-01

    论述了目前碱性锌空气电池空气电极用催化剂的种类组成,结构特征,制备方法以及催化剂特点,分析了各种催化剂的优劣和目前存在的问题.对于一次电池空气电极而言,锰氧化物系列催化剂性能较佳,而钙钛矿系列催化剂更适用于二次空气电极.载体的选择和物质的导电性也关系到空气电极整体的阻抗的大小,也是影响空气电极性能的重要因素.%The species composition, structural characteristics, synthesis method, and catalytic property of air cathodes for alkali zinc-air batteries were reviewed in this paper. The advantages and disadvantages and the problem of catalysts was analyzed. For the primary battery, the catalytic property of manganite oxides performed best, while perovskite-type oxides were even more suitable for secondary battery air electrodes. However, due to the resistance reduction, carrier selection and conductivity of materials played an important role in its electrode performance too.

  20. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  1. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix B: air quality studies. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The plant site studies include: climate, present ambient air quality, construction impacts, and operation impacts. The fuelwood harvest region studies include: present environment and harvesting impacts. The use of the Valley Model for alternative sites analysis is discussed. (MHR)

  2. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0033: Advanced Sol-Gel Adhesion Processes - Transition Support

    Science.gov (United States)

    2005-07-01

    or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results were not conclusive...from PlasmaTreat -North America was used to clean and activate the surface of the aluminum alloy. This process blasts the surface of an object on the...conditioner with or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results

  3. United States Air Force Personalized Medicine and Advanced Diagnostics Program Panel: Representative Research at the San Antonio Military Medical Center

    Science.gov (United States)

    2016-05-20

    DEPARTMENT OF THE AIR FORCE 59TH MEDICAL WING (AETC) LACKLAND AIR FORCE BASE TEXAS MEMORANDUMFORSGVT ATTN: DEBRA M NIEMEYER FROM: 59 MDW/SGVU... Dato of Mooting) 181 PLATFORM PRESENTATION (At c ivilian lnstitulionsfNamo of Meeting, State, Dato of Mooting) University of Texas at San Antonio...SAMHS & Universities Research Forum {SURF2016). TX, 05-20-2016 D OTHER (Describe: Name of Mooting, City, State, and Dato of Meeting) 6. WHAT IS THE

  4. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa

    Science.gov (United States)

    Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe

    2017-05-01

    Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.

  5. Performance tests of a satellite-based asymmetric communication network for the 'hyper hospital'.

    Science.gov (United States)

    Yamaguchi, T

    1997-01-01

    The Hyper Hospital is a prototype networked telemedicine system which uses virtual reality. We measured the performance of a novel multimedia network based on satellite communications. The network was a hybrid system consisting of a satellite channel in one direction and a terrestrial channel in the other. Each user was equipped with a standard satellite communication receiver and a telephone connection. Requests from the users were sent by modern and telephone line and responses were received by satellite. The user requests were initiated by clicking buttons on a World Wide Web browser screen. The transmission rates of satellite and normal telephone-line communications were compared for standardized text data. Satellite communication was three to five times faster. The transmission rate was also measured for standardized graphical data (GIF format). With a file size of about 400 kByte, satellite-mediated communication was 10 times faster than telephone lines. The effect of simultaneous access on performance was also explored. For simultaneous access of nine users to a single graphics file, 78% of the transmission speed was obtained in comparison with that of a single user. The satellite-based system showed excellent high-speed communication performance, particularly for multimedia data.

  6. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  7. Hydrological Modelling using Satellite-Based Crop Coefficients: A Comparison of Methods at the Basin Scale

    Directory of Open Access Journals (Sweden)

    Johannes E. Hunink

    2017-02-01

    Full Text Available The parameterization of crop coefficients (kc is critical for determining a water balance. We used satellite-based and literature-based methods to derive kc values for a distributed hydrologic model. We evaluated the impact of different kc parametrization methods on the water balance and simulated hydrologic response at the basin and sub-basin scale. The hydrological model SPHY was calibrated and validated for a period of 15 years for the upper Segura basin (~2500 km2 in Spain, which is characterized by a wide range of terrain, soil, and ecosystem conditions. The model was then applied, using six kc parameterization methods, to determine their spatial and temporal impacts on actual evapotranspiration, streamflow, and soil moisture. The parameterization methods used include: (i Normalized Difference Vegetation Index (NDVI observations from MODIS; (ii seasonally-averaged NDVI patterns, cell-based and landuse-based; and (iii literature-based tabular values per land use type. The analysis shows that the influence of different kc parametrization methods on basin-level streamflow is relatively small and constant throughout the year, but it has a bigger effect on seasonal evapotranspiration and soil moisture. In the autumn especially, deviations can go up to about 15% of monthly streamflow. At smaller, sub-basin scale, deviations from the NDVI-based reference run can be more than 30%. Overall, the study shows that modeling of future hydrological changes can be improved by using remote sensing information for the parameterization of crop coefficients.

  8. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  9. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  10. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  11. Heavy rainfall prediction applying satellite-based cloud data assimilation over land

    Science.gov (United States)

    Seto, Rie; Koike, Toshio; Rasmy, Mohamed

    2016-08-01

    To optimize flood management, it is crucial to determine whether rain will fall within a river basin. This requires very fine precision in prediction of rainfall areas. Cloud data assimilation has great potential to improve the prediction of precipitation area because it can directly obtain information on locations of rain systems. Clouds can be observed globally by satellite-based microwave remote sensing. Microwave observation also includes information of latent heat and water vapor associated with cloud amount, which enables the assimilation of not only cloud itself but also the cloud-affected atmosphere. However, it is difficult to observe clouds over land using satellite microwave remote sensing, because their emissivity is much lower than that of the land surface. To overcome this challenge, we need appropriate representation of heterogeneous land emissivity. We developed a coupled atmosphere and land data assimilation system with the Weather Research and Forecasting Model (CALDAS-WRF), which can assimilate soil moisture, vertically integrated cloud water content over land, and heat and moisture within clouds simultaneously. We applied this system to heavy rain events in Japan. Results show that the system effectively assimilated cloud signals and produced very accurate cloud and precipitation distributions. The system also accurately formed a consistent atmospheric field around the cloud. Precipitation intensity was also substantially improved by appropriately representing the local atmospheric field. Furthermore, combination of the method and operationally analyzed dynamical and moisture fields improved prediction of precipitation duration. The results demonstrate the method's promise in dramatically improving predictions of heavy rain and consequent flooding.

  12. Towards the Development of a Global, Satellite-based, Terrestrial Snow Mission Planning Tool

    Science.gov (United States)

    Forman, Bart; Kumar, Sujay; Le Moigne, Jacqueline; Nag, Sreeja

    2017-01-01

    A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASAs Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical orbital configuration.One objective the proposed observing system simulation experiment (OSSE) is to assess the complementary or perhaps contradictory information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include:1. What observational records are needed (in space and time) to maximize terrestrial snow experimental utility?2. How might observations be coordinated (in space and time) to maximize utility? 3. What is the additional utility associated with an additional observation?4. How can future mission costs being minimized while ensuring Science requirements are fulfilled?

  13. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  14. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.

  15. Comparison of ground based indices (API and AQI) with satellite based aerosol products.

    Science.gov (United States)

    Zheng, Sheng; Cao, Chun-Xiang; Singh, Ramesh P

    2014-08-01

    Air quality in mega cities is one of the major concerns due to serious health issues and its indirect impact to the climate. Among mega cities, Beijing city is considered as one of the densely populated cities with extremely poor air quality. The meteorological parameters (wind, surface temperature, air temperature and relative humidity) control the dynamics and dispersion of air pollution. China National Environmental Monitoring Centre (CNEMC) started air pollution index (API) as of 2000 to evaluate air quality, but over the years, it was felt that the air quality is not well represented by API. Recently, the Ministry of Environmental Protection (MEP) of the People's Republic of China (PRC) started using a new index "air quality index (AQI)" from January 2013. We have compared API and AQI with three different MODIS (MODIS - Moderate Resolution Imaging SpectroRadiometer, onboard the Terra/Aqua satellites) AOD (aerosol optical depth) products for ten months, January-October, 2013. The correlation between AQI and Aqua Deep Blue AOD was found to be reasonably good as compared with API, mainly due to inclusion of PM2.5 in the calculation of AQI. In addition, for every month, the correlation coefficient between AQI and Aqua Deep Blue AOD was found to be relatively higher in the month of February to May. According to the monthly average distribution of precipitation, temperature, and PM10, the air quality in the months of June-September was better as compared to those in the months of February-May. AQI and Aqua Deep Blue AOD show highly polluted days associated with dust event, representing true air quality of Beijing.

  16. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Directory of Open Access Journals (Sweden)

    S. W. Myint

    2008-07-01

    Full Text Available Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services and hazards (e.g., downed power lines, gas lines, etc., the need for rapid mobilization (particularly for remote locations, and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale. Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  17. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.

    2008-07-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  18. Magnetic resonance imaging research in sub-Saharan Africa: challenges and satellite-based networking implementation.

    Science.gov (United States)

    Latourette, Matthew T; Siebert, James E; Barto, Robert J; Marable, Kenneth L; Muyepa, Anthony; Hammond, Colleen A; Potchen, Michael J; Kampondeni, Samuel D; Taylor, Terrie E

    2011-08-01

    As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration. Satellite Internet service costs limited the bandwidth to symmetrical 384 kbit/s. DICOM routers deployed at both the Malaŵi MRI facility and MSU manage the end-to-end encrypted compressed data transmission. Network performance between DICOM routers was measured while transmitting both mixed clinical MR studies and synthetic studies. Effective network latency averaged 715 ms. Within a mix of clinical MR studies, the average transmission time for a 256 × 256 image was ~2.25 and ~6.25 s for a 512 × 512 image. Using synthetic studies of 1,000 duplicate images, the interquartile range for 256 × 256 images was [2.30, 2.36] s and [5.94, 6.05] s for 512 × 512 images. Transmission of clinical MRI studies between the DICOM routers averaged 9.35 images per minute, representing an effective channel utilization of ~137% of the 384-kbit/s satellite service as computed using uncompressed image file sizes (including the effects of image compression, protocol overhead, channel latency, etc.). Power unreliability was the primary cause of interrupted operations in the first year, including an outage exceeding 10 days.

  19. On the value of satellite-based river discharge and river flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  20. Satellite-based technique for nowcasting of thunderstorms over Indian region

    Indian Academy of Sciences (India)

    Suman Goyal; Ashish Kumar; M Mohapatra; L S Rathore; S K Dube; Rahul Saxena; R K Giri

    2017-08-01

    India experiences severe thunderstorms during the months, March–June. But these systems are not predicted well, mainly due to the absence of mesoscale observational network over Indian region and the expert system. As these are short lived systems, the nowcast is attempted worldwide based on satellite and radar observations. Due to inadequate radar network, satellite plays the dominant role for nowcast of these thunderstorms. In this study, a nowcast based algorithm ForTracc developed by Vila et al. (Weather Forecast 23:233–245, 2008) has been examined over the Indian region using Infrared Channel (10.8 μm) of INSAT-3D for prediction of Mesoscale Convective Systems (MCS). In this technique, the current location and intensity in terms of Cloud Top Brightness Temperature (CTBT) of the MCS are extrapolated. The purpose of this study is to validate this satellite-based nowcasting technique for Convective Cloud Clusters that helps in optimum utilization of satellite data and improve the nowcasting. The model could predict reasonably the minimum CTBT of the convective cell with average absolute error (AAE) of <7 K for different lead periods (30–180 min). However, it was underestimated for all the lead periods of forecasts. The AAE in the forecasts of size of the cluster varies from about 3×104 km2 for 30-min forecast to 7×104 km2 for 120-min forecast. The mean absolute error in prediction of size is above 31–38% of actual size for different lead periods of forecasts from 30 to 180 min. There is over estimation in prediction of size for 30 and 60 min forecasts (17% and 2.6% of actual size of the cluster, respectively) and underestimation in 90 to 180-min forecasts (–2.4% to –28%). The direct position error (DPE) based on the location of minimum CTBT ranges from 70 to 144 km for 30–180-min forecast respectively.

  1. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment

    Science.gov (United States)

    Jewett, Christopher P.; Mecikalski, John R.

    2013-11-01

    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  2. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

    Directory of Open Access Journals (Sweden)

    Wenlong Jing

    2016-10-01

    Full Text Available Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI, the Digital Elevation Model (DEM, and geolocation (longitude, latitude. Four machine learning regression algorithms, the classification and regression tree (CART, the k-nearest neighbors (k-NN, the support vector machine (SVM, and random forests (RF, were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature

  3. Long-term change analysis of satellite-based evapotranspiration over Indian vegetated surface

    Science.gov (United States)

    Gupta, Shweta; Bhattacharya, Bimal K.; Krishna, Akhouri P.

    2016-05-01

    In the present study, trend of satellite based annual evapotranspiration (ET) and natural forcing factors responsible for this were analyzed. Thirty years (1981-2010) of ET data at 0.08° grid resolution, generated over Indian region from opticalthermal observations from NOAA PAL and MODIS AQUA satellites, were used. Long-term data on gridded (0.5° x 0.5°) annual rainfall (RF), annual mean surface soil moisture (SSM) ERS scatterometer at 25 km resolution and annual mean incoming shortwave radiation from MERRA-2D reanalysis were also analyzed. Mann-Kendall tests were performed with time series data for trend analysis. Mean annual ET loss from Indian ago-ecosystem was found to be almost double (1100 Cubic Km) than Indian forest ecosystem (550 Cubic Km). Rainfed vegetation systems such as forest, rainfed cropland, grassland showed declining ET trend @ - 4.8, -0.6 &-0.4 Cubic Kmyr-1, respectively during 30 years. Irrigated cropland initially showed ET decline upto 1995 @ -0.8 cubic Kmyr-1 which could possibly be due to solar dimming followed by increasing ET @ 0.9 cubic Kmyr-1 after 1995. A cross-over point was detected between forest ET decline and ET increase in irrigated cropland during 2008. During 2001-2010, the four agriculturally important Indian states eastern, central, western and southern showed significantly increasing ET trend with S-score of 15-25 and Z-score of 1.09-2.9. Increasing ET in western and southern states was found to be coupled with increase in annual rainfall and SSM. But in eastern and central states no significant trend in rainfall was observed though significant increase in ET was noticed. The study recommended to investigate the influence of anthropogenic factors such as increase in area under irrigation, increased use of water for irrigation through ground water pumping, change in cropping pattern and cultivars on increasing ET.

  4. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2010-11-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The availability of the local version of the Unified Model and the Meteosat Second Generation satellite data make these products ideal components of precipitation measurement in data sparse regions such as Africa. In this article the local version of the Hydroestimator (originally from NOAA/NESDIS is discussed as well as its applications for precipitation measurement in this region. Hourly accumulations of the Hydroestimator are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system. However, the Hydroestimator is by no means a perfect representation of the real rainfall. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field which can feed into the South African Flash Flood Guidance system. This new product should provide a more accurate and comprehensive input to the Flash Flood Guidance systems in South Africa as well as southern Africa. In this way the southern African region where data is sparse and very few radars are available can have access to more accurate flash flood guidance.

  5. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  6. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  7. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Science.gov (United States)

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  8. Understanding interdisciplinary health care teams: using simulation design processes from the Air Carrier Advanced Qualification Program to identify and train critical teamwork skills.

    Science.gov (United States)

    Hamman, William R; Beaudin-Seiler, Beth M; Beaubien, Jeffrey M

    2010-09-01

    In the report "Five Years After 'To Err is Human' ", it was noted that "the combination of complexity, professional fragmentation, and a tradition of individualism, enhanced by a well-entrenched hierarchical authority structure and diffuse accountability, forms a daunting barrier to creating the habits and beliefs of common purpose, teamwork, and individual accountability for successful interdependence that a safe culture requires". Training physicians, nurses, and other professionals to work in teams is a concept that has been promoted by many patient safety experts. However the model of teamwork in healthcare is diffusely defined, no clear performance metrics have been established, and the use of simulation to train teams has been suboptimal. This paper reports on the first three years of work performed in the Michigan Economic Development Corporation (MEDC) Tri-Corridor life science grant to apply concepts and processes of simulation design that were developed in the air carrier industry to understand and train healthcare teams. This work has been monitored by the American Academy for the Advancement of Science (AAA) and is based on concepts designed in the Advanced Qualification Program (AQP) from the air carrier industry, which trains and assesses teamwork skills in the same manner as technical skills. This grant has formed the foundation for the Center of Excellence for Simulation Education and Research (CESR).

  9. Advanced air staging techniques to improve fuel flexibility, reliability and emissions in fluidized bed co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aamand, Lars-Erik; Leckner, Bo [Chalmers Technical Univ., Goeteborg (Sweden); Luecke, Karsten; Werther, Joachim [Technical Univ. of Hamburg-Harburg (Germany)

    2001-12-01

    A joint research project between the Technical University of Hamburg-Harburg and Chalmers Technical University. For operation under co-combustion the following results should be considered: The high ash content of the sewage sludge results in significantly increased ash flows. Although high alkali metal concentrations are found in the sewage sludge ash, no critical concentrations were reached and tendencies to fouling were not observed. The trace metal input rises with increased sludge fraction. However, emissions of metal compounds were well below legal limits. The trace metals tend to accumulate on the fly ash. In general, very low fuel nitrogen conversions to NO and N{sub 2}O of 2 - 4 % are achievable. With coal as a base fuel alternative air staging with secondary air supply after solids separation attains even lower NO emissions than normal staging without strongly affecting CO and SO{sub 2} emissions. Alternative staging also reduces N{sub 2}O emissions. An optimum for the excess air ratio in the riser of 1.05 was found for a total excess air ratio of 1.2. The higher the volatile content of the fuel is, the less effective the NO reduction due to air staging becomes. The measurements suggest that the optimum gas residence time regarding the emissions in CFB combustors is around 6 to 7 s. These times are achieved in commercial scale plants due to their large cyclones that perhaps partly can replace a large afterburner chamber. The circulating fluidized bed boiler can be operated in a very flexible way with various fuel mixtures up to an energy fraction of sludge of 25% without exceeding legal emission limits.

  10. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  11. Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity

    Science.gov (United States)

    Anguelova, M. D.

    2016-05-01

    The utility of a satellite-based whitecap database for estimates of surface sea spray production and bubble-mediated gas transfer on a global scale is presented. Existing formulations of sea spray production and bubble-mediated CO2 transfer velocity involve whitecap fraction parametrization as a function of wind speed at 10 m reference height W(U 10) based on photographic measurements of whitecaps. Microwave radiometric measurements of whitecaps from satellites provide whitecap fraction data over the world oceans for all seasons. Parametrizations W(U 10) based on such radiometric data are thus applicable for a wide range of conditions and can account for influences secondary to the primary forcing factor, the wind speed. Radiometric satellite-based W(U 10) relationship was used as input to: (i) the Coupled Ocean-Atmosphere Response Experiment Gas transfer (COAREG) algorithm to obtain CO2 transfer velocity and total CO2 flux; and (ii) the sea spray source function (SSSF) recommended by Andreas in 2002 to obtain fluxes of sea spray number and mass. The outputs of COAREG and SSSF obtained with satellite-based W(U 10) are compared with respective outputs obtained with the nominal W(U 10) relationship based on photographic data. Good comparisons of the gas and sea spray fluxes with direct measurements and previous estimates imply that the satellite- based whitecap database can be useful to obtain surface fluxes of particles and gases in regions and conditions difficult to access and sample in situ. Satellite and in situ estimates of surface sea spray production and bubble-mediated gas transfer thus complement each other: accurate in situ observations can constrain radiometric whitecap fraction and mass flux estimates, while satellite observations can provide global coverage of whitecap fraction and mass flux estimates.

  12. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  13. A Satellite-Based Estimation of Evapotranspiration Using Vegetation Index-Temperature Trapezoid Concept: A Case Study in Southern Florida, U.S.A.

    Science.gov (United States)

    Yagci, A. L.; Santanello, J. A., Jr.; Jones, J. W.

    2015-12-01

    One of the key surface variables for hydrological applications, monitoring of natural and anthropogenic water consumption, closing energy balance and water budgets and drought identification is evapotranspiration (ET). There is currently a strong need for high temporal and spatial resolution ET products for climate and hydrological modelers. A satellite-based retrieval method based on vegetation index-temperature trapezoid (VITT) concept has been developed. This model has the ability to generate accurate ET estimates at high temporal and spatial resolutions by taking advantage of key remotely sensed parameters such as vegetation indices (VIs) and land surface temperature (LST) acquired by satellites as well as routinely-measured meteorological variables such as air temperature (Ta) and net radiation. For local-scale applications, the model has been successfully implemented in Python programming language and tested using Landsat satellite products at an eddy covariance flux tower in Florida. It is fully functional and automated such that there is no need of user intervention to run the model. The model development for continental-scale applications using VI and LST products from NASA satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) is currently in progress. The results for local-scale application and early results for continental-scale (US) will be presented and discussed.

  14. Blending Model Output with satellite-based and in-situ observations to produce high-resolution estimates of population exposure to wildfire smoke

    Science.gov (United States)

    Lassman, William

    In the western US, emissions from wildfires and prescribed fire have been associated with degradation of regional air quality. Whereas atmospheric aerosol particles with aerodynamic diameters less than 2.5 mum (PM2.5) have known impacts on human health, there is uncertainty in how particle composition, concentrations, and exposure duration impact the associated health response. Due to changes in climate and land-management, wildfires have increased in frequency and severity, and this trend is expected to continue. Consequently, wildfires are expected to become an increasingly important source of PM2.5 in the western US. While composition and source of the aerosol is thought to be an important factor in the resulting human health-effects, this is currently not well-understood; therefore, there is a need to develop a quantitative understanding of wildfire-smoke-specific health effects. A necessary step in this process is to determine who was exposed to wildfire smoke, the concentration of the smoke during exposure, and the duration of the exposure. Three different tools are commonly used to assess exposure to wildfire smoke: in-situ measurements, satellite-based observations, and chemical-transport model (CTM) simulations, and each of these exposure-estimation tools have associated strengths and weakness. In this thesis, we investigate the utility of blending these tools together to produce highly accurate estimates of smoke exposure during the 2012 fire season in Washington for use in an epidemiological case study. For blending, we use a ridge regression model, as well as a geographically weighted ridge regression model. We evaluate the performance of the three individual exposure-estimate techniques and the two blended techniques using Leave-One-Out Cross-Validation. Due to the number of in-situ monitors present during this time period, we find that predictions based on in-situ monitors were more accurate for this particular fire season than the CTM simulations and

  15. Using R for analysing spatio-temporal datasets: a satellite-based precipitation case study

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio

    2017-04-01

    Increasing computer power and the availability of remote-sensing data measuring different environmental variables has led to unprecedented opportunities for Earth sciences in recent decades. However, dealing with hundred or thousands of files, usually in different vectorial and raster formats and measured with different temporal frequencies, impose high computation challenges to take full advantage of all the available data. R is a language and environment for statistical computing and graphics which includes several functions for data manipulation, calculation and graphical display, which are particularly well suited for Earth sciences. In this work I describe how R was used to exhaustively evaluate seven state-of-the-art satellite-based rainfall estimates (SRE) products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-adj, MSWEPv1.1 and PGFv3) over the complex topography and diverse climatic gradients of Chile. First, built-in functions were used to automatically download the satellite-images in different raster formats and spatial resolutions and to clip them into the Chilean spatial extent if necessary. Second, the raster package was used to read, plot, and conduct an exploratory data analysis in selected files of each SRE product, in order to detect unexpected problems (rotated spatial domains, order or variables in NetCDF files, etc). Third, raster was used along with the hydroTSM package to aggregate SRE files into different temporal scales (daily, monthly, seasonal, annual). Finally, the hydroTSM and hydroGOF packages were used to carry out a point-to-pixel comparison between precipitation time series measured at 366 stations and the corresponding grid cell of each SRE. The modified Kling-Gupta index of model performance was used to identify possible sources of systematic errors in each SRE, while five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities

  16. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  17. Assessment of Satellite-based Precipitation Products (TRMM) in Hydrologic Modeling: Case Studies from Northern Morocco

    Science.gov (United States)

    EL kadiri, R.; Milewski, A.; Durham, M.

    2012-12-01

    Precipitation is the most important forcing parameter in hydrological modeling, yet it is largely unknown in the arid Middle East. We assessed the magnitude, probability of detection, and false alarm rates of various rainfall satellite products (e.g., TRMM, RFE2.0) compared to in situ gauge data (~79 stations) across the Our Er Rbia, Sebou, and Melouya Watersheds in Northern Morocco. Precipitation over the area is relatively high with an average of ~400mm/year according to TRMM (1998-2008). The existing gauges indicate that the average annual precipitation across the Tadla and Coastal Plains region is 260mm/year and 390mm/year across the Atlas Mountains. Following the assessment of satellite products against in situ gauge data, we evaluated the effects (e.g., runoff and recharge amounts) of using satellite driven hydrologic models using SWAT. Specifically, we performed a four-fold exercise: (1) The first stage focused on the analysis of the rainfall products; (2) the second stage involved the construction of a rainfall-runoff model using gauge data; (3) the third stage entailed the calibration of the model against flow gauges and/or dams storage variability, and (4) model simulation using satellite based rainfall products using the calibrated parameters from the initial simulation. Results suggest the TRMM V7 has a much better correlation with the field data over the Oum Er Rbia watershed. The Correlation E (Nash-Suncliffe coefficient) has a positive value of 0.5, while the correlation coefficient of TRMM V6 vs. gauges data is a negative value of -0.25. This first order evaluation of the TRMM V7 shows the new algorithm has partially overcame the underestimation effect in the semi-arid environments. However, more research needs to be done to increase the usability of TRMM V7 in hydrologic models. Low correlations are most likely a result of the following: (1) snow at the high elevations in the Oum Er Rbia watershed, (2) the ocean effect on TRMM measurements along

  18. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    Science.gov (United States)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    _adj throughout each monitoring period was lower than cumulative ETb for most crops, indicating that effect of water stress tended to exceed that of soil evaporation relative to basal conditions. We present results from the analysis and discuss implications for operational use of satellite-based Kcb and ETcb estimates for agricultural water resource management.

  19. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  20. The Satellite Based Hydrological Model (SHM): Routing Scheme and its Evaluation

    Science.gov (United States)

    kumari, Nikul; Paul, Pranesh Kumar; Singh, Rajendra; Panigrahy, Niranjan; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2016-04-01

    The collection of spatially extensive data by using the traditional methods of data acquisition is a challenging task for a large territory like India. To overcome such problems, the Satellite based Hydrological Model (SHM), a large scale conceptual hydrological model for the Indian Territory, is being developed under the PRACRITI-2 program of the Space Applications Centre (SAC), Ahmedabad. The model aims at preparing sustainable water management scenarios using remote sensing data from Indian satellites to handle the fresh water crisis in India. There are five modules namely, Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU) in the SHM. The SW, F and S modules convert rainfall into surface runoff and generate input (infiltration and percolation) for the GW module, and GW generates baseflow using that input. In this study, a cell-to-cell routing (ROU) module has been developed for SHM. It is based on the principle of Time Variant Spatially Distributed Direct Hydrograph (SDDH) to route the generated runoff and baseflow generated by various modules upto the outlet. The entire India is divided into 5km x 5km grid cells and properties at the center of the cell are assumed to represent the property of the cell. In the routing scheme, for each cell a single downstream cell is defined in the direction of steepest descent, to create the flow network. These grid cells are classified into overland cells and channel cells based on the threshold value taken into consideration. The overland flow travel time of each overland cell is estimated by combining a steady state kinematic wave approximation with Manning's equation and the channel flow travel time of each channel cell is estimated using Manning's equation and the steady state continuity equation. The travel time for each cell is computed by dividing the travel distance through that cell with cell velocity. The cumulative travel time from each grid cell to the watershed outlet is the sum of

  1. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2013-01-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA and potential evaporation (PE derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation – PE was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months. Fire season PE increased from the 1980's–2000's, enhancing climate-driven fire risk in the southern and western US where PE–BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's–2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the

  2. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2012-06-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA and potential evaporation (PE derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE} and fire activity in the Alaska, while water deficit (precipitation – PE was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months. Fire season PE increased from the 1980s–2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s–2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of

  3. Satellite-based assessment of climate controls on US burned area

    Science.gov (United States)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997-2010) and Monitoring Trends in Burn Severity (MTBS, 1984-2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation - PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6-12 months). Fire season PE increased from the 1980's-2000's, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's-2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types

  4. Advanced physical coal cleaning to comply with potential air toxic regulations. [Quarterly] technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-12-31

    This research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Trace elements considered in this project will include mercury, selenium, cadmium, and chlorine. Work in the first quarter has focused on trace element analysis procedures and sample acquisition. Several experts in the field of trace element analysis of coal have been consulted and these procedures are presently being evaluated.

  5. Design of Conventional Submarines with Advanced Air Independent Propulsion Systems and Determination of Corresponding Theater-Level Impacts

    Science.gov (United States)

    2010-01-01

    Response surface method SOA: Speeds of advance TNSW: Thyssen Nordseewerke GmbH tsnorkeling: Time submarine spends snorkeling tquiet: Time submarine spends on...during snorkeling operations. The limiting factor for the power of the diesel engines is the maximum current limitation on charging the batteries...for the AIP endurance of some of the modern submarines are 12–14. Extended AIP endurance reduces the time that the submarine needs to spend snorkeling

  6. Estimation of snowpack matching ground-truth data and MODIS satellite-based observations by using regression kriging

    Science.gov (United States)

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In

  7. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries

    Science.gov (United States)

    Li, Jingsha; Zhou, Zhi; Liu, Kun; Li, Fuzhi; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan

    2017-03-01

    Nitrogen-doped carbon materials containing non-precious metal (TM-N-C) and Co-based oxides have been extensively investigated as promising catalysts for oxygen reduction reaction (ORR). Herein, we report a novel Co3O4/Co-N-C modified ketjenblack carbon (KB) catalyst via a one-pot and scalable pyrolysis process using cheap melamine, cobalt acetate tetrahydrate and KB as raw materials. Owing to the high specific surface area and good electrical conductivity, this KB-based catalyst exhibits remarkable catalytic activity with a half-wave potential of 0.798 V (vs RHE) and a limiting current density of 5.10 mA cm-2 in alkaline solution, which are comparable with those of the commercial 20 wt% Pt/C. More importantly, it displays superior stability to Pt/C, which makes it one of the most promising non-noble-metal catalysts. Al-air batteries with this catalyst are also tested and generate a maximum power density of 161.1 mW cm-2, which is close to that with 20 wt% Pt/C catalyst (161.9 mW cm-2). After the discharge for 18 h at 50 mA cm-2, the voltage degradation of Al-air battery with Co3O4/Co-N-C modified KB is 7%, while that using Pt/C is increased to 12%. By virtues of its remarkable performance, low cost and simple fabrication method, Co3O4/Co-N-C modified KB here can be used as an efficient ORR cathode catalyst instead of the commercial Pt/C for practical Al-air batteries.

  8. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  9. Enhanced air dispersion modelling at a typical Chinese nuclear power plant site: Coupling RIMPUFF with two advanced diagnostic wind models.

    Science.gov (United States)

    Liu, Yun; Li, Hong; Sun, Sida; Fang, Sheng

    2017-09-01

    An enhanced air dispersion modelling scheme is proposed to cope with the building layout and complex terrain of a typical Chinese nuclear power plant (NPP) site. In this modelling, the California Meteorological Model (CALMET) and the Stationary Wind Fit and Turbulence (SWIFT) are coupled with the Risø Mesoscale PUFF model (RIMPUFF) for refined wind field calculation. The near-field diffusion coefficient correction scheme of the Atmospheric Relative Concentrations in the Building Wakes Computer Code (ARCON96) is adopted to characterize dispersion in building arrays. The proposed method is evaluated by a wind tunnel experiment that replicates the typical Chinese NPP site. For both wind speed/direction and air concentration, the enhanced modelling predictions agree well with the observations. The fraction of the predictions within a factor of 2 and 5 of observations exceeds 55% and 82% respectively in the building area and the complex terrain area. This demonstrates the feasibility of the new enhanced modelling for typical Chinese NPP sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies

    Energy Technology Data Exchange (ETDEWEB)

    Matyssek, R., E-mail: matyssek@wzw.tum.d [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany); Karnosky, D.F. [Michigan Technological University, School of Forest Resources and Environmental Sciences, Houghton, MI 49931-129 (United States); Wieser, G. [Federal Research and Trainings Centre for Forests, Natural Hazards and Landscape, Dept. of Alpine Timberline Ecophysiology, Rennweg 1, A-6020 Innsbruck (Austria); Percy, K. [K.E. Percy Air Quality Effects Consulting Ltd., 207-230 Wilson Drive, Fort McMurray, Alberta T9H 0A4 (Canada); Oksanen, E. [Faculty of Biosciences, University of Joensuu, P.O. Box 111, FIN 80101 Joensuu (Finland); Grams, T.E.E. [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany); Kubiske, M. [Institute for Applied Ecosystem Studies, US Forest Service, Northern Research Station, 5985 Hwy K, Rhinelander, WI 54501 (United States); Hanke, D. [Department of Plant Sciences, University of Cambridge, CB2 3EA (United Kingdom); Pretzsch, H. [Forest Yield Science, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising-Weihenstephan (Germany)

    2010-06-15

    Recent evidence from novel phytotron and free-air ozone (O{sub 3}) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O{sub 3} sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O{sub 3} apparently counteracts positive effects of elevated CO{sub 2} and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O{sub 3} responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O{sub 3} responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O{sub 3} risks as an important component of climate change scenarios. - Novel phytotron and free-air O{sub 3} exposure studies on forest trees communicate sensitivity to be governed by genotype, ontogeny and biotic agents rather than species per se.

  11. Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold Air Outbreaks One Month in Advance

    Science.gov (United States)

    Cai, Ming

    2016-04-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.

  12. Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold air outbreaks one month in advance

    Science.gov (United States)

    Cai, M.; Yu, Y.

    2016-12-01

    Extreme weather events such as cold air outbreaks (CAOs) pose great threats to human life and socioeconomic well-being of the modern society. In the past, our capability to predict their occurrences is constrained by the 2-week predictability limit for weather. We demonstrate here for the first time that a rapid increase of air mass transported into the polar stratosphere, referred to as "the pulse of the stratosphere (PULSE)", can often be predicted with a useful skill 4-6 weeks in advance by operational forecast models. We further show that the probability of the occurrence of continental-scale CAOs in mid-latitudes increases substantially above the normal condition within a short time period from one week before to 1-2 weeks after the peak day of a PULSE event. In particular, we reveal that the three massive CAOs over North America in January and February of 2014 were preceded by three episodes of extreme mass transport into the polar stratosphere with peak intensities reaching a trillion tons per day, twice of that on an average winter day. Therefore, our capability to predict the PULSEs with operational forecast models, in conjunction with its linkage to continental-scale CAOs, opens up a new opportunity for 30-day forecasts of continental-scale CAOs, such as those occurring over North America in the 2013-14 winter. A real time forecast experiment inaugurated in the winter of 2014-15 has given support to the idea that it is feasible to forecast CAOs one month in advance.

  13. Little ice age advance and retreat of Glaciar Jorge Montt, Chilean Patagonia, recorded in maps, air photographs and dendrochronology

    Directory of Open Access Journals (Sweden)

    A. Rivera

    2011-10-01

    Full Text Available Glaciar Jorge Montt (48°20' S/73°30' W, one of the main tidewater glaciers of the Southern Patagonian Icefield (SPI, has experienced the fastest frontal retreat observed in Patagonia during the past century, with a recession of 19.5 km between 1898 and 2011. This record retreat uncovered trees overridden during the Little Ice Age (LIA advance of the glacier. Samples of these trees were dated using radiocarbon methods, yielding burial ages between 460 and 250 cal yr BP. The dendrochronology and maps indicate that Glaciar Jorge Montt was at its present position before the beginning of the LIA, in concert with several other glaciers in Southern Patagonia, and reached its maximum advance position between 1650 and 1750 AD. The post-LIA retreat is most likely triggered by climatically induced changes during the 20th century, however, Glaciar Jorge Montt has responded more dramatically than its neighbours. The retreat of Jorge Montt opened a new fjord 19.5 km long, and up to 391 m deep, with a varied bathymetry well correlated with glacier retreat rates, suggesting that dynamic responses of the glacier are at least partially connected to near buoyancy conditions at the ice front, resulting in high calving fluxes, accelerating thinning rates and rapid ice velocities.

  14. Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies.

    Science.gov (United States)

    Matyssek, R; Karnosky, D F; Wieser, G; Percy, K; Oksanen, E; Grams, T E E; Kubiske, M; Hanke, D; Pretzsch, H

    2010-06-01

    Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.

  15. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    Science.gov (United States)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    potential sources of remotely sensed soil moisture data. SMOS measures the microwave radiation emitted from the Earth's surface operating at L-band (1.20-1.41 GHz) to measure surface soil moisture directly. Microwave radiation at this wavelength offers relatively deeper penetration and has lower sensitivity to vegetation impacts. The main objective of this research is to evaluate the contribution of remote sensing technology to quantifiable improvements in flash flood applications as well as adding a remote sensing component to the NWS FFG Algorithm. The challenge of this study is employing the direct soil moisture data from SMOS to replace the model-calculated soil moisture state which is based on the soil water balance in 4 km x 4 km Hydrologic Rainfall Analysis Project (HRAP) grid cells. In order to determine the value of the satellite data to NWS operations, the streamflow generated by HL-RDHM with and without soil moisture assimilation will be compared to USGS gauge data. Furthermore, we will apply the satellite-based soil moisture data with the FFG algorithm to evaluate how many hits, misses and false alarms are generated. This study will evaluate the value of remote sensing data in constraining the state of the system for main-stem and flash flood forecasting.

  16. Simulation of large-scale soil water systems using groundwater data and satellite based soil moisture

    Science.gov (United States)

    Kreye, Phillip; Meon, Günter

    2016-04-01

    Complex concepts for the physically correct depiction of dominant processes in the hydrosphere are increasingly at the forefront of hydrological modelling. Many scientific issues in hydrological modelling demand for additional system variables besides a simulation of runoff only, such as groundwater recharge or soil moisture conditions. Models that include soil water simulations are either very simplified or require a high number of parameters. Against this backdrop there is a heightened demand of observations to be used to calibrate the model. A reasonable integration of groundwater data or remote sensing data in calibration procedures as well as the identifiability of physically plausible sets of parameters is subject to research in the field of hydrology. Since this data is often combined with conceptual models, the given interfaces are not suitable for such demands. Furthermore, the application of automated optimisation procedures is generally associated with conceptual models, whose (fast) computing times allow many iterations of the optimisation in an acceptable time frame. One of the main aims of this study is to reduce the discrepancy between scientific and practical applications in the field of hydrological modelling. Therefore, the soil model DYVESOM (DYnamic VEgetation SOil Model) was developed as one of the primary components of the hydrological modelling system PANTA RHEI. DYVESOMs structure provides the required interfaces for the calibrations made at runoff, satellite based soil moisture and groundwater level. The model considers spatial and temporal differentiated feedback of the development of the vegetation on the soil system. In addition, small scale heterogeneities of soil properties (subgrid-variability) are parameterized by variation of van Genuchten parameters depending on distribution functions. Different sets of parameters are operated simultaneously while interacting with each other. The developed soil model is innovative regarding concept

  17. Advanced Air Traffic Management Research (Human Factors and Automation): NASA Research Initiatives in Human-Centered Automation Design in Airspace Management

    Science.gov (United States)

    Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)

    1996-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.

  18. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations

    OpenAIRE

    2012-01-01

    Satellite-based PM2.5 monitoring has the potential to complement ground PM2.5 monitoring networks, especially for regions with sparsely distributed monitors. Satellite remote sensing provides data on aerosol optical depth (AOD), which reflects particle abundance in the atmospheric column. Thus AOD has been used in statistical models to predict ground-level PM2.5 concentrations. However, previous studies have shown that AOD may not be a strong predictor of PM2.5 ground levels. Another shortcom...

  19. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  20. Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell.

    Science.gov (United States)

    Guelfi, Diego Roberto Vieira; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; Machulek, Amílcar; de Oliveira, Silvio César

    2017-03-01

    A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H2O2 process had the lowest oxidation ability due to the slow reaction of intermediates with (•)OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional (•)OH formed between added Fe(2+) and electrogenerated H2O2. The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H2O2, whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H2O2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe(2+) and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.

  1. Sensitivity of a Floodplain Hydrodynamic Model to Satellite-Based DEM Scale and Accuracy: Case Study—The Atchafalaya Basin

    Directory of Open Access Journals (Sweden)

    Hahn Chul Jung

    2015-06-01

    Full Text Available The hydrodynamics of low-lying riverine floodplains and wetlands play a critical role in hydrology and ecosystem processes. Because small topographic features affect floodplain storage and flow velocity, a hydrodynamic model setup of these regions imposes more stringent requirements on the input Digital Elevation Model (DEM compared to upland regions with comparatively high slopes. This current study provides a systematic approach to evaluate the required relative vertical accuracy and spatial resolution of current and future satellite-based altimeters within the context of DEM requirements for 2-D floodplain hydrodynamic models. A case study is presented for the Atchafalaya Basin with a model domain of 1190 km2. The approach analyzes the sensitivity of modeled floodplain water elevation and velocity to typical satellite-based DEM grid-box scale and vertical error, using a previously calibrated version of the physically-based flood inundation model (LISFLOOD-ACC. Results indicate a trade-off relationship between DEM relative vertical error and grid-box size. Higher resolution models are the most sensitive to vertical accuracy, but the impact diminishes at coarser resolutions because of spatial averaging. The results provide guidance to engineers and scientists when defining the observation scales of future altimetry missions such as the   Surface Water and Ocean Topography (SWOT mission from the perspective of numerical modeling requirements for large floodplains of O[103] km2 and greater.

  2. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Science.gov (United States)

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R(2) = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM2.5 estimates.

  3. Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall-runoff model

    Science.gov (United States)

    Roy, Tirthankar; Gupta, Hoshin V.; Serrat-Capdevila, Aleix; Valdes, Juan B.

    2017-02-01

    Daily, quasi-global (50° N-S and 180° W-E), satellite-based estimates of actual evapotranspiration at 0.25° spatial resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach, we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance and improving model performance. In an alternative approach, we instead change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to further improve the performance of the structurally modified model. Results indicate that while both approaches can provide improved simulations of streamflow, the second approach also improves the simulation of actual evapotranspiration significantly, which substantiates the importance of making diagnostic structural improvements to hydrologic models whenever possible.

  4. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  5. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  6. Assessing Satellite-Based Fire Data for use in the National Emissions Inventory

    Science.gov (United States)

    Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.; Moore, Tom; Biswadev, Roy; Pierce, R. Bradley; Szykman, James J.

    2009-01-01

    Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.

  7. Satellite Based Education and Training in Remote Sensing and Geo-Information AN E-Learning Approach to Meet the Growing Demands in India

    Science.gov (United States)

    Raju, P. L. N.; Gupta, P. K.

    2012-07-01

    One of the prime activities of Indian Space Research Organisation's (ISRO) Space Program is providing satellite communication services, viz., television broadcasting, mobile communication, cyclone disaster warning and rescue operations etc. so as to improve their economic conditions, disseminate technical / scientific knowledge to improve the agriculture production and education for rural people of India. ISRO, along with National Aeronautical and Space Administration (NASA) conducted experimental satellite communication project i.e. Satellite Instructional Television Experiment (SITE) using NASA's Advanced Telecommunication Satellite (i.e. ATS 6) with an objective to educate poor people of India via satellite broadcasting in 1975 and 1976, covering more than 2600 villages in six states of India and territories. Over the years India built communication satellites indigenously to meet the communication requirements of India. This has further lead to launch of an exclusive satellite from ISRO for educational purposes i.e. EDUSAT in 2004 through which rich audio-video content is transmitted / received, recreating virtual classes through interactivity. Indian Institute of Remote Sensing (IIRS) established in 1966, a premier institute in south East Asia in disseminating Remote Sensing (RS) and Geographical Information System (GIS), mainly focusing on contact based programs. But expanded the scope with satellite based Distance Learning Programs for Universities, utilizing the dedicated communication satellite i.e. EDUSAT in 2007. IIRS conducted successfully eight Distance Learning Programs in the last five years and training more than 6000 students mainly at postgraduate level from more than 60 universities /Institutions spread across India. IIRS obtained feedback and improved the programs on the continuous basis. Expanded the scope of IIRS outreach program to train user departments tailor made in any of the applications of Remote Sensing and Geoinformation, capacity

  8. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  9. Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

    Directory of Open Access Journals (Sweden)

    Christiane Schmullius

    2013-05-01

    Full Text Available Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS, Advanced Very High Resolution Radiometer (AVHRR and (Advanced Along Track Scanning Radiometer ((AATSR are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude. Within this study, we compared land surface temperature products from (AATSR, MODIS and AVHRR with an in situ air temperature (Tair database provided by the National Climate Data Center (NCDC. Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST and air temperature for the overlapping time period of the remote sensing data (2000–2005. In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (AATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.

  10. Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

    Directory of Open Access Journals (Sweden)

    Rupak Mukhopadhyay

    2012-09-01

    Full Text Available Background: In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods: Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM with a diameter <2.5 μm (PM2.5 and carbon monoxide (CO related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results: Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions: The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two

  11. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  12. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2012-03-01

    Full Text Available The high-order decoupled direct method in three dimensions for particulate matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ sensitivities simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates poorly understood nonlinear responses of secondary inorganic aerosols to their precursors and competing species. Adding second-order sensitivity terms to the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 emissions rates improves the prediction with statistical significance.

  13. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2011-10-01

    Full Text Available The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ results simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates nonlinear responses of secondary inorganic aerosols to their precursors and competing species that have not yet been well-understood with other approaches. Including second-order sensitivity coefficients in the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx emission shows a statistically significant improvement compared to the first-order Taylor series projection.

  14. The Multi-Angle Imager for Aerosols (MAIA) Instrument, the Satellite-Based Element of an Investigation to Benefit Public Health

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Maps of airborne particulate matter (PM) derived from satellite instruments, including MISR and MODIS, have provided key contributions to many health-related investigations. Although it is well established that PM exposure increases the risks of cardiovascular and respiratory disease, adverse birth outcomes, and premature deaths, our understanding of the relative toxicity of specific PM types—mixtures having different size distributions and compositions—is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. MAIA was selected for funding in March 2016. The satellite-based MAIA instrument is one element of the scientific investigation, which will combine WRF-Chem transport model estimates of the abundances of different aerosol types with the data acquired from Earth orbit. Geostatistical models derived from collocated surface and MAIA retrievals will be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. The MAIA instrument obtains its sensitivity to particle type by building upon the legacies of many satellite sensors; observing in the UV, visible, near-IR, and shortwave-IR regions of the electromagnetic spectrum; acquiring images at multiple angles of view; determining the degree to which the scattered light is polarized; and integrating these capabilities at moderately high spatial resolution. The instrument concept is based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA incorporates a pair of pushbroom cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. A set of Primary Target Areas (PTAs) on five

  15. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  16. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication.

    Science.gov (United States)

    Peng, Cheng-Zhi; Yang, Tao; Bao, Xiao-Hui; Zhang, Jun; Jin, Xian-Min; Feng, Fa-Yong; Yang, Bin; Yang, Jian; Yin, Juan; Zhang, Qiang; Li, Nan; Tian, Bao-Li; Pan, Jian-Wei

    2005-04-22

    We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.

  17. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  18. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-09-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  19. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe.

    Directory of Open Access Journals (Sweden)

    Antarpreet Jutla

    Full Text Available Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008.Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began.Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.

  20. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe.

    Science.gov (United States)

    Jutla, Antarpreet; Aldaach, Haidar; Billian, Hannah; Akanda, Ali; Huq, Anwar; Colwell, Rita

    2015-01-01

    Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008. Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began. Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.

  1. Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe

    Science.gov (United States)

    Jutla, Antarpreet; Aldaach, Haidar; Billian, Hannah; Akanda, Ali; Huq, Anwar; Colwell, Rita

    2015-01-01

    Introduction Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008. Principal Findings Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began. Discussion Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives. PMID:26417994

  2. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models

    Directory of Open Access Journals (Sweden)

    Wenwen Cai

    2014-09-01

    Full Text Available Terrestrial gross primary production (GPP is the largest global CO2 flux and determines other ecosystem carbon cycle variables. Light use efficiency (LUE models may have the most potential to adequately address the spatial and temporal dynamics of GPP, but recent studies have shown large model differences in GPP simulations. In this study, we investigated the GPP differences in the spatial and temporal patterns derived from seven widely used LUE models at the global scale. The result shows that the global annual GPP estimates over the period 2000–2010 varied from 95.10 to 139.71 Pg C∙yr−1 among models. The spatial and temporal variation of global GPP differs substantially between models, due to different model structures and dominant environmental drivers. In almost all models, water availability dominates the interannual variability of GPP over large vegetated areas. Solar radiation and air temperature are not the primary controlling factors for interannual variability of global GPP estimates for most models. The disagreement among the current LUE models highlights the need for further model improvement to quantify the global carbon cycle.

  3. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    Science.gov (United States)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  4. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data.

    Science.gov (United States)

    Yao, Yunjun; Zhang, Yuhu; Zhao, Shaohua; Li, Xianglan; Jia, Kun

    2015-06-01

    We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m(2)) and mixed forest (MF) (0.62, 25.3 W/m(2)) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m(2)) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m(2)) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m(2)) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.

  5. Correcting satellite-based precipitation products from SMOS soil moisture data assimilation using two models of different complexity

    Science.gov (United States)

    Román-Cascón, Carlos; Pellarin, Thierry; Gibon, François

    2017-04-01

    Real-time precipitation information at the global scale is quite useful information for many applications. However, satellite-based precipitation products in real time are known to be biased from real values observed in situ. On the other hand, the information about precipitation contained in soil moisture data can be very useful to improve precipitation estimation, since the evolution of this variable is highly influenced by the amount of rainfall at a certain area after a rain event. In this context, the soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite is used to correct the precipitation provided by real-time satellite-based products such as CMORPH, TRMM-3B42RT or PERSIANN. In this work, we test an assimilation algorithm based on the data assimilation of SMOS measurements in two models of different complexity: a simple hydrological model (Antecedent Precipitation Index (API)) and a state-of-the-art complex land-surface model (Surface Externalisée (SURFEX)). We show how the assimilation technique, based on a particle filter method, leads to the improvement of correlation and root mean squared error (RMSE) of precipitation estimates, with slightly better results for the simpler (and less expensive computationally) API model. This methodology has been evaluated for six years in ten sites around the world with different features, showing the limitations of the methodology in regions affected by mountainous terrain or by high radio-frequency interferences (RFI), which notably affect the quality of the soil moisture retrievals from brightness temperatures by SMOS. The presented results are promising for a potential near-real time application at the global scale.

  6. Validation and Application of the Modified Satellite-Based Priestley-Taylor Algorithm for Mapping Terrestrial Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Yunjun Yao

    2014-01-01

    Full Text Available Satellite-based vegetation indices (VIs and Apparent Thermal Inertia (ATI derived from temperature change provide valuable information for estimating evapotranspiration (LE and detecting the onset and severity of drought. The modified satellite-based Priestley-Taylor (MS-PT algorithm that we developed earlier, coupling both VI and ATI, is validated based on observed data from 40 flux towers distributed across the world on all continents. The validation results illustrate that the daily LE can be estimated with the Root Mean Square Error (RMSE varying from 10.7 W/m2 to 87.6 W/m2, and with the square of correlation coefficient (R2 from 0.41 to 0.89 (p < 0.01. Compared with the Priestley-Taylor-based LE (PT-JPL algorithm, the MS-PT algorithm improves the LE estimates at most flux tower sites. Importantly, the MS-PT algorithm is also satisfactory in reproducing the inter-annual variability at flux tower sites with at least five years of data. The R2 between measured and predicted annual LE anomalies is 0.42 (p = 0.02. The MS-PT algorithm is then applied to detect the variations of long-term terrestrial LE over Three-North Shelter Forest Region of China and to monitor global land surface drought. The MS-PT algorithm described here demonstrates the ability to map regional terrestrial LE and identify global soil moisture stress, without requiring precipitation information.

  7. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  8. Electronic Field Data Collection in Support of Satellite-Based Food Security Monitoring in Tanzania

    Science.gov (United States)

    Nakalembe, C. L.; Dempewolf, J.; Justice, C. J.; Becker-Reshef, I.; Tumbo, S.; Maurice, S.; Mbilinyi, B.; Ibrahim, K.; Materu, S.

    2016-12-01

    In Tanzania agricultural extension agents traditionally collect field data on agriculture and food security on paper, covering most villages throughout the country. The process is expensive, slow and cumbersome and prone to data transcription errors when the data get entered at the district offices into electronic spreadsheets. Field data on the status and condition of agricultural crops, the population's nutritional status, food storage levels and other parameters are needed in near realtime for early warning to make critical but most importantly timely and appropriate decisions that are informed with verified data from the ground. With the ubiquitous distribution of cell phones, which are now used by the vast majority of the population in Tanzania including most farmers, new, efficient and cost-effective methods for field data collection have become available. Using smartphones and tablets data on crop conditions, pest and diseases, natural disasters and livelihoods can be collected and made available and easily accessible in near realtime. In this project we implemented a process for obtaining high quality electronic field data using the GeoODK application with a large network of field extension agents in Tanzania and Uganda. These efforts contribute to work being done on developing an advanced agriculture monitoring system for Tanzania, incorporating traditional data collection with satellite information and field data. The outcomes feed directly into the National Food Security Bulletin for Tanzania produced by the Ministry of Agriculture as well as a form a firm evidence base and field scale monitoring of the disaster risk financing in Uganda.

  9. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    Science.gov (United States)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  10. Limiting Factors for Satellite-Based Retrievals of Surface-Level Carbon Monoxide

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Barré, J.

    2015-12-01

    CO is mostly produced in the lower troposphere by incomplete combustion of biomass and fuels. CO oxidation consumes ~75% of the tropospheric OH, which then is not available to remove CH4 and other greenhouse gases. CO oxidation also leads to the production of tropospheric O3. These critical impacts of CO on air quality and climate require accurate determination of the abundance and evolution of CO near the surface.Satellite retrievals would be well-suited to monitor surface CO globally. However, how do they compare to actual surface abundances? Some aspects to be considered include: the vertical sensitivity of retrievals (given by the averaging kernels), or how thick are the atmospheric layers that can be resolved; the vertical correlation length of CO with respect to the thickness of those layers; and the horizontal variability of CO with respect to the instrument's footprint.To investigate these questions we analyze MOPITT retrievals, DISCOVER-AQ and NOAA profiles, as well as WDCGG surface measurements. MOPITT, on board NASA's Terra satellite, has been measuring tropospheric CO since 2000, providing the longest global CO record to date. Its unique multispectral CO product offers enhanced sensitivity to CO near the surface. Vertical profiles of the lower troposphere were acquired during the DISCOVER-AQ airborne campaigns over selected regions of the USA. NOAA's airborne flask sampling program results in a multi-year, multi-seasonal record of vertical profiles from near the surface up to the mid troposphere, acquired over a number of stations, mostly in North America. Long-term, cross-calibrated surface CO data from ground stations worldwide are available through the WDCGG.Statistical analyses of the DISCOVER-AQ and NOAA profiles indicate that surface vertical correlation length varies greatly depending on geographic location. This may explain contrasting results obtained for different ground stations when comparing MOPITT and WDCGG co-located data and timeseries.

  11. Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia

    Science.gov (United States)

    Kamarul Zaman, Nurul Amalin Fatihah; Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.

    2017-09-01

    The insufficient number of ground-based stations for measuring Particulate Matter training are performed via comparison with measured PM10 at 29 stations over Malaysia and reveal that the ANN provides slightly higher accuracy with R2 = 0.71 and RMSE = 11.61 μg m- 3 compared to the MLR method (R2 = 0.66 and RMSE = 12.39 μg m- 3). Stepwise regression analysis performed on the MLR method reveals that the MODIS AOD550 is the most important parameter for PM10 estimations (R2 = 0.59 and RMSE = 13.61 μg m- 3); however, the inclusion of the meteorological parameters in the MLR increases the accuracy of the retrievals (R2 = 0.66, RMSE = 12.39 μg m- 3). The estimated PM10 concentrations are finally validated against surface measurements at 16 stations resulting in similar performance from the ANN model (R2 = 0.58, RMSE = 10.16 μg m- 3) and MLR technique (R2 = 0.56, RMSE = 10.58 μg m- 3). The significant accuracy that has been attained in PM10 estimations from space allows us to assess the pollution levels in Malaysia and map the PM10 distribution at large spatial and temporal scales. Supplementary Figure 2: Seasonal-mean Terra-MODIS AOD550 values at 10 x 10 km over the 45 air-pollution monitoring stations in Malaysia during 2007 - 2011 for (a) dry season (June - September), (b) wet season (November - March), (c) April - May and (d) October.

  12. Towards a protocol for validating satellite-based Land Surface Temperature: Application to AATSR data

    Science.gov (United States)

    Ghent, Darren; Schneider, Philipp; Remedios, John

    2013-04-01

    Land surface temperature (LST) retrieval accuracy can be challenging as a result of emissivity variability and atmospheric effects. Surface emissivities can be highly variable owing to the heterogeneity of the land; a problem which is amplified in regions of high topographic variance or for larger viewing angles. Atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. Combined, atmospheric effects and emissivity variability can result in retrieval errors of several degrees. If though these are appropriately handled satellite-derived LST products can be used to improve our ability to monitor and to understand land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. Here we present validation of an improved LST data record from the Advanced Along-Track Scanning Radiometer (AATSR) and illustrate the improvements in accuracy and precision compared with the standard ESA LST product. Validation is a critical part of developing any satellite product, although over the land heterogeneity ensures this is a challenging undertaking. A substantial amount of previous effort has gone into the area of structuring and standardizing calibration and validation approaches within the field of Earth Observation. However, no unified approach for accomplishing this for LST has yet to be practised by the LST community. Recent work has attempted to address this situation with the development of a protocol for validating LST (Schneider et al., 2012) under the auspices of ESA and the support of the wider LST community. We report here on a first application of this protocol to satellite LST data. The approach can briefly be summarised thus: in situ validation is performed where ground-based observations are available - being predominantly homogeneous sites; heterogeneous pixels are validated by way of established radiometric-based techniques (Wan and Li

  13. Satellite-based Assessment of Fire Impacts on Ecosystem Changes in West Africa

    Science.gov (United States)

    Ichoku, Charles

    2008-01-01

    Fires bum many vegetated regions of the world to a variety of degrees and frequency depending on season. Extensive biomass burning occurs in most parts of sub-Saharan Africa, posing great threat to ecosystem stability among other real and potential adverse impacts. In Africa, such landscape-scale fires are used for various agricultural purposes, including land clearing and hunting, although there may be a limited number of cases of fires ignited by accident or due to arson. Satellite remote sensing provides the most practical means of mapping fires, because of their sudden and aggressive nature coupled with the tremendous heat they generate. Recent advancements in satellite technology has enabled, not only the identification of fire locations, but also the measurement of fire radiative energy (FRE) release rate or power (FRP), which has been found to have a direct linear relationship with the rate of biomass combustion. A recent study based on FRP measurements from the Moderate-resolution imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites revealed that, among all the regions of the world where fires occur, African regions rank the highest in the intensity of biomass burning per unit area of land during the peak of the burning season. In this study, we will analyze the burning patterns in West Africa during the last several years and examine the extent of their impacts on the ecosystem dynamics, using a variety of satellite data. The study introduces a unique methodology that can be used to build up the knowledge base from which decision makers can obtain scientific information in fomulating policies for regulating biomass burning in the region.

  14. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    Science.gov (United States)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  15. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System: Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system, which...National Defense Authorization Act for Fiscal Year 2016 contained a provision that the Air Force provide quarterly reports to GAO on the next

  16. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the Pan-Arctic scale

    NARCIS (Netherlands)

    Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M.

    2013-01-01

    Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and (Advanced) Along Track Scanning Radiometer ((A)ATSR) are pr

  17. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability.

    Science.gov (United States)

    Wu, Chih-Da; Chen, Yu-Cheng; Pan, Wen-Chi; Zeng, Yu-Ting; Chen, Mu-Jean; Guo, Yue Leon; Lung, Shih-Chun Candice

    2017-05-01

    This study utilized a long-term satellite-based vegetation index, and considered culture-specific emission sources (temples and Chinese restaurants) with Land-use Regression (LUR) modelling to estimate the spatial-temporal variability of PM2.5 using data from Taipei metropolis, which exhibits typical Asian city characteristics. Annual average PM2.5 concentrations from 2006 to 2012 of 17 air quality monitoring stations established by Environmental Protection Administration of Taiwan were used for model development. PM2.5 measurements from 2013 were used for external data verification. Monthly Normalized Difference Vegetation Index (NDVI) images coupled with buffer analysis were used to assess the spatial-temporal variations of greenness surrounding the monitoring sites. The distribution of temples and Chinese restaurants were included to represent the emission contributions from incense and joss money burning, and gas cooking, respectively. Spearman correlation coefficient and stepwise regression were used for LUR model development, and 10-fold cross-validation and external data verification were applied to verify the model reliability. The results showed a strongly negative correlation (r: -0.71 to -0.77) between NDVI and PM2.5 while temples (r: 0.52 to 0.66) and Chinese restaurants (r: 0.31 to 0.44) were positively correlated to PM2.5 concentrations. With the adjusted model R(2) of 0.89, a cross-validated adj-R(2) of 0.90, and external validated R(2) of 0.83, the high explanatory power of the resultant model was confirmed. Moreover, the averaged NDVI within a 1750 m circular buffer (p < 0.01), the number of Chinese restaurants within a 1750 m buffer (p < 0.01), and the number of temples within a 750 m buffer (p = 0.06) were selected as important predictors during the stepwise selection procedures. According to the partial R(2), NDVI explained 66% of PM2.5 variation and was the dominant variable in the developed model. We suggest future studies consider

  18. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    station, and NOAA ESRL high-resolution Optimum Interpolation SST (OISST). Precise understanding of the influence these auxiliary inputs have on final satellite-based Ts retrievals may help guide refinement in ɛs characterization and NWP development, e.g., future Goddard Earth Observing System Data Assimilation System versions.

  19. Is China's fifth-largest inland lake to dry-up? Incorporated hydrological and satellite-based methods for forecasting Hulun lake water levels

    Science.gov (United States)

    Cai, Zuansi; Jin, Taoyong; Li, Changyou; Ofterdinger, Ulrich; Zhang, Sheng; Ding, Aizhong; Li, Jiancheng

    2016-08-01

    Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364 ± 64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49 ± 45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

  20. Constraints from atmospheric CO2 and satellite-based vegetation activity observations on current land carbon cycle trends

    Directory of Open Access Journals (Sweden)

    S. Zaehle

    2012-11-01

    Full Text Available Terrestrial ecosystem models used for Earth system modelling show a significant divergence in future patterns of ecosystem processes, in particular carbon exchanges, despite a seemingly common behaviour for the contemporary period. An in-depth evaluation of these models is hence of high importance to achieve a better understanding of the reasons for this disagreement. Here, we develop an extension for existing benchmarking systems by making use of the complementary information contained in the observational records of atmospheric CO2 and remotely-sensed vegetation activity to provide a firm set of diagnostics of ecosystem responses to climate variability in the last 30 yr at different temporal and spatial scales. The selection of observational characteristics (traits specifically considers the robustness of information given the uncertainties in both data and evaluation analysis. In addition, we provide a baseline benchmark, a minimum test that the model under consideration has to pass, to provide a more objective, quantitative evaluation framework. The benchmarking strategy can be used for any land surface model, either driven by observed meteorology or coupled to a climate model. We apply this framework to evaluate the offline version of the MPI-Earth system model's land surface scheme JSBACH. We demonstrate that the complementary use of atmospheric CO2 and satellite based vegetation activity data allows to pinpoint specific model failures that would not be possible by the sole use of atmospheric CO2 observations.

  1. The Evolution of Operational Satellite Based Remote Sensing in Support of Weather Analysis, Nowcasting, and Hazard Mitigation

    Science.gov (United States)

    Hughes, B. K.

    2010-12-01

    The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.

  2. Advanced three-dimensional imaging reveals the arterial vasculature in the head region of the air-breathing swamp eel, Monopterus albus

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Pedersen, Michael; Huong, Do T

    Air-breathing fish exhibit many anatomical modifications that allow for oxygen uptake directly from air. This is certainly the case for the tropical swamp eels, Synbranchidae, where various structural adaptations of the vasculature within the buccopharyngeal region mediate an amphibious lifestyle...

  3. A New Temperature-Vegetation Triangle Algorithm with Variable Edges (TAVE for Satellite-Based Actual Evapotranspiration Estimation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-09-01

    Full Text Available The estimation of spatially-variable actual evapotranspiration (AET is a critical challenge to regional water resources management. We propose a new remote sensing method, the Triangle Algorithm with Variable Edges (TAVE, to generate daily AET estimates based on satellite-derived land surface temperature and the vegetation index NDVI. The TAVE captures heterogeneity in AET across elevation zones and permits variability in determining local values of wet and dry end-member classes (known as edges. Compared to traditional triangle methods, TAVE introduces three unique features: (i the discretization of the domain as overlapping elevation zones; (ii a variable wet edge that is a function of elevation zone; and (iii variable values of a combined-effect parameter (that accounts for aerodynamic and surface resistance, vapor pressure gradient, and soil moisture availability along both wet and dry edges. With these features, TAVE effectively addresses the combined influence of terrain and water stress on semi-arid environment AET estimates. We demonstrate the effectiveness of this method in one of the driest countries in the world—Jordan, and compare it to a traditional triangle method (TA and a global AET product (MOD16 over different land use types. In irrigated agricultural lands, TAVE matched the results of the single crop coefficient model (−3%, in contrast to substantial overestimation by TA (+234% and underestimation by MOD16 (−50%. In forested (non-irrigated, water consuming regions, TA and MOD16 produced AET average deviations 15.5 times and −3.5 times of those based on TAVE. As TAVE has a simple structure and low data requirements, it provides an efficient means to satisfy the increasing need for evapotranspiration estimation in data-scarce semi-arid regions. This study constitutes a much needed step towards the satellite-based quantification of agricultural water consumption in Jordan.

  4. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    Science.gov (United States)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  5. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  6. Satellite-based estimates of light-use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    D. O. Fuller

    2012-11-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based carbon dioxide eddy covariance (EC systems are installed in only a few mangrove forests worldwide and the longest EC record from the Florida Everglades contains less than 9 yr of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger-scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE and we present the first-ever tower-based estimates of mangrove forest RE derived from night-time CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increases in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  7. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  8. Advances in monitoring vegetation and land use dynamics in the Sahel

    DEFF Research Database (Denmark)

    Mbow, Cheikh; Fensholt, Rasmus; Nielsen, Thomas Theis

    2014-01-01

    of CO2 in the atmosphere, grazing pressure, bush fires and agricultural expansion or contraction. The use of satellite data in combination with field data played a major role in the monitoring of vegetation dynamics and land use in the Sahel, since the mega drought of the 1970s and the 1980s. This paper...... briefly reviews the advance of satellite-based monitoring of vegetation dynamics over these 40 years. We discuss the promises of current and likely future data sources and analysis tools, as well as the need to strengthen in situ data collection to support and validate satellite-based vegetation and land...

  9. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  10. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Directory of Open Access Journals (Sweden)

    P. López López

    2017-06-01

    Full Text Available A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5  ×  5 arcmin are performed with varying parameters values for the 32-year period 1979–2010. Five different calibration scenarios are inter-compared: (i reference scenario using the hydrological model with the standard parameterization, (ii calibration using in situ-observed discharge time series, (iii calibration using the Global Land Evaporation Amsterdam Model (GLEAM actual evapotranspiration time series, (iv calibration using ESA Climate Change Initiative (CCI surface soil moisture time series and (v step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI, WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP. Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model

  11. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products

    Science.gov (United States)

    López López, Patricia; Sutanudjaja, Edwin H.; Schellekens, Jaap; Sterk, Geert; Bierkens, Marc F. P.

    2017-06-01

    A considerable number of river basins around the world lack sufficient ground observations of hydro-meteorological data for effective water resources assessment and management. Several approaches can be developed to increase the quality and availability of data in these poorly gauged or ungauged river basins; among them, the use of Earth observations products has recently become promising. Earth observations of various environmental variables can be used potentially to increase knowledge about the hydrological processes in the basin and to improve streamflow model estimates, via assimilation or calibration. The present study aims to calibrate the large-scale hydrological model PCRaster GLOBal Water Balance (PCR-GLOBWB) using satellite-based products of evapotranspiration and soil moisture for the Moroccan Oum er Rbia River basin. Daily simulations at a spatial resolution of 5 × 5 arcmin are performed with varying parameters values for the 32-year period 1979-2010. Five different calibration scenarios are inter-compared: (i) reference scenario using the hydrological model with the standard parameterization, (ii) calibration using in situ-observed discharge time series, (iii) calibration using the Global Land Evaporation Amsterdam Model (GLEAM) actual evapotranspiration time series, (iv) calibration using ESA Climate Change Initiative (CCI) surface soil moisture time series and (v) step-wise calibration using GLEAM actual evapotranspiration and ESA CCI surface soil moisture time series. The impact on discharge estimates of precipitation in comparison with model parameters calibration is investigated using three global precipitation products, including ERA-Interim (EI), WATCH Forcing methodology applied to ERA-Interim reanalysis data (WFDEI) and Multi-Source Weighted-Ensemble Precipitation data by merging gauge, satellite and reanalysis data (MSWEP). Results show that GLEAM evapotranspiration and ESA CCI soil moisture may be used for model calibration resulting in

  12. Dermal uptake directly from air under transient conditions: advances in modeling and comparisons with experimental results for human subjects

    DEFF Research Database (Denmark)

    Morrison, G C; Weschler, Charles J.; Bekö, Gabriel

    2016-01-01

    To better understand the dermal exposure pathway, we enhance an existing mechanistic model of transdermal uptake by including skin surface lipids (SSL) and consider the impact of clothing. Addition of SSL increases the overall resistance to uptake of SVOCs from air but also allows for rapid...... transfer of SVOCs to sinks like clothing or clean air. We test the model by simulating di-ethyl phthalate (DEP) and di-n-butyl phthalate (DnBP) exposures of six bare-skinned (Weschler et al. 2015, Environ. Health Perspect., 123, 928) and one clothed participant (Morrison et al. 2016, J. Expo. Sci. Environ...

  13. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays For Satellite-Based Wildfire Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...

  14. Multipath/RFI/modulation study for DRSS-RFI problem: Voice coding and intelligibility testing for a satellite-based air traffic control system

    Science.gov (United States)

    Birch, J. N.; Getzin, N.

    1971-01-01

    Analog and digital voice coding techniques for application to an L-band satellite-basedair traffic control (ATC) system for over ocean deployment are examined. In addition to performance, the techniques are compared on the basis of cost, size, weight, power consumption, availability, reliability, and multiplexing features. Candidate systems are chosen on the bases of minimum required RF bandwidth and received carrier-to-noise density ratios. A detailed survey of automated and nonautomated intelligibility testing methods and devices is presented and comparisons given. Subjective evaluation of speech system by preference tests is considered. Conclusion and recommendations are developed regarding the selection of the voice system. Likewise, conclusions and recommendations are developed for the appropriate use of intelligibility tests, speech quality measurements, and preference tests with the framework of the proposed ATC system.

  15. Identifying the Drivers and Occurrence of Historical and Future Extreme Air-quality Events in the United States Using Advanced Statistical Techniques

    Science.gov (United States)

    Porter, W. C.; Heald, C. L.; Cooley, D. S.; Russell, B. T.

    2013-12-01

    Episodes of air-quality extremes are known to be heavily influenced by meteorological conditions, but traditional statistical analysis techniques focused on means and standard deviations may not capture important relationships at the tails of these two respective distributions. Using quantile regression (QR) and extreme value theory (EVT), methodologies specifically developed to examine the behavior of heavy-tailed phenomena, we analyze extremes in the multi-decadal record of ozone (O3) and fine particulate matter (PM2.5) in the United States. We investigate observations from the Air Quality System (AQS) and Interagency Monitoring of Protected Visual Environments (IMPROVE) networks for connections to meteorological drivers, as provided by the National Center for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) product. Through regional characterization by quantile behavior and EVT modeling of the meteorological covariates most responsible for extreme levels of O3 and PM2.5, we estimate pollutant exceedance frequencies and uncertainties in the United States under current and projected future climates, highlighting those meteorological covariates and interactions whose influence on air-quality extremes differs most significantly from the behavior of the bulk of the distribution. As current policy may be influenced by air-quality projections, we then compare these estimated frequencies to those produced by NCAR's Community Earth System Model (CESM) identifying regions, covariates, and species whose extreme behavior may not be adequately captured by current models.

  16. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features (Phase II-Air Training Command, Military Airlift Command, and Strategic Air Command [and] Phase III-Electronic Warfare Trainers).

    Science.gov (United States)

    Polzella, Donald J.; Hubbard, David C.

    This document consists of an interim report and a final report which describe the second and third phases of a project designed to determine the utility and utilization of sophisticated hardware and software capabilities known as advanced instructional features (AIFs). Used with an aircrew training device (ATD), AIFs permit a simulator instructor…

  17. Satellite-based technology, systems testing of fishing vessels: Newfoundland Region (1997) = Essais de systèmes de satellites pour les bateaux de pêche : règion de Terre-Neuve (1997)

    National Research Council Canada - National Science Library

    1998-01-01

    The application of satellite-based technology for monitoring fishing vessels and fishing activity is an effective management tool, permitting two-way communication and electronic tracking and reporting...

  18. Association Between Satellite-based Estimates of Long-term PM2.5 Exposure and Coronary Artery Disease

    Science.gov (United States)

    Background: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. Methods: We utilized a cohort of 5679 patients who had undergone cardiac ...

  19. Association Between Satellite-based Estimates of Long-term PM2.5 Exposure and Coronary Artery Disease

    Science.gov (United States)

    Background: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. Methods: We utilized a cohort of 5679 patients who had undergone cardiac ...

  20. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Nauditt, Alexandra; Birkel, Christian; Verbist, Koen; Ribbe, Lars

    2017-03-01

    Accurate representation of the real spatio-temporal variability of catchment rainfall inputs is currently severely limited. Moreover, spatially interpolated catchment precipitation is subject to large uncertainties, particularly in developing countries and regions which are difficult to access. Recently, satellite-based rainfall estimates (SREs) provide an unprecedented opportunity for a wide range of hydrological applications, from water resources modelling to monitoring of extreme events such as droughts and floods.This study attempts to exhaustively evaluate - for the first time - the suitability of seven state-of-the-art SRE products (TMPA 3B42v7, CHIRPSv2, CMORPH, PERSIANN-CDR, PERSIAN-CCS-Adj, MSWEPv1.1, and PGFv3) over the complex topography and diverse climatic gradients of Chile. Different temporal scales (daily, monthly, seasonal, annual) are used in a point-to-pixel comparison between precipitation time series measured at 366 stations (from sea level to 4600 m a.s.l. in the Andean Plateau) and the corresponding grid cell of each SRE (rescaled to a 0.25° grid if necessary). The modified Kling-Gupta efficiency was used to identify possible sources of systematic errors in each SRE. In addition, five categorical indices (PC, POD, FAR, ETS, fBIAS) were used to assess the ability of each SRE to correctly identify different precipitation intensities.Results revealed that most SRE products performed better for the humid South (36.4-43.7° S) and Central Chile (32.18-36.4° S), in particular at low- and mid-elevation zones (0-1000 m a.s.l.) compared to the arid northern regions and the Far South. Seasonally, all products performed best during the wet seasons (autumn and winter; MAM-JJA) compared to summer (DJF) and spring (SON). In addition, all SREs were able to correctly identify the occurrence of no-rain events, but they presented a low skill in classifying precipitation intensities during rainy days. Overall, PGFv3 exhibited the best performance everywhere

  1. Bending the Eagle’s Wing - How Advanced Air Defenses put the Enemy’s Vital Centers Beyond the Reach of American Airpower

    Science.gov (United States)

    2010-06-04

    29 Carl von Clausewitz, On War, ed. and trans. Michael Howard and Peter Paret (Princeton, NJ: Princeton University Press, 1976), 358. 68 More so...Air University Press, 1994. Clausewitz, Carl von. On War. Edited and Translated by Michael Howard and Peter Paret. Princeton, NJ: Princeton...Randolph, Stephen P. Powerful and Brutal Weapons. Cambridge, MA: Harvard University Press, 2007. Sagan , Scott D. and Kenneth N. Waltz. The Spread of

  2. Advancing NASA’s AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2016-12-01

    Full Text Available P-band radar remote sensing applied during the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS mission has shown great potential for estimation of root zone soil moisture. When retrieving the soil moisture profile (SMP from P-band radar observations, a mathematical function describing the vertical moisture distribution is required. Because only a limited number of observations are available, the number of free parameters of the mathematical model must not exceed the number of observed data. For this reason, an empirical quadratic function (second order polynomial is currently applied in the AirMOSS inversion algorithm to retrieve the SMP. The three free parameters of the polynomial are retrieved for each AirMOSS pixel using three backscatter observations (i.e., one frequency at three polarizations of Horizontal-Horizontal, Vertical-Vertical and Horizontal-Vertical. In this paper, a more realistic, physically-based SMP model containing three free parameters is derived, based on a solution to Richards’ equation for unsaturated flow in soils. Evaluation of the new SMP model based on both numerical simulations and measured data revealed that it exhibits greater flexibility for fitting measured and simulated SMPs than the currently applied polynomial. It is also demonstrated that the new SMP model can be reduced to a second order polynomial at the expense of fitting accuracy.

  3. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  4. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  5. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    Science.gov (United States)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  6. AA-CAES. Opportunities and challenges of advanced adiabatic compressed-air energy storage technology as a balancing tool in interconnected grids

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Roland; Moser, Peter [RWE Power AG, Essen (Germany). Forschung und Entwicklung, Neue Technologien; Hoffmann, Stephanie [GE Global Research Europe, Garching (Germany); Pazzi, Simone [GE Infrastructure, Oil and Gas, Firenze (Italy); Klafki, Michael [ESK GmbH (RWE Group), Freiberg (Germany); Zunft, Stefan [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2008-07-01

    An expansion of CO{sub 2}-neutral energy supply is in the focus of European and national environmental policy and will be crucially supported by offshore wind power generation in future. Grid-compatible integration of these fluctuating electricity quantities will - in the medium term already - require substantial adjustments of the German grid and power plant system in order to cope with the upcoming new boundary conditions. The development of new technologies for large-scale electricity storage is a key element in future flexible European electricity transmission systems. Electricity storage in Adiabatic CAES power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. Before this concept can be implemented, however, several technical problems must be solved and technical development work done, especially in the field of turbomachinery and the required heat storage device. This paper outlines the technical possibilities and the need for development. Ongoing development activities are described and first interim results presented. (orig.)

  7. Air Pollution Monitoring for Communities Fact Sheet

    Science.gov (United States)

    EPA through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  8. Air Pollution Monitoring for Communities Grants

    Science.gov (United States)

    EPA, through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  9. The relationship between cloud condensation nuclei (CCN concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates

    Directory of Open Access Journals (Sweden)

    Y. Shinozuka

    2015-01-01

    Full Text Available We examine the relationship between the number concentration of boundary-layer cloud condensation nuclei (CCN and light extinction to investigate underlying aerosol processes and satellite-based CCN estimates. Regression applied to a variety of airborne and ground-based measurements identifies the CCN (cm−3 at 0.4 ± 0.1% supersaturation with 100.3α +1.3 σ0.75 where σ (M m−1 is the 500 nm extinction coefficient by dried particles and α is the Angstrom exponent. The deviation of one kilometer horizontal average data from this approximation is typically within a factor of 2.0. ∂ log CCN/∂ log σ is less than unity because, among other explanations, aerosol growth processes generally make particles scatter more light without increasing their number. This, barring extensive data aggregation and special meteorology-aerosol connections, associates doubling of aerosol optical depth with less than doubling of CCN, contrary to common assumptions in satellite-based analysis of aerosol-cloud interactions.

  10. Advances in developing the air-lift drilling technology. Concept of a portal drilling rig - trial of a steerable shaft drilling bit

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.

    1988-12-01

    The Federal Minister of Research and Technology is supporting a project of Wirth GmbH to develop a new drilling rig suitable for drilling deep shafts from the surface through ground of almost any condition, from unstable formations to solid rock. The development of such drilling rig is based on the blind drilling method with air-assisted reverse circulation. - Various concepts of drilling rigs have been developed in accordance with different planning stages of a combined RD-project. Based on the experience of an extensive R and D program a steerable vertical drilling bit has been developed by which deviations from the vertical can be positively corrected. The prototype of this steerable bit with a diameter of 2.1 m has been tested successfully while drilling a well with a depth of more than 200 m in an open pit coal mine.

  11. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    Science.gov (United States)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  12. Advanced GPS Technologies (AGT)

    Science.gov (United States)

    2015-05-01

    V Air Force Research Laboratory ••• Advanced GPS Technologies (AGT) Integrity *Service *Excellence 1 May 2015 Kevin Slimak Program Manager...2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Advanced GPS Technologies (AGT) 5a. CONTRACT NUMBER 5b...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the GPS Partnership

  13. Olefin metathesis in air

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  14. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  15. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature componen

    DEFF Research Database (Denmark)

    Moyano, Carmen; Garcia, Monica; Tornos, Lucia

    2015-01-01

    consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar radiation apart from standard satellites-products freely available. Our results show that in comparison with the hydrological model conceptual...... to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono......-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower...

  16. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products

    Science.gov (United States)

    Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath

    2016-08-01

    Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the

  17. Model uncertainties affecting satellite-based inverse modeling of nitrogen oxides emissions and implications for surface ozone simulation

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-06-01

    Full Text Available Errors in chemical transport models (CTMs interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2 and emissions of nitrogen oxides (NOx have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 22% in July and 10% in January. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitudes if the model is used

  18. Satellite-based detection of 16.76 MeV γ-ray from H-bomb D-T fusion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the high energy γ-ray yield from the H-bomb D-T fusion reaction,it brings forward the idea applying the 16.76 MeV γ-ray to judge whether the H-bomb happens or not,and to deduce the explosion TNT equivalent accurately.The Monte Carlo N-Particle was applied to simulate the high energy γ-ray radiation characteristics reaching the geosynchronous orbit satellite,and the CVD diamond detector suit for the requirements was researched.A series of experiments were carried out to testify the capabilities of the diamond detector.It provides a brand-new approach to satellite-based nuclear explosion detection.

  19. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    Science.gov (United States)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  20. Satellite-based estimates of reduced CO and CO2 emissions due to traffic restrictions during the 2008 Beijing Olympics

    Science.gov (United States)

    Worden, Helen M.; Cheng, Yafang; Pfister, Gabriele; Carmichael, Gregory R.; Zhang, Qiang; Streets, David G.; Deeter, Merritt; Edwards, David P.; Gille, John C.; Worden, John R.

    2012-07-01

    During the 2008 Olympics, the Chinese government made a significant effort to improve air quality in Beijing, including restrictions on traffic. Here we estimate the reductions in carbon monoxide (CO) and carbon dioxide (CO2) emissions resulting from the control measures on Beijing transportation. Using MOPITT (Measurements Of Pollution In The Troposphere) multispectral satellite observations of near-surface CO along with WRF-Chem (Weather Research and Forecasting model with Chemistry) simulations for Beijing during August, 2007 and 2008, we estimate changes in CO due to meteorology and transportation sector emissions. Applying a reported CO/CO2 emission ratio for fossil fuels, we find the corresponding reduction in CO2, 60 ± 36 Gg[CO2]/day. As compared to emission scenarios being considered for the IPCC AR5 (Intergovernmental Panel on Climate Change, 5th Assessment Report), this result suggests that urban traffic controls on the Beijing Olympics scale could play a significant role in meeting target reductions for global CO2 emissions.

  1. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-04-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m-2 yr-1 and total NPP in the range of 318–490 Tg C yr-1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m-2 yr-1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m-2 yr-1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  2. Assessment of surface dryness due to deforestation using satellite-based temperature-vegetation dryness index (TVDI) in Rondônia, Amazon

    Science.gov (United States)

    Ryu, J. H.; Cho, J.

    2016-12-01

    The Rondônia is the most deforested region in the Amazon due to human activities such as forest lumbering for the several decades. The deforestation affects to water cycle because evapotranspiration was reduced, and then soil moisture and precipitation will be changed. In this study, we assess surface dryness using satellite-based data such as moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST), normalized difference vegetation index (NDVI), albedo, TRMM Multi-sensor Precipitation Analysis (TMPA) precipitation from 2002 to 2014, and Global Ozone Monitoring Experiment-2 (GOME-2) sun-induced fluorescence (SIF) from 2007 to 2014. Temperature-vegetation dryness index (TVDI) was calculated using LST and NDVI to evaluate surface dryness during dry season (June-July). TVDI relatively represents the surface dryness on specific area and period. Forest, deforesting and deforested regions were selected in the Rondônia to assess the relative changes on surface dryness occurred from human activity. The relative TVDI (rTVDI) at deforesting region increased because of deforestation, it means that surface in deforesting region became more dryness. We also found that to assess the impact of deforestation using satellite-based precipitation and vegetation conditions such as NDVI and sun-induced fluorescence (SIF) is possible. The relative NDVI (rNDVI) and SIF decreased when TVDI increased, and two variables (rTVDI-rNDVI, rTVDI-SIF) had linear correlation. Thesis results can be helpful to comprehend impact of deforestation in Amazon, and to validate simulations of deforestation from hydrological models.

  3. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    Science.gov (United States)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-01-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  4. Toward Obtaining Reliable Particulate Air Quality Information from Satellites

    Science.gov (United States)

    Strawa, A. W.; Chatfield, R. B.; Legg, M.; Esswein, R.; Justice, E.

    2009-12-01

    Air quality agencies use ground sites to monitor air quality, providing accurate information at particular points. Using measurements from satellite imagery has the potential to provide air quality information in a timely manner with better spatial resolution and at a lower cost that can also useful for model validation. While previous studies show acceptable correlations between Aerosol Optical Depth (AOD) derived from MODIS and surface Particulate Matter (PM) measurements on the eastern US, the data do not correlate well in the western US (Al-Saadi et al., 2005; Engle-Cox et al., 2004) . This paper seeks to improve the AOD-PM correlations by using advanced statistical analysis techniques. Our study area is the San Joaquin Valley in California because air quality in this region has failed to meet state and federal attainment standards for PM for the past several years. A previous investigation found good correlation of the AOD values between MODIS, MISR and AERONET, but poor correlations (R2 ~ 0.02) between satellite-based AOD and surface PM2.5 measurements. PM2.5 measurements correlated somewhat better (R2 ~ 0.18) with MODIS-derived AOD using the Deep Blue surface reflectance algorithm (Hsu et al., 2006) rather than the standard MODIS algorithm. This level of correlation is not adequate for reliable air quality measurements. Pelletier et al. (2007) used generalized additive models (GAMs) and meteorological data to improve the correlation between PM and AERONET AOD in western Europe. Additive models are more flexible than linear models and the functional relationships can be plotted to give a sense of the relationship between the predictor and the response. In this paper we use GAMs to improve surface PM2.5 to MODIS-AOD correlations. For example, we achieve an R2 ~ 0.44 using a GAM that includes the Deep Blue AOD, and day of year as parameters. Including NOx observations, improves the R2 ~ 0.64. Surprisingly Ångström exponent did not prove to be a significant

  5. Detection of Convective Initiation Using Meteorological Imager Onboard Communication, Ocean, and Meteorological Satellite Based on Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Hyangsun Han

    2015-07-01

    Full Text Available As convective clouds in Northeast Asia are accompanied by various hazards related with heavy rainfall and thunderstorms, it is very important to detect convective initiation (CI in the region in order to mitigate damage by such hazards. In this study, a novel approach for CI detection using images from Meteorological Imager (MI, a payload of the Communication, Ocean, and Meteorological Satellite (COMS, was developed by improving the criteria of the interest fields of Rapidly Developing Cumulus Areas (RDCA derivation algorithm, an official CI detection algorithm for Multi-functional Transport SATellite-2 (MTSAT-2, based on three machine learning approaches—decision trees (DT, random forest (RF, and support vector machines (SVM. CI was defined as clouds within a 16 × 16 km window with the first detection of lightning occurrence at the center. A total of nine interest fields derived from visible, water vapor, and two thermal infrared images of MI obtained 15–75 min before the lightning occurrence were used as input variables for CI detection. RF produced slightly higher performance (probability of detection (POD of 75.5% and false alarm rate (FAR of 46.2% than DT (POD of 70.7% and FAR of 46.6% for detection of CI caused by migrating frontal cyclones and unstable atmosphere. SVM resulted in relatively poor performance with very high FAR ~83.3%. The averaged lead times of CI detection based on the DT and RF models were 36.8 and 37.7 min, respectively. This implies that CI over Northeast Asia can be forecasted ~30–45 min in advance using COMS MI data.

  6. Validation of Satellite-Based Objective Overshooting Cloud-Top Detection Methods Using CloudSat Cloud Profiling Radar Observations

    Science.gov (United States)

    Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.

  7. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    Science.gov (United States)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  8. Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

    Directory of Open Access Journals (Sweden)

    Domagoj Drenjanac

    2014-10-01

    Full Text Available In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS receivers carried by the human operator: (1 an internal GNSS receiver built into a handheld device; and (2 an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1 a localization algorithm based on the received signal strength indication (RSSI from the wireless environment; and (2 the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the

  9. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  10. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  11. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012.

    Science.gov (United States)

    Liu, Miaomiao; Huang, Yining; Ma, Zongwei; Jin, Zhou; Liu, Xingyu; Wang, Haikun; Liu, Yang; Wang, Jinnan; Jantunen, Matti; Bi, Jun; Kinney, Patrick L

    2017-01-01

    While recent assessments have quantified the burden of air pollution at the national scale in China, air quality managers would benefit from assessments that disaggregate health impacts over regions and over time. We took advantage of a new 10×10km satellite-based PM2.5 dataset to analyze spatial and temporal trends of air pollution health impacts in China, from 2004 to 2012. Results showed that national PM2.5 related deaths from stroke, ischemic heart disease and lung cancer increased from approximately 800,000 cases in 2004 to over 1.2 million cases in 2012. The health burden exhibited strong spatial variations, with high attributable deaths concentrated in regions including the Beijing-Tianjin Metropolitan Region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, Shandong, Wuhan Metropolitan Region, Changsha-Zhuzhou-Xiangtan, Henan, and Anhui, which have heavy air pollution, high population density, or both. Increasing trends were found in most provinces, but with varied growth rates. While there was some evidence for improving air quality in recent years, this was offset somewhat by the countervailing influences of in-migration together with population growth. We recommend that priority areas for future national air pollution control policies be adjusted to better reflect the spatial hotspots of health burdens. Satellite-based exposure and health impact assessments can be a useful tool for tracking progress on both air quality and population health burden reductions.

  12. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price

    2016-02-01

    Full Text Available Orbital thermal infrared (TIR remote sensing is an important tool for characterizing geologic surfaces on Earth and Mars. However, deposition of material from volcanic or eolian activity results in bedrock surfaces becoming significantly mantled over time, hindering the accuracy of TIR compositional analysis. Moreover, interplay between particle size, albedo, composition and surface roughness add complexity to these interpretations. Apparent Thermal Inertia (ATI is the measure of the resistance to temperature change and has been used to determine parameters such as grain/block size, density/mantling, and the presence of subsurface soil moisture/ice. Our objective is to document the quantitative relationship between ATI derived from orbital visible/near infrared (VNIR and thermal infrared (TIR data and tephra fall mantling of the Mono Craters and Domes (MCD in California, which were chosen as an analog for partially mantled flows observed at Arsia Mons volcano on Mars. The ATI data were created from two images collected ~12 h apart by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument. The results were validated with a quantitative framework developed using fieldwork that was conducted at 13 pre-chosen sites. These sites ranged in grain size from ash-sized to meter-scale blocks and were all rhyolitic in composition. Block size and mantling were directly correlated with ATI. Areas with ATI under 2.3 × 10−2 were well-mantled with average grain size below 4 cm; whereas values greater than 3.0 × 10−2 corresponded to mantle-free surfaces. Correlation was less accurate where checkerboard-style mixing between mantled and non-mantled surfaces occurred below the pixel scale as well as in locations where strong shadowing occurred. However, the results validate that the approach is viable for a large majority of mantled surfaces on Earth and Mars. This is relevant for determining the volcanic history of Mars, for

  13. Single-source surface energy balance algorithms to estimate evapotranspiration from satellite-based remotely sensed data

    Science.gov (United States)

    Bhattarai, Nishan

    The flow of water and energy fluxes at the Earth's surface and within the climate system is difficult to quantify. Recent advances in remote sensing technologies have provided scientists with a useful means to improve characterization of these complex processes. However, many challenges remain that limit our ability to optimize remote sensing data in determining evapotranspiration (ET) and energy fluxes. For example, periodic cloud cover limits the operational use of remotely sensed data from passive sensors in monitoring seasonal fluxes. Additionally, there are many remote sensing-based single-source surface energy balance (SEB) models, but no clear guidance on which one to use in a particular application. Two widely used models---surface energy balance algorithm for land (SEBAL) and mapping ET at high resolution with internalized calibration (METRIC)---need substantial human-intervention that limits their applicability in broad-scale studies. This dissertation addressed some of these challenges by proposing novel ways to optimize available resources within the SEB-based ET modeling framework. A simple regression-based Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) fusion model was developed to integrate Landsat spatial and MODIS temporal characteristics in calculating ET. The fusion model produced reliable estimates of seasonal ET at moderate spatial resolution while mitigating the impact that cloud cover can have on image availability. The dissertation also evaluated five commonly used remote sensing-based single-source SEB models and found the surface energy balance system (SEBS) may be the best overall model for use in humid subtropical climates. The study also determined that model accuracy varies with land cover type, for example, all models worked well for wet marsh conditions, but the SEBAL and simplified surface energy balance index (S-SEBI) models worked better than the alternatives for grass cover. A new automated approach based on

  14. A stable, unbiased, long-term satellite based data record of sea surface temperature from ESA's Climate Change Initiative

    Science.gov (United States)

    Rayner, Nick; Good, Simon; Merchant, Chris

    2013-04-01

    The study of climate change demands long-term, stable observational records of climate variables such as sea surface temperature (SST). ESA's Climate Change Initiative was set up to unlock the potential of satellite data records for this purpose. As part of this initiative, 13 projects were established to develop the data records for different essential climate variables - aerosol, cloud, fire, greenhouse gases, glaciers, ice sheets, land cover, ocean colour, ozone, sea ice, sea level, soil moisture and SST. In this presentation we describe the development work that has taken place in the SST project and present new prototype data products that are available now for users to trial. The SST project began in 2010 and has now produced two prototype products. The first is a long-term product (covering mid-1991 - 2010 currently, but with a view to update this in the future), which prioritises length of data record and stability over other considerations. It is based on data from the Along-Track Scanning Radiometer (ATSR) and Advanced Very-High Resolution Radiometer (AVHRR) series of satellite instruments. The product aims to combine the favourable stability and bias characteristics of ATSR data with the geographical coverage achieved with the AVHRR series. Following an algorithm selection process, an optimal estimation approach to retrieving SST from the satellite measurements from both sensors was adopted. The retrievals do not depend on in situ data and so this data record represents an independent assessment of SST change. In situ data are, however, being used to validate the resulting data. The second data product demonstrates the coverage that can be achieved using the modern satellite observing system including, for example, geostationary satellite data. Six months worth of data have been processed for this demonstration product. The prototype SST products will be released in April to users to trial in their work. The long term product will be available as

  15. Advanced Space-Based Detectors

    Science.gov (United States)

    2014-07-17

    unique optical properties produce an unexpectedly high opacity for an atomic monolayer. Recent advances in the fabrication techniques of graphene...3D – three-dimensional AEOSS – Advanced Electro- Optical Space Sensors AlGaAs – Aluminum/Galium/Arsenide AlGaSb – Aluminum/Galium/Antimonide CNL...SUPPLEMENTARY NOTES 14. ABSTRACT At the Air Force Research Laboratory, Space Vehicles Directorate, Advanced Electro- Optical Space Sensors (AEOSS) Group, we

  16. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  17. Advance on non-thermal plasma-photocatalysis technology for air polullant control%低温等离子体-光催化联合技术处理空气污染物的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁文俊; 马琳; 李坚

    2011-01-01

    Non-thermal plasma-photocatalysis technology is a new technology in recent years,which effectively make up for the defects of non-thermal plasma and photocatalysis. The recent research results indicated that the technology was effective for the removal of air pollutants. The basic principles of and advance on non-thermal plasma-photocatalysis technology were introduced and its application prospects were also outlined.%低温等离子体-光催化联合技术是近年来兴起的一项新型技术,它有效弥补了低温等离子体和光催化的缺陷,该技术对空气污染物有较好的去除效果.介绍了低温等离子体-光催化联合技术的基本原理和国内外研究进展,并对该技术的应用前景进行了展望.

  18. The expectation of applying IR guidance in medium range air-to-air missiles

    Science.gov (United States)

    Li, Lijuan; Liu, Ke

    2016-10-01

    IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.

  19. Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Science.gov (United States)

    Brogniez, Colette; Auriol, Frédérique; Deroo, Christine; Arola, Antti; Kujanpää, Jukka; Sauvage, Béatrice; Kalakoski, Niilo; Riku Aleksi Pitkänen, Mikko; Catalfamo, Maxime; Metzger, Jean-Marc; Tournois, Guy; Da Conceicao, Pierre

    2016-12-01

    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009-September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all

  20. A Satellite-Based Assessment of the Distribution and Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa

    Directory of Open Access Journals (Sweden)

    Shweta Yadav

    2017-09-01

    Full Text Available Assessing the abundance of submerged aquatic vegetation (SAV, particularly in shallow lakes, is essential for effective lake management activities. In the present study we applied satellite remote sensing (a Landsat-8 image in order to evaluate the SAV coverage area and its biomass for the peak growth period, which is mainly in September or October (2013 to 2016, in the eutrophic and shallow south basin of Lake Biwa. We developed and validated a satellite-based water transparency retrieval algorithm based on the linear regression approach (R2 = 0.77 to determine the water clarity (2013–2016, which was later used for SAV classification and biomass estimation. For SAV classification, we used Spectral Mixture Analysis (SMA, a Spectral Angle Mapper (SAM, and a binary decision tree, giving an overall classification accuracy of 86.5% and SAV classification accuracy of 76.5% (SAV kappa coefficient 0.74, based on in situ measurements. For biomass estimation, a new Spectral Decomposition Algorithm was developed. The satellite-derived biomass (R2 = 0.79 for the SAV classified area gives an overall root-mean-square error (RMSE of 0.26 kg Dry Weight (DW m-2. The mapped SAV coverage area was 20% and 40% in 2013 and 2016, respectively. Estimated SAV biomass for the mapped area shows an increase in recent years, with values of 3390 t (tons, dry weight in 2013 as compared to 4550 t in 2016. The maximum biomass density (4.89 kg DW m-2 was obtained for a year with high water transparency (September 2014. With the change in water clarity, a slow change in SAV growth was noted from 2013 to 2016. The study shows that water clarity is important for the SAV detection and biomass estimation using satellite remote sensing in shallow eutrophic lakes. The present study also demonstrates the successful application of the developed satellite-based approach for SAV biomass estimation in the shallow eutrophic lake, which can be tested in other lakes.

  1. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin

    Science.gov (United States)

    Gao, Zhen; Long, Di; Tang, Guoqiang; Zeng, Chao; Huang, Jiesheng; Hong, Yang

    2017-07-01

    Flood frequency analysis (FFA) is critical for water resources engineering projects, particularly the design of hydraulic structures such as dams and reservoirs. However, it is often difficult to implement FFA in ungauged or poorly gauged basins because of the lack of consistent and long-term records of streamflow observations. The objective of this study was to evaluate the utility of satellite-based precipitation estimates for performing FFA in two presumably ungauged tributaries, the Jialing and Tuojiang Rivers, of the upper Yangtze River. Annual peak flow series were simulated using the Coupled Routing and Excess STorage (CREST) hydrologic model. Flood frequency was estimated by fitting the Pearson type III distribution of both observed and modeled streamflow with historic floods. Comparison of satellite-based precipitation products with a ground-based daily precipitation dataset for the period 2002-2014 reveals that 3B42V7 outperformed 3B42RT. The 3B42V7 product also shows consistent reliability in streamflow simulation and FFA (e.g., relative errors -20%-5% in the Jialing River). The results also indicate that complex terrain, drainage area, and reservoir construction are important factors that impact hydrologic model performance. The larger basin (156,736 km2) is more likely to produce satisfactory results than the small basin (19,613 km2) under similar circumstances (e.g., Jialing/Tuojiang calibrated by 3B42V7 for the calibration period: NSCE = 0.71/0.56). Using the same calibrated parameter sets from the entire Jialing River basin, the 3B42V7/3B42RT-driven hydrologic model performs better for two tributaries of the Jialing River (e.g., for the calibration period, NSCE = 0.71/0.60 in the Qujiang River basin and 0.54/0.38 in the Fujiang River basin) than for the upper mainstem of the Jialing River (NSCE = 0.34/0.32), which has more cascaded reservoirs with all these tributaries treated as ungauged basins for model validation. Overall, this study underscores

  2. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    Science.gov (United States)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  3. Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island

    Directory of Open Access Journals (Sweden)

    Julien Morel

    2014-07-01

    Full Text Available Estimating sugarcane biomass is difficult to achieve when working with highly variable spatial distributions of growing conditions, like on Reunion Island. We used a dataset of in-farm fields with contrasted climatic conditions and farming practices to compare three methods of yield estimation based on remote sensing: (1 an empirical relationship method with a growing season-integrated Normalized Difference Vegetation Index NDVI, (2 the Kumar-Monteith efficiency model, and (3 a forced-coupling method with a sugarcane crop model (MOSICAS and satellite-derived fraction of absorbed photosynthetically active radiation. These models were compared with the crop model alone and discussed to provide recommendations for a satellite-based system for the estimation of yield at the field scale. Results showed that the linear empirical model produced the best results (RMSE = 10.4 t∙ha−1. Because this method is also the simplest to set up and requires less input data, it appears that it is the most suitable for performing operational estimations and forecasts of sugarcane yield at the field scale. The main limitation is the acquisition of a minimum of five satellite images. The upcoming open-access Sentinel-2 Earth observation system should overcome this limitation because it will provide 10-m resolution satellite images with a 5-day frequency.

  4. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    Science.gov (United States)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  5. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel

    Directory of Open Access Journals (Sweden)

    Bernardo Patti

    2010-08-01

    Full Text Available The northern sector of the Sicilian Channel is an area of favourable upwelling winds, which ought to support primary production. However, the values for primary production are low when compared with other Mediterranean areas and very low compared with the most biologically productive regions of the world’s oceans: California, the Canary Islands, Humboldt and Benguela. The aim of this study was to identify the main factors that limit phytoplankton biomass in the Sicilian Channel and modulate its monthly changes. We compared satellite-based estimates of chlorophyll a concentration in the Strait of Sicily with those observed in the four Eastern Boundary Upwelling Systems mentioned above and in other Mediterranean wind-induced coastal upwelling systems (the Alboran Sea, the Gulf of Lions and the Aegean Sea. Our results show that this low level of chlorophyll is mainly due to the low nutrient level in surface and sub-surface waters, independently of wind-induced upwelling intensity. Further, monthly changes in chlorophyll are mainly driven by the mixing of water column and wind-induced and/or circulation-related upwelling processes. Finally, primary production limitation due to the enhanced stratification processes resulting from the general warming trend of Mediterranean waters is not active over most of the coastal upwelling area off the southern Sicilian coast.

  6. Design of a Satellite-based AIS Signal processor based on FPGA%基于FPGA的星载AIS信号处理器的设计

    Institute of Scientific and Technical Information of China (English)

    张喆

    2012-01-01

    According to the characters of the space-based AIS(Automatic Identification System) receiver;a system design scheme is proposed to realize the efficient receiver of signal.It is introduced the project of the hardware realization of the satellite-based AIS signal processor parts in detail and emphasized on how to realize the signal processing based on FPGA.Some simulations and experiment based on AIS receiver are presented to verifythe validity and feasibility of the proposed scheme.It is proved that this signal processor performance can meet the requirements of the space-base AIS receiver system by performing some testing.%针对星载AIS(船舶自动识别系统)接收系统提出了实现信号有效接收的总体方案。重点提供星载AIS信号处理器的硬件电路设计和基于FPGA信号处理软件设计。以AIS接收机整机为测试平台,通过仿真和试验验证了星载AIS接收机整机设计的有效性和可行性,此信号处理器可以满足星载AIS接收机的需求。

  7. Application of satellite-based rainfall and medium range meteorological forecast in real-time flood forecasting in the Mahanadi River basin

    Science.gov (United States)

    Nanda, Trushnamayee; Beria, Harsh; Sahoo, Bhabagrahi; Chatterjee, Chandranath

    2016-04-01

    Increasing frequency of hydrologic extremes in a warming climate call for the development of reliable flood forecasting systems. The unavailability of meteorological parameters in real-time, especially in the developing parts of the world, makes it a challenging task to accurately predict flood, even at short lead times. The satellite-based Tropical Rainfall Measuring Mission (TRMM) provides an alternative to the real-time precipitation data scarcity. Moreover, rainfall forecasts by the numerical weather prediction models such as the medium term forecasts issued by the European Center for Medium range Weather Forecasts (ECMWF) are promising for multistep-ahead flow forecasts. We systematically evaluate these rainfall products over a large catchment in Eastern India (Mahanadi River basin). We found spatially coherent trends, with both the real-time TRMM rainfall and ECMWF rainfall forecast products overestimating low rainfall events and underestimating high rainfall events. However, no significant bias was found for the medium rainfall events. Another key finding was that these rainfall products captured the phase of the storms pretty well, but suffered from consistent under-prediction. The utility of the real-time TRMM and ECMWF forecast products are evaluated by rainfall-runoff modeling using different artificial neural network (ANN)-based models up to 3-days ahead. Keywords: TRMM; ECMWF; forecast; ANN; rainfall-runoff modeling

  8. Advanced Composites for Air and Ground Vehicles

    Science.gov (United States)

    2015-08-01

    Progress in polymer science, 2003. 28(11): p. 1539–1641. 6. Kojima, Y., et al., “Mechanical properties of nylon 6-clay hybrid,” Journal of...Mechanical properties of nylon 6-clay hybrid,” Journal of Materials Research(USA), 1993. 8(5): p. 1185–1189. 41. Mesbah, A., et al., “Experimental...the sensors directly through cables and wires has a high installation and material cost. Wireless sensor networks (WSNs) offer a promising solution

  9. Advanced Metallic Air Vehicle Structure Program

    Science.gov (United States)

    1974-06-01

    At-. . S REMOE LMINATORIS YO HIC4rMESS .9Q!Oe L4aD 1A7 TOKMS Fit% VOID SEQO TO VILL VOID o tFILVD i- ---I -SICRM 45 SAO 4 PLAC S I.LtLOIS RIF 572Z5902...creating a heavy globular underbead and severe underfill on the face of the weld. Weld parameters that were investigated include variations of voltage

  10. Advanced Air Separation Module Performance Evaluation

    Science.gov (United States)

    1988-07-01

    protected from fire and explosion in several ways: "o Reticulated foam (A-1O, F-15, C-130, F-4, etc.) "o Halcn 1301 inerting (F-16) "o Nitrogen inerting (C... reticulated foam, stored liquid nitrogen or molecular sieves. In addition, this system in most cases will offer the lowest aircraft weight penalties and...I --- , i~~~I1fhd~fJfJ~,WirEiii TABLE 1: Polymer Properties Property Polysulfone Ethyl poly(4methyl -ot Cellulose pentene 1) _m Water Absorption 0.22

  11. Advanced Robotics for Air Force Operations

    Science.gov (United States)

    1989-06-01

    C’RA&I JUStifti~l; By Availabilty Codes Djst j AvIl !dor NATIONAL ACADEMY PRESS Washington, D.C. 1989 NOTICE: The project that is the subject of this...assemblies and aircraft maintenance based on individual design engines. (See Figures 2-21 to 2-23.) and usage and are processed through the depots...is then scheduled into the backlog of orders in the system. Optimization programs can be included to maximize material usage and minimize scrap. The

  12. Air-To-Air Combat Skills: Contribution of Platform Motion to Initial Training

    Science.gov (United States)

    1978-10-01

    AFHRL/FT) using the Advanced Simulator for Air-to-Air Combat (SAAC); (b) an A/A study Pilot Training ( ASPT ) indicated that platform using Northrop...Advanced interested in the implication of these findings in Simulator for Pilot Training ( ASPT ) at Williams view of their planned simulator procurements...i.e., air-to-surface weapons delivery TAC’s request, but the ASPT A/S study was (A/S) and air-to-air combat (A/A), was questioned. completed (Gray

  13. Satellite-Based Surface Heat Budgets and Sea Surface Temperature Tendency in the Tropical Eastern Indian and Western Pacific Oceans for the 1997/98 El Nino and 1998/99 La Nina

    Science.gov (United States)

    Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung

    2002-01-01

    The 1997/98 is a strong El Nino warm event, while the 1998/99 is a moderate La Nina cold event. We have investigated surface heat budgets and sea surface temperature (SST) tendency for these two events in the tropical western Pacific and eastern Indian Oceans using satellite-retrieved surface radiative and turbulent fluxes. The radiative fluxes are taken from the Goddard Satellite-retrieved Surface Radiation Budget (GSSRB), derived from radiance measurements of the Japanese Geostationary Meteorological Satellite 5. The GSSRB covers the domain 40 deg S - 4 deg N, 90 deg E-17 deg W and a period from October 1997 to December 2000. The spatial resolution is 0.5 deg x 0.5 deg lat-long and the temporal resolution is 1 day. The turbulent fluxes are taken from Version 2 of the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF-2). The GSSTF-2 has a spatial resolution of 1 deg x 1 deg lat-long over global Oceans and a temporal resolution of 1 day covering the period July 1987-December 2000. Daily turbulent fluxes are derived from the S S M (Special Sensor Microwave/Imager) surface wind and surface air humidity, and the SST and 2-m air temperature of the NCEP/NCAR reanalysis, using a stability-dependent bulk flux algorithm. The changes of surface heat budgets, SST and tendency, cloudiness, wind speed, and zonal wind stress of the 1997/98 El Nino relative to the1998/99 La Nina for the northern winter and spring seasons are analyzed. The relative changes of surface heat budgets and SST tendency of the two events are quite different between the tropical eastern Indian and western Pacific Oceans. For the tropical western Pacific, reduced solar heating (more clouds) is generally associated with decreased evaporative cooling (weaker winds), and vise versa. The changes in evaporative cooling over-compensate that of solar heating and dominate the spatial variability of the changes in net surface heating. Both solar heating and evaporative cooling offset each other to reduce

  14. On the ability of RegCM4 to simulate surface solar radiation patterns over Europe: An assessment using satellite-based observations

    Science.gov (United States)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Zanis, Prodromos; Tsikerdekis, Athanasios; Katragkou, Eleni; Kourtidis, Konstantinos; Meleti, Charikleia

    2015-04-01

    We assess here the ability of RegCM4 to simulate the surface solar radiation (SSR) patterns over the European domain. For the needs of this work, a decadal (1999-2009) simulation was implemented at a horizontal resolution of 50km using the first year as a spin-up. The model is driven by emissions from CMIP5 while ERA-interim data were used as lateral boundary conditions. The RegCM4 SSR fields were validated against satellite-based SSR observations from Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) sensors (CM SAF SIS product). The RegCM4 simulations slightly overestimate SSR compared to CM SAF over Europe with the bias being +1.54% in case of MFG (2000-2005) and +3.34% in case of MSG (2006-2009). SSR from RegCM4 is much closer to SSR from CM SAF over land (bias of -1.59% for MFG and +0.66% for MSG) than over ocean (bias of +7.20% for MFG and 8.07% for MSG). In order to understand the reasons of this bias, we proceeded to a detailed assessment of various parameters that define the SSR levels (cloud fractional cover - CFC, cloud optical thickness - COT, cloud droplet effective radius - Re, aerosol optical thickness - AOD, asymmetry factor - ASY, single scattering albedo - SSA, water vapor - WV and surface albedo - ALB). We validated the simulated CFC, COT and Re from RegCM4 against satellite-based observations from MSG and we found that RegCM4 significantly underestimates CFC and Re, and overestimates COT over Europe. The aerosol-related parameters from RegCM4 were compared with values from the aerosol climatology taken into account within CM SAF SSR estimates. AOD is significantly underestimated in our simulations which leads to a positive SSR bias. The RegCM4 WV and ALB were compared with WV values from ERA-interim and ALB climatological observations from CERES which are also taken into account within CM SAF SSR estimates. Finally, with the use of a radiative transfer model (SBDART) we manage to quantify the relative contribution of each of

  15. Satellite-Based Tropospheric NO2 Column Trends in the Last 10 Years Over Mexican Urban Areas Measured by the Ozone Monitoring Instrument

    Science.gov (United States)

    Rivera, C. I.; Stremme, W.; Grutter, M.

    2015-12-01

    Population density and economic activities in urban agglomerations have drastically increased in many cities in Mexico during the last decade. Several factors are responsible for increased urbanization such as a shift of people from rural to urban areas while looking for better education, services and job opportunities as well as the natural growth of the urban areas themselves. Urbanization can create great social, economic and environmental pressures and changes which can easily be observed in most urban agglomerations in the world. In this study, we have focused on analyzing tropospheric NO2 (nitrogen dioxide) column trends over Mexican urban areas that have a population of at least one million inhabitants according to the latest 2010 population census. Differential Optical Absorption Spectroscopy (DOAS) measurements of NO2 conducted by the space-borne Ozone Monitoring Instrument (OMI) on board the Aura satellite between 2005 and 2014 have been used for this analysis. This dataset has allowed us to obtain a satellite-based 10-year tropospheric NO2 column trend over the most populated Mexican cities which include the dominating metropolitan area of Mexico City with more than twenty million inhabitants as well as ten other Mexican cities with a population ranging between one to five million inhabitants with a wide range of activities (commercial, agricultural or heavily industrialized) as well as two important border crossings. Distribution maps of tropospheric NO2 columns above the studied urban agglomerations were reconstructed from the analyzed OMI dataset, allowing to identify areas of interest due to clear NO2 enhancements inside these urban regions.

  16. Using long-term daily satellite based rainfall data (1983-2015) to analyze spatio-temporal changes in the sahelian rainfall regime

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Guichard, Francoise; Tian, Qingjiu; Fensholt, Rasmus

    2017-07-01

    The sahelian rainfall regime is characterized by a strong spatial as well as intra- and inter-annual variability. The satellite based African Rainfall Climatology Version 2 (ARC2) daily gridded rainfall estimates with a 0.1° × 0.1° spatial resolution provides the possibility for in-depth studies of seasonal changes over a 33-year period (1983-2015). Here we analyze rainfall regime variables that require daily observations: onset, cessation, and length of the wet season; seasonal rainfall amount; number of rainy days; intensity and frequency of rainfall events; number, length, and cumulative duration of dry spells. Rain gauge stations and MSWEP (Multi-Source Weighted-Ensemble Precipitation) data were used to evaluate the agreement of rainfall variables in both space and time, and trends were analyzed. Overall, ARC2 rainfall variables reliably show the spatio-temporal dynamics of seasonal rainfall over 33 years when compared to gauge and MSWEP data. However, a higher frequency of low rainfall events (spell characteristics). Most rainfall variables (both ARC2 and gauge data) show negative anomalies (except for onset of rainy season) from 1983 until the end of the 1990s, from which anomalies become mostly positive and inter-annual variability is higher. ARC2 data show a strong increase in seasonal rainfall, wet season length (caused by both earlier onset and a late end), number of rainy days, and high rainfall events (>20 mm day-1) for the western/central Sahel over the period of analysis, whereas the opposite trend characterizes the eastern part of the Sahel.

  17. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    Science.gov (United States)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  18. Advances in Air-Launched Weapon Guidance and Control, Proceedings of the Guidance and Control Panel Symposium (44th) Held in Athens (Greece) on 5-8 May 1987.

    Science.gov (United States)

    1987-12-01

    l’association avion (a) - 6quipage (s) - arme. 3. CAS DES ARMEMENTS AIR/AIR 1l eat possible de classer lea armements AIR/AIR tir~s d’avien en trois t’a- milles ...de Is mar doit Atre possible de jour cosine de nuit , dane de mauvaises conditions mdtdo, et pour des Etats de mar allant jusqu’h force 5-6. Par...rdeiles et parfoia trOs difficiles (vol de nuit au-dessus de Is met, par force 5 a 6). En particulier, Ia pr~cision du atationnaire anroinatique (Doppler

  19. Computers in Air Defence

    Directory of Open Access Journals (Sweden)

    P. V.S. Rao

    1987-10-01

    Full Text Available With man's mastery over the third dimension - the near atmosphere and space- it has become increasingly necessary to protect oneself not merely from attacks from land and the sea but, more importantly, from attacks from the air. This was recognised even during the World War II and a rudimentary air defence capability was sought to be established; by the manul (visual surveillance and the anti-aircraft guns. The advent of radar signified a major advance in air defence technology and techniques. Rather than depend on visual observation and the hazards and limitations thereof, it became possible with radar to detect the presence of flying objects at much great distances. The PPI display of a conventional air-surveillance radar permits an operator to scan the sky for several hundreds of kilometers all around. Early radar-based air defence systems were dependent on human observation and decision making for detecting targets, identifying them, deciding on interception strategy and for recovering the interceptor after completion of his mission. This was feasible because, with a radar of between 200 to 400 kilometers and aircraft speeds in the range of 500 kilometers per hour, upto 30 minutes warning was available before the target was overhead.

  20. Developing a Method for Resolving NOx Emission Inventory Biases Using Discrete Kalman Filter Inversion, Direct Sensitivities, and Satellite-Based Columns

    Science.gov (United States)

    An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.

  1. `Energy storage` using liquid air

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C. [Melbourne Univ., Parkville, VIC (Australia)

    1995-12-31

    Storage of liquid air is relatively simple, and the work needed to manufacture it is, at least in principle, entirely recoverable. Available energy densities seem excellent. Unfortunately the technology to use liquid air for energy storage has never been developed. The Phillips-Stirling and McMahon and Gifford air liquefiers, and a previous proposal by Smith, provide leads as to the form which the technology might take. This paper introduces the concept of `Exergy`, and how it can be utilized in the storage of liquid air. It concludes that liquid air seems to present some real advantages over batteries for energy storage. The development presents a challenge. Since battery technology is not making the huge advances promised, it could be time to take a more serious look at this alternative. (author). 4 figs., 14 refs.

  2. Costs and Benefits of Advanced Aeronautical Technology

    Science.gov (United States)

    Bobick, J. C.; Denny, R. E.

    1983-01-01

    Programs available from COSMIC used to evaluate economic feasibility of applying advanced aeronautical technology to civil aircraft of future. Programs are composed of three major models: Fleet Accounting Module, Airframe manufacturer Module, and Air Carrier Module.

  3. Using Satellite-Based Earth Science Data in a Public Health Decision-Support System to Track and Forecast Pollen Events

    Science.gov (United States)

    Hudspeth, W. B.; Budge, A.

    2013-12-01

    There is widespread recognition within the public health community that ongoing changes in climate are expected to increasingly pose threats to human health. Environmentally induced health risks to populations with respiratory illnesses are a growing concern globally. Of particular concern are dust and smoke events carrying PM2.5 and PM10 particle sizes, ozone, and pollen. There is considerable interest in documenting the precise linkages between changing patterns in the climate and how these shifts impact the prevalence of respiratory illnesses. The establishment of these linkages can drive the development of early warning and forecasting systems to alert health care professionals of impending air-quality events. As a component of a larger NASA-funded project on Integration of Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems, the Earth Data Analysis Center (EDAC) at the University of New Mexico, is developing web-based visualization and analysis services for forecasting pollen concentration data. This decision-support system, New Mexico's Environmental Public Health Tracking System (NMEPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. The forecast of atmospheric events with high pollen concentrations has employed a modified version of the DREAM (Dust Regional Atmospheric Model, a verified model for atmospheric dust transport modeling. In this application, PREAM (Pollen Regional Atmospheric Model) models pollen emission using a MODIS-derived phenology of Juniperus spp. communities. Model outputs are verified and validated with ground-based records of pollen release timing and quantities. Outputs of the PREAM model are post-processed and archived in EDAC's Geographic Storage, Transformation, and

  4. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    Science.gov (United States)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  5. Satellite Based Live and Interactive Distance Learning Program in the Field of Geoinformatics - a Perspective of Indian Institute of Remote Sensing, India

    Science.gov (United States)

    Raju, P. L. N.; Gupta, P. K.; Roy, P. S.

    2011-09-01

    Geoinformatics is a highly specialized discipline that deals with Remote Sensing, Geographical Information System (GIS), Global Positioning System (GPS) and field surveys for assessing, quantification, development and management of resources, planning and infrastructure development, utility services etc. Indian Institute of Remote Sensing (IIRS), a premier institute and one of its kinds has played a key role for capacity Building in this specialized area since its inception in 1966. Realizing the large demand, IIRS has started outreach program in basics of Remote Sensing, GIS and GPS for universities and institutions. EDUSAT (Educational Satellite) is the communication satellite built and launched by ISRO in 2004 exclusively for serving the educational sector to meet the demand for an interactive satellite based distance education system for the country. IIRS has used EDUSAT (shifted to INSAT 4 CR recently due to termination of services from EDUSAT) for its distance learning program to impart basic training in Remote Sensing, GIS and GPS, catering to the universities spread across India. The EDUSAT based training is following similar to e-learning method but has advantage of live interaction sessions between teacher and the students when the lecture is delivered using EDUSAT satellite communication. Because of its good quality reception the interactions are not constrained due to bandwidth problems of Internet. National Natural Resource Management System, Department of Space, Government of India, under Standing Committee in Training and Technology funded this unique program to conduct the basic training in Geoinformatics. IIRS conducts 6 weeks basic training course on "Remote Sensing, GIS and GPS" regularly since the year 2007. The course duration is spread over the period of 3 months beginning with the start of the academic year (1st semester) i.e., July to December every year, for university students. IIRS has utilized EDUSAT satellite for conducting 4 six weeks

  6. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  7. Cross-validation Methodology between Ground and GPM Satellite-based Radar Rainfall Product over Dallas-Fort Worth (DFW) Metroplex

    Science.gov (United States)

    Chen, H.; Chandrasekar, V.; Biswas, S.

    2015-12-01

    Over the past two decades, a large number of rainfall products have been developed based on satellite, radar, and/or rain gauge observations. However, to produce optimal rainfall estimation for a given region is still challenging due to the space time variability of rainfall at many scales and the spatial and temporal sampling difference of different rainfall instruments. In order to produce high-resolution rainfall products for urban flash flood applications and improve the weather sensing capability in urban environment, the center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in collaboration with National Weather Service (NWS) and North Central Texas Council of Governments (NCTCOG), has developed an urban radar remote sensing network in DFW Metroplex. DFW is the largest inland metropolitan area in the U.S., that experiences a wide range of natural weather hazards such as flash flood and hailstorms. The DFW urban remote sensing network, centered by the deployment of eight dual-polarization X-band radars and a NWS WSR-88DP radar, is expected to provide impacts-based warning and forecasts for benefit of the public safety and economy. High-resolution quantitative precipitation estimation (QPE) is one of the major goals of the development of this urban test bed. In addition to ground radar-based rainfall estimation, satellite-based rainfall products for this area are also of interest for this study. Typical example is the rainfall rate product produced by the Dual-frequency Precipitation Radar (DPR) onboard Global Precipitation Measurement (GPM) Core Observatory satellite. Therefore, cross-comparison between ground and space-based rainfall estimation is critical to building an optimal regional rainfall system, which can take advantages of the sampling differences of different sensors. This paper presents the real-time high-resolution QPE system developed for DFW urban radar network, which is based upon the combination of S-band WSR-88DP and X

  8. SATELLITE BASED LIVE AND INTERACTIVE DISTANCE LEARNING PROGRAM IN THE FIELD OF GEOINFORMATICS – A PERSPECTIVE OF INDIAN INSTITUTE OF REMOTE SENSING, INDIA

    Directory of Open Access Journals (Sweden)

    P. L. N. Raju

    2012-09-01

    Full Text Available Geoinformatics is a highly specialized discipline that deals with Remote Sensing, Geographical Information System (GIS, Global Positioning System (GPS and field surveys for assessing, quantification, development and management of resources, planning and infrastructure development, utility services etc. Indian Institute of Remote Sensing (IIRS, a premier institute and one of its kinds has played a key role for capacity Building in this specialized area since its inception in 1966. Realizing the large demand, IIRS has started outreach program in basics of Remote Sensing, GIS and GPS for universities and institutions. EDUSAT (Educational Satellite is the communication satellite built and launched by ISRO in 2004 exclusively for serving the educational sector to meet the demand for an interactive satellite based distance education system for the country. IIRS has used EDUSAT (shifted to INSAT 4 CR recently due to termination of services from EDUSAT for its distance learning program to impart basic training in Remote Sensing, GIS and GPS, catering to the universities spread across India. The EDUSAT based training is following similar to e-learning method but has advantage of live interaction sessions between teacher and the students when the lecture is delivered using EDUSAT satellite communication. Because of its good quality reception the interactions are not constrained due to bandwidth problems of Internet. National Natural Resource Management System, Department of Space, Government of India, under Standing Committee in Training and Technology funded this unique program to conduct the basic training in Geoinformatics. IIRS conducts 6 weeks basic training course on "Remote Sensing, GIS and GPS" regularly since the year 2007. The course duration is spread over the period of 3 months beginning with the start of the academic year (1st semester i.e., July to December every year, for university students. IIRS has utilized EDUSAT satellite for

  9. Understanding Droughts and their Agricultural Impact in North America at the Basin Scale through the Development of Satellite Based Drought Indicators

    Science.gov (United States)

    Munoz Hernandez, A.; Lawford, R. G.

    2012-12-01

    Drought is a major constraint severely affecting numerous agricultural regions in North America. Decision makers need timely information on the existence of a drought as well as its intensity, frequency, likely duration, and economic and social effects in order to implement adaptation strategies and minimize its impacts. Countries like Mexico and Canada face a challenge associated with the lack of consistent and reliable in-situ data that allows the computation of drought indicators at resolutions that effectively supports decision makers at the watershed scale. This study focuses on (1) the development of near-real time drought indicators at high resolution utilizing various satellite data for use in improving adaptation plans and mitigation actions at the basin level; (2) the quantification of the relationships between current and historical droughts and their agricultural impacts by evaluating thresholds for drought impacts; and (3) the assessment of the effects of existing water policies, economic subsidies, and infrastructure that affect the vulnerability of a particular region to the economic impacts of a drought. A pilot study area located in Northwest Mexico and known as the Rio Yaqui Basin was selected for this study in order to make comparisons between the satellite based indicators derived from currently available satellite products to provide an assessment of the quality of the products generated. The Rio Yaqui Basin, also referred to as the "bread basket" of Mexico, is situated in an arid to semi-arid region where highly sophisticated irrigation systems have been implemented to support extensive agriculture. Although for many years the irrigation systems acted as a safety net for the farmers, recent droughts have significantly impacted agricultural output, affected thousands of people, and increase the dependence on groundwater. The drought indices generated are used in conjunction with a decision-support model to provide information on drought impacts

  10. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    Directory of Open Access Journals (Sweden)

    G. Snider

    2014-07-01

    Full Text Available Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5 at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD. We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of global regions, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by an order of magnitude. Initial measurements indicate that the AOD column to PM2.5 ratio is driven temporally primarily by the vertical profile of aerosol scattering; and spatially by a~ more complex interaction

  11. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  12. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  13. Air Warfare

    Science.gov (United States)

    2002-03-01

    advanced waves of friendly troops, have already been described. It was noted also that the airplane finally came to be relied on for the performance of...vivid imagination to conjure up one, where it would be justifiable to use all bom- bardment units against the very advanced waves of infantry. Another

  14. Air Pollution

    Science.gov (United States)

    ... to view this content or go to source URL . What NIEHS is Doing on Air Pollution Who ... Junction Last Reviewed: February 06, 2017 This page URL: NIEHS website: https://www.niehs.nih.gov/ Email ...

  15. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  16. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  17. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  18. Proposed Rule and Related Materials for Proposed Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare and Advance Notice of Proposed Rulemaking

    Science.gov (United States)

    FR notice and fact sheet concerning Advance Notice of Proposed Rulemaking that provides information on the process for setting an international CO2 emissions standard for aircraft at the International Civil Aviation Organization (ICAO)

  19. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  20. Application of Parallel Algorithms in an Air Pollution Model

    DEFF Research Database (Denmark)

    Georgiev, K.; Zlatev, Z.

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  1. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  2. Long-Term Calculations with Large Air Pollution Models

    DEFF Research Database (Denmark)

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  3. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  4. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape......In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...

  5. Air surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  6. Advanced Emissions Control Development Program

    Energy Technology Data Exchange (ETDEWEB)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  7. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  8. Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004

    Science.gov (United States)

    Background: Because ambient air pollution exposure occurs in the form of mixtures, consideration of joint effects of multiple pollutants may advance our understanding of air pollution health effects. Methods: We assessed the joint effect of selected ambient air pollutant com...

  9. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  10. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  11. 气候变化对环境空气质量影响的研究进展%Advances in the Effect of Climate Change on Air Quality

    Institute of Scientific and Technical Information of China (English)

    孙家仁; 许振成; 刘煜; 彭晓春; 陈来国; 李海燕; 陶俊; 林泽健

    2011-01-01

    回顾了国内外气候变化对环境空气质量影响的相关研究成果.已有研究表明,气候变化可以通过改变地面气温而加速某些大气污染成分(如O3)的前体物(如VOCs)的自然源排放,可以通过改变化学反应速率、边界层高度和天气系统出现频率等来影响污染物的垂直混合和扩散速度,还可以通过改变大气环流形势,进而改变污染物的传输方式;气候变化不仅影响到室外空气质量,还可以影响室内空气质量,给人体健康带来威胁.因而,气候变化可以影响局地或地区的大气环境质量,也可以带来室内空气质量的改变,这些认识已被学者们达成一致.但是这些影响仍存在着诸多不确定性因素,主要包括:未来气候变化的趋势和程度,未来的大气污染物及其前体物的排放量,大气污染成分与气候变化因子间的相关关系,不同大气组分间在不同气象条件作用下的物化过程和机理的认识等.我国在涉及气候变化对环境空气质量影响研究方面处于起步阶段,建议今后加强该项研究,尤其是在气候变化对与空气质量相关的公共健康影响方面的研究.%The current understanding about the effects of climate change on air quality is reviewed. It has been found that the increase of surface air temperature can accelerate the natural source emission of the precursors (e. G. VOCs) of some air pollutions (e. G. O3 ); it can change the vertical mixing and diffusion rate by modifying the chemical reaction rate, the height of Planetary Boundary Layer (PBL), and the occurrence frequency of weather systems; it can also alter the atmospheric circulation and thereby change the manner of pollution transport. Climate change can affect not only the outdoor air quality but also the indoor air quality, hence there might be a threat to human health. Thus, climate change can impact the regional or local outdoor and indoor air quality, on which most scholars

  12. Ecoflex: Improving air quality with green dynamic traffic management based on real time air quality measurements

    NARCIS (Netherlands)

    Baalen, J. van; Koning, A. de; Voogt, M.; Stelwagen, U.; Turksma, S.

    2011-01-01

    Across the world, air quality regulations are breached due to localized high pollution episodes in specific locations, or "hotspots". Advances in air pollution monitoring techniques enable hotspots to be identified more effectively; however challenges remain as to how best to reduce the incidence

  13. Ecoflex: Improving air quality with green dynamic traffic management based on real time air quality measurements

    NARCIS (Netherlands)

    Baalen, J. van; Koning, A. de; Voogt, M.; Stelwagen, U.; Turksma, S.

    2011-01-01

    Across the world, air quality regulations are breached due to localized high pollution episodes in specific locations, or "hotspots". Advances in air pollution monitoring techniques enable hotspots to be identified more effectively; however challenges remain as to how best to reduce the incidence an

  14. 热红外遥感反演近地层气温的研究进展%Advances in the Study of Near Surface Air Temperature Retrieval from Thermal Infrared Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    徐永明; 覃志豪; 万洪秀

    2011-01-01

    Near surface air temperature is an important environment variable in many earth system models, because it is a key factor in the energy and water exchanges between land surface and atmosphere. Detailed measurements of spatial and temporal variations of near surface air temperature are critical for the effective understanding of climate,hydrology, ecology, agriculture and terrestrial life processes. Traditionally meteorological observation could provide accurateair temperature data at the point scale, but most earth system models need gridded input variables.Satellite remote sensing provides a straightforward and consistent way to observe air temperature at regional and global scales with more spatially detailed information than meteorological data. This paper systematically reviews the air temperature retrieving algorithms for thermal remote sensing data, which include TVX approaches, statistical approaches, neural network approaches and energy balance approaches. The main advantages and limitations of these four methods are also discussed. Finally, the development tendencies of estimating air temperature by remote sensing are pointed out, such as intensive research on thermal radiant transfer model, spatial -temporal scaling of air temperature and improvement of cloud detection.%近地层气温是生态环境的重要因子,是描述地表与大气能量交换与水分循环的关键变量.气象站点观测能够提供点尺度上的准确气温资料,但是大多数地球系统模型需要空间连续的参数来模拟物理过程.遥感提供了比地表气象观测数据更理想的空间异质度信息,为快速获取大尺度的气温时空信息提供了新的途径.主要介绍了目前常用的几种遥感气温估算方法,包括温度-植被指数(TVX)方法、经验统计方法、神经网络方法和能量平衡方法等等,并对这些方法的优、缺点分别进行了评述.最后,指出今后应该加强辐射传输过程的机理研究、气温

  15. Advanced Search

    African Journals Online (AJOL)

    Items 451 - 500 of 500 ... East and Central African Journal of Surgery · Vol 17, No 3 (2012) ... Post-surgical treatment of thyroid carcinoma in dogs with retinoic ... arising in a mature cystic ovarian Teratoma with bladder invasion: A Case Report, Abstract PDF ... of Bicalutamide in Patients with Advanced Prostate Cancer, Abstract.

  16. Advanced ferroelectricity

    CERN Document Server

    Blinc, R

    2011-01-01

    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  17. Advanced Search

    African Journals Online (AJOL)

    Items 251 - 300 of 557 ... ... Journal of Africa, Animal Production Research Advances, Animal ..... Frederick Haraka, Ali Mohamed, Gadi Kilonzo, Humphrey Shao ... No 3 (2010), Culture and Belief Systems: A Christian Experience in the 21st Century, Abstract .... on cardiovascular parameters and CD4 cell count of people living ...

  18. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devices The Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  19. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  20. 海洋微表层对海气CO2通量影响的研究进展%ADVANCES IN THE IMPACT OF SEA SURFACE MICROLAYER ON THE AIR-SEA CO2 FLUX

    Institute of Scientific and Technical Information of China (English)

    管玉平; 邢元明; 杨磊

    2012-01-01

    CO2的海气通量对于研究全球气候变化具有重要的意义.海洋微表层作为CO2在海洋和大气之间传输的重要通道,对于准确估算全球海气CO2通量的大小非常重要.本文主要从微表层中表面活性物质的富集,温度的偏低和与CO2的化学反应3个方面,综述了近年来与微表层相关的CO2通量研究进展,并对未来的相关研究进行了展望.%The research on air-sea CO2 flux is of great significance in researching the global climate change. As an vital channel of the transfer of CO2 between ocean and atmosphere, sea surface microlayer plays an important role in accurately estimating the air-sea CO2 flux. This paper mainly reviewed the progress of air-sea CO2 flux related with microlayer from three aspects i the enrichment of surfactant,the cool skin and chemical enhancement, and then took a preview of further research.

  1. Design of a fifth generation air superiority fighter

    Science.gov (United States)

    Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus

    2016-07-01

    Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.

  2. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  3. Advancing Leadership

    Directory of Open Access Journals (Sweden)

    Penny L. Tenuto

    2014-04-01

    Full Text Available Preparing students to become active citizens and contributors to a democratic society is premised on teaching democratic principles and modeling standards of democratic practice at all levels of education. The purpose of this integrative literature review is to establish a conceptual framework grounded in literature and a model for cultivating democratic professional practice in education (DPPE to advance leadership for school improvement. This work is presented in three parts: (a a review of historical references, reports, and legislation that culminated in increased accountability and standards in P-12 public education; (b a discussion of social patterns in education generally associated with bureaucracy versus democracy; and (c a new contribution to the literature, a model for cultivating DPPE is conceptualized to encourage leading and teaching professionals to reflect on beliefs and evaluate practices in advancing leadership for school improvement. Recommendations are included for further research.

  4. Advanced LIGO

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  5. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. High Resolution Projection of Future Air Quality in South Asia

    Science.gov (United States)

    Kumar, R.; Barth, M. C.; Pfister, G.; Lamarque, J. F.; Walters, S.; Naja, M. K.; Ghude, S. D.

    2015-12-01

    About one seventh of the world's population living in South Asia faces the risk of severe air pollution due to high anthropogenic emissions of air pollutants. Recent studies have shown that exposure to present day air pollution in South Asia is sufficient enough to reduce the lifespan of about 660 million people by about 3 years, destroy food that can feed about 94 million poor people and cause economic loss of several billion dollars. This problem may worsen in the future as anthropogenic emissions are expected to increase due to rapid economic growth in South Asia, and climate change is expected to lead to atmospheric conditions conducive for the production and accumulation of air pollutants. In order to predict how air quality will change in South Asia in future (2050), we are conducting high resolution air quality simulations for the present day (2005-2014) and future (2046-2055) time periods using the Nested Regional Climate Model coupled with Chemistry (NRCM-Chem). The model domain covers entire South Asia at a horizontal grid spacing of 60 km with a nested domain over the densely populated and polluted Indo-Gangetic Plain region at a horizontal grid spacing of 12 km. The model results are being evaluated with available in situ and satellite based observations and the evaluation results show that NRCM-Chem model is able to capture several important features of the observed spatial and temporal distribution of key meteorological parameters and air pollutants. Initial model results show that annual average surface ozone and PM2.5 concentrations may increase by up to 15 ppbv and 25 μg m-3, respectively with highest increase in the Indo-Gangetic Plain.

  7. Air Quality Research and Applications Using AURA OMi Data

    Science.gov (United States)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  8. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  9. R9 Air Districts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Region 9 Air Districts layer is a compilation of polygons representing the California Air Pollution Control and Air Quality Management Districts, Arizona Air...

  10. Air Quality System (AQS)

    Science.gov (United States)

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  11. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  12. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  13. 空调室外机气动与声学特性的研究进展%Advances in Investigation of Acoustic and Aerodynamic Noise in Air Conditioner Outdoor Unit

    Institute of Scientific and Technical Information of China (English)

    杨启容; 秦静静; 吴荣华; 王硕

    2015-01-01

    Noise in air conditioner outdoor unit includes mechanical noise,electromagnetic noise and aerodynamic noise.The effects of mechanic and electromagnetic noise are minor but aerodynamic noise effect is the key in the duct system of air condi-tioner outdoor unit.The history and u-to-date development of noise in air conditioner outdoor unit were reviewed,The detail analy-sis is carried out from three ways of methods of numerical modeling,experimental studies and modal analysis according to refer-ences.On the basis of the analysis and summary,the further needed work of noise reduction are put forward.%空调室外机噪声包括机械噪声、电磁噪声和气动噪声,其中机械噪声和电磁噪声在常规状态下影响较小,气动噪声是空调室外机风道系统的主要噪声。本文回顾了国内外关于空调室外机气动噪音的研究历史与现状,结合文献着重从数值模拟、试验研究以及模态分析几个方面进行了分析。经过分析总结,提出了进一步降噪需要开展的工作。

  14. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  15. Advances in urban climate modeling.

    Science.gov (United States)

    Hidalgo, Julia; Masson, Valéry; Baklanov, Alexander; Pigeon, Grégoire; Gimeno, Luis

    2008-12-01

    Cities interact with the atmosphere over a wide range of scales from the large-scale processes, which have a direct impact on global climate change, to smaller scales, ranging from the conurbation itself to individual buildings. The review presented in this paper analyzes some of the ways in which cities influence atmospheric thermodynamics and airborne pollutant transport. We present the main physical processes that characterize the urban local meteorology (the urban microclimate) and air pollution. We focus on small-scale impacts, including the urban heat island and its causes. The impact on the lower atmosphere over conurbations, air pollution in cities, and the effect on meteorological processes are discussed. An overview of the recent principal advances in urban climatology and air quality modeling in atmospheric numerical models is also presented.

  16. CHEMICAL AND BIOLOGICAL AIR POLLUTANTS, AS PARAMETERS OF COMPLEX AIR QUALITY INDICES

    Directory of Open Access Journals (Sweden)

    TEKLA EÖTVÖS

    2007-12-01

    Full Text Available Human health is essentially influenced by air quality. Atmospheric air in residential areas contains many pollutants. The monitoring and the plain publishing of the measured values are important both for the authorities and the public. Air quality is often characterized by constructing air quality indices, and these indices are used to inform the public. The construction of an advanced air quality index is usually done by averaging the measured data usually in time and space; hereby important aspects of the data can be lost. All known indices contain only chemical pollutants, while certain biological pollutants can enhance the effects of the chemical pollutants and vice versa. In this paper we discuss the importance of integrating biological pollutants into air quality indices. In order to increase efficacy of these indices to the civil society we aim to introduce geographic information system (GIS methods into publishing air quality information.

  17. Pure Air`s Bailly scrubber: A four-year retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Manavi, G.B.; Vymazal, D.C. [Pure Air, Allentown, PA (United States); Sarkus, T.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  18. Flotation advances

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, D.

    1998-11-01

    This paper describes recent advances in flotation cell and mechanism design. OutoKumpu have designed larger cells, suitable for the flotation of smaller particles, with differing mechanisms for particles of different types. Froth handling is also closely controlled. Flotation cells from BQR are also described. Flotation columns are also increasingly being adopted, complementing the use of conventional flotation cells. Designs by Wemco, Multotec, VERTI-MIX, Jameson, Suedala, Quinn and Cytec are detailed, giving improvements in fine coal separation coarse particle separation, and other innovations. 8 figs., 2 tabs.

  19. Advanced calculus

    CERN Document Server

    Widder, David V

    2012-01-01

    This classic text by a distinguished mathematician and former Professor of Mathematics at Harvard University, leads students familiar with elementary calculus into confronting and solving more theoretical problems of advanced calculus. In his preface to the first edition, Professor Widder also recommends various ways the book may be used as a text in both applied mathematics and engineering.Believing that clarity of exposition depends largely on precision of statement, the author has taken pains to state exactly what is to be proved in every case. Each section consists of definitions, theorem

  20. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  1. Advanced trigonometry

    CERN Document Server

    Durell, C V

    2003-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  2. Advanced calculus

    CERN Document Server

    Fitzpatrick, Patrick M

    2009-01-01

    Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclide

  3. Advanced LIGO

    CERN Document Server

    ,

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  4. Advanced LIGO

    Science.gov (United States)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  5. 东北三省冬季气温变化的有关研究进展%Advances in the Research of Winter Air Temperature Variation of Three Provinces in Northeast China

    Institute of Scientific and Technical Information of China (English)

    刘实; 闫敏华; 隋波

    2009-01-01

    通过简要回顾中国学者有关东北三省冬季气温变化的研究成果,概括分析了近百年或近几十年时间尺度平均气温及最高、最低气温年际、年代际变化的基本特征,综述了与冬季气温年际、年代际变化相关的各类海-气环流因子.近百年来,东北冬季气温上升,1987年前后发生增暖突变;北极涛动、西伯利亚高压、东亚冬季风等是影响东北冬季气温年际变化的主要因子;北极涛动、东亚冬季风、东亚中高纬环流型等的持续性是冬季气温年代际变化的主要因子.对多种变化特征集中出现的20世纪70年代末的气候变化值得深入探讨,也有必要在整个东北三省的范围内,深入开展冬季气温预测方法的系统研究.另外,测站气温序列的非均一性问题也应引起足够重视.%This paper summarizes the research progress of winter air temperature variations of three provinces(i.e.Liaoning,Jilin,Heilongiiang)in Northeast China.The basic characteristics of interannual and interdecadal variations of average,maximum and minimum air temperatures in the last 100 years or recent several dacades are briefly reviewed.This overview deals with various atmosphere-ocean general circulation factors closely associated with interdecadal and interannual climate variations of winter air temperature of three provinces in Northeast China.Winter air temperature has risen in Northeast China in recent 100 years,and an abrupt warming occurred in about 1987.Arctic Oscillation,Siberian high,and East Asian winter monsoon are the major factors affecting the interannual variations of winter temperature in Northeast China;the persistentce of Arctic Oscillation,East Asian winter monsoon,and circulation pattern over the mid-high latitudes of East Asia are the major factors affecting the interdecadal variations of winter temperature.The climate change possessing multiple characteristics in the late 1970s is worth further discussing.It is

  6. Procesos de transformación urbana en la Región Metropolitana de Buenos Aires: una mirada sobre el avance de la ciudad-negocio Processes of urban renewal in the area of Metropolitan Buenos Aires: a look through the advance of business-city

    Directory of Open Access Journals (Sweden)

    María Florencia Girola

    2006-12-01

    Full Text Available Este trabajo propone una exploración comparativa de dos procesos de mutación urbana que tienen lugar en áreas centrales y periféricas de la Región Metropolitana de Buenos Aires. En el contexto de la centralidad se concentrará la atención en torno a la transformación de la zona portuaria de la Ciudad de Buenos Aires a través de la denominada operación Puerto Madero; en el ámbito de la periferia se focalizará en el surgimiento de las urbanizaciones cerradas localizadas en el eje norte del Gran Buenos Aires. Para llevar adelante el objetivo de este artículo se recurrió a la noción de paisaje urbano. De este modo, en la primera sección se reconstruirán dos dinámicas diferenciales de constitución de paisajes urbanos nuevos. En el segundo apartado se analizarán los casos propuestos como productos de procesos de recualificación anclados en las estrategias de la cultura-naturaleza y en la producción de seguridad. El artículo se nutre de un trabajo de campo etnográfico en desarrollo en cada uno de los escenarios urbanos mencionados.The main objective of this article is to analyze two processes of urban renewal from a comparative perspective, one in a downtown area of Metropolitan Buenos Aires and the other on the periphery of Buenos Aires. The first case focuses on the transformation of Puerto Madero, and in the second case, attention is brought to bear on the gated urban areas located in Greater Buenos Aires. Both cases are analyzed through the concept of urban landscape. A comparative analysis enables certain characteristics to be reflected upon which have been adopted by these new urban phenomena, characteristics which are related to urban recycling processes based on complementary culture/nature strategies, and the production of security. This article is based on a fieldwork carried out in these urban spaces.

  7. Research on advance of health effects of nanoparticles on air pollution in China%大气纳米颗粒物对人体健康效应的研究进展

    Institute of Scientific and Technical Information of China (English)

    熊丽林; 吴添舒; 唐萌

    2015-01-01

    大气污染物中细颗粒物的健康危害已经得到证实,其中超细颗粒物(即纳米颗粒物)对人体健康的危害也逐渐得到研究者的关注。本文首先根据我国大气中存在的纳米颗粒物的特点,探讨了其来源和理化特性,然后重点总结了我国大气污染物中常见的纳米颗粒物对机体主要组织器官的负面生物效应和作用机制,最后提出了对大气污染物中纳米颗粒物的研究重点。%The adverse health effects of fine particles in the air pollution has been confirmed, and health consequences induced by ultrafine particles (mass media aerodynamic diameter<0.1 micrometer), which was also known as nanoparticles, was drawing an increasing attention by researchers. Firstly, this review discussed the sources and physicochemical characteristics of nanoparticles in the atmosphere in China. And then we focused on the biological effects and potential toxicity mechanisms of some common nanoparticles in the atmosphere on the major tissues and organs. Finally, the research focus of the nano particles in air pollutants was also presented.

  8. Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part II: Analysis of lake surface temperature and ice cover

    Directory of Open Access Journals (Sweden)

    Homa Kheyrollah Pour

    2014-09-01

    Full Text Available This paper presents results from a study on the impact of remote-sensing Lake Surface Water Temperature (LSWT observations in the analysis of lake surface state of a numerical weather prediction (NWP model. Data assimilation experiments were performed with the High Resolution Limited Area Model (HIRLAM, a three-dimensional operational NWP model. Selected thermal remote-sensing LSWT observations provided by the Moderate Resolution Imaging Spectroradiometer (MODIS and Advanced Along-Track Scanning Radiometer (AATSR sensors onboard the Terra/Aqua and ENVISAT satellites, respectively, were included into the assimilation. The domain of our experiments, which focussed on two winters (2010–2011 and 2011–2012, covered northern Europe. Validation of the resulting objective analyses against independent observations demonstrated that the description of the lake surface state can be improved by the introduction of space-borne LSWT observations, compared to the result of pure prognostic parameterisations or assimilation of the available limited number of in-situ lake temperature observations. Further development of the data assimilation methods and solving of several practical issues are necessary in order to fully benefit from the space-borne observations of lake surface state for the improvement of the operational weather forecast. This paper is the second part of a series of two papers aimed at improving the objective analysis of lake temperature and ice conditions in HIRLAM.

  9. Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India

    Science.gov (United States)

    Jasmin, Ismail; Mallikarjuna, P.

    2011-06-01

    Various hydrological, geological and geomorphological factors play a major role in the occurrence and movement of groundwater in different terrains. With advances in space technology and the advent of powerful personal computers, techniques for the assessment of groundwater potential have evolved, of which remote sensing (RS) and geographic information systems (GIS) are of great significance. The application of these methods is comprehensively reviewed with respect to the exploration and assessment of groundwater potential in consolidated and unconsolidated formations in semi-arid regions, and specifically in India. The process of such assessment includes the collection of remotely sensed data from suitable sensors and the selection of thematic maps on rainfall, geology, lithology, geomorphology, soil, land use/land cover, drainage patterns, slope and lineaments. The data are handled according to their significance with the assignment of appropriate weights and integrated into a sophisticated GIS environment. The requisite remote sensing and GIS data, in conjunction with necessary field investigations, help to identify the groundwater potential zones effectively.

  10. Response of global lightning activity to air temperature variation

    Institute of Scientific and Technical Information of China (English)

    MA Ming; TAO Shanchang; ZHU Baoyou; L(U) Weitao; TAN Yongbo

    2005-01-01

    It is an issue of great attention but yet not very clear whether lightning activities increase or decrease on a warmer world. Reeve et al. presented that lightning activities in global land and the Northern Hemisphere land have positive response to the increase of wet bulb temperature at 1000hPa. Is this positive response restricted only to wet bulb temperature or in land? What is the response of global lightning activities (in both land and ocean) to the global surface air temperature variation like? This paper, based on the 5-year or 8-year OTD/LIS satellite-based lightning detecting data and the NCEP reanalysis data, makes a reanalysis of the response of the global and regional lightning activities to temperature variations. The results show that on the interannual time scale the global total flash rate has positive response to the variation in global surface air temperature, with the sensitivity of 17±7% K-1. Also, the seasonal mean flash rate of continents all over the world and that of continents in the Northern Hemisphere have sensitive positive response to increase of global surface air temperature and wet bulb temperature, with the sensitivity of about 13±5% K-1, a bit lower than estimation of 40% K-1 in Reeve et al. However, the Southern Hemisphere and other areas like the tropics show no significant correlation.

  11. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235....... min. Acceptability of PAQ and freshness of the air improved when air movement was applied. The elevated air movement diminished the negative impact of increased air temperature, relative humidity and pollution level on PAQ. The degree of improvement depended on the pollution level, the temperature...

  12. Aire and T cell Development

    Science.gov (United States)

    Anderson, Mark S.; Su, Maureen A.

    2011-01-01

    In the thymus, developing T cells that react against self-antigens with high affinity are deleted in the process of negative selection. An essential component of this process is the display of self-antigens, including those whose expression are usually restricted to specific tissues, to developing T cells within the thymus. The Autoimmune Regulator (Aire) gene plays a critical role in the expression of tissue specific self-antigens within the thymus, and disruption of Aire function results in spontaneous autoimmunity in both humans and mice. Recent advances have been made in our understanding of how Aire influences the expression of thousands of tissue-specific antigens in the thymus. Additional roles of Aire, including roles in chemokine and cytokine expression, have also been revealed. Factors important in the differentiation of Aire-expressing medullary thymic epithelial cells have been defined. Finally, the identity of antigen presenting cells in negative selection, including the role of medullary thymic epithelial cells in displaying tissue specific antigens to T cells, has also been clarified. PMID:21163636

  13. Air Power for Patton’s Army

    Science.gov (United States)

    2002-01-01

    clarify further air-ground command and control procedures. If anything, it served to enhance the role of the ground comman- der and, in the eyes of...advance headquarters in Hillingdon House, Uxbridge, where a short time later IX Fighter Command’s advance headquarters joined them. At Hillingdon ...sion failed in this instance, the reconnaissance pilot performed as planned. Reconnaissance pilots not only served as the eyes of the ground forces

  14. Prosthetic advances.

    Science.gov (United States)

    Harvey, Zach T; Potter, Benjamin K; Vandersea, James; Wolf, Erik

    2012-01-01

    Much of the current prosthetic technology is based on developments that have taken place during or directly following times of war. These developments have evolved and improved over the years, and now there are many more available options to provide a comfortable, cosmetic, and highly functional prosthesis. Even so, problems with fit and function persist. Recent developments have addressed some of the limitations faced by some military amputees. On-board microprocessor-controlled joints are making prosthetic arms and legs more responsive to environmental barriers and easier to control by the user. Advances in surgical techniques will allow more intuitive control and secure attachment to the prosthesis. As surgical techniques progress and permeate into standard practice, more sophisticated powered prosthetic devices will become commonplace, helping to restore neuromuscular loss of function. Prognoses following amputation will certainly rise, factoring into the surgeon's decision to attempt to save a limb versus perform an amputation.

  15. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    Science.gov (United States)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  16. 盆栽植物对室内甲醛空气污染的净化研究进展%Research Advance in Purification of Formaldehyde-polluted Indoor Air by Potted Plants

    Institute of Scientific and Technical Information of China (English)

    何勤勤; 周俊辉

    2014-01-01

    Formaldehyde ( FDH) is a main indoor air pollutant , and it can cause serious hazards to human ’ s physical and mental health.Therefore, it is one of today’s hot research subjects that the air pollutants from construction and decoration materials can be absorbed and removed by potted plants .Many researches showed that the indoor FDH concentration could be reduced effec -tively by many potted plants .The purification of FHD maybe included several aspects , such as assimilation by stems or leaves of potted plants , transformation and metabolism by plant cells , and degradation by the rhizospheric microorganisms .There maybe three ways for potted plants to react with FDH pollution:the first one had high absorption but weak resistance to FDH damage , showing obvious hurt external morphology;the second one had weak absorption but strong resistance to FDH damage , revealing normal exter-nal morphology through taking avoidance strategy to protect itself;the third one showed the strongest absorption and transforming a-bility to FDH with more or less hurt responses .The purification mechanism of formaldehyde -polluted indoor air by potted plants still needs for further researches .%甲醛是室内主要的空气污染物,严重影响了人们的身心健康,寻找净化空气污染的高效盆栽植物成为近年来研究的热点。许多研究表明:盆栽植物都能有效地降低室内甲醛的浓度,对甲醛的净化作用可能有通过盆栽植物的茎叶表面吸收、植物细胞转化代谢、根际微生物吸收降解等几个方面。植物对甲醛净化可能存在3种途径或机制:第1种是对甲醛吸收能力强,但抗性弱,外部形态伤害明显;第2种是植物单位干物质吸收甲醛量较少,但采取保护自己的规避策略,保持外部形态的完整;第3种是吸收并转化,这类植物单位干物质甲醛吸收量高,同时外部形态表现基本正常或正常。对盆栽植物净化甲醛空气

  17. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  18. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air....... These contradictions should motivate manufacturers and researchers to develop new efficient filtration techniques and/or improve the existing ones. Development of low polluting filtration techniques, which are at the same time easy and inexpensive to maintain is the way forward in the future....

  19. Impact of future climate policy scenarios on air quality and aerosol-cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions

    Science.gov (United States)

    Glotfelty, Timothy; Zhang, Yang

    2017-03-01

    Following a comprehensive evaluation of the Community Earth System Model modified at the North Carolina State University (CESM-NCSU), Part II describes the projected changes in the future state of the atmosphere under the representative concentration partway scenarios (RCP4.5 and 8.5) by 2100 for the 2050 time frame and examine the impact of climate change on future air quality under both scenarios, and the impact of projected emission changes under the RCP4.5 scenario on future climate through aerosol direct and indirect effects. Both the RCP4.5 and RCP8.5 simulations predict similar changes in air quality by the 2050 period due to declining emissions under both scenarios. The largest differences occur in O3, which decreases by global mean of 1.4 ppb under RCP4.5 but increases by global mean of 2.3 ppb under RCP8.5 due to differences in methane levels, and PM10, which decreases by global mean of 1.2 μg m-3 under RCP4.5 and increases by global mean of 0.2 μg m-3 under RCP8.5 due to differences in dust and sea-salt emissions under both scenarios. Enhancements in cloud formation in the Arctic and Southern Ocean and increases of aerosol optical depth (AOD) in central Africa and South Asia dominate the change in surface radiation in both scenarios, leading to global average dimming of 1.1 W m-2 and 2.0 W m-2 in the RCP4.5 and RCP8.5 scenarios, respectively. Declines in AOD, cloud formation, and cloud optical thickness from reductions of emissions of primary aerosols and aerosol precursors under RCP4.5 result in near surface warming of 0.2 °C from a global average increase of 0.7 W m-2 in surface downwelling solar radiation. This warming leads to a weakening of the Walker Circulation in the tropics, leading to significant changes in cloud and precipitation that mirror a shift in climate towards the negative phase of the El Nino Southern Oscillation.

  20. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts

    Directory of Open Access Journals (Sweden)

    Kloog Itai

    2012-06-01

    Full Text Available Abstract Background Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. Methods We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM2.5 levels during pregnancy in Massachusetts for a 9-year period (2000–2008. Building on a novel method we developed for predicting daily PM2.5 at the spatial resolution of a 10x10km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM2.5 exposure and birth weight (among full term births and PM2.5 exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Results Birth weight was negatively associated with PM2.5 across all tested periods. For example, a 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI = −21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI = 1.01–1.13 for each 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy period. Conclusions The presented study suggests that exposure to PM2.5 during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in

  1. Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts

    Science.gov (United States)

    2012-01-01

    Background Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. Methods We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM2.5) levels during pregnancy in Massachusetts for a 9-year period (2000–2008). Building on a novel method we developed for predicting daily PM2.5 at the spatial resolution of a 10x10km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM2.5 exposure and birth weight (among full term births) and PM2.5 exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Results Birth weight was negatively associated with PM2.5 across all tested periods. For example, a 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = −21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01–1.13) for each 10 μg/m3 increase of PM2.5 exposure during the entire pregnancy period. Conclusions The presented study suggests that exposure to PM2.5 during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants. PMID:22709681

  2. Using new satellite based exposure methods to study the association between pregnancy PM₂.₅ exposure, premature birth and birth weight in Massachusetts.

    Science.gov (United States)

    Kloog, Itai; Melly, Steven J; Ridgway, William L; Coull, Brent A; Schwartz, Joel

    2012-06-18

    Adverse birth outcomes such as low birth weight and premature birth have been previously linked with exposure to ambient air pollution. Most studies relied on a limited number of monitors in the region of interest, which can introduce exposure error or restrict the analysis to persons living near a monitor, which reduces sample size and generalizability and may create selection bias. We evaluated the relationship between premature birth and birth weight with exposure to ambient particulate matter (PM₂.₅) levels during pregnancy in Massachusetts for a 9-year period (2000-2008). Building on a novel method we developed for predicting daily PM₂.₅ at the spatial resolution of a 10x10 km grid across New-England, we estimated the average exposure during 30 and 90 days prior to birth as well as the full pregnancy period for each mother. We used linear and logistic mixed models to estimate the association between PM₂.₅ exposure and birth weight (among full term births) and PM₂.₅ exposure and preterm birth adjusting for infant sex, maternal age, maternal race, mean income, maternal education level, prenatal care, gestational age, maternal smoking, percent of open space near mothers residence, average traffic density and mothers health. Birth weight was negatively associated with PM₂.₅ across all tested periods. For example, a 10 μg/m³ increase of PM₂.₅ exposure during the entire pregnancy was significantly associated with a decrease of 13.80 g [95% confidence interval (CI) = -21.10, -6.05] in birth weight after controlling for other factors, including traffic exposure. The odds ratio for a premature birth was 1.06 (95% confidence interval (CI) = 1.01-1.13) for each 10 μg/m3 increase of PM₂.₅ exposure during the entire pregnancy period. The presented study suggests that exposure to PM₂.₅ during the last month of pregnancy contributes to risks for lower birth weight and preterm birth in infants.

  3. Aerosols optical properties in dynamic atmosphere in the northwestern part of the Indian Himalaya: A comparative study from ground and satellite based observations

    Science.gov (United States)

    Guleria, Raj Paul; Kuniyal, Jagdish Chandra; Rawat, Pan Singh; Thakur, Harinder Kumar; Sharma, Manum; Sharma, Nand Lal; Singh, Mahavir; Chand, Kesar; Sharma, Priyanka; Thakur, Ajay Kumar; Dhyani, Pitamber Prasad; Bhuyan, Pradip Kumar

    2011-08-01

    The present study deals with the aerosol optical property which carried out during April 2006 to March 2007 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya. The study was conducted using ground based Multi-wavelength Radiometer (MWR) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The daily average aerosol optical depth (AOD) at 500 nm was found to be (mean ± standard deviation) 0.24 ± 0.10. The afternoon AOD values have been noticed to be higher than the forenoon AOD values. Spectral AOD values exhibited larger day-to-day variation in finer aerosols during the observation period. The daily average value of Ångström exponent 'α' and turbidity coefficient 'β' obtained was 1.10 ± 0.38 and 0.12 ± 0.08 respectively. Higher value of AOD ~ 0.39 ± 0.06 during summer associated with low α ~ 0.73 ± 0.28 has attributed to the increase in the relative dominance of coarse size particles. In winter α ~ 1.21 ± 0.32 indicating a considerable increase in fine size particles, attributed to the anthropogenic activities. The AOD spectra seem to be more wavelength dependent in winter as compared to summer. Comparison of MWR observation with MODIS observation indicates a good conformity between ground-based and satellite derived AOD. The root mean square deviation (RMSD), mean absolute bias deviation (MABD) and correlation coefficient have been found to be ~ 0.08, ~ 0.06 and ~ 0.77 respectively. These results suggest that the AOD retrieval through satellite can be able to characterize AOD distribution over Mohal. However, further efforts to eliminate systematic errors in the existing MODIS products are needed. During the observation period ~ 30%, ~ 47% and ~ 62% air parcels drawn at 4000, 5500 and 8000 m above ground level respectively reached at Mohal which passed through or originated from The Great Sahara. The maximum AOD at 500 nm occurred on 8 May 2006. This has caused a significant reduction in surface reaching solar irradiance by

  4. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-01

    Air pollution conditions in Iwakuni city were monitored at 9 monitoring stations, and 21 locations where sulfur oxides were measured by the lead peroxide candle method, and 13 locations where particulates concentrations were determined by the deposit cage method. The average SO/sub x/ concentrations in 1973 measured by the lead peroxide candle method ranged from 0.17 mg sulfur trioxide/day/100 sq cm at the Miso Office to 0.58 mg SO/sub 3//day/100 sq cm at Mitsui Sekiyu Shataku. The average SO/sub x/ concentrations measured by the conductivity method ranged from 0.021 ppM at Kazuki Kominkan to 0.037 ppM at the Higashi Fire Department. Only 58% of a total of 264 measurement days gave hourly average concentrations below the environmental standard of 0.04 ppM at the Higashi Fire Deparment. The average airborne particulate concentrations ranged from 0.050 mg/cu m at Totsu Kominkan to 0.056 mg/cu at the Higashi Fire Department. The average nitrogen oxides concentrations measured by the Saltzman method ranged from 0.007 ppM to 0.061 ppM. The average oxidant concentrations at the Iwakuni Municipal Office and Kazuki Kominkan were 0.028 ppM and 0.037 ppM, respectively.

  5. Advanced capacitors

    Science.gov (United States)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  6. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  7. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  8. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  9. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... States Environmental Protection Agency Search Search Lead (Pb) Air Pollution Share Facebook Twitter Google+ Pinterest Contact Us As ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Lead Air Pollution Basics How does lead get ...

  10. AirPEx: Air Pollution Exposure Model

    OpenAIRE

    Freijer JI; Bloemen HJTh; de Loos S; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. T...

  11. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  12. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  13. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  14. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  15. Component Development - Advanced Fuel Cells for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Butler, William

    2000-06-19

    Report summarizes results of second phase of development of Vairex air compressor/expander for automotive fuel cell power systems. Project included optimizing key system performance parameters, as well as reducing number of components and the project cost, size and weight of the air system. Objectives were attained. Advanced prototypes are in commercial test environments.

  16. On the history of air conditioning; Zur Geschichte der Raumklimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, Klaus; Finke, Ulrich [Klimakonzept Ingenieurgesellschaft, Berlin (Germany)

    2010-01-15

    The theoretical bases of indoor air conditioning originates from the time of enlightenment (Lavoisier 1792). For the first time air conditioning is applied 1836 in the House of Commons in London. Wide application begins in the USA in the 1930s, in Germany due to the war after the 1950s. Starting from 1970 there are advancements in Germany and Northern Europe, which make it possible not to only air-condition but to fulfil thermally comfortable conditions. (orig.)

  17. Air pollution linked to Remote Sensing tools - Science training using a Master's Level e-Learning Tool

    Science.gov (United States)

    Ladstaetter-Weissenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.

    2009-09-01

    As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.

  18. 14 CFR 151.111 - Advance planning proposals: General.

    Science.gov (United States)

    2010-01-01

    ... Engineering Proposals § 151.111 Advance planning proposals: General. (a) Each advance planning and engineering... application, under §§ 151.21(c) and 151.27, or both. (c) Each proposal must relate to planning and engineering... “Airport Activity Statistics of Certificated Route Air Carriers” (published jointly by FAA and the Civil...

  19. REACH. Air Conditioning Units.

    Science.gov (United States)

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  20. REACH. Air Conditioning Units.

    Science.gov (United States)

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  1. Statistical air quality mapping

    NARCIS (Netherlands)

    Kassteele, van de J.

    2006-01-01

    This thesis handles statistical mapping of air quality data. Policy makers require more and more detailed air quality information to take measures to improve air quality. Besides, researchers need detailed air quality information to assess health effects. Accurate and spatially highly resolved maps

  2. Air Land Sea Bulletin

    Science.gov (United States)

    2014-11-01

    Air Land Organization, Hurricane Block, Headquarters Air Command, Royal Air Force High Wycombe, Wal- ters Ash, Buckinghamshire, UK. The reset to con...MAJ James Edwards, USA Air LTC Brian Gross, USAF LTC Blake Keil, USA Maj William Harvey , USMC MAJ Jeffrey Hazard, USA Maj Darin Lupini, USAF ALSA

  3. Conclusions of the NATO ARW on Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    1999-01-01

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  4. Committee on air pollution effects research: 40 years of UK air pollution.

    Science.gov (United States)

    Fowler, David; Dise, Nancy; Sheppard, Lucy

    2016-01-01

    The UK Committee on Air Pollution Effects Research (CAPER) was established 40 years ago. This special section was compiled to mark this anniversary. During this time there have been dramatic changes in the composition of the air over the UK. The four papers in this special section of Environmental Pollution represent the current air pollution effects research focus on ozone and nitrogen deposition, two related issues and are proving from a policy perspective to be quite intractable issues. The UK CAPER research community continues to advance the underpinning science and engages closely with the user community in government departments.

  5. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  6. AIRE-mutations and autoimmune disease.

    Science.gov (United States)

    Bruserud, Øyvind; Oftedal, Bergithe E; Wolff, Anette B; Husebye, Eystein S

    2016-12-01

    The gene causing the severe organ-specific autoimmune disease autoimmune polyendocrine syndrome type-1 (APS-1) was identified in 1997 and named autoimmune regulator (AIRE). AIRE plays a key role in shaping central immunological tolerance by facilitating negative selection of T cells in the thymus, building the thymic microarchitecture, and inducing a specific subset of regulatory T cells. So far, about 100 mutations have been identified. Recent advances suggest that certain mutations located in the SAND and PHD1 domains exert a dominant negative effect on wild type AIRE resulting in milder seemingly common forms of autoimmune diseases, including pernicious anemia, vitiligo and autoimmune thyroid disease. These findings indicate that AIRE also contribute to autoimmunity in more common organ-specific autoimmune disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  8. NASA technology program for future civil air transports

    Science.gov (United States)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  9. Advanced worker protection system

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, B.; Duncan, P.; Myers, J. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  10. Airing Out Anthrax

    Science.gov (United States)

    2002-01-01

    The AiroCide TiO2 is an air-purifier that kills 93.3 percent of airborne pathogens that pass through it, including Bacillus anthraci, more commonly known as anthrax. It is essentially a spinoff of KES Science & Technology, Inc.'s Bio-KES system, a highly effective device used by the produce industry for ethylene gas removal to aid in preserving the freshness of fruits, vegetables, and flowers. The TiO2-based ethylene removal technology that is incorporated into the company's AiroCide TiO2 and Bio-KES products was first integrated into a pair of plant-growth chambers known as ASTROCULTURE(TM) and ADVANCED ASTROCULTURE(TM). Both chambers have housed commercial plant growth experiments in space on either the Space Shuttle or the International Space Station. The AiroCide TiO2 also has a proven record of destroying 98 percent of other airborne pathogens, such as microscopic dust mites, molds, and fungi. Moreover, the device is a verified killer of Influenza A (flu), E. coli, Staphylococcus aureas, Streptococcus pyogenes, and Mycoplasma pneumoniae, among many other harmful viruses.

  11. Design at the Edge of the World: The Birth of American Air Intelligence in the China, Burma, India, and the Pacific Theaters during World War II

    Science.gov (United States)

    2017-06-01

    DESIGN AT THE EDGE OF THE WORLD: THE BIRTH OF AMERICAN AIR INTELLIGENCE IN THE CHINA, BURMA, INDIA, AND THE PACIFIC THEATERS DURING WORLD WAR...II BY KYLE BRESSETTE A THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIR AND SPACE STUDIES FOR COMPLETION OF GRADUATION...REQUIREMENTS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA JUNE 2017 DISTRIBUTION

  12. Delivery of satellite based broadband services

    Science.gov (United States)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  13. Ensuring Operational Readiness: Private Military Contractor Support for the United States Air Force

    Science.gov (United States)

    2017-03-15

    Ensuring Operational Readiness: Private Military Contractor Support for the United States Air Force A Monograph by Maj Stephen P. Joca United...States Air Force School of Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth, Kansas 2017 Approved...Operational Readiness: Private Military Contractor Support for the United States Air Force Approved by: __________________________________, Monograph

  14. Research on advanced transportation systems

    Science.gov (United States)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  15. Formal Methods Applications in Air Transportation

    Science.gov (United States)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  16. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    Science.gov (United States)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  17. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  18. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  19. AirCompare

    Data.gov (United States)

    U.S. Environmental Protection Agency — AirCompare contains air quality information that allows a user to compare conditions in different localities over time and compare conditions in the same location...

  20. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  1. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  2. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  3. Air Power and Warfare

    Science.gov (United States)

    1978-09-01

    Memorial, 1963. (T) 767.8 A3 ser .3, V.4) Air war against Germany and Italy, 1939-1943. Canberra: Australian War Memorial, 1954. (D 767.8 A3 Ser .3, V.3...et al. Air poder indivisible Air University Ouarterly Review 2:5-18, Fall 1950. Spaatz, Crrl. Air-power odds against us. Readers Digest 58:11-14, June

  4. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  5. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  6. We Pollute the Air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    1.Clean air is important to good health.If the aircontains impurities,they may be absorbed by ourbodies and make us ill.We need clean air,butunfortunately,air pollution is generally present,especially in cities. 2.Our cities have many factories,which we need tomake food products,clothing and many other things.

  7. Air Pollution Training Programs.

    Science.gov (United States)

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  8. Performance status of the AIRS instrument thirteen years after launch

    Science.gov (United States)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  9. Advances in the Physics of the Upper Air Since 1950

    Science.gov (United States)

    1955-10-25

    of Very Long Waves Reflected from the Ionosphere,* Proc.,Roy. Soc., 156:614-633 (1936) 19. Appleton, E. V., and Naismith , R., "The Radio Detection of... Naismith , R., ’A Subsidiary Layer in the E Region of the Ionosphere,’ J. Atmos. and Terr. Phys., 5:73-82 (1954) 28. Swings, P., Ed., "Les Particules

  10. Advanced Concept for Air Data System using EBF and Lidar

    Science.gov (United States)

    2007-06-01

    The technique has also been used on other species like NO, O2, O and N mainly to study gas discharges and in Helium flows for high Mach numbers...355 nm) • Excimer laser (351 nm) The last possibility has to be discarded because the actual technology provides a too complex system for in flight

  11. Implications of Advanced Technologies for Air and Spacecraft Escape

    Science.gov (United States)

    1990-02-01

    Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations. "The content of this publication has been...J.A.Winship, CAF AGARD/’NATO 7, rue Ancelle 92200 Neuilly sur Seine France iv Best Available Copy CONTENTS PREFACE Pg PAM~ AND MEFI1NG OFFICIALS...toldrance cardio- vasculaire et roopirataire ni ia taldrence au:: of Lots vestibulaires does rotations no sont oxcellentes shez lea sojets non entrainda. On

  12. Technological advances in avalanche survival.

    Science.gov (United States)

    Radwin, Martin I; Grissom, Colin K

    2002-01-01

    Over the last decade, a proliferation of interest has emerged in the area of avalanche survival, yielding both an improved understanding of the pathophysiology of death after avalanche burial and technological advances in the development of survival equipment. The dismal survival statistics born out of the modern era of winter recreation unmistakably reveal that elapsed time and depth of burial are the most critical variables of survival and the focus of newer survival devices on the market. Although blunt trauma may kill up to one third of avalanche victims, early asphyxiation is the predominant mechanism of death, and hypothermia is rare. A survival plateau or delay in asphyxiation may be seen in those buried in respiratory communication with an air pocket until a critical accumulation of CO2 or an ice lens develops. The newest survival devices available for adjunctive protection, along with a transceiver and shovel, are the artificial air pocket device (AvaLung), the avalanche air bag system (ABS), and the Avalanche Ball. The artificial air pocket prolongs adequate respiration during snow burial and may improve survival by delaying asphyxiation. The ABS, which forces the wearer to the surface of the avalanche debris by inverse segregation to help prevent burial, has been in use in Europe for the last 10 years with an impressive track record. Finally, the Avalanche Ball is a visual locator device in the form of a spring-loaded ball attached to a tether, which is released from a fanny pack by a rip cord. Despite the excitement surrounding these novel technologies, avalanche avoidance through knowledge and conservative judgment will always be the mainstay of avalanche survival, never to be replaced by any device.

  13. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  14. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  15. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  16. Air Conditioning Does Reduce Air Pollution Indoors

    Science.gov (United States)

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  17. Indoor air quality and health

    Science.gov (United States)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  18. Progress of catalytic wet air oxidation technology

    Directory of Open Access Journals (Sweden)

    Guolin Jing

    2016-11-01

    Full Text Available Catalytic wet air oxidation (CWAO is one of the most economical and environmental-friendly advanced oxidation process for high strength, toxic, hazardous and non-biodegradable contaminants under milder conditions, which is developed on the basic of wet air oxidation. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The advances in the research on wastewater treatment by CWAO process are summarized in aspects of reaction mechanism investigation, reaction kinetics study and catalyst development. It is pointed out that the preparation of active and stable catalysts, the investigation on reaction mechanisms and the study on reaction kinetics models are very important for the promotion of CWAO application.

  19. Air quality inside subway metro indoor environment worldwide: A review.

    Science.gov (United States)

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Smart sensors enable smart air conditioning control.

    Science.gov (United States)

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.