Sample records for satellite ultraspectral ir

  1. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.


    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  2. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter


    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  3. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.


    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  4. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.


    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  5. Ultraspectral sounder data compression review

    Institute of Scientific and Technical Information of China (English)

    Bormin HUANG; Hunglung HUANG


    Ultraspectral sounders provide an enormous amount of measurements to advance our knowledge of weather and climate applications. The use of robust data compression techniques will be beneficial for ultraspectral data transfer and archiving. This paper reviews the progress in lossless compression of ultra-spectral sounder data. Various transform-based, pre-diction-based, and clustering-based compression methods are covered. Also studied is a preprocessing scheme for data reordering to improve compression gains. All the coding experiments are performed on the ultraspectral compression benchmark dataset col-lected from the NASA Atmospheric Infrared Sounder (AIRS) observations.

  6. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding (United States)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok


    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  7. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.


    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  8. Cross calibration of IRS-P4 OCM satellite sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    The cross calibration of ocean color satellite sensor, IRS-P4 OCM using the radiative transfer code, with SeaWiFS as a reference are presented here. Since the bands of IRS-P4 OCM are identical to those of SeaWiFS and SeaWiFS has been continuously...

  9. Ultraspectral sounder data compression using error-detecting reversible variable-length coding (United States)

    Huang, Bormin; Ahuja, Alok; Huang, Hung-Lung; Schmit, Timothy J.; Heymann, Roger W.


    Nonreversible variable-length codes (e.g. Huffman coding, Golomb-Rice coding, and arithmetic coding) have been used in source coding to achieve efficient compression. However, a single bit error during noisy transmission can cause many codewords to be misinterpreted by the decoder. In recent years, increasing attention has been given to the design of reversible variable-length codes (RVLCs) for better data transmission in error-prone environments. RVLCs allow instantaneous decoding in both directions, which affords better detection of bit errors due to synchronization losses over a noisy channel. RVLCs have been adopted in emerging video coding standards--H.263+ and MPEG-4--to enhance their error-resilience capabilities. Given the large volume of three-dimensional data that will be generated by future space-borne ultraspectral sounders (e.g. IASI, CrIS, and HES), the use of error-robust data compression techniques will be beneficial to satellite data transmission. In this paper, we investigate a reversible variable-length code for ultraspectral sounder data compression, and present its numerical experiments on error propagation for the ultraspectral sounder data. The results show that the RVLC performs significantly better error containment than JPEG2000 Part 2.

  10. Ultraspectral sounder data compression using the Tunstall coding (United States)

    Wei, Shih-Chieh; Huang, Bormin; Gu, Lingjia


    In an error-prone environment the compression of ultraspectral sounder data is vulnerable to error propagation. The Tungstall coding is a variable-to-fixed length code which compresses data by mapping a variable number of source symbols to a fixed number of codewords. It avoids the resynchronization difficulty encountered in fixed-to-variable length codes such as Huffman coding and arithmetic coding. This paper explores the use of the Tungstall coding in reducing the error propagation for ultraspectral sounder data compression. The results show that our Tunstall approach has a favorable compression ratio compared with JPEG-2000, 3D SPIHT, JPEG-LS, CALIC and CCSDS IDC 5/3. It also has less error propagation compared with JPEG-2000.

  11. Wavelet-based coding of ultraspectral sounder data (United States)

    Garcia-Vilchez, Fernando; Serra-Sagrista, Joan; Auli-Llinas, Francesc


    In this paper we provide a study concerning the suitability of well-known image coding techniques originally devised for lossy compression of still natural images when applied to lossless compression of ultraspectral sounder data. We present here the experimental results of six wavelet-based widespread coding techniques, namely EZW, IC, SPIHT, JPEG2000, SPECK and CCSDS-IDC. Since the considered techniques are 2-dimensional (2D) in nature but the ultraspectral data are 3D, a pre-processing stage is applied to convert the two spatial dimensions into a single spatial dimension. All the wavelet-based techniques are competitive when compared either to the benchmark prediction-based methods for lossless compression, CALIC and JPEG-LS, or to two common compression utilities, GZIP and BZIP2. EZW, SPIHT, SPECK and CCSDS-IDC provide a very similar performance, while IC and JPEG2000 improve the compression factor when compared to the other wavelet-based methods. Nevertheless, they are not competitive when compared to a fast precomputed vector quantizer. The benefits of applying a pre-processing stage, the Bias Adjusted Reordering, prior to the coding process in order to further exploit the spectral and/or spatial correlation when 2D techniques are employed, are also presented.

  12. Estimation of Leaf Area Index Using IRS Satellite Images

    Directory of Open Access Journals (Sweden)

    A Faridhosseini


    Full Text Available Estimation of vegetation cover attributes, such as the Leaf Area Index (LAI, is an important step in identifying the amount of water use for some plants. The goal of this study is to investigate the feasibility of using IRS LISS-III data to retrieve LAI. To get a LAI retrieval model based on reflectance and vegetation index, detailed field data were collected in the study area of eastern Iran. In this study, atmospheric corrected IRS LISS-III imagery was used to calculate Normalized Difference Vegetation Index (NDVI. Data of 50 samples of LAI were measured by Sun Scan System – SS1 in the study area. In situ measurements of LAI were related to widely use spectral vegetation indices (NDVI. The best model through analyzing the results was LAI = 19.305×NDVI+5.514 using the method of linear-regression analysis. The results showed that the correlation coefficient R2 was 0.534 and RMSE was 0.67. Thereby, suggesting that, when using remote sensing NDVI for LAI estimation, not only is the choice of NDVI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using multi- spectral imagery for large-scale mapping of vegetation biophysical variables.

  13. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance (United States)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu


    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  14. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching. (United States)

    Mei, Xiaoguang; Ma, Yong; Li, Chang; Fan, Fan; Huang, Jun; Ma, Jiayi


    The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM), which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise.

  15. A Real-Time Infrared Ultra-Spectral Signature Classification Method via Spatial Pyramid Matching

    Directory of Open Access Journals (Sweden)

    Xiaoguang Mei


    Full Text Available The state-of-the-art ultra-spectral sensor technology brings new hope for high precision applications due to its high spectral resolution. However, it also comes with new challenges, such as the high data dimension and noise problems. In this paper, we propose a real-time method for infrared ultra-spectral signature classification via spatial pyramid matching (SPM, which includes two aspects. First, we introduce an infrared ultra-spectral signature similarity measure method via SPM, which is the foundation of the matching-based classification method. Second, we propose the classification method with reference spectral libraries, which utilizes the SPM-based similarity for the real-time infrared ultra-spectral signature classification with robustness performance. Specifically, instead of matching with each spectrum in the spectral library, our method is based on feature matching, which includes a feature library-generating phase. We calculate the SPM-based similarity between the feature of the spectrum and that of each spectrum of the reference feature library, then take the class index of the corresponding spectrum having the maximum similarity as the final result. Experimental comparisons on two publicly-available datasets demonstrate that the proposed method effectively improves the real-time classification performance and robustness to noise.

  16. PM-GCD - a combined IR-MW satellite technique for frequent retrieval of heavy precipitation (United States)

    Casella, D.; Dietrich, S.; di Paola, F.; Formenton, M.; Mugnai, A.; Porcù, F.; Sanò, P.


    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach high level of accuracy - especially regarding convective precipitation. At the present stage though, these observations cannot provide satisfactory coverage of the evolution of intense and rapid precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications - especially in supporting authorities for flood alerts and weather warnings. To tackle this problem, over the past two decades several techniques have been developed combining accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). In this framework, we have developed a new fast and simple precipitation retrieval technique which we call Passive Microwave - Global Convective Diagnostic, (PM-GCD). This method uses MW retrievals in conjunction with the Global Convective Diagnostic (GCD) technique which discriminates deep convective clouds based on the difference between the MSG water vapor (6.2 μm) and thermal-IR (10.8 μm) channels. Specifically, MSG observations and the GCD technique are used to identify deep convective areas. These areas are then calibrated using MW precipitation estimates based on observations from the Advanced Microwave Sounding Unit (AMSU) radiometers onboard operational NOAA and Eumetsat satellites, and then finally propagated in time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique, analyzing its results for a case study that refers to a flood event that struck the island of Sicily in southern Italy on 1-2 October 2009.

  17. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder (United States)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian


    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  18. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin


    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  19. Ultraspectral sounder data compression using the non-exhaustive Tunstall coding (United States)

    Wei, Shih-Chieh; Huang, Bormin


    With its bulky volume, the ultraspectral sounder data might still suffer a few bits of error after channel coding. Therefore it is beneficial to incorporate some mechanism in source coding for error containment. The Tunstall code is a variable-to- fixed length code which can reduce the error propagation encountered in fixed-to-variable length codes like Huffman and arithmetic codes. The original Tunstall code uses an exhaustive parse tree where internal nodes extend every symbol in branching. It might result in assignment of precious codewords to less probable parse strings. Based on an infinitely extended parse tree, a modified Tunstall code is proposed which grows an optimal non-exhaustive parse tree by assigning the complete codewords only to top probability nodes in the infinite tree. Comparison will be made among the original exhaustive Tunstall code, our modified non-exhaustive Tunstall code, the CCSDS Rice code, and JPEG-2000 in terms of compression ratio and percent error rate using the ultraspectral sounder data.

  20. Ultraspectral sounder data compression using a novel marker-based error-resilient arithmetic coder (United States)

    Huang, Bormin; Sriraja, Y.; Wei, Shih-Chieh


    Entropy coding techniques aim to achieve the entropy of the source data by assigning variable-length codewords to symbols with the code lengths linked to the corresponding symbol probabilities. Entropy coders (e.g. Huffman coding, arithmetic coding), in one form or the other, are commonly used as the last stage in various compression schemes. While these variable-length coders provide better compression than fixed-length coders, they are vulnerable to transmission errors. Even a single bit error in the transmission process can cause havoc in the subsequent decoded stream. To cope with it, this research proposes a marker-based sentinel mechanism in entropy coding for error detection and recovery. We use arithmetic coding as an example to demonstrate this error-resilient technique for entropy coding. Experimental results on ultraspectral sounder data indicate that the marker-based error-resilient arithmetic coder provides remarkable robustness to correct transmission errors without significantly compromising the compression gains.

  1. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto


    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  2. Remote Sensing of Clouds using Satellites, Lidars, CLF/XLF and IR Cameras at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Chirinos J.


    Full Text Available Clouds in the field of view of the fluorescence detectors affect the detection of the extensive air showers. Several remote sensing techniques are used to detect night-time clouds over the 3000 km2 of the Pierre Auger Observatory. Four lidars at the fluorescence detector sites are performing different patterns of scans of the surrounding sky detecting clouds. Two laser facilities (CLF and XLF are shooting into the sky delivering cloud cover above them every 15 minutes. Four IR cameras detect the presence of clouds within the FOV of the fluorescence detectors every 5 minutes. A method using GOES-12 and GOES-13 satellites identifies night-time clouds twice per hour with a spatial resolution of 2.4 km by 5.5 km over the Observatory. We upload all this information into several databases to be used for the reconstruction of cosmic ray events and to find exotic events.

  3. Remote Sensing of Clouds using Satellites, Lidars, CLF/XLF and IR Cameras at the Pierre Auger Observatory (United States)

    Chirinos, J.


    Clouds in the field of view of the fluorescence detectors affect the detection of the extensive air showers. Several remote sensing techniques are used to detect night-time clouds over the 3000 km2 of the Pierre Auger Observatory. Four lidars at the fluorescence detector sites are performing different patterns of scans of the surrounding sky detecting clouds. Two laser facilities (CLF and XLF) are shooting into the sky delivering cloud cover above them every 15 minutes. Four IR cameras detect the presence of clouds within the FOV of the fluorescence detectors every 5 minutes. A method using GOES-12 and GOES-13 satellites identifies night-time clouds twice per hour with a spatial resolution of 2.4 km by 5.5 km over the Observatory. We upload all this information into several databases to be used for the reconstruction of cosmic ray events and to find exotic events.

  4. Estimation of surface latent heat fluxes from IRS-P4/MSMR satellite data

    Indian Academy of Sciences (India)

    Randhir Singh; B Simon; P C Joshi


    The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat ux by multivariate regression technique. The MSMR measures the microwave radiances at 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz at both vertical and horizontal polarizations. It is found that the surface LHF (Latent Heat Flux) is sensitive to all the channels. The coeficients were derived using the National Centre for Environmental Prediction (NCEP) reanalysis data of three months: July, September, November of 1999. The NCEP daily analyzed latent heat uxes and brightness temperatures observed by MSMR were used to derive the coeficients. Validity of the derived coeficients was checked with in situ observations over the Indian Ocean and with NCEP analyzed LHF for global points. The LHF derived directly from the MSMR brightness temperature (Tb) yielded an accuracy of 35 watt/m2. LHF was also computed by applying bulk formula using the geophysical parameters extracted from MSMR. In this case the errors were higher apparently due to the errors involved in derivation of the geophysical parameters.

  5. A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

    Directory of Open Access Journals (Sweden)

    Lei Lin


    Full Text Available Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.

  6. Automated Burned Area Delineation Using IRS AWiFS satellite data (United States)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.


    spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  7. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.


    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  8. Surface chlorophyll a estimation in the Arabian Sea using IRS-P4 Ocean Colour Monitor (OCM) satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, P.; Mohan, M.; Sarangi, R.K; Kumari, B.; Nayak, S.; Matondkar, S.G.P.

    to the concentration of phytoplankton pigments, coloured dissolved organic matter and suspended particulate matter. Remote sensing data obtained from IRS-P4 OCM sensor is processed for the removal of atmospheric effects of Rayleigh and aerosol scattering to derive...

  9. Towards stochastically downscaled precipitation in the Tropics based on a robust 1DD combined satellite product and a high resolution IR-based rain mask (United States)

    Guilloteau, Clement; Roca, Rémy; Gosset, Marielle


    In the Tropics where the ground-based rain gauges network is very sparse, satellite rainfall estimates are becoming a compulsory source of information for various applications: hydrological modeling, water resources management or vegetation-monitoring. The tropical Tropical Amount of Precipitation with Estimate of Error (TAPEER) algorithm, developed within the framework of Megha-Tropiques satellite mission is a robust estimate of surface rainfall accumulations at the daily, one degree resolution. TAPEER validation in West Africa has proven its accuracy. Nevertheless applications that involve non-linear processes (such as surface runoff) require finer space / time resolution than one degree one day, or at least the statistical characterization of the sub-grid rainfall variability. TAPEER is based on a Universally Adjusted Global Precipitation Index (UAGPI) technique. The one degree, one day estimation relies on the combination of observations from microwave radiometers embarked on the 7 platforms forming the GPM constellation of low earth orbit satellites together with geostationary infra-red (GEO-IR) imagery. TAPEER provides as an intermediate product a high-resolution rain-mask based on the GEO-IR information (2.8 km, 15 min in Africa). The main question of this work is, how to use this high-resolution mask information as a constraint for downscaling ? This work first presents the multi-scale evaluation of TAPEER's rain detection mask against ground X-band polarimetric radar data and TRMM precipitation radar data in West Africa, through wavelet transform. Other algorithms (climate prediction center morphing technique CMORPH, global satellite mapping of precipitation GSMaP, multi-sensor precipitation estimate MPE) detection capabilities are also evaluated. Spatio-temporal wavelet filtering of the detection mask is then used to compute precipitation probability at the GEO-IR resolution. The wavelet tool is finally used to stochastically generate rain / no rain field

  10. PM-GCD - A combined IR-MW satellite technique for frequent retrieval of heavy precipitation: Application to the EU FLASH project (United States)

    Casella, Daniele; Dietrich, Stefano; di Paola, Francesco; Formenton, Marco; Mugnai, Alberto; Sanò, Paolo


    Precipitation retrievals based on measurements from microwave (MW) radiometers onboard low-Earth-orbit (LEO) satellites can reach a high level of accuracy - and especially so, for deep convective precipitating systems. However, these observations do not provide a satisfactorily coverage of the rapid evolution of intense precipitating systems. As a result, the obtained precipitation retrievals are often of limited use for many important applications -- including support to authorities in activating flood alarms. To avoid this problem, several techniques have been developed that combine accurate MW estimates with frequent infrared (IR) observations from geosynchronous (GEO) satellites, such as the European Meteosat Second Generation (MSG). Within the European Union FP6 FLASH project, we have developed a new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique). This technique uses passive-microwave (PM) retrievals in conjunction with the Global Convection Detection (GCD) technique that discriminates deep convective clouds within the GEO observations, based on the difference between the water vapor (6.2 μm ) and thermal-IR (10.8 μm ) channels. In essence, within the PM-GCD technique, deep convective areas are defined from MSG observations, then calibrated using MW-AMSU precipitation retrievals and finally propagated over time with a simple tracking algorithm. In this paper, we describe the PM-GCD technique and discuss the results of its application to a flood event that occurred on September 12-15, 2006 over the north-western Mediterranean coastal areas, and that has been selected for joint research by the EU FLASH and HYDRATE projects.

  11. Inversion of Aerosol Optical Depth Based on the CCD and IRS Sensors on the HJ-1 Satellites

    Directory of Open Access Journals (Sweden)

    Yang Zhang


    Full Text Available To perform a high-resolution aerosol optical depth (AOD inversion from the HJ-1 satellites, a dark pixel algorithm utilizing the HJ-1 satellite data was developed based on the Moderate-Resolution Imaging Spectroradiometer (MODIS algorithm. By analyzing the relationship between the apparent reflectance from the 1.65 μm and 2.1 μm channels of MODIS, a method for estimating albedo using the 1.65 μm channel data of the HJ-1 satellites was established, and a high-resolution AOD inversion in the Chengdu region based on the HJ-1 satellite was completed. A comparison of the inversion results with CE318 measured data produced a correlation of 0.957, respectively, with an absolute error of 0.106. An analysis of the AOD inversion results from different aerosol models showed that the rural aerosol model was suitable as a general model for establishing an aerosol inversion look-up table for the Chengdu region.

  12. Potential of multispectral synergism for observing tropospheric ozone by combining IR and UV measurements from incoming LEO (EPS-SG) and GEO (MTG) satellite sensors (United States)

    Costantino, Lorenzo; Cuesta, Juan; Emili, Emanuele; Coman, Adriana; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Chailleux, Yohann; Beekmann, Matthias; Flaud, Jean-Marie


    Satellite observations offer a great potential for monitoring air quality on daily and global basis. However, measurements from currently in orbit sensors do not allow to probe surface concentrations of gaseous pollutants such as tropospheric ozone (Liu et al., 2010). Using single-band approaches based on spaceborne measurements of either thermal infrared radiance (TIR, Eremenko et al., 2008) or ultraviolet reflectance (UV, Liu et al., 2010) only ozone down to the lower troposphere (3 km) may be observed. A recent multispectral method (referred to as IASI+GOME-2) combining the information of IASI and GOME-2 (both onboard MetOp satellites) spectra, respectively from the TIR and UV, has shown enhanced sensitivity for probing ozone at the lowermost troposphere (LMT, below 3 km of altitude) with maximum sensitivity down to 2.20 km a.s.l. over land, while sensitivity for IASI or GOME-2 only peaks at 3 to 4 km at lowest (Cuesta et al., 2013). Future spatial missions will be launched in the upcoming years on both low and geostationary orbits, such as EPS-SG (EUMETSAT Polar System Second Generation) and MTG (Meteosat Third Generation), carrying respectively IASI-NG (for IR) and UVNS (for UV), and IRS (for IR) and UVN (Sentinel 4, for UV). This new-generation sensors will enhance the capacity to observe ozone pollution and particularly by synergism of multispectral measurements. In this work we develop a pseudo-observation simulator and evaluate the potential of future EPS-SG and MTG satellite observations, through IASI-NG+UVNS and IRS+UVN multispectral methods to observe near-surface O3. The pseudo-real state of atmosphere (nature run) is provided by MOCAGE (MOdèle de Chimie Atmosphérique à Grande Échelle) chemical transport model. Simulations are calibrated by careful comparisons with real data, to ensure the best coherence between pseudo-reality and reality, as well as between the pseudo-observation simulator and existing satellite products. We perform full and

  13. Subsurface Dynamical Properties of Variable Features Seen in Satellite IR Imagery off Point Sur and Their Acoustic Significance. (United States)


    profile as in Fig. 87 except 60 foot source at 50 Hz -------------------------------. 205 90 Graph showing the difference between clima - tological PL...graph as in Fig. 90 except 300 foot source ---------------------------------------- 207 92 Graph showing the difference between clima - tological PL and... temporal scales, to make observations on the subsurface structure of features observed by satellite imagery, to investigate the diurnal variation of the sea

  14. Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data

    Directory of Open Access Journals (Sweden)

    Amir Eslam Bonyad


    Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.

  15. Vertical diffuse attenuation coefficient () based optical classification of IRS-P3 MOS-B satellite ocean colour data

    Indian Academy of Sciences (India)

    R K Sarangi; Prakash Chauhan; S R Nayak


    The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS- P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation Coeffcient () and an optical classification based on values was performed. An atmospheric correction scheme was used for retrieving water leaving radiances in blue and green channels of 412, 443, 490 and 550 nm. The upwelling radiances from 443nm and 550nm spectral channels were used for computation of vertical diffuse attenuation coeffcient at 490 nm. The waters off the Gujarat coast were classified into different water types based on Jerlov classification scheme. The oceanic water type IA ( range 0.035-0.040m-1), type IB (0.042-0.065m-1), type II (0.07-0.1m-1) and type III (0.115-0.14m-1) were identified. For the coastal waters along Gujarat coast and Gulf of Kachchh, (490) values ranged between 0.15m-1 and 0.35m-1. The depth of 1% of surface light for water type IA, IB, II and III corresponds to 88, 68, 58 and 34 meters respectively. Classification of oceanic and coastal waters based on is useful in understanding the light transmission characteristics for sub-marine navigation and under-water imaging.

  16. Investigating the Capability of IRS-P6-LISS IV Satellite Image for Pistachio Forests Density Mapping (case Study: Northeast of Iran) (United States)

    Hoseini, F.; Darvishsefat, A. A.; Zargham, N.


    In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.

  17. Climate Prediction Center IR 4km Dataset (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  18. 印度IRS-P5影像的几何纠正%Geometric Rectiifcation of India P5 Mapping Satellite

    Institute of Scientific and Technical Information of China (English)



    本文给出了IRS-P5测图卫星及其传感器的有关性能参数,根据IRS-P5测图卫星的特点,重点分析了基于有理函数模型的几何纠正,使用北京怀柔地区的立体像对数据进行了有关试验研究。%The paper gives the related parameters of IRS-P5 Mapping Satel ite, According to the features of IRS-P5 mapping satel ite, the paper focuses on the theory of geometric rectification based on RFM and gives research on the method of calculating coefficient of RFM. And at last an experiment is made based on a pair of stereo images of Huairou country in Beijing city.

  19. IR intensity

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens


    Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output.......Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output....

  20. Reducing the Impact of Sampling Bias in NASA MODIS and VIIRS Level 3 Satellite Derived IR SST Observations over the Arctic (United States)

    Minnett, P. J.; Liu, Y.; Kilpatrick, K. A.


    Sea-surface temperature (SST) measurements by satellites in the northern hemisphere high latitudes confront several difficulties. Year-round prevalent clouds, effects near ice edges, and the relative small difference between SST and low-level cloud temperatures lead to a significant loss of infrared observations regardless of the more frequent polar satellite overpasses. Recent research (Liu and Minnett, 2016) identified sampling issues in the Level 3 NASA MODIS SST products when 4km observations are aggregated into global grids at different time and space scales, particularly in the Arctic, where a binary decision cloud mask designed for global data is often overly conservative at high latitudes and results in many gaps and missing data. This under sampling of some Arctic regions results in a warm bias in Level 3 products, likely a result of warmer surface temperature, more distant from the ice edge, being identified more frequently as cloud free. Here we present an improved method for cloud detection in the Arctic using a majority vote from an ensemble of four classifiers trained based on an Alternative Decision Tree (ADT) algorithm (Freund and Mason 1999, Pfahringer et. al. 2001). This new cloud classifier increases sampling of clear pixel by 50% in several regions and generally produces cooler monthly average SST fields in the ice-free Arctic, while still retaining the same error characteristics at 1km resolution relative to in situ observations. SST time series of 12 years of MODIS (Aqua and Terra) and more recently VIIRS sensors are compared and the improvements in errors and uncertainties resulting from better cloud screening for Level 3 gridded products are assessed and summarized.

  1. Satellite detection of IR precursors using bi-angular advanced along-track scanning radiometer data: a case study of Yushu earthquake

    Institute of Scientific and Technical Information of China (English)

    Pan Xiong; Xuhui Shen; Xingfa Gu; Qingyan Meng; Yaxin Bi; Liming Zhao; Yanhua Zhao


    The paper has developed and proposed a synthesis analysis method based on the robust satellite data analysis technique (RST) to detect seismic anomalies within the bi-angular advanced along-track scanning radiometer (AATSR) gridded brightness temperature (BT)data based on spatial/temporal continuity analysis.The proposed methods have been applied to analyze the Yushu (Qinghai,China) earthquake occurred on 14th April 2010,and a full AATSR data-set of 8 years data from March 2003 to May 2010 with longitude from 91°E to 101°E and latitude from 28°N to 38°N has been analyzed.Combining with the tectonic explanation of spatial and temporal continuity of the abnormal phenomena,the analyzed results indicate that the infrared radiation anomalies detected by the AATSR BT data with nadir view appear and enhance gradually along with the development and occurring of the earthquake,especially along the Ganzi-Yushu fault,Nu River fault and Jiali-Chayu fault;more infrared anomalies along the earthquake fault zone (Lancangjiang fault and Ning Karma Monastery-Deqin fault) are detected using the proposed synthesis analysis method,which can also characterize the activity of seismic faults more precisely.

  2. Rule-based semi-automated approach for the detection of landslides induced by 18 September 2011 Sikkim, Himalaya, earthquake using IRS LISS3 satellite images

    Directory of Open Access Journals (Sweden)

    Sajad Siyahghalati


    Full Text Available Landslide is considered as one of the most devastating and most costly natural hazards in highlands, which is triggered mainly by rainfalls or earthquakes. In comparison with other methods, landslide mapping and monitoring via remote sensing data products are considered as the least expensive method of data collection. The current research attempts to detect landslides which occurred due to a 6.9 magnitude earthquake in Sikkim Himalaya, India, on 18 September 2011 and also to establish the spatial relationship between landslides and the slope of the terrain. To detect the landslides, decision tree method was applied on two Indian remote sensing satellites linear imaging self-scanning sensor (LISS III images acquired from 2007 and 2011 which were taken before and after the earthquake. As the study area was relatively huge for identifying the landslides, the region was separated into two parts: “tested study area” and “real study area”. The overall accuracy of landslide detection was 76%, and 75% for tested and real study area, respectively. Then, the spatial relationship between the landslides and the slope of the terrain was conducted using the digital elevation model. The results revealed that most of the landslides occurred between the slope of 25° and 45° covering 2.3 km2 and no landslide recorded in the slope of 65°–90° in the real study area. The results obtained in this study may be useful for decision-making and policy support towards reconstruction effort after the landslide occurrence. In addition, the information can be useful for reducing the risk of potential damages to substructures and properties by developing new and efficient strategies.

  3. IRS organigram (United States)

    Messerschmid, Ernst


    Charts and graphs relative to magnetoplasmadynamic (MPD) thruster technology are given. The research activities at the Institute of Space Transportation, University of Stuttgart, are summarized. Information is given on the Institute's Electric Propulsion and Plasma Wind Tunnel; thermal arcjet research; the nozzle-type thruster, DT-IRS; nozzle-type MPD thrusters; a hot anode thruster; the DT6 thruster; the ZT-1 thruster; the cylindrical MPD thruster; and a comparison of continuous and quasi-steady MPD.

  4. Satellite Communication. (United States)

    Technology Teacher, 1985


    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  5. IOT Overview: IR Instruments (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  6. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.


    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  7. Satellite RNAs and Satellite Viruses. (United States)

    Palukaitis, Peter


    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  8. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon


    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  9. Satellite theory (United States)

    Kozai, Y.


    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  10. HWIL IR imaging testing (United States)

    Vinson, R. J.; Passwater, R. D.


    The Army simulator facilities are presently configured to conduct hardware-in-the-loop mission tasks on the HELLFIRE and COPPERHEAD missile systems. These systems presently use a LASER seeker. The facility is an ideal candidate to be converted to include infrared (IR) seekers used on the TGSM system. This study investigates the possibility and impact of a facility update. This report documents the feasibility of developing a hardware-in-the-loop (HWIL) hybrid simulation incorporating infrared IR seekers used for the Assault Breaker program. Other hardware to be considered are the autopilot, signal conditioning, signal processing, and actuators which may be integrated into the system simulation. Considerations are given to replacing all or elements of hardware while substituting math models in the system simulation.

  11. Satellite Communications

    CERN Document Server

    Pelton, Joseph N


    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  12. Localised IR spectroscopy of hemoglobin

    CERN Document Server

    Yarrow, Fiona


    IR absorption spectroscopy of hemoglobin was performed using an IR optical parametric oscillator laser and a commercial atomic force microscope in a novel experimental arrangement based on the use of a bottom-up excitation alignment. This experimental approach enables detection of protein samples with a resolution that is much higher than that of standard IR spectroscopy. Presented here are AFM based IR absorption spectra of micron sized hemoglobin features

  13. IR nanoscale spectroscopy and imaging (United States)

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H.


    Sub diffraction limited infrared absorption imaging was applied to hemoglobin by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  14. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia


    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites........ The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...

  15. Satellite (Natural) (United States)

    Murdin, P.


    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  16. Albuminas ir jo vartojimas


    Reingardienė, Dagmara Ona


    Albuminas yra natūralus koloidas, tačiau jo vartojimo svarba ir efektyvumas, gydant kritines būkles, pastaraisiais metais iš esmės pasikeitė. Šiame straipsnyje aptariami naujausi literatūros duomenys apie albumino vartojimą. Aišku, kad įprastas albumino vartojimas, esant sumažėjusiam jo kiekiui plazmoje, nerekomenduotinas. Šiuo metu moksliškai pagrįstų indikacijų albumino vartojimui nėra. Jo galima skirti tik kaip antrojo pasirinkimo tirpalą tais atvejais, kai kiti tirpalai neindikuotini ar k...

  17. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley


    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  18. The IRS-1 signaling system. (United States)

    White, M F


    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  19. Contribution To The Data Warehouse And Prospects Of The IRS Program (United States)

    Barner, Frithjof; Haydn, Rupert; Parmar, Manish; Makiola, Jens


    Over the past two years, the IRS program has again significantly contributed to the GSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, multispectral data from the HR LISS-III and MR AWiFS sensors have been provided. Both cameras are implemented on board of Resourcesat-1 and Resourcesat-2 respectively. Despite reduced capacities, the Resourcesat constellation of satellites so far acquired cloud-free images of a vast majority of the first HR coverage of CORE_001 and several monthly MR coverages for CORE_008 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  20. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department


    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  1. The extragalactic IR background

    CERN Document Server

    De Zotti, G; Mazzei, P; Toffolatti, L; Danese, L; De Zotti, G; Franceschini, A; Mazzei, P; Toffolatti, L; Danese, L


    Current limits on the intensity of the extragalactic infrared background are consistent with the expected contribution from evolving galaxies. Depending on the behaviour of the star formation rate and of the initial mass function, we can expect that dust extinction during early evolutionary phases ranges from moderate to strong. An example of the latter case may be the ultraluminous galaxy IRAS F10214 + 4724. The remarkable lack of high redshift galaxies in faint optically selected samples may be indirect evidence that strong extinction is common during early phases. Testable implications of different scenarios are discussed; ISO can play a key role in this context. Estimates of possible contributions of galaxies to the background under different assumptions are presented. The COBE/FIRAS limits on deviations from a blackbody spectrum at sub-mm wavelengths already set important constraints on the evolution of the far-IR emission of galaxies and on the density of obscured (``Type 2'') AGNs. A major progress in ...

  2. Scientific Satellites (United States)


    followed Hale’s into orbit. In 1879, Jules Verne wrote about launching small satellites with a gun possessing a muzzle velocity of 10 000 m/sec (ref. 3...was activated in 1950.11 It was located only a few tens of miles from the spot where Jules Verne had his Baltimore Gun Club fire a manned projectile to...principle, satellites can be launched by a single impulse applied at the Earth’s surface-say, with a large cannon, & la Jules Verne (sec. 8-3). In

  3. The IRS-1 signaling system. (United States)

    Myers, M G; Sun, X J; White, M F


    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  4. IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness; 2005BU1-EO

    NARCIS (Netherlands)

    Jong, W. de; Dam, F.A.M.; Kunz, G.J.; Schleijpen, H.M.A.


    IR decoys can be an effective countermeasure against IR guided anti ship missiles. However, it's not so easy to determine how the decoys should be deployed to get maximum effectiveness. A limitation of trials is that results are obtained for the specific trial condition only. Software tools have bee

  5. Optical constants of infrared (IR) materials in the IR region (United States)

    Nagendra, C. L.; Thutupalli, G. K. M.


    Optical constants, i.e., refractive index 'n' and absorption index 'k' of the IR materials, Ge, ThF4, CdTe and CdSe have been determined, through spectrophotometric method, in the IR region from 2.5 to 15 microns. It is seen that all these films are transparent in the IR region, and the optical constants of the films deposited at elevated temperatures (T = 200 C) are unaffected, even after subjecting to severe environs such as humidity and thermal shock/cycling. Making use of Ge/ThF4 and CdTe/CdSe coating combinations, IR antireflection coatings (ARCs) which can find applications in space-borne electrooptical systems have been successfully designed and developed. The resulting ARCs have not only efficient optical properties, low reflection loss and high transmission, but are also durable against adverse environments.

  6. Contributions to the Data Warehouse 2 and Prospects of the IRS Program (United States)

    Barner, Frithjof; Venkataraman, V. Raghu; Makiola, Jens


    During 2015 and 2016, the IRS program has significantly contributed to the CSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, data from the HR LISS-III and MR AWiFS sensors on board of Resourcesat-2 have been provided. Resourcesat-2 so far acquired cloud-free images of a vast majority of the first and second coverage of HR_IMAGE_2015 and several monthly MR coverages for MR_IMAGE_2015 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  7. Advanced IR imaging seeker program (United States)

    Aguiera, R. A.


    An advanced IR Imaging Seeker System was developed which is compatible with the Hellfire Missile System mission. A technical overview of this program and current status is presented. The IR imaging seeker was tested during late 1979 and early 1980. This seeker utilizes a 1024 element InAsSb/silicon hybrid focal plane array (FPA) operating at 77 degrees K and IR-sensitive in the 2.4-4.0 micrometer wavelength region. A multimode tracker provides improved tracking capability for operation against targets in a high clutter background.

  8. Results of IR working group

    Energy Technology Data Exchange (ETDEWEB)

    Ritson, D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States)


    The IP luminosity at the Eloisatron will direct very large fluxes of hadronic debris into the IR quads. For instance at 1.10{sup 35} cm{sup 2}/sec the flux corresponds to 180 kilowatts. Already at the SSC fluxes in the neighborhood of 2 kilowatts are expected to require special handling. Scaling from SSC design experience we propose a configuration for the first IR quads at the Eloisatron capable of handling the heat load and radiation problems.

  9. Geostationary Satellite (GOES) Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  10. The Infrared Astronomical Satellite (IRAS) mission (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.


    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  11. Neptune's small satellites (United States)

    Thomas, P.


    The small satellites of Neptune and other planets discovered during the Voyager 2 mission are discussed in terms of their composition and relationship to the planetary systems. The satellite Proteus is described in terms of its orbit, five other satellites are described, and they are compared to ther small satellites and systems. Neptune's satellites are hypothesized to be related to the ring system, and the satellite Galatea is related to the confinement of the rings.

  12. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko


    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  13. #Occupy IR: Exposing the Orthodoxy


    Ivan Manokha; Mona Chalabi


    The #occupy IR/IPE initiative was created in response to the #occupy movement, whose own roots can be traced backed to the latest crisis of global finance. In this contribution, we link #occupy and the crisis in a different way. We argue that we must occupy IR/IPE because of the discipline’s failure to apprehend and acknowledge the crisis itself, just as the Occupy movement is calling for their overarching authorities to notice and help address the social and economic inequalities produced by...

  14. Rethinking IR from the Amazon

    Directory of Open Access Journals (Sweden)

    Manuela Picq

    Full Text Available Abstract This article proposes Amazonia as a site to think world politics. The Amazon is invisible in the study International Relations (IR, yet its experiences are deeply global. I present the international dynamics at play in Amazonia at different historical moments to posit that this periphery has contributed to forging the political-economy of what is refer to as the core. The Amazon's absence from the study of IR speaks about the larger inequality in processes of knowledge production. Serious engagements with Amazonia are one way to invite a plurality of worlds in the production of theories, disrupting global divisions of labor in knowledge production ally.

  15. Satellite data compression

    CERN Document Server

    Huang, Bormin


    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  16. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J


    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  17. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo


    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.

  18. Oferta ir akceptas vartojimo sutartyse


    Ežerskytė, Ramunė


    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  19. IRS memorandum limits joint ventures. (United States)

    Herman, A W


    Based on a new memorandum, the Internal Revenue Service (IRS) will be looking at joint hospital/physician activities with greater attention to the nuances of public versus private benefit. As a result, hospitals face greater risk of losing their tax-exempt status in the maze of joint ventures, physician recruitment, and practice acquisition. To be successful, ventures will have to be backed by sound reasoning and thorough documentation.

  20. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)



    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  1. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  2. Galileo satellite antenna modeling (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver


    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  3. Power-Law Template for IR Point Source Clustering (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglass; Spergel, David N.; Staggs,Suzanne T.; Wollack, Edward


    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  4. Satellite-Delivered Learning. (United States)

    Arnall, Gail C.


    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  5. GPS Satellite Simulation Facility (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  6. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang


    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  7. Satellite Tags- Hawaii EEZ (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  8. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi


    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  9. Moisture map by IR thermography (United States)

    Grinzato, E.; Cadelano, G.; Bison, P.


    A new approach to moisture detection in buildings by an optical method is presented. Limits of classical and new methods are discussed. The state of the art about the use of IR thermography is illustrated as well. The new technique exploits characteristics of the materials and takes into account explicitly the heat and mass exchange between surface and environment. A set of experiments in controlled laboratory conditions on different materials is used to better understand the physical problem. The testing procedure and the data reduction are illustrated. A case study on a heritage building points up the features of this technique.

  10. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)



    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  11. Geodetic Secor Satellite (United States)


    simple, and had low-power lem. 17 14. Satellite Orientation . The satellite was designed to maintain a constant relationship between the antenna...the same satellite orientation . Further considerations were Th oscillations, however, when higher orbital ranges (500-2500 nautical miles) -, 3 a

  12. TC-2 Satellite Delivered

    Institute of Scientific and Technical Information of China (English)


    On April 18, 2005, TC-2, the second satellite of Double Star Program (DSP), which was jointly developed by CNSA and ESA, was approved to be delivered to the user after the on-board test and trial operation. The satellite is working well and the performance can meet the user's need. The satellite has collected large amount of valuable scientific data

  13. Coprates Chasma Landslides in IR (United States)


    [figure removed for brevity, see original site] Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides. Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin


    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  15. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung


    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  16. Combined MW-IR Precipitation Evolving Technique (PET of convective rain fields

    Directory of Open Access Journals (Sweden)

    F. Di Paola


    Full Text Available This paper describes a new multi-sensor approach for convective rain cell continuous monitoring based on rainfall derived from Passive Microwave (PM remote sensing from the Low Earth Orbit (LEO satellite coupled with Infrared (IR remote sensing Brightness Temperature (TB from the Geosynchronous (GEO orbit satellite. The proposed technique, which we call Precipitation Evolving Technique (PET, propagates forward in time and space the last available rain-rate (RR maps derived from Advanced Microwave Sounding Units (AMSU and Microwave Humidity Sounder (MHS observations by using IR TB maps of water vapor (6.2 μm and thermal-IR (10.8 μm channels from a Spinning Enhanced Visible and Infrared Imager (SEVIRI radiometer. PET is based on two different modules, the first for morphing and tracking rain cells and the second for dynamic calibration IR-RR. The Morphing module uses two consecutive IR data to identify the motion vector to be applied to the rain field so as to propagate it in time and space, whilst the Calibration module computes the dynamic relationship between IR and RR in order to take into account genesis, extinction or size variation of rain cells. Finally, a combination of the Morphing and Calibration output provides a rainfall map at IR space and time scale, and the whole procedure is reiterated by using the last RR map output until a new MW-based rainfall is available. The PET results have been analyzed with respect to two different PM-RR retrieval algorithms for seven case studies referring to different rainfall convective events. The qualitative, dichotomous and continuous assessments show an overall ability of this technique to propagate rain field at least for 2–3 h propagation time.

  17. IR Thermography NDE of ISS Radiator Panels (United States)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary


    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  18. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar


    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...... helps us recognize what is missing from IR theorizing - conceptions of the international by 'others' who also constitute the international. I illustrate this point by focussing on a landmark text on Ottoman history, Ortayll's The Longest Century of the Empire....

  19. IR properties of AGN and SB (United States)

    Talezade Lari, M. H.; Davoudifar, P.; Mickaelian, A. M.


    Through multi-wavelength flux ratios it is possible to detect AGN and Star-burst Galaxies. Techniques of detecting extragalactic objects as well as AGN are studied in different wavelengths (X-Ray, Radio and IR). Specification of AGN as IR and radio sources is discussed. IR catalogues of 2MASS and WISE were used to study the interrelationship between interactions/merging, starburst and AGN phenomena.

  20. The initial design of LAPAN's IR micro bolometer using mission analysis process (United States)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.


    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  1. Atmospheric Entry Experiments at IRS (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.


    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  2. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger


    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  3. Satellite communication antenna technology (United States)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)


    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  4. Methods of satellite oceanography (United States)

    Stewart, R. H.


    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  5. HST Frontier Fields: WFC3/IR data processing, persistence, time-variable background (United States)

    Khandrika, Harish G.; Koekemoer, Anton M.; Lotz, Jennifer M.; Mack, Jennifer; Robberto, Massimo; Hilbert, Bryan; Sabbi, Elena; Hubble Frontier Fields Pipeline Team, WFC3 Team


    The Hubble Space Telescope Frontier Fields (HFF) pipeline and WFC3 teams discuss the specialized procedures for processing IR data for the Frontier Fields program. Frontier Fields is a Director's Discretionary program that uses ultra-deep imaging to observe lensing galaxy clusters in an effort to search for the most distant observable galaxy. The program uses both the Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3/IR) observing the prime and parallel areas of each field simultaneously. The WFC3/IR data are processed through a pipeline which performs calibrations not included in the standard CalWF3 software including persistence correction, Time-Variable-Background (TVB) correction, and scripts used to create satellite trail masks. Here the HFF pipeline team present the individual methods that perform the corrections and showcase the results of these corrections on sample data of Abell 370, Abell S1063 and others.

  6. Design of inspection and acceptance test methodology for TIG welded aluminum-alloy bracket for camera housings for IRS-1A space craft and executing it (United States)

    Manglik, V. K.; Vaghmare, Rajeev; Shah, A. K.


    The Indian Remote Sensing Satellite (IRS) 1A was the first indigenously developed operational remote sensing satellite. The most critical element in the satellite was the remote sensing camera. The camera was mounted on aluminum alloy bracket which was fabricated by TIG welding. The methodology of acceptance and inspection of the TIG welded bracket is presented and discussed. These efforts not only provided the confidence in reliable welded joint but also provided trouble free operation of the camera on board the satellite for its whole life.

  7. Hydrogen intercalation under graphene on Ir(111) (United States)

    Grånäs, Elin; Gerber, Timm; Schröder, Ulrike A.; Schulte, Karina; Andersen, Jesper N.; Michely, Thomas; Knudsen, Jan


    Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted -0.10 to -0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.

  8. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.


    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  9. Measuring Collimator Infrared (IR) Spectral Transmission (United States)


    TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED (IR) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...Distribution Statement A: Approved for public release; distribution unlimited. DESTRUCTION NOTICE FOR CLASSIFIED DOCUMENTS...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared (IR) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L

  10. The IR Luminosity Functions of Rich Clusters

    CERN Document Server

    Bai, Lei; Rieke, Marcia J; Christlein, Daniel; Zabludoff, Ann I


    We present MIPS observations of the cluster A3266. About 100 spectroscopic cluster members have been detected at 24 micron. The IR luminosity function in A3266 is very similar to that in the Coma cluster down to the detection limit L_IR~10^43 ergs/s, suggesting a universal form of the bright end IR LF for local rich clusters with M~10^15 M_sun. The shape of the bright end of the A3266-Coma composite IR LF is not significantly different from that of nearby field galaxies, but the fraction of IR-bright galaxies (SFR > 0.2M_sun/yr) in both clusters increases with cluster-centric radius. The decrease of the blue galaxy fraction toward the high density cores only accounts for part of the trend; the fraction of red galaxies with moderate SFRs (0.2 < SFR < 1 M_sun/yr) also decreases with increasing galaxy density. These results suggest that for the IR bright galaxies, nearby rich clusters are distinguished from the field by a lower star-forming galaxy fraction, but not by a change in L*_IR. The composite IR LF...

  11. Status Of Sofradir IR-CCD Detectors (United States)

    Tribolet, Philippe; Radisson, Patrick


    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  12. Increasing Medical Student Exposure to IR through Integration of IR into the Gross Anatomy Course. (United States)

    DePietro, Daniel M; Kiefer, Ryan M; Redmond, Jonas W; Workman, Alan D; Nadolski, Gregory J; Gade, Terence P; Trerotola, Scott O; Hunt, Stephen J


    To compare medical student knowledge of and interest in interventional radiology (IR) before and after the integration of an IR lecture series within the gross anatomy course. Four elective IR lectures were scheduled to coincide with the relevant anatomy dissection curriculum. Anonymous surveys were distributed to 146 students before and after the lectures regarding students' knowledge of and interest in IR, responsibilities of an IR physician, and IR training pathways. Those who did not attend served as controls. Response rates were 67% (n = 98) in the prelecture group, 55% (n = 22) in the group who attended the lecture, and 28% (n = 30) in the control group. A total of 73% of the prelecture group reported little knowledge of IR compared with other specialties. This decreased to 27% in those who attended the lecture (P attended believed they had more knowledge of IR than any other specialty, compared with 7% of controls (P value not significant) and 2% of the prelecture group (P attendance could name a significantly greater number of IR procedures (mean, 1.82) than the prelecture group (mean, 0.57; P attended would consider a career in IR, compared with 24% in the prelecture group and 33% in the control group (P attended had knowledge of the IR residency, compared with 5% in the prelecture group and 33% in the control group (P students about IR and generating interest in the field. Copyright © 2017 SIR. All rights reserved.

  13. Passive IR flexi-scope with two spectral colors for household screening of gastrointestinal disorders (United States)

    Byrd, Kenneth; Szu, Harold


    According to our generalized Shannon Sampling Theorem of developmental system biology, we should increase the sampling frequency of the passive Infrared (IR) spectrum ratio test, (I 8~12mm / I 3~5mm). This procedure proved to be effective in DCIS using the satellite-grade IR spectrum cameras for an early developmental symptom of the "angiogenesis" effect. Thus, we propose to augment the annual hospital checkup of, or biannual Colonoscopy, with an inexpensive non-imaging IR-Flexi-scope intensity measurement device which could be conducted regularly at a household residence without the need doctoral expertise or a data basis system. The only required component would be a smart PC, which would be used to compute the degree of thermal activities through the IR spectral ratio. It will also be used to keep track of the record and send to the medical center for tele-diagnosis. For the purpose of household screening, we propose to have two integrated passive IR probes of dual-IR-color spectrum inserted into the body via the IR fiber-optic device. In order to extract the percentage of malignancy, based on the ratio of dual color IR measurements, the key enabler is the unsupervised learning algorithm in the sense of the Duda & Hart Unlabelled Data Classifier without lookup table exemplars. This learning methodology belongs to the Natural Intelligence (NI) of the human brain, which can effortlessly reduce the redundancy of pair inputs and thereby enhance the Signal to Noise Ratio (SNR) better than any single sensor for the salient feature extraction. Thus, we can go beyond a closed data basis AI expert system to tailor to the individual ground truth without the biases of the prior knowledge.

  14. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.


    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  15. Satellites of spiral galaxies (United States)

    Zaritsky, Dennis; Smith, Rodney; Frenk, Carlos; White, Simon D. M.


    We present a survey of satellites around a homogeneous set of late-type spirals with luminosity similar to that of the Milky Way. On average, we find fewer than 1.5 satellites per primary, but we argue that we can treat the survey as an ensemble and so derive the properties of the halo of a 'typical' isolated spiral. The projected density profile of the ensemble falls off approximately as 1/r. Within 50 kpc the azimuthal distribution of satellites shows some evidence for the 'Holmberg effect', an excess near the minor axis of the primary; however, at larger projected distances, the distribution appears isotropic. There is a weak but significant correlation between the size of a satellite and its distance from its primary, as expected if satellites are tidally truncated. Neither Hubble type nor spectral characteristics correlate with apparent separation. The ensemble of satellites appears to be rotating at about 30 km/s in the same direction as the galactic disk. Satellites on prograde orbits tend to be brighter than those on retrograde orbits. The typical velocity difference between a satellite and its primary shows no clear dependence either on apparent separation, or on the rotation speed of the primary. Thus our survey demonstrates that isolated spiral galaxies have massive halos that extend to many optical radii.

  16. Communication satellite technology trends (United States)

    Cuccia, Louis


    A chronology of space-Earth interconnectivity is presented. The Advanced Communications Technology Satellite (ACTS) system, Land Mobile Satellite, space-Earth antennas, impact of antenna size on coverage, intersatellite links are outlined. This presentation is represented by graphs and charts only.

  17. Visualizing Infrared (IR) Spectroscopy with Computer Animation (United States)

    Abrams, Charles B.; Fine, Leonard W.


    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  18. Thermal-structure coupled deformation in an optical-mechanical system for radiometric calibration of satellite IR remote sensor%卫星红外遥感器辐射定标光机系统热-结构耦合变形分析

    Institute of Scientific and Technical Information of China (English)

    肖庆生; 杨林华; 赵寿根


    The thermal deformation of a radiometric calibration optical-structure system under simulated space environments would cause a great damage to the imaging quality of the system, and reduce the precision of the calibration test eventually.In this paper, a finite element model of such a system is built.Based on the model, with the temperature values at nodes obtained in the radiometric calibration test for the satellite multi-spectral scanner, the distribution of the thermal-structure coupling deformation is calculated and analyzed.The results show that the thermal distortion of the optical bracket would cause rigid displacements of the primary mirror and the primary reflector,making them off the axis or acclivitous and the black body off the focus, and changing the focal distance of the system in a non-uniform steady-state Iow temperature condition.But the root-mean-square (RMS) values of deformation of the anamorphic mirrors are both less than one fortieth of the wave length, within the actual surface shape accuracy requirements of the optical system.%辐射定标光机系统在模拟空间环境下的热变形直接影响定标光学系统成像质量,并决定星载遥感器辐射定标试验精度.文章建立的辐射定标光机系统有限元模型,以某卫星多光谱扫描仪辐射定标试验中的实测温度变化作为温度载荷,计算和研究了该系统在真空低温环境下的热-结构耦合变形的分布情况和分布规律.结果表明:在非均匀稳态低温环境下,该系统光学支架热变形使主镜及主反射镜发生刚性位移,引起垂轴方向位移、倾斜,黑体的离焦和光学系统焦距变化;反射镜表面畸变RMS值均为1/40波长以下,可以满足实际光学系统的面形准确度要求.

  19. Holographic RG flows with nematic IR phases

    CERN Document Server

    Cremonini, Sera; Rong, Junchen; Sun, Kai


    We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.

  20. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić


    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  1. Role of Satellite Sensors in Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Saumitra Mukherjee


    Full Text Available Spatial as well as spectral resolution has a very important role to play in water resource management. It was a challenge to explore the groundwater and rainwater harvesting sites in the Aravalli Quartzite-Granite-Pegmatite Precambrian terrain of Delhi, India. Use of only panchromatic sensor data of IRS-1D satellite with 5.8-meter spatial resolution has the potential to infer lineaments and faults in this hard rock area. It is essential to identify the location of interconnected lineaments below buried pediment plains in the hard rock area for targeting sub-surface water resources. Linear Image Self Scanning sensor data of the same satellite with 23.5-meter resolution when merged with the panchromatic data has produced very good results in delineation of interconnected lineaments over buried pediment plains as vegetation anomaly. These specific locations of vegetation anomaly were detected as dark red patches in various hard rock areas of Delhi. Field investigation was carried out on these patches by resistivity and magnetic survey in parts of Jawaharlal Nehru University (JNU, Indira Gandhi national Open University, Research and Referral Hospital and Humayuns Tomb areas. Drilling was carried out in four locations of JNU that proved to be the most potential site with ground water discharge ranging from 20,000 to 30,000 liters per hour with 2 to 4 meters draw down. Further the impact of urbanization on groundwater recharging in the terrain was studied by generating Normalized difference Vegetation Index (NDVI map which was possible to generate by using the LISS-III sensor of IRS-1D satellite. Selection of suitable sensors has definitely a cutting edge on natural resource exploration and management including groundwater.

  2. Near-IR Photoluminescence of C60(). (United States)

    Strelnikov, Dmitry V; Kern, Bastian; Kappes, Manfred M


    We have observed that C60(+) ions isolated in cryogenic matrices show distinct near-IR photoluminescence upon excitation in the near-IR range. By contrast, UV photoexcitation does not lead to measurable luminescence. Near-IR C60(+) photoluminescence is a one-photon process. The emission is mainly concentrated in one band and corresponds to (2)A1u ← (2)E1g relaxation. We present experimental data for the Stokes shift, power, and temperature dependencies as well as the quantum efficiency of the photoluminescence. Our findings may be relevant for astronomy, considering recent unequivocal assignment of five diffuse interstellar bands to near-IR absorption bands of C60(+).

  3. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department


    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  4. WFC3 IR Image Quality (United States)

    Dressel, Linda


    The IR imaging performance over the detector will be assessed periodically {every 4 months} in two passbands to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11437 and 11443}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector in F098M, F105W, and F160W. The PSFs will be sampled at 4 positions with subpixel shifts in filters F164N and F127M.This proposal is a periodic repeat {once every 4 months} of the visits in SMOV proposal 11437 {activity ID WFC3-24}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-41 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.25, 0.37, and 0.60 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-41 tables 2 and 3 and preceding text.} 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected

  5. IR Optimization, DID and anti-DID

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei; Maruyama, Takashi; /SLAC; Parker, Brett; /Brookhaven


    In this paper, we discuss optimization of the larger crossing angle Interaction Region of the Linear Collider, where specially shaped transverse field of the Detector Integrated Dipole can be reversed and adjusted to optimize trajectories of the low energy pairs, so that their majority would be directed into the extraction exit hole. This decreases the backscattering and makes background in 14mrad IR to be similar to background in 2mrad IR.

  6. Present status and future plans of the Japanese earth observation satellite program (United States)

    Tsuchiya, Kiyoshi; Arai, Kohei; Igarashi, Tamotsu

    Japan is now operating 3 earth observation satellites, i. e. MOS-1 (Marine Observation Satellite-1, Momo-1 in Japanese), EGS (Experimental Geodetic Satellite, Ajisai in Japanese) and GMS (Geostationary Meteorological Satellite, Himawari in Japanese). MOS-1 has 3 different sensors, MESSR (Multispectral Electronic Self Scanning Radiometer), VTIR (Visible and Thermal Infrared Radiometer) and MSR (Microwave Scanning Radiometer) in addition to DCS (Data Collection System). GMS has two sensors, VISSR (Visible and IR Spin Scan Radiometer) and SEM (Solar Environmental Monitor). EGS is equipped with reflecting mirrors of the sun light and laser reflecters. For the future earth observation satellites, ERS-1 (Earth Resources Satellite-1), MOS-1b, ADEOS (Advanced Earth Observing Satellite) are under development. Two sensors, AMSR (Advanced Microwave Scanning Radiometer) and ITIR (Intermediate Thermal IR Radiometer) for NASA's polar platform are initial stage of development. Study and planning are made for future earth observation satellites including Japanese polor platform, TRMM, etc.). The study for the second generation GMS has been made by the Committee on the Function of Future GMS under the request of Japan Meteorological Agency in FY 1987.

  7. Trends In Satellite Communication (United States)

    Poley, William A.; Stevens, Grady H.; Stevenson, Steven M.; Lekan, Jack; Arth, Clifford H.; Hollansworth, James E.; Miller, Edward F.


    Report assesses trends in satellite communication from present to year 2010. Examines restrictions imposed by limited spectrum resource and technology needs created by trends. Personal communications, orbiting switchboards, and videophones foreseen.

  8. Domestic Communication Satellites (United States)

    Horowitz, Andrew


    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)

  9. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  10. Biological satellite Kosmos-936 (United States)

    Vedeshin, L. A.


    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  11. Small Satellite Transporter Project (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  12. Matrix isolation studies with Fourier transform IR

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W.; Reedy, Gerald T.


    The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO/sub 2/, UO/sub 3/, PuO, PuO/sub 2/, UN, or UN/sub 2/, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed. (JRD)

  13. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)



    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  14. The Archimedes satellite system (United States)

    Taylor, Stuart C.; Shurvinton, William D.


    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  15. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz


    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  16. Satellite formation. II (United States)

    Harris, A. W.


    A satellite formation model is extended to include evolution of planetary ring material and elliptic orbital motion. In this model the formation of the moon begins at a later time in the growth of the earth, and a significant fraction of the lunar material is processed through a circumterrestrial debris cloud where volatiles might have been lost. Thus, the chemical differences between the earth and moon are more plausibly accounted for. Satellites of the outer planets probably formed in large numbers throughout the growth of those planets. Because of rapid inward evolution of the orbits of small satellites, the present satellite systems represent only satellites formed in the last few percent of the growths of their primaries. The rings of Saturn and Uranus are most plausibly explained as the debris of satellites disrupted within the Roche limit. Because such a ring would collapse onto the planet in the course of any significant further accretion by the planet, the rings must have formed very near or even after the conclusion of accretion.


    Institute of Scientific and Technical Information of China (English)


    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  18. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu


    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  19. Satellite Communications for ATM (United States)

    Shamma, Mohammed A.


    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  20. Experimental Satellite 2 Successfully Launched

    Institute of Scientific and Technical Information of China (English)



    Small satellite Experimental Satellite 2 (SY-2) was launched by LM-2C launch vehicle from Xichang Satellite Launch Center on Nov. 18, 2004. Later the satellite entered the preset sun-synchronous orbit, which is 700 kilometers above the earth. The launch was the eighthmission this year by China Aerospace Science and Technology Corporation(CASC), which aims to test the technology of the satellite, conduct survey and monitoring of the land and resources and geographical environment on a trial basis.

  1. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen


    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  2. Indian remote sensing satellites: Planned missions and future applications (United States)

    Chandrasekhar, M. G.; Jayaraman, V.; Rao, Mukund


    To cater the enhanced user demands, Indian Space Research Organisation is stepping a giant leap forward towards development of the state-of-the-art second generation Indian Remote Sensing Satellites, IRS-1C/1D following the successful design, launch and in-orbit performance of the first generation satellites, IRS-1A/1B. Characterised by improved spatial resolution, extended spectral bands, stereo-viewing and more frequent revisit capability, IRS-1C/1D are expected for launch during the timeframe of 1995-96/8. The IRS-1C and ID, which are identical, will have three major payloads. The Linear Imaging Spectral Scanner (LISS-III) in four spectral bands covering from 0.52 to 1.70 microns will have a spatial resolution of 23m along with a swath of 142 km in the visible and NIR spectral bands and a spatial resolution of 70m along with a swath of 148 km in the SWIR spectral band. The Panchromatic Camera (PAN) with a spectral band of 0.50 to 0.75 microns will have a spatial resolution of information on water stress, pest infestation and vegetation indices to arrive at better agricultural management practices, besides providing enhanced capabilities for arriving solutions for micro-level resource development and generation of digital terrain models. Having marked by the successful launch of IRS-P2 in 1994 through the indigenous development flight of PSLV, India is now poised to launch IRS-P3 satellite with unique payloads in the timeframe of 1995-1996 The IRS-P3 will carry three operational payloads viz., Wide Field Sensor (WiFS), Modular Opto-electronic Scanner (MOS) imaging spectrometer and an X-ray Astronomy payload. These payload mix of sensors will provide further capabilities for application studies related to vegetation dynamics, oceanography and X-ray astronomy. With the launch of these payloads, India will provide more effective and assured data services to the user community beyond the 90's.

  3. Resonant optical devices for IR lasers (United States)

    Johnson, Eric G.; Li, Yuan; Raghu Srimathi, Indumathi; Woodward, Ryan H.; Poutous, Menelaos K.; Pung, Aaron J.; Richardson, Martin; Shah, Lawrence; Shori, Ramesh; Magnusson, Robert


    This paper highlights recent developments in resonant optical devices for infrared (IR) and mid-infrared (mid- IR) lasers. Sub-wavelength grating based resonant optical filters are introduced and their application in 2 μm thulium fiber laser and amplifier systems has been discussed. The paper focuses on applying such filtering techniques to 2.8 μm mid-IR fiber laser systems. A narrowband mid-IR Guided-Mode Resonance Filter (GMRF) was designed and fabricated using Hafnium(IV) Oxide film/quartz wafer material system. The fabricated GMRF was then integrated into an Erbium (Er)-doped Zr-Ba-La-Al-Na (ZBLAN) fluoride glass fiber laser as a wavelength selective feedback element. The laser operated at 2782 nm with a linewidth less than 2 nm demonstrating the viability of GMRF's for wavelength selection in the mid-IR. Furthermore, a GMRF of narrower linewidth based on Aluminum Oxide/quartz wafer material system is fabricated and tested in the same setup. The potentials and challenges with GMRFs will be discussed and summarized.

  4. Proper depiction of monsoon depression through IRS-P4 MSMR

    Indian Academy of Sciences (India)

    P N Mahajan; R M Khaladkar; S G Narkhedkar; Sathy Nair; P C Joshi; P K Pal


    In this paper, daily variations of satellite-derived geophysical parameters such as integrated water vapour (IWV), cloud liquid water content (CLW), sea surface temperature (SST) and sea surface wind speed (SSW) have been studied for a case of monsoon depression that formed over the Bay of Bengal during 19th-24th August 2000. For this purpose, IRS P4 MSMR satellite data have been utilized over the domain equator- 25°N and 40°-100°E. An integrated approach of satellite data obtained from IRS-P4, METEOSAT-5 and INSAT was made for getting a signal for the development of monsoon depression over the Indian region. Variations in deep convective activity obtained through visible, infrared and OLR data at 06UTC was thoroughly analyzed for the complete life cycle of monsoon depression. Geophysical parameters obtained through IRS-P4 satellite data were compared with vorticity, convergence and divergence at 850 and 200 hPa levels generated through cloud motion vectors (CMVs) and water vapour wind vectors (WVWVs) obtained from METEOSAT-5 satellite. This comparison was made for finding proper consistency of geophysical parameters with dynamical aspects of major convective activity of the depression. From the results of this study it is revealed that there was strengthening of sea surface winds to the south of low-pressure area prior to the formation of depression. This indicated the possibility of increase in cyclonic vorticity in the lower troposphere. Hence, wind field at 850 hPa with satellite input of CMVs in objective analysis of wind field using optimum interpolation (OI) scheme was computed. Maximum cyclonic vorticity field at 850 hPa was obtained in the region of depression just one day before its formation. Similarly, with the same procedure maximum anticyclonic vorticity was observed at 200 hPa with WVWVs input. Consistent convergence and divergence at 850 and 200 hPa was noticed with respect to these vorticities. In association with these developments, we could

  5. Using IRS Products to Recover 7ETM+ Defective Images

    Directory of Open Access Journals (Sweden)

    Mobasheri M. Reza


    Full Text Available On May 31st, 2003, Landsat 7 faced an anomaly in the Scan Line Corrector (SLC normal operation. This malfunctioning of SLC caused the individual scan lines alternately overlap each other and consequently produce large gaps at the edges of the image. Regarding the unique specification of ETM+ sensor on board of Landsat-7 satellite such as its spectral bands in the shortwave IR and TIR region and its suitable spatial resolution which is ideal for most of the scientific researches, a technique for the reconstruction of the defected images due to the SLC malfunctioning, was built up. Due to the availability of IRS/1D LISS-III images for our region of interest i.e., southwest of Iran, it was decided to use these images to recover 7ETM+ products. The procedure in reconstructing the defected 7ETM+ images is divided in to two stages. In the first stage, after implementation of some preprocessing to both LISS-III and 7ETM+, a linear regression model between bands 3 and 4 of 7ETM+ and bands 2 and 3 of LISS-III was setup. This model is used to fill up the missing places in 7ETM+ defected image and produced two new images in bands 3 and 4. In the second stage, these two newly reconstructed images of 7ETM+ were used to recover images of 7ETM+ in other spectral bands. At this stage, two methods were introduced, one using linear relationship between band 3 and bands 1 and 2 and in the second method we introduced a planar relationship between bands 3 and 4 with each one of bands 5, 6 and 7. The models are applied to few images and are found to be fairly reliable. The primary and necessary conditions for applying these methods have been explained in detail.

  6. System design of the compact IR space imaging system MIRIS (United States)

    Han, Wonyong; Lee, Dae-Hee; Park, Youngsik; Jeong, Woong-Seob; Ree, Chang-Hee; Moon, Bongkon; Cha, Sang-Mok; Park, Sung-Joon; Park, Jang-Hyun; Nam, Uk-Won; Ka, Nung Hyun; Lee, Mi Hyun; Pyo, Jeonghyun; Seon, Kwang-Il; Lee, Duk-Hang; Yang, Sun Choel; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung Mok; Matsumoto, Toshio


    Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Korea Science and Technology Satellite-3 (STSAT-3), which is being developed by Korea Astronomy & Space Science Institute (KASI). MIRIS is a small space telescope mainly for astronomical survey observations in the near infrared wavelengths of 0.9~2 μm. A compact wide field (3.67 x 3.67 degree) optical design has been studied using a 256 x 256 Teledyne PICNIC FPA IR sensor with a pixel scale of 51.6 arcsec. The passive cooling technique is applied to maintain telescope temperature below 200 K with a cold shutter in the filter wheel for accurate dark calibration and to reach required sensitivity, and a micro stirling cooler is employed to cool down the IR detector array below 100K in a cold box. The science mission of the MIRIS is to survey the Galactic plane in the emission line of Paschen-α (Paα, 1.88 μm) and to detect the cosmic infrared background (CIB) radiation. Comparing the Paα map with the Hα data from ground-based surveys, we can probe the origin of the warm-ionized medium (WIM) of the Galaxy. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature. Recent progress of the MIRIS imaging system design will be presented.

  7. Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying (United States)

    Brede, Jens; Sławińska, Jagoda; Abadia, Mikel; Rogero, Celia; Ortega, J. Enrique; Piquero-Zulaica, Ignacio; Lobo-Checa, Jorge; Arnau, Andres; Iribas Cerdá, Jorge


    A combined scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and density functional theory study of graphene on a Fe-Ir(111) alloy with variable Ir concentration is presented. Starting from an intercalated Fe layer between the graphene and Ir(111) surface we find that graphene-substrate interaction can be fine-tuned by Fe-Ir alloying at the interface. When a critical Ir-concentration close to 0.25 is reached in the Fe layer, the Dirac cone of graphene is largely restored and can thereafter be tuned across the Fermi level by further increasing the Ir content. Indeed, our study reveals an abrupt transition between a chemisorbed phase at small Ir concentrations and a physisorbed phase above the critical concentration. The latter phase is highly reminiscent of the graphene on the clean Ir(111) surface. Furthermore, the transition is accompanied by an inversion of the graphene’s induced magnetization due to the coupling with the Fe atoms from antiferromagnetic when chemisorbed to weakly ferromagnetic in the physisorption regime, with spin polarizations whose magnitude may be tuned with the amount of Fe content.

  8. Tunable mid IR plasmon in GZO nanocrystals. (United States)

    Hamza, M K; Bluet, J-M; Masenelli-Varlot, K; Canut, B; Boisron, O; Melinon, P; Masenelli, B


    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.

  9. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M


    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  10. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian


    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  11. ESA's satellite communications programme (United States)

    Bartholome, P.


    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  12. AVS on satellite (United States)

    Zhao, Haiwu; Wang, Guozhong; Hou, Gang


    AVS is a new digital audio-video coding standard established by China. AVS will be used in digital TV broadcasting and next general optical disk. AVS adopted many digital audio-video coding techniques developed by Chinese company and universities in recent years, it has very low complexity compared to H.264, and AVS will charge very low royalty fee through one-step license including all AVS tools. So AVS is a good and competitive candidate for Chinese DTV and next generation optical disk. In addition, Chinese government has published a plan for satellite TV signal directly to home(DTH) and a telecommunication satellite named as SINO 2 will be launched in 2006. AVS will be also one of the best hopeful candidates of audio-video coding standard on satellite signal transmission.

  13. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas


    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...

  14. The FLUKA Model of IR8

    CERN Document Server

    Appleby, R B


    The study of machine induced background (MIB), the radiation environment and beam dynamics of the LHC requires a detailed model of the machine tunnel, elements and electromagnetic fields. In this note, a specially created model of IR8 in FLUKA is described, including the tunnel, vacuum chambers, magnets, collimators, injection elements and shielding. The inclusion of all relevant machine elements in the LSS of IR8 results in a very flexible model suitable for a large variety of calculations and studies. The validation of the model is discussed, and some example applications described.

  15. Compressive sensing in the EO/IR. (United States)

    Gehm, M E; Brady, D J


    We investigate the utility of compressive sensing (CS) to electro-optic and infrared (EO/IR) applications. We introduce the field through a discussion of historical antecedents and the development of the modern CS framework. Basic economic arguments (in the broadest sense) are presented regarding the applicability of CS to the EO/IR and used to draw conclusions regarding application areas where CS would be most viable. A number of experimental success stories are presented to demonstrate the overall feasibility of the approaches, and we conclude with a discussion of open challenges to practical adoption of CS methods.

  16. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry


    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  17. Declassified intelligence satellite photographs (United States)



    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  18. Oceanography from satellites (United States)

    Wilson, W. S.


    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  19. Satellite oceanography - The instruments (United States)

    Stewart, R. H.


    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  20. Near-IR imaging and imaging polarimetry of OMC 2 (United States)

    Rayner, John; Mclean, Ian; Aspin, Colin; Mccaughrean, Mark


    NIR and 2.2-micron imaging polarimetry of the molecular cloud region OMC 2, reveals a cluster of low- to intermediate-mass premain-sequence stars embedded in circumstellar disks. The 2.2-micron imaging polarimetry indicates that the compact NIR sources OMC 2 IRS1, IRS2, IRS3 and IRS4 N, are illumination centers for the surrounding extended emission. By application of Hubble's relation to the nebulae illuminated by IRS1, IRS2 and IRS4 N, the illuminating geometry is explained and the intrinsic NIR colors of these objects are estimated.

  1. Near-IR imaging and imaging polarimetry of OMC 2 (United States)

    Rayner, John; Mclean, Ian; Aspin, Colin; Mccaughrean, Mark


    NIR and 2.2-micron imaging polarimetry of the molecular cloud region OMC 2, reveals a cluster of low- to intermediate-mass premain-sequence stars embedded in circumstellar disks. The 2.2-micron imaging polarimetry indicates that the compact NIR sources OMC 2 IRS1, IRS2, IRS3 and IRS4 N, are illumination centers for the surrounding extended emission. By application of Hubble's relation to the nebulae illuminated by IRS1, IRS2 and IRS4 N, the illuminating geometry is explained and the intrinsic NIR colors of these objects are estimated.

  2. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo


    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  3. Vertical profiles of heating derived from IR-based precipitation estimates during FGGE SOP-1 (United States)

    Robertson, Franklin R.; Vincent, Dayton G.


    This paper examines a technique for retrieving from geostationary IR data the vertical profiles of heating and cooling due to moist diabatic processes. First, GOES IR imagery is used to estimate precipitation fields which are independent of fields inferred from residuals in heat budget analysis based on the FGGE level III-b data. Vertical distributions of the associated heating are then obtained using thermodynamic data from the level III-b analysis, one-dimensional cloud models, and the satellite-estimated precipitation. The technique was applied to infer heating in the South Pacific convergence zone during a portion of FGEE SOP-1, and the results were compared with heat-budget calculations made using the ECMWF analyses.

  4. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.


    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  5. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)



    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  6. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)



    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  7. Experimental Satellite Quantum Communications. (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo


    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  8. Perception via satellite (United States)

    Robinove, Charles J.


    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  9. Satellite Photometric Error Determination (United States)


    of nearly specular reflections from most solar panels. Our primary purpose in presenting these two plots is to demonstrate the usefulness of...than a transformation for stars because the spectral energy distribution of satellites can change with phase angle and is subject to specular

  10. Creating Better Satellite Conferences. (United States)

    Horner, Tommy


    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  11. Ocean surveillance satellites (United States)

    Laurent, D.

    Soviet and U.S. programs involving satellites for surveillance of ships and submarines are discussed, considering differences in approaches. The Soviet program began with the Cosmos 198 in 1967 and the latest, the Cosmos 1400 series, 15 m long and weighing 5 tons, carry radar for monitoring ships and a nuclear reactor for a power supply. Other Soviet spacecraft carrying passive microwave sensors and ion drives powered by solar panels have recently been detonated in orbit for unknown reasons. It has also been observed that the Soviet satellites are controlled in pairs, with sequential orbital changes for one following the other, and both satellites then overflying the same points. In contrast, U.S. surveillance satellites have been placed in higher orbits, thus placing greater demands on the capabilities of the on-board radar and camera systems. Project White Cloud and the Clipper Bow program are described, noting the continued operation of the White Cloud spacecraft, which are equipped to intercept radio signals from surface ships. Currently, the integrated tactical surveillance system program has completed its study and a decision is expected soon.

  12. OMV With Satellite (United States)


    This 1986 artist's concept shows the Orbital Maneuvering Vehicle (OMV) towing a satellite. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  13. Advances in satellite oceanography (United States)

    Brown, O. B.; Cheney, R. E.


    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  14. IR thermography diagnostics for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Aumeunier, M.H. [OPTIS, ZE de La Farlède, F-83078 Toulon Cedex 9 (France); Joanny, M.; Roche, H.; Micolon, F.; Salasca, S.; Balorin, C.; Jouve, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)


    Highlights: • The WEST project requires a set of three infrared diagnostics. • The tungsten divertor will be monitored by the existing diagnostic renewed. • The antennas monitoring require the development of an innovative diagnostic. • A fiber bundle will be used as image transport for the antennas monitoring. • A wide angle tangential view of the upper divertor and the first wall is studied. - Abstract: To operate long plasma discharge in tokamak equipped with actively cooled plasma facing components (PFC), infrared (IR) thermography is a key diagnostic. Indeed IR data are used for both PFC safety monitoring, to avoid material degradation and water leak, and various physics studies on plasma-wall interaction. The IR monitoring is becoming even more crucial with today metallic PFCs. This is the case for the WEST project (Tungsten (W) Environment for Steady State Tokamak), which aims at installing a W divertor in Tore Supra (TS), in order to operate the 1st tokamak with a full W actively cooled divertor in long plasma discharges. The IR thermography system for the WEST project described in this paper will consist of a set of 3 different diagnostics: (1) Six cameras located in upper ports viewing the full W divertor, which reuse a part of the existing diagnostic of TS. (2) Five novel views located behind the inner protection panels for the antennas monitoring, based on an innovative imaging fibers bundle technology. (3) A tangential wide angle view located in a median port, for the upper divertor and first wall monitoring.

  15. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke


    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...

  16. Interactive Response Systems (IRS) Socrative Application Sample (United States)

    Aslan, Bilge; Seker, Hasan


    In globally developing education system, technology has made instructional improved in many ways. One of these improvements is the Interactive Response Systems (IRS) that are applied in classroom activities. Therefore, it is "smart" to focus on interactive response systems in learning environment. This study was conducted aiming to focus…

  17. Synchrotron IR spectromicroscopy: chemistry of living cells. (United States)

    Holman, Hoi-Ying N; Bechtel, Hans A; Hao, Zhao; Martin, Michael C


    Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at

  18. Panel discussion: The future of IR astronomy (United States)

    Caroff, Lawrence J.


    A panel discussion was held on the future of IR astronomy. The chairman gave a brief introduction to current planned programs for NASA and other space agencies, followed by short contributions from the six panel members on a variety of special topics. After that, a short question and answer session was held.

  19. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.


    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as possib

  20. Cibola flight experiment satellite (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart


    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  1. LARES Satellite Thermal Forces and a Test of General Relativity

    CERN Document Server

    Matzner, Richard; Brooks, Jason; Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey


    We summarize a laser-ranged satellite test of General Relativity, the measurement of the Earth's dragging of inertial frames, and then describe the modeling of an important perturbing effect, thermally induced forces, on the satellite. The frame dragging result is obtained by using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. It produces a result in agreement with the prediction of General Relativity: $\\mu = (0.994 \\pm 0.002) \\pm 0.05$, where $\\mu$ is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error. The thermal force model assumes heat flow from the sun (visual) and from Earth (IR) to the satellite core and to the fused silica reflectors on the satellite, and reradiation into space. For a roughly current epoch (days 1460 - 1580 after launch) we c...

  2. Defense Meteorological Satellite Program (DMSP) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  3. Growth and termination of a rutile IrO2(100) layer on Ir(111) (United States)

    Rai, Rahul; Li, Tao; Liang, Zhu; Kim, Minkyu; Asthagiri, Aravind; Weaver, Jason F.


    We investigated the oxidation of Ir(111) by gas-phase oxygen atoms at temperatures between 500 and 625 K using temperature programmed desorption (TPD), low energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEISS) and density functional theory (DFT) calculations. We find that a well-ordered surface oxide with (√ 3 × √ 3)R30° periodicity relative to Ir(111) develops prior to the formation of a rutile IrO2(100) layer. The IrO2(100) layer reaches a saturation thickness of about four oxide layers under the oxidation conditions employed, and decomposes during TPD to produce a single, sharp O2 desorption peak at 770 K. Favorable lattice matching at the oxide-metal interface is likely responsible for the preferential growth of the IrO2(100) facet during the initial oxidation of Ir(111), with the resulting coincidence lattice generating a clear (6 × 1) moiré pattern in LEED. Temperature programmed reaction spectroscopy (TPRS) experiments reveal that CO and H2O molecules bind only weakly on the IrO2(100) surface and LEISS measurements show that the oxide surface is highly enriched in O-atoms. These characteristics provide strong evidence that the rutile IrO2(100) layer is oxygen-terminated, and thus lacks reactive Ir atoms that can strongly bind molecular adsorbates. Oxygen binding energies predicted by DFT suggest that on-top O-atoms will remain adsorbed on IrO2(100) at temperatures up to 625 K, thus supporting the conclusion that the rutile IrO2 layer grown in our experiments is oxygen-terminated. As such, the appearance of only a single O2 TPD peak indicates that the singly coordinate, on-top O-atoms remain stable on the IrO2(100) surface up to temperatures at which the oxide layer begins to thermally decompose.

  4. Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, S.R.; Dwivedi, R.M.; Nayak, S.R.

    ). Ciguatoxins were detected with the ELISA immunological procedure, after a simple chromatographic extraction in methanol. The toxicological test with Artemia salina was done with filtrates of the microalgae homogenized in sea- water, and on suspended cells...

  5. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)



    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.

  6. Developing Geostationary Satellite Imaging at Lowell Observatory (United States)

    van Belle, G.


    Lowell Observatory operates the Navy Precision Optical Interferometer (NPOI), and owns & operates the Discovery Channel Telescope (DCT). This unique & necessary combination of facilities positions Lowell to develop a robust program of observing geostationary, GPS-plane, and other high-altitude (&1000mi) satellites. NPOI is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is supported by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates year-round in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and imaging technology development. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, an ongoing program of facility upgrades will be outlined. These upgrades include AO-assisted 1.0-m apertures feeding each beam line, and new near-infrared instrumentation on the back end. The large apertures will enable `at-will' observations of objects brighter than mK = 8:3 in the near-IR, corresponding to brighter than mV = 11:3 in the visible. At its core, the system is enabled by a `wavelength-baseline bootstrapping' approach discussed herein. A complementary pilot imaging study of visible speckle and aperture masked imaging at Lowell's 4.3-m DCT, for constraining the low-spatial frequency imaging information, is also outlined.

  7. Telelibrary: Library Services via Satellite. (United States)

    Liu, Rosa


    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  8. Mobile satellite service for Canada (United States)

    Sward, David


    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  9. Frequent Rain Observation From Geostationary Satellite (United States)

    Bizzarri, B.; Gomas Science Team

    The target 3-h observing cycle of GPM will meet requirements from Global NWP and, to a large extent, Regional NWP; and be supportive of VIS/IR-derived rain estimates from geostationary satellites for the purpose of Nowcasting. MW rain observation from geostationary orbit at, say, 15 min intervals, would fully meet Regional NWP requirements and have greatest impact on Nowcasting: but this implies either unprac- tically large antennas or unacceptably coarse resolution. Concepts to overcome this problem have been developed in the US within the study called GEM (Geostationary Microwave Observatory), and now there is in Europe a proposal for a demonstration satellite submitted to ESA as GOMAS (Geostationary Observatory for Microwave Atmospheric Sounding). To overcome the problem of resolution, use of Sub-mm fre- quencies is envisaged: e.g., at 425 GHz, a 10-km resolution at nadir would require a 3-m antenna. The observing principle is based on the use of absorption bands of oxygen (54, 118 and 425 GHz) and of water vapour (183 and 380 GHz). Narrow- bandwidths channels are implemented (for a total of about 40 in the five bands) so as to observe the full profile of temperature and water vapour. Profiles from different bands are differently affected by liquid and ice water of different drop size, and fi- nally by precipitation. Simultaneous retrieval of temperature/humidity profiles, cloud liquid/ice water (total-columns and gross profile) and precipitation rate is in principle possible, and partially demonstrated by several airborne MW/Sub-mm instruments. To transfer this demonstrations in the geostationary orbit, the problem of radiometric sensitivity (additional to that one of the antenna size) has to be solved. With current technology, it is feasible to get sufficient accuracy if scan is limited to about 1/12 of the Earth disk, which is sufficient to abundantly cover Europe, the Mediterranean and Eastern Atlantic. The imaged area can be moved everywhere within the disk

  10. Satellite Aerodynamics and Density Determination from Satellite Dynamic Response (United States)

    Karr, G. R.


    The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.

  11. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a method of fabrication of far IR and THZ range multilayer metal-mesh filters. This type of filter consists of alternative...

  12. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  13. Tax-deferred annuity plans: meeting the IRS audit challenge. (United States)

    Schussler, M


    A growing number of nonprofit organizations are being fined for violations of IRS regulations following IRS audits of their tax-deferred annuity (TDA) plans. To ensure that their organizations can withstand the scrutiny of an IRS audit, TDA plan administrators must ensure that plans meet IRS regulations and be prepared for IRS audits. Documentation--particularly of the TDA plan itself, and procedures related to salary reduction programs, compensation limits, excess deferrals and other excess contributions, loans, and distributions--must be comprehensive and in compliance with IRS regulations.

  14. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J


    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  15. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo


    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  16. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.


    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  17. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas


    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of the air bearing by an automatic balancing system. The test spacecraft is equipped with a three...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...

  18. Declassified Intelligence Satellite Photographs (United States)



    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  19. Satellites in Canadian broadcasting (United States)

    Siocos, C. A.

    The involvement of Canadian broadcasting and related enterprises in satellite telecommunications is surveyed. This includes point-to-point transmissions and direct ones to the general public. The mode of such utilizations is indicated in both these cases. For the forthcoming DBS systems the many types of service offerings and utilization concepts under discussion elasewhere are presented as well as the business prospects and regulatory climate offering them.

  20. Neptune: Minor Satellites (United States)

    Murdin, P.


    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  1. Satellite Surveillance: Domestic Issues (United States)


    earthquake and tsunami in the Indian Ocean and Hurricane Katrina in 2005, when the NGA provided graphics for “relief efforts that depicted the locations of...that show the damage resulting from an earthquake , fire, flood, hurricane, oil spill, or volcanic eruption.8 Bush Administration Policies...Satellite information has continued to have important civil applications in such disparate areas as the movement of glaciers in Yakutat Bay in Alaska

  2. Communications satellites - The experimental years (United States)

    Edelson, B. I.


    Only eight years after the launc of Sputnik-1 by the Soviet Union, the first commercial satellite, 'Early Bird', entered service. In just twelve years commercial satellite service extended around the earth and became profitable. The reasons for the successful development of the communications satellite services in a comparatively short time are considered. These reasons are related to the presence of three ingredients, taking into account technology to create the system, communications requirements to form a market, and a management structure to implement the system. The formation of the concept of using earth orbiting satellites for telecommunications is discussed. It is pointed out that the years from 1958 to 1964 were the true 'experimental years' for satellite communications. The rapid development of technology during this crucial period is described, giving attention to passive satellites, active systems, and development satellites.

  3. Studying the nonlinearity in Sonic IR NDE (United States)

    Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan


    Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non--unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. It works in various materials, including metal/metal alloy, ceramics, and composite materials. Its biggest advantage is that it's a fast, wide area NDE technique. It takes only a fraction of a second or a few seconds, depending on the thermal properties of the target, for one test over a few square feet. However, due to the nonlinearity in the coupling between the ultrasound transducer and the target, the repeatability has been an issue, which affects its application. In this paper, we present our study on this issue in Sonic IR.

  4. Flexible high-performance IR camera systems (United States)

    Hoelter, Theodore R.; Petronio, Susan M.; Carralejo, Ronald J.; Frank, Jeffery D.; Graff, John H.


    Indigo Systems Corporation has developed a family of standard readout integrated circuits (ROIC) for use in IR focal plane arrays (FPAs) imaging systems. These standard ROICs are designed to provide a compete set of operating features for camera level FPA control, while also providing high performance capability with any of several detector materials. By creating a uniform electrical interface for FPAs, these standard ROICs simplify the task of FPA integration with imaging electronics and physical packages. This paper begins with a brief description of the features of four Indigo standard ROICs and continues with a description of the features, design, and measured performance of indium antimonide, quantum well IR photo- detectors and indium gallium arsenide imaging system built using the described standard ROICs.

  5. Fermion RG blocking transformations and IR structure

    CERN Document Server

    Cheng, X


    We explore fermion RG block-spinning transformations on the lattice with the aim of studying the IR structure of gauge theories and, in particular, the existence of IR fixed points for varying fermion content. In the case of light fermions the main concern and difficulty is ensuring locality of any adopted blocking scheme. We discuss the problem of constructing a local blocked fermion action in the background of arbitrary gauge fields. We then discuss the carrying out of accompanying gauge field blocking. In the presence of the blocked fermions implementation of MCRG is not straightforward. By adopting judicious approximations we arrive at an easily implementable approximate RG recursion scheme that allows quick, inexpensive estimates of the location of conformal windows for various groups and fermion representations. We apply this scheme to locate the conformal windows in the case of SU(2) and SU(3) gauge groups. Some of the reasons for the apparent efficacy of this and similar decimation schemes are discuss...

  6. Tethered satellite design (United States)

    Manarini, G.


    The capability of the satellite to perform a variety of space operations to be accomplished from the shuttle is reviewed considering use of the satellite with man-in-loop and closed loop modes and deployment (toward or away from Earth, up to 100 km), stationkeeping, retrieval and control of the satellite. Scientific payloads are to be used to perform experiments and scientific investigation for applications such as magnetometry, electrodynamics, atmospheric science, chemical release, communications, plasmaphysics, dynamic environment, and power and thrust generation. The TSS-S will be reused for at least 3 missions after reconfiguration and refurbishment by changing the peculiar mission items such as thermal control, fixed boom for experiments, aerodynamic tail for yaw attitude control, external skin, experiments, and any other feature. The TSS-S is to be composed of three modules in order to allow independent integration of a single module and to facilitate the refurbishment and reconfiguration between flights. The three modules are service, auxiliary propulsion, and payload modules.

  7. Heart Monitoring By Satellite (United States)


    The ambulance antenna shown is a specially designed system that allows satellite-relayed two-way communications between a moving emergency vehicle and a hospital emergency room. It is a key component of a demonstration program aimed at showing how emergency medical service can be provided to people in remote rural areas. Satellite communication permits immediate, hospital- guided treatment of heart attacks or other emergencies by ambulance personnel, saving vital time when the scene of the emergency is remote from the hospital. If widely adopted, the system could save tens of thousands of lives annually in the U.S. alone, medical experts say. The problem in conventional communication with rural areas is the fact that radio signals travel in line of sight. They may be blocked by tall buildings, hills and mountains, or even by the curvature of the Earth, so signal range is sharply limited. Microwave relay towers could solve the problem, but a complete network of repeater towers would be extremely expensive. The satellite provides an obstruction-free relay station in space.

  8. Tactical Satellite 3 (United States)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.


    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  9. A satellite anemometer (United States)

    Hanson, W. B.; Heelis, R. A.


    This report describes the design, development, and testing of components of a satellite anemometer, an instrument for measuring neutral winds in the upper atmosphere from a satellite platform. The device, which uses four nearly identical pressure sensors, measures the angle of arrival of the bulk neutral flow in the satellite frame of reference. It could also be used in a feedback loop to control spacecraft attitude with respect to the ram velocity direction. We have now developed miniaturized ionization pressure gauges that will work well from the slip flow region near 115 km up to the base of the exosphere, which covers the entire altitude range currently being considered for Tether. Laboratory tests have demonstrated a very linear response to changes in ram angle out to +/- 20 deg. (transverse wind component of 2.7 km s(exp -1)) from the ram, and a monotonic response to out beyond 45 deg. Pitch (vertical wind) and yaw (horizontal wind) can be sampled simultaneously and meaningfully up to 10 Hz. Angular sensitivity of 30 arc seconds (approximately 1 ms(exp -1) is readily attainable, but absolute accuracy for winds will be approximately 1 deg (130 m/s) unless independent attitude knowledge is available. The critical elements of the design have all been tested in the laboratory.

  10. Binary Satellite Galaxies

    CERN Document Server

    Evslin, Jarah


    Suggestions have appeared in the literature that the following five pairs of Milky Way and Andromeda satellite galaxies are gravitationally bound: Draco and Ursa Minor, Leo IV and V, Andromeda I and III, NGC 147 and 185, and the Magellanic clouds. Under the assumption that a given pair is gravitationally bound, the Virial theorem provides an estimate of its total mass and so its instantaneous tidal radius. For all of these pairs except for the Magellanic clouds the resulting total mass is 2 to 4 orders of magnitude higher than that within the half light radius. Furthermore in the case of each pair except for Leo IV and Leo V, the estimated tidal radius is inferior to the separation between the two satellites. Therefore all or almost all of these systems are not gravitationally bound. We note several possible explanations for the proximities and similar radial velocities of the satellites in each pair, for example they may have condensed from the same infalling structure or they may be bound by a nongravitatio...

  11. Medical Applications of IR Focal Plane Arrays (United States)


    imaging in deep venous thrombosis, coming up with definitive conclusions. Kunihiko Mabuchi (Japan) describes the development of an image processing... Hemodialysis Shunts", Proc. 19th Annual Intl. IEEE/EMBS Conf., Chicago, II., Nov. 1997. 60. Marcott, C, Reeder, R., Paschelis, E., Boskey, A., "FT-IR...major thrust for all the infrared measurements. These, coupled with standard equipment and methods will definitely give us the further validation

  12. Overview of IRS Plasma Wind Tunnel Facilities (United States)


    Saturn system with the 80- 30, 40, Cassini spacecraft, which was designed, built and 120 h launched by NASA [30]. During the entry into Titan’s i 60...launched in 1995, a ring reentry for landing in Cayenne and the re- first experiment was conducted to determine whether quired mass flow within the PWK... formation . In the IRS MPG facility continuous The operating times range typically from several operation with methane components up to 10%, as minutes to

  13. Aircraft and satellite remote sensing of desert soils and landscapes (United States)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.


    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  14. An uncooled capacitive sensor for IR detection (United States)

    Siebke, Georg; Gerngroß, Kathrin; Holik, Peter; Schmitz, Sam; Rohloff, Markus; Tätzner, Simon; Steltenkamp, Siegfried


    The beetle Melanophila acuminata detects forest fires from distances as far as 80 miles away. To accomplish this, the beetle uses highly specific IR receptors with a diameter of approximately 15 μm. These receptors are mechanoreceptors that detect deformations induced by the absorption of radiation. Although the detection mechanism is understood in principle, it is still unclear how the beetle reaches such high sensitivity. In this work, we present the biomimetic approach of an uncooled IR sensor based on the beetle's receptors. This sensor is based on a fluid-filled pressure cell and operates at room temperature. Upon absorbing IR radiation, the fluid heats up and expands. The expanding fluid deflects one electrode of a plate capacitor. By measuring the change in capacitance, the volume increase and the absorbed energy can be inferred. To prevent the risk of damage at high energy absorption, a compensation mechanism is presented in this work. The mechanism prevents large but slow volume changes inside the pressure cell by a microfluidic connection of the pressure cell with a compensation chamber. The channel and the compensation chamber act as a microfluidic low-pass filter and do not affect the overall sensitivity above an appropriate cut-off frequency. Using MEMS technology, we are able to incorporate the complete system into a silicon chip with an area of a few mm2. Here, we show a proof-of-concept and first measurements of the sensor.

  15. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099 (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  16. IR decoys modeling method based on particle system (United States)

    Liu, Jun-yu; Wu, Kai-feng; Dong, Yan-bing


    Due to the complexity in combustion processes of IR decoys, it is difficult to describe its infrared radiation characteristics by deterministic model. In this work, the IR decoys simulation based on particle system was found. The measured date of the IR decoy is used to analyze the typical characteristic of the IR decoy. A semi-empirical model of the IR decoy motion law has been set up based on friction factors and a IR decoys simulation model has been build up based on particle system. The infrared imaging characteristic and time varying characteristic of the IR decoy were simulated by making use of the particle feature such as lifetime, speed and color. The dynamic IR decoys simulation is realized with the VC++6.0 and OpenGL.

  17. Improving aerosol vertical retrieval for NWP application: Studying the impact of IR-sensed aerosol on data assimilation systems. (United States)

    Oyola, Mayra; Marquis, Jared; Ruston, Benjamin; Campbell, James; Baker, Nancy; Westphal, Douglas; Zhang, Jianglong; Hyer, Edward


    Radiometric measurements from passive infrared (IR) sensors are important in numerical weather prediction (NWP) because they are sensitive to surface temperatures and atmospheric temperature profiles. However, these measurements are also sensitive to absorbing and scattering constituents in the atmosphere. Dust aerosols absorb in the IR and are found over many global regions with irregular spatial and temporal frequency. Retrievals of temperature using IR data are thus vulnerable to dust-IR radiance biases, most notably over tropical oceans where accurate surface and atmospheric temperatures are critical to accurate prediction of tropical cyclone development. Previous studies have shown that dust aerosols can bias retrieved brightness temperatures (BT) by up to 10K in some IR channels that are assimilated to constrain atmospheric temperature and water vapor profiles. Other BT-derived parameters such as sea surface temperatures (SSTs) are susceptible to negative biases of at least 1K or higher, which conflicts with the accuracy requirement for most research and operational applications (i.e., +/- 0.3 K). This problem is not limited to just satellite retrievals. BT bias also impacts the incorporation of background fields from NWP analyses in data assimilation (DA) systems. The effect of aerosols on IR fluxes at the ocean surface is a function of both aerosol loading and vertical profile. Therefore, knowledge of the aerosol vertical distribution, and understanding of how well this distribution is captured by NWP models, is necessary to ensuring proper treatment of aerosol-affected radiances in both retrieval and data assimilation. This understanding can be achieved by conducting modeling studies and by the exploitation of a robust observational dataset, such as satellite-based lidar profiling, which can be used to characterize aerosol type and distribution. In this talk, we describe such an application using the Navy Aerosol Analysis Prediction System (NAAPS) and

  18. Science operations management. [with Infrared Astronomy Satellite project (United States)

    Squibb, G. F.


    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  19. Satellite Upper Air Network (SUAN) (United States)

    Reale, Tony L.; Thorne, Peter


    During the past 20 years of NOAA operational polar satellites, it has become evident that a growing problem concerning their utilization in Climate and also Numerical Weather Prediction (NWP) applications are the systematic errors and uncertainties inherent in the satellite measurements. Similar arguments can be made for global radiosonde observations. These uncertainties are often larger than the sensitive signals and processes, that satellite and radiosonde measurements are designed to reveal, particularly in the realm of climate. Possible strategies to quantify and compensate for these problems include the analysis of satellite overlap data and/or available collocations of satellite and ground truth (radiosonde) observations. However, overlap observations are typically not available except in extreme polar regions and current sampling strategies for compiling collocated radiosonde and satellite observations are insufficient, further compounding the inherent uncertainties in the ground-truth radiosonde data. A Satellite Upper Air Network is proposed to provide reference radiosonde launches coincident with operational polar satellite(s) overpass. The SUAN consist of 36 global radiosonde stations sub-sampled from the Global Upper Air Network (GUAN), and is designed to provide a robust, global sample of collocated radiosonde and satellite observations conducive to the monitoring and validation of satellite and radiosonde observations. The routine operation of such a network in conjunction with operational polar satellites would provide a long-term of performance for critical observations of particular importance for climate. The following report presents a candidate network of 36 upper-air sites that could comprise a SUAN. Their selection along with the mutual benefit across the satellite, radiosonde, climate, numerical weather prediction (NWP) and radiative transfer (RT) model areas are discussed.

  20. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.


    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  1. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy (United States)

    Bennett, Jacqueline; Forster, Tabetha


    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  2. Arbitrage Rebate Compliance: Recent IRS Scrutiny of School Districts. (United States)

    Given, Lynda K.; Gurrola, George E.; Richardson, James R.


    Describes rules and procedures school districts must follow to comply with IRS arbitrage and rebate rules and exceptions on profits derived from investing yields of tax-exempt bonds in a higher yielding account. Describes consequences of noncompliance and seven ways to be prepared for an IRS audit--for example, answering the IRS promptly. (PKP)

  3. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy (United States)

    Bennett, Jacqueline; Forster, Tabetha


    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  4. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)


    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons wh

  5. Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High Redshift IR Luminous Galaxies

    CERN Document Server

    Teplitz, H I; Armus, L; Chary, R; Marshall, J A; Colbert, J W; Frayer, D T; Pope, A; Blain, A; Spoon, H; Charmandaris, V; Scott, D


    The study of the dominant population of high redshift IR-luminous galaxies (10^11 - 10^12 Lsun at 1IR. We present the deepest spectra taken to date with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. We targeted two faint (f24~0.15 mJy) sources in the Southern GOODS field at z=1.09 and z=2.69. Spectra of the lower redshift target were taken in the observed-frame 8--21 micron range, while the spectrum of the higher redshift target covered 21--37 microns. We also present the spectra of two secondary sources within the slit. We detect strong PAH emission in all four targets, and compare the spectra to those of local galaxies observed by the IRS. The z=1.09 source appears to be a typical, star-formation dominated IR-luminous galaxy, while the z=2.69 source is a composite source with strong star formation and a prominent AGN. The IRAC colors of this source show no evidence of rest-frame near-infrared stellar photospheric...

  6. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band (United States)

    Sun, K.


    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature

  7. Automatic Generation of High Quality DSM Based on IRS-P5 Cartosat-1 Stereo Data (United States)

    d'Angelo, Pablo; Uttenthaler, Andreas; Carl, Sebastian; Barner, Frithjof; Reinartz, Peter


    IRS-P5 Cartosat-1 high resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on IRS-P5 Cartosat-1 imagery is presented, with an emphasis on automated processing and product quality. The proposed system processes IRS-P5 level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The described method uses an RPC correction based on DSM alignment instead of using reference images with a lower lateral accuracy, this results in improved geolocation of the DSMs and orthoimages. Following RPC correction, highly detailed DSMs with 5 m grid spacing are derived using Semiglobal Matching. The proposed method is part of an operational Cartosat-1 processor for the generation of a high resolution DSM. Evaluation of 18 scenes against independent ground truth measurements indicates a mean lateral error (CE90) of 6.7 meters and a mean vertical accuracy (LE90) of 5.1 meters.

  8. Radio broadcasting via satellite (United States)

    Helm, Neil R.; Pritchard, Wilbur L.


    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  9. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat


    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  10. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue


    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  11. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian


    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  12. The Galilean Satellites (United States)


    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. Shown from left to right in order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto.The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity.North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element.The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft acquired the Io and Ganymede images in June 1996, the Europa images in September 1996, and the Callisto images in November 1997.Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission

  13. Future communications satellite applications (United States)

    Bagwell, James W.


    The point of view of the research is made through the use of viewgraphs. It is suggested that future communications satellite applications will be made through switched point to point narrowband communications. Some characteristics of which are as follows: small/low cost terminals; single hop communications; voice compatible; full mesh networking; ISDN compatible; and possible limited use of full motion video. Some target applications are as follows: voice/data networks between plants and offices in a corporation; data base networking for commercial and science users; and cellular radio internodal voice/data networking.

  14. HETE Satellite Power Subsystem



    The HETE (High-Energy Transient Experiment) satellite a joint project between MIT's Center for Space Research and AeroAstro. is a high-energy gamma-ray burst/X-Ray/UV observatory platform. HETE will be launched into a 550 km circular orbit with an inclination of 37.7°, and has a design lifetime of 18 months. This paper presents a description of the spacecraft's power subsystem, which collects, regulates, and distributes power to the experiment payload modules and to the various spacecraft sub...

  15. Ibogaino ir noribogaino toksiškumo ir farmakokinetinių savybių tyrimas



    Ibogainas yra indolo grupės alkaloidas, išskiriamas iš augalo Tabernanthe iboga Baill. (Apocynaceae). Šis alkaloidas mažina priklausomybę nuo opiatų bei lengvina abstinencijos požymius. Noribogainas – ibogaino aktyvusis metabolitas, sukeliantis mažiau nepageidaujamų reiškinių. Darbo tikslas: ištirti ibogaino ir noribogaino toksiškumą ir farmakokinetines savybes taikant eksperimentinį laboratorinių pelių modelį. Uždaviniai: Nustatyti ibogaino ir noribogaino toksiškumą, apskaičiuojant šių medži...

  16. The TAOS/STEP Satellite


    Edwards, David; Hosken, Robert


    The Technology for Autonomous Operational Survivability / Space Test Experiments Platform (TAOS/STEP) satellite was launched on a Taurus booster from Vandenberg Air Force Base into a nearly circular, 105 degree inclined orbit on March 13, 1994. The purpose of this satellite is twofold: 1) to test a new concept in multiple procurements of fast-track modular satellites and 2) to test a suite of Air Force Phillips Laboratory payloads in space. The TAOS payloads include the Microcosm Autonomous N...

  17. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael


    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  18. Tekstai ir tekstynai svetimos kalbos mokymosi procese


    Končius, Vytenis


    Išanalizavus tyrimo rezultatus straipsnyje aptariamos išvados ir pateikiami tolimesnių tyrimų siūlymai. Corpus linguistics can help in the process of second language acquisition, for example, by examining a number of well-established claims or “myths” about second language teaching and learning. One of these claims, which is rarely examined, is the supposed benefit of extensive reading to the successful acquisition of the vocabulary (Krashen et al). This claim states that a language learne...

  19. Application of IR microbolometers in border surveillance (United States)

    Breakfield, David K.; Norton, Peter; Plemons, Dan; Rodriguez, Christian; Sustare, Dennis


    BAE Systems led a collaborative study with New Mexico State University to investigate a series of ground based persistent surveillance solutions for potential use along the Southwest border of the United States. This study considered a wide range of system options for mobile and fixed site applications. This paper summarizes the findings of the study including the central role of the imaging subsystems in mobile ground based surveillance solutions and the suitability of uncooled IR Microbolometers within this subsystem. The paper also provides a discussion of the benefits of real time decision support applications when fielding a persistent surveillance solution.

  20. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael


    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...... the warehouse by allowing navigation in the structure of documents and in a concept hierarchy of query terms. The facts described in the relevant documents will be ranked and analyzed in a novel OLAP cube model able to represent and manage facts with relevance indexes....

  1. Low Power Polysilicon Sources for IR Applications (United States)

    Das, N. C.; Jhabvala, M.; Shu, P.


    We have designed and fabricated polysilicon thin film infrared (IR) sources by micromachining technology. These sources are made with a lightly doped middle region for light emission and heavy doping of the supporting legs. The sources are fabricated on a 10 mm thick, low temperature process parameters in the fabrication of these silicon dioxide layer. Different doping levels were used to achieve various source resistances. From the power requirement to reach the required light emission versus source resistance curve it is seen that there exists a resistance value which minimizes the necessary input power.

  2. Types of Research Bias Encountered in IR. (United States)

    Gabr, Ahmed; Kallini, Joseph Ralph; Desai, Kush; Hickey, Ryan; Thornburg, Bartley; Kulik, Laura; Lewandowski, Robert J; Salem, Riad


    Bias is a systemic error in studies that leads to inaccurate deductions. Relevant biases in the field of IR and interventional oncology were identified after reviewing articles published in the Journal of Vascular and Interventional Radiology and CardioVascular and Interventional Radiology. Biases cited in these articles were divided into three categories: preinterventional (health care access, participation, referral, and sample biases), periinterventional (contamination, investigator, and operator biases), and postinterventional (guarantee-time, lead time, loss to follow-up, recall, and reporting biases). Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  3. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)


    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.


    Institute of Scientific and Technical Information of China (English)

    Zhang Zaichen; Yu Xutao; Bi Guangguo


    In this letter,we propose a hybrid analog/digital detection algorithm,the Correlated Interference Cancellation (CIC) algorithm,for Impulse Radio Ultra-WideBand (IR-UWB) system. The CIC algorithm correlates received signal with its delayed versions in the analog domain and samples the correlation output at the symbol rate. The symbol rate samples are processed in the digital domain to perform interference cancellation. Therefore,CIC works for high data rate systems with heavy InterSymbol Interference (ISI). Simulation results show that CIC achieves good performance in typical UWB channels.

  5. Pelno (nuostolio) atskaitos formavimas ir analizė


    Liutkevičius, Marius


    Užsienio šalyse visos įmonės, organizacijos yra įpratusios prie tam tikrų pastovių apskaitos ir finansinės informacijos pateikimo principų ir taisyklių. Todėl Lietuvos įmonėms bendradarbiaujant su užsienio partneriais ir investuotojais, viena pagrindinių problemų yra finansinių rezultatų pristatymas ir pateikimas. Užsienio partneriai ar investuotojai nori matyti Lietuvos įmonių finansinę informaciją, parengtą pagal jiems suprantamus ir priimtinus principus bei taisykles. Ši informacija naudoj...

  6. Trends in mobile satellite communication (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.


    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  7. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros


    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  8. Satellite Communications: The Indian Scenario

    Directory of Open Access Journals (Sweden)

    Dr. Ranjit Singh


    Full Text Available India has launched as many as 73 Indian satellites as of today since its first attempt in 1975. Besides serving traditional markets of telephony and broadcasting, satellites are on the frontiers of advanced applications as telemedicine, distance learning, environment monitoring, remote sensing, and so on. Satellite systems are optimized for services such as Internet access, virtual private networks and personal access. Costs have been coming down in recent years to the point where satellite broadband is becoming competitive. This article is an attempt to view this important topic from Indian perspective. India’s Project GAGAN, GPS Aided Geo Augmented Navigation is discussed.

  9. Business Use of Satellite Communications. (United States)

    Edelson, Burton I.; Cooper, Robert S.


    Reviews business communications development and discusses business applications of satellite communications, system technology, and prospects for future developments in digital transmission systems. (JN)

  10. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)


    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  11. New supersymmetric quartet of nuclei: 192Os, 193Os, 193Ir, 194Ir

    CERN Document Server

    Bijker, R; Frank, A; Graw, G; Hertenberger, R; Jolie, J; Wirth, H -F


    We present evidence of the existence of a new supersymmetric quartet of nuclei in the A=190 mass region. The analysis is based on new experimental information on the odd-odd nucleus 194Ir from transfer and capture reactions. The new data allow the identification of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions fo r193Os, and suggest that its spectroscopic properties be measured in dedicated experiments. Finally, we study correlations between different transfer reactions.

  12. Vientos galácticos extremos y ``starburst" en IR mergers e IR QSOs (United States)

    Lípari, S.; Sanders, D.; Terlevich, R.; Veilleux, S.; Díaz, R.; Taniguchi, Y.; Zheng, W.; Kim, D.; Tsvetanov, Z.; Carranza, G.; Dottori, H.

    We report -as a part of a long-term study of mergers and IR QSOs- detailed spectroscopic evidences for outflow (OF) and Wolf Rayet (WR) features in: (i) low velocity OF ongoing mergers NGC 4038/39 and IRAS 23128-5919; and (ii) extreme velocity OF (EVOF) QSOs IRAS 01003-2238 and IRAS 13218+0552. We also study the presence of OF and EVOF in a complete sample of ultra-luminous IR galaxies and QSOs (``The IRAS 1 Jy MKO-KPNO Survey", of 118 objects). We found EVOF in IRAS 11119+3257, 14394+5332, 15130+1958 and 15462-0450 (and probable OF in IRAS 05024-1941, 13305-1739, 13451+1232, and 23389+0300). The OF components detected in these objects were mainly associated to starburst processes: i.e., to galactic-winds generated in multiple type II SN explosions and massive stars. The EVOF were detected in objects with strong starburst plus obscured IR QSOs; which suggest that interaction of both processes could generate EVOF. In addition, we analyze the presence of Wolf Rayet features in the large sample of Bright PG-QSOs (Boroson and Green 1992), and nearby mergers and galactic-wind galaxies. We found clear WR features in the Fe II PG-QSOs (type I): PG 1244+026, 1444+407, 1448+273, 1535+547; and in the IR merger Arp 220. We describe the properties of the [O III]λ5007-4959 emission, in strong and extreme Fe II+IR+BAL emitters (QSOs of types I and II). HST archive images of IR+BAL QSOs show in practically all of these objects "arc or shell" features probably associated to galactic-winds (i.e., to multiple type II SN explosions) and/or merger processes. Finally, we discuss the presence of extreme starburst and galactic wind as a possible evolutive link between IR merger and IR QSOs; where the relation between mergers and extreme starburst (with powerful galactic-winds and ``multiple" type II SN explosions) plays an important role, in the evolution of galaxies (a complete version of this work was published in Astro-ph 0007316).

  13. Declassified Intelligence Satellite Photographs (United States)



    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth’s land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive.The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  14. The power relay satellite (United States)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  15. Inter-satellite links for satellite autonomous integrity monitoring (United States)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco


    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  16. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS) (United States)

    Hoder, Douglas; Bergamo, Marcos


    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  17. Active IR-applications in civil engineering (United States)

    Wiggenhauser, H.


    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  18. MEMS-based IR-sources (United States)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen


    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  19. An IR Navigation System for Pleural PDT

    Directory of Open Access Journals (Sweden)

    Timothy C Zhu


    Full Text Available Pleural photodynamic therapy (PDT has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM. In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  20. An IR Navigation System for Pleural PDT. (United States)

    Zhu, Timothy C; Liang, Xing; Kim, Michele M; Finlay, Jarod C; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles B; Friedberg, Joseph S; Cengel, Keith A


    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light fluence uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  1. Modelling the Spoon IRS diagnostic diagram

    CERN Document Server

    Rowan-Robinson, Michael


    We explore whether our models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of IRS spectra measured with Spitzer. The diagnostic plot of 9.7 mu silicate optical depth versus 6.2 mu PAH equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modeling the full IRS spectra and using broad-band 25-850 mu fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50-200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.

  2. An IR Navigation System for Pleural PDT (United States)

    Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith


    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  3. Wafer level test solutions for IR sensors (United States)

    Giessmann, Sebastian; Werner, Frank-Michael


    Wafer probers provide an established platform for performing electrical measurements at wafer level for CMOS and similar process technologies. For testing IR sensors, the requirements are beyond the standard prober capabilities. This presentation will give an overview about state of the art IR sensor probing systems reaching from flexible engineering solutions to automated production needs. Cooled sensors typically need to be tested at a target temperature below 80 K. Not only is the device temperature important but also the surrounding environment is required to prevent background radiation from reaching the device under test. To achieve that, a cryogenic shield is protecting the movable chuck. By operating that shield to attract residual gases inside the chamber, a completely contamination-free test environment can be guaranteed. The use of special black coatings are furthermore supporting the removal of stray light. Typically, probe card needles are operating at ambient (room) temperature when connecting to the wafer. To avoid the entrance of heat, which can result in distorted measurements, the probe card is fully embedded into the cryogenic shield. A shutter system, located above the probe field, is designed to switch between the microscope view to align the sensor under the needles and the test relevant setup. This includes a completely closed position to take dark current measurements. Another position holds a possible filter glass with the required aperture opening. The necessary infrared sources to stimulate the device are located above.

  4. Bipolar outflows in OH/IR stars

    CERN Document Server

    Zijlstra, A A; Hekkert, P L; Likkel, L; Comeron, F; Norris, R P; Molster, F J; Cohen, R J; Zijlstra, Albert A.


    We investigate the development of bipolar outflows during the early post-AGB evolution. A sample of ten OH/IR stars is observed at high angular resolution, including bipolar nebulae (OH231.8+4.2), bright post-AGB stars (HD 101584) and reflection nebulae (e.g. Roberts 22). The IRAS colour--colour diagram separates the sample into different types of objects. One group may contain the progenitors to the (few) extreme bipolar planetary nebulae. Two objects show colours and chemistry very similar to the planetary nebulae with late IR-[WC] stars. One object is a confirmed close binary. A model is presented consisting of an outer AGB wind which is swept up by a faster post-AGB wind, with either wind being non-spherically symetric. The interface of the two winds is shown to exhibit a linear relation between velocity and distance from the star. The OH data confirms the predicted linear velocity gradients, and reveals torus-like, uniformly expanding components. All sources are discussed in detail using optical/HST imag...

  5. Epitaxial polar europium oxide on Ir(111)

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Stefan; Foerster, Daniel F.; Busse, Carsten; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, D-50937 Koeln (Germany)


    EuO is a ferromagnetic semiconductor with a Curie temperature of 69 K and a band gap of about 1.2 eV. We have grown submonolayer films of EuO by means of reactive molecular beam epitaxy on Ir(111). The initial growth shows atomically flat islands of polar EuO(111) as can be seen from scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Both in STM images and LEED we see a rotational mismatch of the dense-packed rows of EuO(111) and Ir(111) of up to about 5 . Using dI/dz spectroscopy and analyzing the Gundlach oscillations in scanning tunneling spectra we find a strong increase of the work function for the first polar bilayer EuO compared to bare iridium. The work function increase also gives rise to a strong reduction of the apparent height of the EuO islands in STM images. We interpret the work function increase to result from the additional surface dipole created by the polar EuO(111) surface.

  6. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin


    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  7. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio


    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  8. IR camera temperature resolution enhancing using computer processing of IR image (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.


    As it is well-known, application of the IR camera for the security problems is very promising way. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possility of viewing the temperature trace on a human body skin, caused by temperature changing inside the human body due to water drinking. We use new approach, based on usung a correlation function, for computer processing of IR images. Its application results in a temperature resolution enhancing of cameras. We analyze IR images of a person, which drinks water. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by shirt. We try to see a human body temperature changing in physical experiments under consideration. Shown phenomena are very important for the detection of forbidden objects, cancelled under clothes or inside the human body, by using non-destructive control without using X-rays.

  9. Organic/IR-Semiconductor heterojunctions for low-cost, high temperature IR arrays (United States)

    Jones, Colin E.


    This program evaluated a new technology for producing infrared photo-diodes in HgCdTe and InSb using evaporated organic heterojunctions. High quantum-efficiency IR detectors were demonstrated with the organic process comparable to commercial IR detectors. The organic photodiodes at room temperature were better than commercial detectors. They had lower leakage currents and higher resistance-area products (RoAs). Detector arrays made with the organics can operate at higher temperatures than the current detectors. Initial data at low temperatures were poorer than commercial detectors with lower RoAs and slightly higher 1/f noise. This comparison at low temperature may change with further optimization of the organic process. The organic diode process is very simple, low cost and non-damaging to the HgCdTe or InSb. It involves thermal evaporation of the organic onto the HgCdTe or InSb followed by evaporation of metal contacts through a shadow mask. Phase 1 demonstrated organic/HaCdTe IR detectors with quantum efficiencies similar to commercial devices operating at higher temperatures. The technology is ready for a Phase 2 to further optimize the processing for IR arrays and to increase yields.

  10. No Evolution in the IR-Radio Relation for IR-Luminous Galaxies at z<2 in the COSMOS Field

    CERN Document Server

    Sargent, Mark T; Murphy, E; Carilli, C L; Helou, G; Aussel, H; Le Floc'h, E; Frayer, D T; Ilbert, O; Oesch, P; Salvato, M; Smolcic, V; Kartaltepe, J; Sanders, D B


    Previous observational studies of the infrared (IR)-radio relation out to high redshift employed any detectable star forming systems at a given redshift within the restricted area of cosmological survey fields. Consequently, the evolution inferred relies on a comparison between the average IR/radio properties of (i) very IR-luminous high-z sources and (ii) more heterogeneous low(er)-z samples that often lack the strongest IR emitters. In this report we consider populations of objects with comparable luminosities over the last 10 Gyr by taking advantage of deep IR (esp. Spitzer 24 micron) and VLA 1.4 GHz observations of the COSMOS field. Consistent with recent model predictions, both Ultra Luminous Infrared Galaxies (ULIRGs) and galaxies on the bright end of the evolving IR luminosity function do not display any change in their average IR/radio ratios out to z~2 when corrected for bias. Uncorrected data suggested ~0.3 dex of positive evolution.

  11. Multicast Routing in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    郭惠玲; 宋姝; 李磊; 刘志涛; 郭鹏程


    There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.

  12. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros


    for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  13. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martinez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.


    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  14. The SPOT satellite (United States)

    Fouquet, J.-P.


    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  15. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas


    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  16. Astronomy from satellite clusters (United States)

    Stachnik, R.; Labeyrie, A.


    Attention is called to the accumulating evidence that giant space telescopes, comprising a number of separate mirrors on independent satellites, are a realistic prospect for providing research tools of extraordinary power. The ESA-sponsored group and its counterpart in the US have reached remarkably similar conclusions regarding the basic configuration of extremely large synthetic-aperture devices. Both share the basic view that a cluster of spacecraft is preferable to a single monolithic structure. The emphasis of the US group has been on a mission that sweeps across as many sources as possible in the minimum time; it is referred to as SAMSI (Spacecraft Array for Michelson Spatial Interferometry). The European group has placed more emphasis on obtaining two-dimensional images. Their system is referred to as TRIO because, at least initially, it involves three independent systems. Detailed descriptions are given of the two systems.

  17. Multiplication of Rice Sterile Line IR58025A%IR58025A的繁殖

    Institute of Scientific and Technical Information of China (English)

    周宗岳; 莫志军; 胡继银


    IR58025A是一个很优越的不育系,由它配制的Mestizo,在菲律宾种子供不应求.但是应用面积一直不能扩大.IR58025A纯度低、繁殖制种产量低是重要的制约因素.作者在菲律宾SL Agritech Corp工作期间,对IR58025A&B群体进行了观察分析,确认IR58025A纯度低的原因是混杂,于是繁殖田不喷赤霉素、严格除杂.同时运用异交力学说,分析繁殖制种低产的原因主要是柱头活力低、传粉效率低等,采取选择适宜地域季节、喷硼酸、父本双行改单行、加强父本培育、改进赤霉素喷施技术、竹杆赶粉改绳索赶粉……等对策,使产量成倍提高.运用科学理论,抓住症结,因地制宜,针对性地采取简便易行对策,迅速扫除了障碍.2002年10月在菲律宾22ha繁殖田收获IR58025A种子的纯度超过99.9%,平均产量1.77t/ha.

  18. Advanced satellite communication system (United States)

    Staples, Edward J.; Lie, Sen


    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  19. Direct Broadcast Satellite: Radio Program (United States)

    Hollansworth, James E.


    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  20. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les


    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  1. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils


    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  2. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)


    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  3. The Communications Satellite as Educational Tool. (United States)

    Long, Peter


    Drawing on the experiences of several countries, the author describes satellite technology, discusses the feasibility of satellite use in traditional educational institutions, and analyzes the role of satellites in social development. (SK)

  4. Polar-Orbiting Satellite (POES) Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  5. Charge-Coupled Scanned IR Imaging Sensors (United States)


    34- —- . imjiiMwmimTimfm ■ ■liliil« III 11.1 II 1 . ■ ’""""■l" i.1 i.’ *sppi» pnp »ppnn^mipipi — ’" • ’■■ ’i- •*mm ^■tl UNCLASSIFIED SECURITY CLASSlFi...showing the floating diffusion (21), the MOS transistor (22), the reset gate (23), and the drain (24) n 3. (a) Photograph through the microscope of the...spectral response 22 12. Characteristics of setting circuit of IR-CCD chip run as an MOS transistor . The bias is C.2 V/step; tht. transconductance (gm

  6. Tellurium halide IR fibers for remote spectroscopy (United States)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.


    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  7. ATF2 tests and CLIC IR study

    CERN Document Server

    Angal-Kalinin, D; Jones, J; Scarfe, A; Tygier, S


    This task covered three separate subtasks dealing with ILC and CLIC beam delivery system and Interaction region studies as well as testing the tuning procedures at ATF2 final focus test facility. The proposed local chromaticity correction final focus system for both ILC as well as CLIC is being tested experimentally for the first time at ATF2, various tuning procedures have been applied to study the applicability of various procedures to the ILC and CLIC to optimize the interaction region. The CLIC IR region was studied in detail, and the impact and mitigation of CLIC detector solenoid effects on the beam orbit, coupling and extraction have been considered. The work programme of this task concentrated on central region integration of the ILC following the design changes proposed during the technical design phase of the ILC, participation in ATF2 beam tuning studies and CLIC interaction region studies.

  8. Pre-Starbursts in Luminous IR Galaxies?

    CERN Document Server

    Gao, Y; Hwang, C Y; Lo, K Y; Veilleux, S; Gao, Yu; Gruendl, Robert A.


    We present first results of our on-going BIMA Key Project: imaging the CO(1-0) emission from a sample of 10 luminous IR galaxies (LIRGs) that are at various merging stages, with special emphasis on systems apparently in the early/intermediate stages of merging. We present here CO images with $\\sim 5''$ resolution. An important result is the recognition of a plausible pre-starburst phase in some early LIRG mergers (e.g., Arp 302 and NGC 6670). Our initial analysis suggests that a merger-induced starburst phase may not begin before the nuclear separation between the merging galaxies reaches roughly 10 kpc. The surface gas density seems to increase from a few times $10^2 \\Msun pc^{-2} to >10^3 \\Msun pc^{-2}$ while the prominent CO extent systematically decreases as merging progresses.

  9. Micro cryogenic coolers for IR imaging (United States)

    Lewis, Ryan; Wang, Yunda; Cooper, Jill; Lin, Martin M.; Bright, Victor M.; Lee, Y. C.; Bradley, Peter E.; Radebaugh, Ray; Huber, Marcia L.


    Joule-Thomson micro cryogenic coolers (MCCs) are a preferred approach for small and low power cryocoolers. With the same heat lift, MCC's power input can be only 1/10 of a thermoelectric cooler's input, and MCC's size can be only 1/10 of a Stirling cooler's size. With futuristic planar MCC and with high frequency MEMS compressors to be developed, its size can be reduced another order of magnitude. Such "invisible" cryocoolers may revolutionize future IR imaging systems. We will review our studies on the feasibility of MCC with an emphasis on: 1) high thermal isolation levels reaching 89,000 K/W; 2) custom-designed gas mixtures with refrigeration capabilities increased by 10X and pressure ratio reduced to only 4:1; 3) compressors with low pressure ratios; and 4) excellent scalability for further size reduction.

  10. Cobalt sites in zeolites FAU - IR investigations (United States)

    Góra-Marek, Kinga; Mrowiec, Halina; Walas, Stanisław


    The properties of Co 2+ in zeolites CoX and CoY and their interaction with CO, NO, and propene were followed. The IR experiments of CO and NO informed on the electron acceptor properties of Co 2+ sites and the influence of framework composition and of geometry of Co 2+ environment on the properties of Co 2+. It has been found, that the activation of CO and NO is realized mostly by π back donation, on the other hand, the activation of C dbnd C double bond in propene is realized by π donation. The strength of molecules to Co 2+ bonding was followed in desorption experiments. It has been found, that σ donation in the case of CO and π donation has more important impact to the strength of molecule to Co 2+ bonding.

  11. Stereoscopic observations from meteorological satellites (United States)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  12. Microresonator-based mid-IR devices (United States)

    Jain, Ravinder K.; Hossein-Zadeh, Mani


    High optical quality (high-Q) whispering-gallery mode (WGM) microresonators are key enablers for numerous highperformance photonic devices, including ultrasensitive molecular detectors and advanced light sources such as narrowlinewidth lasers and comb generators. For sensing applications, the unique characteristics of such WGM devices appear to be particularly relevant in the mid-IR (MIR) spectral region because of the stronger molecular absorption bands in this spectral region. However, most current WGM-based passive and active devices function in the near-IR (NIR) spectral region. We propose the development of reproducible high-Q WGM microresonators for the MIR by using low phonon energy glasses (such as fluorides, chalcogenides, and tellurides) along with an elegant and reproducible microsphere fabrication technique based on the use of novel state-of-the-art microheaters. In this paper, we first review the current state-of-the-art of WGM MIR microresonators and related optoelectronic devices, and then present recent results of our work on fabrication and characterization of high-Q WGM optical microresonators with several fluoride (ZBLAN, InF3 and AlF3) glasses. Intrinsic quality factors in excess of ten million have been measured in the NIR regime in the fluoridebased microspheres fabricated in our lab with the proposed -- highly reliable and reproducible - microheater fabrication method, and similar or better performances are expected from similar microspheres at MIR wavelengths between 2 to 5 microns. We next discuss potential applications of these microresonators, notably for low-threshold and narrowlinewidth MIR lasers and MIR comb applications.

  13. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M


    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  14. VLT near- to mid-IR imaging and spectroscopy of the M17 UC1-IRS5 region

    CERN Document Server

    Chen, Zhiwei; Chini, Rolf; Jiang, Zhibo; Fang, Min


    We investigate the surroundings of the hypercompact HII region M17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Five of the seven point sources in this region show $L$-band excess emission. Geometric match is found between the H_2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H_2 emission is typical for dense PDRs, which are FUV pumped initially and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity L_IR in the range 1-20 micron is derived for three objects; we obtain 2.0x10^3 L_\\sun for IRS5A, 13 L_\\sun for IRS5C, and 10 L_\\sun for B273A. IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (~ 9 M_\\sun, ~1x10^5 yrs); it might have terminated accretion due to the feedb...

  15. Endurance test on IR rig for RI production

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heung June; Youn, Y. J.; Han, H. S.; Hong, S. B.; Cho, Y. G.; Ryu, J. S


    This report presents the pressure drop, vibration and endurance test results for IR rig for RI production which were desigened and fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate through the IR rig corresponding to the pressure drop of 200 kPa is measured to be about 3.12 kg/sec. Vibration frequency for the IR rig ranges from 13 to 17 Hz. RMS(Root Mean Square) displacement for the IR rig is less than 30 {mu}m, and the maximum displacement is less than 110{mu}m. These experimental results show that the design criteria of IR rig meet the HANARO limit conditions. Endurance test results show that the appreciable fretting wear for the IR rig does not occur, however tiny trace of wear between contact points is observed.

  16. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas


    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  17. NOAA Interest in Small Satellite Solutions for Mitigation of Data Gaps (United States)

    Caulfield, M.; Tewey, K.; John, P.


    The National Oceanic and Atmospheric Administration (NOAA) is undertaking a strategy to achieve satellite constellation robustness by 2023 to maintain continuity of polar satellite observations, which are central to NOAA's weather forecast capability. NOAA's plans include mitigation activities in the event of a loss of polar observations. In 2017, NOAA will begin development of the Earth Observing Nanosatellite - Microwave (EON-MW). EON-MW is a miniature microwave sounder that approximates the atmospheric profiling capabilities of the Advanced Technology Microwave Sounder (ATMS) instrument on the NOAA Joint Polar Satellite System (JPSS). NOAA is collaborating with the Massachusetts Institute of Technology's Lincoln Laboratory (MIT / LL) on EON-MW, which includes 2 years of risk reduction efforts to further define the EON-MW mission and identify and manage key technical risks. These studies will refine designs and evaluate system trades for operational earth observations from a U-class satellite platform, as well as examine microwave sensor concepts and investigated payload architecture to support microwave frequencies for atmospheric remote sensing. Similar to EON-MW, NOAA is also investigating the potential to mitigate against the loss of the JPSS Cross Track Infrared Sounder (CrIS) data with a CubeSat based mid-wave Infrared sounder. NOAA is collaborating with the Jet Propulsion Laboratory (JPL) to design the Earth Observation Nanosatellite-Infrared (EON-IR). EON-IR will leverage the NASA-JPL CubSat based infrared sounder CubSat Infrared Atmospheric Sounder (CIRAS) mission. In FY 2015 NOAA funded a study to analyze the feasibility of meeting the essential requirements of the CrIS from a CubeSat platform and began exploring the basic design of the EON-IR payload and bus. NOAA will continue to study EON-IR in 2016 by examining ways to modify the CIRAS design to better meet NOAA's observational and operational needs. These modifications will aim to increase mission

  18. Matrixisolation und IR-spektroskopische Charakterisierung fluorierter Dehydrophenylnitrene


    Cakir, Bayram


    In dieser Arbeit wurden iodierte-Fluorbenzolazide untersucht. Die ortho-, meta- und para-iodierte Fluorbenzolazide wurden unter Matrixbedingungen mit verschiedenen Lichtquellen bestrahlt. Die Matrixtemperatur betrug in Neon 3.5 K und in Argon 3.5 K. Nach den Bestrahlungen erfolgte immer eine IR-Aufnahme. Charakterisiert wurden die entstandenen Photoprodukte durch Vergleich der IR-Aufnahmen mit den theoretisch berechneten IR-Spektren, vorwiegend mit (U)B(3)LYP/6- 311G(d,p)-Rechnung...

  19. The Project of Medical IR Materials Passed Argumentation

    Institute of Scientific and Technical Information of China (English)

    Qian Bozhang


    Research Project on the Key Technologies for Medical IR Materials and Products declared by Puyang Linshi Chemical New Materials Co., Ltd. passed the expert argumentation organized by Henan Science and Technology Department in April 2012, and was listed in the significant scientific and technological special projects of Henan Province. This project, with the re- search basis of medical IR development, will form the production capacity of 150 million pairs of medical IR surgical gloves after achieving the designed capacity.

  20. Multi-mission Satellite Management (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.


    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  1. A combined IR/IR and IR/UV spectroscopy study on the proton transfer coordinate of isolated 3-hydroxychromone in the electronic ground and excited state. (United States)

    Stamm, A; Weiler, M; Brächer, A; Schwing, K; Gerhards, M


    In this paper the excited state proton transfer (ESPT) of isolated 3-hydroxychromone (3-HC), the prototype of the flavonols, is investigated for the first time by combined IR/UV spectroscopy in molecular beam experiments. The IR/UV investigations are performed both for the electronically excited and electronic ground state indicating a spectral overlap of transitions of the 3-HC monomer and clusters with water in the electronic ground state, whereas in the excited state only the IR frequencies of the proton-transferred monomer structure are observed. Due to the loss of isomer and species selectivity with respect to the UV excitations IR/IR techniques are applied in order to figure out the assignment of the vibrational transitions in the S0 state. In this context the quadruple resonance IR/UV/IR/UV technique (originally developed to distinguish different isomers in the electronically excited state) could be applied to identify the OH stretching vibration of the monomer in the electronic ground state. In agreement with calculations the OH stretching frequency differs significantly from the corresponding values of substituted hydroxychromones.

  2. Spitzer/IRS Mapping of Local Luminous Infrared Galaxies

    CERN Document Server

    Pereira-Santaella, Miguel; Rieke, George H; Colina, Luis


    We present results of our program Spitzer/IRS Mapping of local Luminous Infrared Galaxies (LIRGs). The maps cover the central 20"x20" or 30"x 30" regions of the galaxies, and use all four IRS modules to cover the full 5-38 microns spectral range. We have built spectral maps of the main mid-IR emission lines, continuum and PAH features, and extracted 1D spectra for regions of interest in each galaxy. The final goal is to fully characterize the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts.

  3. Role of IRS-2 in insulin and cytokine signalling. (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F


    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  4. Komandinio ir grupinio darbo įtaka organizacijos veiklai


    Mizeikytė, Jolanta


    MIZEIKYTĖ, Jolanta. (2009) Komandinio ir grupinio darbo įtaka organizacijos veiklai. Magistro baigiamasis darbas. Kaunas: Vilniaus universiteto, Kauno humanitarinis fakultetas. 72 p. SANTRAUKA Pastaruoju metu vis dažniau tenka išgirsti sąvoką komandinis ir grupinis darbas. Taip yra todėl, kad pastarosios sąvokos tampa nuolatiniu šiuolaikinio verslo palydovu, teikiančiu konkurencinį pranašumą. Darbo objektas – komandinis ir grupinis darbas. Darbo tikslas – ištirti komandinio ir grupinio darbo ...

  5. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian


    The most sensitive IR detectors today are based on exotic semicoductor technology such as indium antimonide or mercury cadmium telluride. High quality detectors of these sorts are expensive and suffer from high dark currents. Dark current can be somewhat alleviated by extreme cooling. Comparing...... in the near-IR. Conventional detection schemes for IR radiation include microbolometers, which rely on minute temperature changes induced in a 2D nanophotonic sensor device when IR radiation is adsorbed. Microbolometers exist both as cryogenically cooled and uncooled devices. The wavelength upconversion...

  6. Medicare Modernization Act (MMA) IRS Medicare Part D (United States)

    Social Security Administration — SSA uses the Internal Revenue Service (IRS) information in determing the eligibility of Medicare recipients to receive subsidy payments for Medicare premiums. SSA...

  7. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating. (United States)

    Tseng, Shih-Feng; Lee, Chao-Te; Huang, Kuo-Cheng; Chiang, Donyau; Huang, Chien-Yao; Chou, Chang-Pin


    In this study, the different compositions of Pt-Ir and Ni-Ir alloys were deposited by utilizing ion source assisted magnetron sputtering system (ISAMSS). The surface roughness and crystallite size of the Pt-Ir and Ni-Ir coatings were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. In addition, coatings were soaked at 700 degrees and maintained 10 min under N2 atmosphere using a glass-molding machine. The annealed coatings for oxidation test were examined by energy dispersive X-ray spectrometry (EDS) and for microhardness and reduced modulus test were evaluated by nanoindentation instrucment. The cross-sectional structures between the Pt-Ir and Ni-Ir coating layer and substrates were also examined by field emission scanning electron microscope (FESEM). The results show that surface roughness Ra from 1.25 nm to 3.426 nm was observed with increasing the Ni elements. However, the Ra is less than 2 nm measured in Ir-based coatings doped with Pt concentrations under this study. With increasing Pt and Ni doping, the microhardness of both coatings decreased significantly and the values of reduced modulus of Pt-Ir alloys are larger than that of Ni-Ir alloys. After oxidation process, the oxygen concentration of Pt-Ir coatings is less than that of Ni-Ir coatings and the Pt-Ir coatings exhibit superior properties including oxidation resistance, low surface roughness and high reduced modulus over Ni-Ir coatings, especially for the high Pt concentration coatings such as Pt-Ir 2 (55.25 at.% Pt) and Pt-Ir 3 (79.42 at.% Pt) coatings. The surface roughnesses of all specimens annealed at 700 degrees C were slightly larger than as-deposited coatings. Moreover, due to the serious oxidation occurred in Ni-Ir 3 (73.45 at.% Ni) coatings, the value of reduced modulus of this specimen coating is the lowest and the corrsponding Ra value is the largest compared with the rest of Ir-based coatings in the oxidation testing.

  8. AGN and starburst in bright Seyfert galaxies: from IR photometry to IR spectroscopy

    CERN Document Server

    Spinoglio, Luigi; Malkan, Matthew A


    Infrared photometry and later infrared spectroscopy provided powerful diagnostics to distinguish between the main emission mechanisms in galaxies: AGN and Starburst. After the pioneering work on infrared photometry with IRAS in the far-IR and the S.Pedro Martir and ESO ground-based work in the near-IR, ISO photometry extended up to 200um the coverage of the galaxies energy distributions. Then Spitzer collected accurate mid-infrared spectroscopy on different samples of galaxies. We will review the work done on the 12um galaxy sample since the times of IRAS photometry to the new Spitzer spectroscopy. The main results on the multifrequency data of 12um selected Seyfert galaxies are presented and discussed in the light of unification and evolution models. The spectroscopic work of Spitzer will soon be complemented at longer wavelengths by the Herschel spectrometers and in the future by SPICA at higher redshift.

  9. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David


    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  10. Advanced Communications Technology Satellite (ACTS) (United States)

    Gedney, Richard T.; Schertler, Ronald J.


    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  11. The french educational satellite arsene (United States)

    Danvel, M.; Escudier, B.

    ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by "ARSENE students" in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.

  12. ISDN - The case for satellites (United States)

    Pelton, Joseph N.; McDougal, Patrick J.


    The Integrated Services Digital Network (ISDN) holds much promise for both suppliers and users of telecommunications in the near future. This article examines the role of satellites in this new ISDN environment and emphasizes several advantages of satellites in the ongoing evolution to an all-digital world. In specific, the role of Intelsat, the global satellite system, is discussed with emphasis on Intelsat's digital services which today can offer all the characteristics and standards of ISDN in a flexible, cost-efficient manner.

  13. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls


    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  14. Planetary satellites - an update (United States)

    Beatty, J. K.


    General features of all known planetary satellites in the system are provided, and attention is focused on prominent features of several of the bodies. Titan has an atmosphere 1.5 times earth's at sea level, a well a a large body of liquid which may be ethane, CH4, and disolved N2. Uranus has at least five moons, whose masses have recently been recalculated and determined to be consistent with predictions of outer solar system composition. Io's violent volcanic activity is a demonstration of the conversion of total energy (from Jupiter) to heat, i.e., interior melting and consequent volcanoes. Plumes of SO2 have been seen and feature temperatures of up to 650 K. Enceladus has a craterless, cracked surface, indicating the presence of interior ice and occasional breakthroughs from tidal heating. Hyperion has a chaotic rotation, and Iapetus has one light and one dark side, possibly from periodic collisions with debris clouds blasted off the surface of the outer moon Phoebe.

  15. Hubble Space Telescope satellite (United States)

    Mitchell, R. E.


    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  16. The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy

    CERN Document Server

    Brandl, B R; Spoon, H W W; Devost, D; Sloan, G C; Guilles, S; Wu, Y; Houck, J R; Armus, L; Weedman, D W; Charmandaris, V; Appleton, P N; Soifer, B T; Hao, L; Marshall, J A; Higdon, S J; Herter, T L


    We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The silicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correla...

  17. Measurements of Cumulonimbus Clouds using quantitative satellite and radar data (United States)

    Negri, A. J.; Reynolds, D. W.; Maddox, R. A.


    Results are reported for a preliminary study of SMS-2 digital brightness and IR data obtained at frequent 5-7.5 min intervals. The clouds studied were over the Central and Great Plains in midlatitudes and thus were typical of an environment much different from that of the tropical oceans. The satellite data are compared to radar data for both a severe weather event and weak thundershower activity of the type which might be a target for weather modification efforts. The relative importance of short time interval satellite data is shown for both cases, and possible relationships between the two types of data are presented. It is concluded that (1) using a threshold technique for visible reflected brightness, precipitating vs. nonprecipitating clouds can be discriminated; (2) brightness is well related to cloud size and shape; and (3) satellite-derived growth rates may be a significant parameter to be used in determining storm severity, especially if rapid time sequence data are used during the development phase of the storm.

  18. An IR study of the Σ-CO CO-adsorption state in the system CO/H/Ni(100) (United States)

    Hayden, B. E.; Klauser, R.; Bradshaw, A. M.

    The weakly bound Σ-CO co-adsorption state in the system CO/H/Ni(100) has been investigated by IR reflection-absorption spectroscopy (IRAS). Its CO stretching frequency changes from 2095 to 2115 cm -1 as a function of increasing coverage. Experiments with 12CO and 13CO mixtures show that this shift is composed of an increase in frequency of 48 cm -1 due to dipole-dipole coupling and a decrease of 24 cm -1 due to "static" or chemical effects. The negative chemical shift can be correlated with the appearance of satellites in the photoelectron spectrum as in other weak chemisorption systems.

  19. An IR-study of the -CO CO-adsorption state in the system CO/H/Ni(100) (United States)

    Hayden, B. E.; Klauser, R.; Bradshaw, A. M.


    The weakly bound ω-CO co-adsorption state in the system CO/H/Ni(100) has been investigated by IR reflection-absorption spectroscopy (IRAS). Its C-O stretching frequency changes from 2095 to 2115 cm -1 as a function of increasing coverage. Experiments with 12CO and 13CO mixtures show that this shift is composed of an increase in frequency of 48 cm -1 due to dipole-dipole coupling and a decrease of 24 cm -1 due to "static" or chemical effects. The negative chemical shift can be correlated with the appearance of satellites in the photoelectron spectrum as in other weak chemisorption systems.

  20. Detection of marine aerosols with IRS P4-Ocean Colour Monitor

    Indian Academy of Sciences (India)

    Indrani Das; M Mohan; K Krishnamoorthy


    The atmospheric correction bands 7 and 8 (765nm and 865nm respectively) of the Indian Remote Sensing Satellite IRS P4-OCM (Ocean Colour Monitor) can be used for deriving aerosol optical depth (AOD) over the oceans. A retrieval algorithm has been developed which computes the AOD using band 7 data by treating the ocean surface as a dark background after removing the Rayleigh path radiance in the sensor-detected radiances. This algorithm has been used to detect marine aerosol distributions at different coastal and offshore locations around India. A comparison between OCM derived AOD and the NOAA operational AOD shows a correlation ∼0.92 while that between OCM derived AOD and the ground-based sun photometer measurements near the coast of Trivandrum shows a correlation of ∼0.90.

  1. Commercial satellite broadcasting for Europe (United States)

    Forrest, J. R.


    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  2. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish


    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  3. Virtual Satellite Integration Environment Project (United States)

    National Aeronautics and Space Administration — An integrated environment for rapid design studies of small satellite missions will be developed. This environment will be designed to streamline processes at the...

  4. Virtual Satellite Integration Environment Project (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  5. Satellite Teleconferencing in the Caribbean. (United States)

    Sankar, Hollis C.


    Discusses the need for, and the development, use, and future trends of, the University of the West Indies Distance Teaching Experiment, which utilizes telephone and communications satellite technology teleconferencing to extend educational opportunities to the peoples of the Caribbean. (MBR)

  6. Geography with the environmental satellites

    Directory of Open Access Journals (Sweden)

    J.P. Gastellu Etchegorry


    Full Text Available Coarse spatial resolution, high temporal frequency data from the earth polar orbiting (NOAA. HACMM, Nimbus, etc. satellites and from the geostationary (GOES. Meteosat, and GMS satellites are presented to demonstrate their utility for monitoring terrestrial and atmospheric processes. The main characteristics of these ,satellites and of the instruments on board are reviewed. In order to be useful for environmental assessments. the remotely sensed data must be processed (atmospheric and geometric corrections, etc.. The NOAA Center provides a wide range of already processed data. such as meteorological. oceanic, hydrologic and vegetation products; o rough description of these preprocessed data is given in this article. Finally, some examples of applicotions in Southeast Asia and especially in Indonesia, are described, i.e.: agroecosystem, drought and oceanic monitoring. The paper concludes that coarse resolution, high temporal frequency ,satellite data are very valuable for environmental studies. the emphasis being laid on the improve. ment of the crop and drought assessment programmes.

  7. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)


    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  8. women Contrlbute to Satellite Technology

    Institute of Scientific and Technical Information of China (English)


    IN the early morning of August 14, 1992, at the Xichang satellite launching center, China Central Television Station was about to do a live, worldwide broadcast on the launching of an Australian communications satellite made by the United States. With the order of the commander, "Ignition," people could watch the white rocket rise, pierce the blue sky and race toward the space with a long flaming tail trailing behind it.

  9. Existence of undiscovered Uranian satellites

    Energy Technology Data Exchange (ETDEWEB)

    Boice, D.C.


    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab.

  10. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro


    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  11. Development trends in IR detector coolers (United States)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.


    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  12. Technical specification for IR rig manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Han Hyon Soo; Cho, W. K.; Kim, S. D.; Park, U. J.; Hong, S. B.; Yoo, K. M


    IR Rig is one of the equipments are required in HANARO core for a radioisotope target. The various conditions like high radiation, high heat, rapid flow and vibration may cause swelling, Brittleness and acceleration of corrosion in HANARO core. These specific problems can be prevented and the safety of such equipment are prerequisite as well as durableness and surveillance. Therefore, the selection of material has to be made on the basis of small cross-section area, low energy emission by the gamma ray due to the absorption of neutron and short half life. The body is consist of aluminum and Inconel-750 was used for the internal spring(coil) which is known to be durable. The whole production process including the purchase of accessory, mechanical processing, welding and assembly was carried out according to the standard procedure to meet the requirement. A design, manufacture, utilization of reactor core and the other relevant uses were fit to class ''T'' to certify the whole process as general. And design, fabrication, analytical test, materials and accessory were carried out based on the ASME, ASTM, ANSI, AWS, JIS and KS standard.

  13. Spanish Earth Observation Satellite System (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.


    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  14. The future of VIS-IR hyperspectral remote sensing for the exploration of the solar system (United States)

    Filacchione, Gianrico


    In the last 30 years our understanding of the Solar System has greatly advanced thanks to the introduction of VIS-IR imaging spectrometers which have provided hyperspectral views of planets, satellites, asteroids, comets and rings. By providing moderate resolution images and reflectance spectra for each pixel at the same time, these instruments allow to elaborate spectral-spatial models for very different targets: when used to observe surfaces, hyperspectral methods permit to retrieve endmembers composition (minerals, ices, organics, liquids), mixing state among endmembers (areal, intimate, intraparticle), physical properties (particle size, roughness, temperature) and to correlate these quantities with geological and morphological units. Similarly, morphological, dynamical and compositional studies of gaseous and aerosol species can be retrieved for planetary atmospheres, exospheres and auroras. To achieve these results, very different optical layouts, detectors technologies and observing techniques have been adopted in the last decades, going from very large and complex payloads, like ISM (IR Spectral Mapper) on russian mission Phobos to Mars and NIMS (Near IR Mapping Spectrometer) on US Galileo mission to Jupiter, which were the first hyperspectral imagers to flow aboard planetary missions, to more recent compact and performing experiments. The future of VIS-IR hyperspectral remote sensing is challenging because the complexity of modern planetary missions drives towards the realization of increasingly smaller, lighter and more performing payloads able to survive in harsh radiation and planetary protected environments or to operate from demanding platforms like landers, rovers and cubesats. As a development for future missions, one can foresee that apart instruments designed around well-consolidated optical solutions relying on prisms or gratings as dispersive elements, a new class of innovative hyperspectral imagers will rise: recent developments in

  15. Satellite medical centers project (United States)

    Aggarwal, Arvind


    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  16. Satellite Attitude from a Raven Class Telescope (United States)


    Cache MATLAB was used as an interface to the jSim libraries, including orbit propagation, Earth Track determination, and satellite orientation methods...collection opportunities of the satellite. The combined software tool calculates the satellite orientation required to image the asset location... satellite orientation estimations, with only the photometric signatures with strong features being correctly estimated. The strong features that


    Institute of Scientific and Technical Information of China (English)


    China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,

  18. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)



    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  19. Initializing HYSPLIT with satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption (United States)

    Crawford, Alice M.; Stunder, Barbara J. B.; Ngan, Fong; Pavolonis, Michael J.


    The current work focuses on improving volcanic ash forecasts by integrating satellite observations of ash into the Lagrangian transport and dispersion model, HYSPLIT. The accuracy of HYSPLIT output is dependent on the accuracy of the initialization: the initial position, size distribution, and amount of ash as a function of time. Satellite observations from passive infrared, IR, sensors are used both to construct the initialization term and for verification. Space-based lidar observations are used for further verification. We compare model output produced using different initializations for the 2008 eruption of Kasatochi in the Aleutian Islands. Simple source terms, such as a uniform vertical line or cylindrical source above the vent, are compared to initializations derived from satellite measurements of position, mass loading, effective radius, and height of the downwind ash cloud. Using satellite measurements of column mass loading of ash to constrain the source term produces better long-term predictions than using an empirical equation relating mass eruption rate and plume height above the vent. Even though some quantities, such as the cloud thickness, must be estimated, initializations which release particles at the position of the observed ash cloud produce model output which is comparable to or better than the model output produced with source terms located above and around the vent. Space-based lidar data, passive IR retrievals of ash cloud top height, and model output agree well with each other, and all suggest that the Kasatochi ash cloud evolved into a complex three-dimensional structure.


    NARCIS (Netherlands)

    Lorenzana, J.; Eder, R; Meinders, M.B J; Sawatzky, G.A


    Recent measured bands in the mid IR of parent insulating compounds of cuprate superconductors [Perkins et al. Phys. Rev. Lett. 71 1621 (1993)] are interpreted as multimagnon infrared (IR) absorption assisted by phonons. We present results for the coupling constant of light with this excitations and

  1. Bringing NMR and IR Spectroscopy to High Schools (United States)

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.


    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  2. A Simulation Program for Dynamic Infrared (IR) Spectra (United States)

    Zoerb, Matthew C.; Harris, Charles B.


    A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…

  3. Bringing NMR and IR Spectroscopy to High Schools (United States)

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.


    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  4. A Non-Conventional IR Approach to India's Foreign Policy

    DEFF Research Database (Denmark)

    Schmidt, Johannes Dragsbæk

    Paper presentation for the Panel 'India's international relations: empirical and theoretical perspectives'. EISA Pan-Euro Conference in Warsaw, 18 - 21st September, 2013 Abstract The paper elaborates on a critique of mainstream IR theory - neo-realism and liberal IR - and suggests...

  5. Superconductivity in noncentrosymmetric Mg10Ir19B16

    NARCIS (Netherlands)

    Klimczuk, T.; Xu, Q.; Morosan, E.; Thompson, J.D.; Zandbergen, H.W.; Cava, R.J.


    Mg10Ir19B16, a previously unreported compound in the Mg-Ir-B chemical system, is found to be superconducting at temperatures near 5 K. The fact that the compound exhibits a range of superconducting temperatures between 4 and 5 K suggests that a range of stoichiometries is allowed, though no structur

  6. Testing a Model of IR Radiative Losses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vignola, F.; Long, C. N.; Reda, I.


    Thermopile pyranometers exhibit IR radiative losses that affect global and diffuse shortwave measurements made with first class thermopile based instruments. Pyrgeometers can be used to measure the sky temperature and are used to calculate the pyranometer?s IR radiative losses.

  7. Investigation of mid-IR picosecond image upconversion

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Pedersen, Christian; Rodrigo, Peter John


    Imaging and spectroscopy in the mid-infrared (Mid-IR) wavelength region have received considerable attention in recent years. The reason is the high Mid-IR spectral specificity of many gases and complex molecules. In this pilot study we focus on picosecond upconversion imaging exploiting the χ(2...

  8. Transitions between the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions for clock applications

    CERN Document Server

    Safronova, U I; Safronova, M S


    Iridium ions near $4f$-$5s$ level crossings are the leading candidates for a new type of atomic clocks with a high projected accuracy and a very high sensitivity to the temporal variation of the fine structure constant $\\alpha$. To identify spectra of these ions in experiment accurate calculations of the spectra and electromagnetic transition probabilities should be performed. Properties of the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions are evaluated using relativistic many-body perturbation theory and Hartree-Fock-Relativistic method (COWAN code). We evaluate excitation energies, wavelengths, oscillator strengths, and transition rates. Our large-scale calculations includes the following set of configurations: $4f^{14-k}5s^{m}5p^{n}$ with $(k+m+n)$ equal to 3, 2, and 1 for the Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions, respectively. The $5s-5p$ transitions are illustrated by the synthetic spectra in the 180 - 200 \\AA range. Large contributions of magnetic-dipole transitions to l...


    Directory of Open Access Journals (Sweden)

    K. Kamiya


    Full Text Available Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  10. Applicability Evaluation of Object Detection Method to Satellite and Aerial Imageries (United States)

    Kamiya, K.; Fuse, T.; Takahashi, M.


    Since satellite and aerial imageries are recently widely spread and frequently observed, combination of them are expected to complement spatial and temporal resolution each other. One of the prospective applications is traffic monitoring, where objects of interest, or vehicles, need to be recognized automatically. Techniques that employ object detection before object recognition can save a computational time and cost, and thus take a significant role. However, there is not enough knowledge whether object detection method can perform well on satellite and aerial imageries. In addition, it also has to be studied how characteristics of satellite and aerial imageries affect the object detection performance. This study employ binarized normed gradients (BING) method that runs significantly fast and is robust to rotation and noise. For our experiments, 11-bits BGR-IR satellite imageries from WorldView-3, and BGR-color aerial imageries are used respectively, and we create thousands of ground truth samples. We conducted several experiments to compare the performances with different images, to verify whether combination of different resolution images improved the performance, and to analyze the applicability of mixing satellite and aerial imageries. The results showed that infrared band had little effect on the detection rate, that 11-bit images performed less than 8-bit images and that the better spatial resolution brought the better performance. Another result might imply that mixing higher and lower resolution images for training dataset could help detection performance. Furthermore, we found that aerial images improved the detection performance on satellite images.

  11. Fast Development Of China's Small Satellite Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Hongjin


    @@ China Spacesat Co., Ltd of China Academy of Space Technology (CAST) recently said, along with the successful launch of HJ-1A/B for the environment and disaster monitoring and forecasting small satellite constellation and after years of efforts, small satellite development technology has achieved fruitful results, and the development status has been greatly improved.China's small satellite technology has realized a great-leap-forward in development from a single satellite model to series model, from the satellite program to space industry. China has explored a development road for China's small satellite industrialization, and a modern small satellite development base has resulted.

  12. Shadow imaging of geosynchronous satellites (United States)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  13. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses (United States)

    Kim, Nammoon; Kim, Youngok


    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  14. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon


    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.


    Institute of Scientific and Technical Information of China (English)


    China on Sept.25 recovered its 19th recoverable sci-tech experimental satellite 27 days after the satellite orbited in space. The satellite, which was launched on Aug.29 from the Jiuquan Satellite Launch Center in Gansu Province, northwest China, touched the ground at 7:55 a.m.on Sept.25. The satellite, atop a Long March 2C carrier rocket, is mainly for

  16. Lopsided Collections of Satellite Galaxies (United States)

    Kohler, Susanna


    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that

  17. Jupiter small satellite montage (United States)


    A montage of images of the small inner moons of Jupiter from the camera onboard NASA's Galileo spacecraft shows the best views obtained of these moons during Galileo's 11th orbit around the giant planet in November 1997. At that point, Galileo was completing its first two years in Jupiter orbit--known as the Galileo 'prime mission'--and was about to embark on a successful two-year extension, called the Galileo Europa Mission. The top two images show the moon Thebe. Thebe rotates by approximately 50 degrees between the time these two images were taken, so that the same prominent impact crater is seen in both views; this crater, which has been given the provisional name Zethus, is near the point on Thebe that faces permanently away from Jupiter. The next two images show the moon Amalthea; they were taken with the Sun directly behind the observer, an alignment that emphasizes patterns of intrinsically bright or dark surface material. The third image from the top is a view of Amalthea's leading side, the side of the moon that 'leads' as Amalthea moves in its orbit around Jupiter. This image looks 'noisy' because it was obtained serendipitously during an observation of the Jovian satellite Io (Amalthea and Io shared the same camera frame but the image was exposed for bright Io rather than for the much darker Amalthea). The fourth image from the top emphasizes prominent 'spots' of relatively bright material that are located near the point on Amalthea that faces permanently away from Jupiter. The bottom image is a view of the tiny moon Metis. In all the images, north is approximately up, and the moons are shown in their correct relative sizes. The images are, from top to bottom: Thebe taken on November 7, 1997 at a range of 504,000 kilometers (about 313,000 miles); Thebe on November 7, 1997 at a range of 548,000 kilometers (about 340,000 miles); Amalthea on November 6, 1997 at a range of about 650,000 kilometers (about 404,000 miles); Amalthea on November 7, 1997 at a

  18. The effect of test dose and first IR stimulation temperature on post-IR IRSL measurements of rock slices

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew; Sohbati, Reza


    lies close to the laboratory saturation levels only for higher first IR stimulation temperatures e.g. 200°C or 250°C. Our data confirm earlier suggestions based on sand-grain measurements that, for older sam-ples, accurate measurements close to saturation require that a higher first IR temperature...

  19. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. (United States)

    Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F


    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrOx/SrIrO3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO3 or anatase IrO2 motifs. The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

  20. Automatic temperature computation for realistic IR simulation (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe


    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  1. Weather Satellite Enterprise Information Chain (United States)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.


    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  2. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes. (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng


    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  3. Stream Gauges and Satellite Measurements (United States)

    Alsdorf, D. E.


    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  4. Chartering Launchers for Small Satellites (United States)

    Hernandez, Daniel

    The question of how to launch small satellites has been solved over the years by the larger launchers offering small satellites the possibility of piggy-backing. Specific fixtures have been developed and commercialized: Arianespace developed the ASAP interface, the USAF studied ESPA, NASA has promoted Shuttle launch possibilities, Russian authorities and companies have been able to find solutions with many different launchers... It is fair to say that most launcher suppliers have worked hard and finally often been able to find solutions to launch most small satellites into orbit. It is also true, however, that most of these small satellites were technology demonstration missions capable of accepting a wide range of orbit and launch characteristics: orbit altitude and inclination, launch date, etc. In some cases the small satellite missions required a well-defined type of orbit and have therefore been obliged to hire a small launcher on which they were the prime passenger. In our paper we would like to propose an additional solution to all these possibilities: launchers could plan well in advance (for example about 3 years), trips to precisely defined orbits to allow potential passengers to organize themselves and be ready on the D-Day. On the scheduled date the chartered launcher goes to the stated orbit while on another date, another chartered launcher goes to another orbit. The idea is to organize departures for space like trains or airplanes leaving on known schedules for known destinations.

  5. Low Earth orbit communications satellite (United States)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.


    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  6. Satellite Tracking Astrometric Network (STAN) (United States)

    Vecchiato, Alberto; Gai, Mario


    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  7. Research Supporting Satellite Communications Technology (United States)

    Horan Stephen; Lyman, Raphael


    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  8. Orbit Determination Using Satellite-to-Satellite Tracking Data

    Institute of Scientific and Technical Information of China (English)


    Satellite-to-Satellite Tracking (SST) data can be used to determine the orbits of spacecraft in two ways. One is combined orbit determination, which combines SST data with ground-based tracking data and exploits the enhanced tracking geometry. The other is the autonomous orbit determination, which uses only SST. The latter only fits some particular circumstances since it suffers the rank defect problem in other circumstances. The proof of this statement is presented. The na ture of the problem is also investigated in order to find an effective solution. Several methods of solution are discussed. The feasibility of the methods is demonstrated by their apphcation to a simulation.

  9. Far-IR Emission From Dust-Obscured Galaxies

    CERN Document Server

    Calanog, J A; Fu, Hai; Cooray, A; Assef, R J; Bock, J; Casey, C M; Conley, A; Farrah, D; Ibar, E; Kartaltepe, J; Magdis, G; Marchetti, L; Oliver, S J; Perez-Fournon, I; Riechers, D; Rigopoulou, D; Roseboom, I G; Schulz, B; Scott, Douglas; Symeonidis, M; Vaccari, M; Viero, M; Zemcov, M


    Dust-obscured galaxies (DOGs) are a UV-faint, IR-bright galaxy population that reside at z~2 and are believed to be in a phase of dusty star-forming and AGN activity. We present far-IR observations of a complete sample of DOGs in the 2 deg^2 of COSMOS. The 3077 DOGs have =1.9+/-0.3 and are selected from 24 um and r+ observations using a color cut of r+ - [24] >= 7.5 (AB mag) and S24 >= 100 uJy. Based on the mid-IR SEDs, 47% are star-formation dominated and 10% are AGN-dominated. We use SPIRE far-IR photometry from HerMES to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 um (>=3sigma). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Detected and undetected DOGs have average IR luminosities of (2.8+/-0.4) x 10^12 L_Sun and (0.77+/-0.08) x 10^12L_Sun, and dust temperatures of 34+/-7 K and 31+/-3 K, respectively. Using far-IR observations, DOGs contribute 30% to the 24 um-select...

  10. Energy Deposition in the LHC Insertion Regions IR1 and IR5

    CERN Document Server

    Hoa, C; Wildner, E


    Proton-proton collision debris coming out from the Interaction Point (IP) impacts the superconducting magnets of the insertion region and induces energy deposition in the coils. This is a critical aspect to evaluate regarding quench limit in the superconducting magnets. The study presents an estimation of the energy deposition in the insertion regions IR1 (ATLAS) and IR5 (CMS) for version 6.5 of the LHC layout, with a baseline nominal luminosity of L=1034 s-1 cm-2 for proton-proton collisions at 14 TeV center of mass energy. All essential components in the insertion regions up to 60 m from the interaction point have been implemented with a detailed description of their geometry, material and magnetic field. Total heat loads and power density distributions are evaluated in the components of the inner triplet, including also the TAS absorbers and the corrector magnets. The results are obtained using FLUKA, a Monte Carlo code modelling particle interaction and transport [1-2].

  11. Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules. (United States)

    Alekseev, Vadim A; Schwentner, Nikolaus


    Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.

  12. New Regional Satellite Positioning Constellation Scheme Discussion

    Institute of Scientific and Technical Information of China (English)

    CHU Hai-bin; ZHANG Nai-tong; GU Xue-mai


    The characteristics of present "Beidou" satellite positioning system are analyzed. In order to perfect our country regional satellite positioning system, the idea of "Beidou" geosychronous earth orbit (GEO) satellites combined with some middle earth orbit (MEO) satellites constellation is put forward. The details of general satellite constellation optimized method are described, using this method the multiple positioning constellation design results are gained. And those results belong to two type of schems, one is 2 GEO plus some MEO satellites and the other is 3 GEO plus some MEO satellites. Through simulation and comparison, among those multiple design results, final optimized regional positioning constellation is given. In order to check the chosen constellation cover performance, the position dilution of precision(PDOP) is calculated, and with satellite constellation simulation software Satlab many coverage performances of the chosen constellation substellar point track, elevation, azimuth and visible satellites number changing situation are also simulated.

  13. Optimal link budget to maximize data receiving from remote sensing satellite at different ground stations (United States)

    Godse, Vinay V.; Rukmini, B.


    Earth observation satellite plays a significant role for global situation awareness. The earth observation satellite uses imaging payloads in RF and IR bands, which carry huge amount of data, needs to be transferred during visibility of satellite over the ground station. Location of ground station plays a very important role in communication with LEO satellites, as orbital speed of LEO satellite is much higher than earth rotation speed. It will be accessible for particular equatorial ground station for a very short duration. In this paper we want to maximize data receiving by optimizing link budget and receiving data at higher elevation links. Data receiving at multiple ground stations is preferred to counter less pass duration due to higher elevation links. Our approach is to calculate link budget for remote sensing satellite with a fixed power input and varying different minimum elevation angles to obtain maximum data. The minimum pass duration should be above 3 minutes for effective communication. We are proposing to start process of command handling as soon as satellite is visible to particular ground station with low elevation angle up to 5 degree and start receiving data at higher elevation angles to receive data with higher speed. Cartosat-2B LEO earth observation satellite is taken for the case study. Cartosat-2B will complete around 14 passes over equator in a day, out of which only 4-5 passes will be useful for near equator ground stations. Our aim is to receive data at higher elevation angles at higher speed and increase amount of data download, criteria being minimum pass duration of 3 minutes, which has been set for selecting minimum elevation angle.

  14. Small pixel pitch MCT IR-modules (United States)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.


    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  15. Arsia Mons Collapse Pits in IR (United States)


    [figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found on the flank of Arsia Mons and are related to lava tube collapse. Image information: IR instrument. Latitude -8.8, Longitude 240.4 East (119.6 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was

  16. Patient Safety in Interventional Radiology: A CIRSE IR Checklist.

    LENUS (Irish Health Repository)


    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and Interventional Society of Europe (CIRSE) set up a task force to produce a checklist for IR. Use of the checklist will, we hope, reduce the incidence of complications after IR procedures. It has been modified from the WHO surgical safety checklist and the RAD PASS from Holland.

  17. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja


    Here, we report a demonstration of resonant photothermal IR spectroscopy using microstrings in mid-infrared region providing rapid identification of picogram samples. In our microelectromechanical resonant photothermal IR spectroscopy system, samples are deposited directly on microstrings using...... an in-situ sampling method and the resonance frequency of the string is measured optically. Resonance frequency shifts, proportional to the absorbed heat, are recorded in real time as monochromatic infrared light is being scanned over the mid-infrared range. These resonant photothermal IR spectroscopy...

  18. Preclinical Study for Application of Fabricated High Activity Ir-192

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Mi Son; Kang, Seung Hee; Oh, Young Taek; Jeong, Chul; Kim, Mi Hwa; Hwang, Jeong Hye; Kim, Hee Seong; Im, Eun Jeong [Ajou University, Suwon (Korea, Republic of)


    This study was performed to evaluate the feasibility and safety of high activity Ir-192 sources manufactured by KAERI(Korea Atomic Energy Research Institute) for application to present equipment such as various applicators inserted to patients and PLATO(Nucletron, Netherland) of treatment planning system and to evaluate safety and accuracy of Ir-192 as practical clinic use through in vitro dosimetry of Ir-192. We confirmed the physical and radiobiological safety of KAERI sources to use practical. KAERI sources are applicable to commercial high dose rate brachytherapy machine safely. Then those can be substituted for the imported sources such as sources made by Nucletron, Gammamed and exported to the foreign country

  19. E-2-benzylidenebenzocyclanones. II. IR and mass spectrometric investigations (United States)

    Tarczay, Gy; Vékey, K.; Ludányi, K.; Perjési, P.; Sohár, P.


    A series of E-2-benzylideneindanones (a) -tetralones (b) and -benzosuberones (c) with OCH 3 ( 2- 4), NO 2 ( 5- 7) and F ( 8- 10) substituents in ortho, meta or para position was studied by IR and mass spectrometry. The most important IR bands were assigned and stated correlations between some frequencies and the stereostructure or conjugation feature of the molecules investigated. IR spectra were also analyzed in order to find frequencies characteristic of the size of the alkanone ring. The mass spectrometric investigation aimed at determining fragmentation pathways and finding correlations between them and the ring size of the alkanone ring or the position of the substituents.

  20. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko


    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  1. Thin Film Electrodeposition of Ir(III Cyclometallated Complexes

    Directory of Open Access Journals (Sweden)

    Andreea Ionescu


    Full Text Available Novel electropolymerizable Ir(III cyclometallated complexes have been synthesized and characterized. In these complexes the cyclometallated ligands are either 2-phenylpyridine H(PhPy or benzothiazole-triphenylamine H(BzTh-tpa, while the Ir(III coordination sphere is completed by a Schiff base substituted with a triphenylamine fragment. A complete electrochemical study has been conducted on all complexes, in order to verify the feasibility of electropolymerization and to elucidate the role of the specific position of the triphenylamine moiety in the molecular structure. Homogeneous thin films of Ir(III metallopolymers have been successfully obtained through electropolymerization process.

  2. Chlorination of (PheboxIr(mesityl(OAc by Thionyl Chloride

    Directory of Open Access Journals (Sweden)

    Meng Zhou


    Full Text Available Pincer (PheboxIr(mesityl(OAc (2 (Phebox = 3,5-dimethylphenyl-2,6-bis(oxazolinyl complex, formed by benzylic C-H activation of mesitylene (1,3,5-trimethylbenzene using (PheboxIr(OAc2OH2 (1, was treated with thionyl chloride to rapidly form 1-(chloromethyl-3,5-dimethylbenzene in 50% yield at 23 °C. A green species was obtained at the end of reaction, which decomposed during flash column chromatography to form (PheboxIrCl2OH2 in 87% yield.

  3. Hipoglikemijos priežastys, diagnostika ir gydymas


    Adukauskienė, Dalia; Borodičienė, Jurgita


    Hipoglikemijos diagnostika ir gydymas – tai aktuali problema, nes nuo gliukozės, t. y. pagrindinio energijos šaltinio, priklauso centrinės nervų sistemos veikla. Gliukozės homeostazė – tai dinamiškai sinchronizuota sąveika tarp veiksnių, kurie veikia per nervų sistemą ir kraują. Pirminiai gliukoreguliuojantys organai – tai kasa, kepenys, antinksčiai, hipofizė, o gliukozės homeostazėje dalyvauja insulinas, gliukagonas, katecholaminai, gliukokortikoidai ir augimo hormonas. Hipoglikemija gali vy...

  4. Kinetinės tipografikos raida ir modifikacijos


    Komarovska, Gražina


    Šiame darbe aptariamos kinetinės tipografikos atsiradimo prielaidos: klasikinis modernizmas, šrifto įtaigos įteisinimas, kinas. Analizuojami ryšiai tarp kinetinės tipografikos ir naujųjų medijų. Kalbama apie kinetinės tipografikos vizualinę ir stilistinę raišką, estetinius siekius, atsižvelgiant į tipografikos modifikacijas. Įvardijami skirtumai tarp kinetinės tipografikos ir spausdintinės eksperimentinės tipografikos, išryškinama kinetinės tipografikos komunikavimo specifiką. This work di...

  5. ERTS-A satellite imagery (United States)

    Colvocoresses, Alden P.


    The first satellite designed to survey the Earth's resources is scheduled to be launched in 1972. This satellite, known as ERTS-A, will telemeter frames of imagery each covering 100-nautical-mile squares of the Earth. Except for the internal anomalies in the sensor system, the imagery, after being properly scaled, rectified, and controlled, may be considered an orthographic view of the Earth and used as a planimetric photomap. The accuracy of this photomap will be limited, principally by the geometric fidelity of the sensor system rather than by external effects, such as relief displacement, which restrict the direct cartographic use of the conventional aerial photograph. ERST-A is not designed as a topographic mapping satellite but does have real potential' for thematic mapping particularly in areas now covered by topographic maps.

  6. Gaussian Entanglement Distribution via Satellite

    CERN Document Server

    Hosseinidehaj, Nedasadat


    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the trade-off between space-based engineering complexity and the rate of ground-station entanglement generation...

  7. Satellite Communications Using Commercial Protocols (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan


    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  8. Landsat—Earth observation satellites (United States)



    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  9. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S


    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  10. Reinventing the Solar Power Satellite (United States)

    Landis, Geoffrey A.


    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  11. MEMOS - Mars Environment Monitoring Satellite (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.


    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  12. Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation: evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle. (United States)

    Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S


    New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

  13. Communication Satellites 1958 to 1986 (United States)


    effort that is still advancing the state of the art . 2-1 3. EXPERIMENTAL SATELLITES Although the performance of communication satellites could be...bandwidths was much beyond the state of the art . The choice of the Delta launch vehicle provided basic design constraints such as size, weight, and... Griego M6/215 A. S. Gilcrest M4/958 T. J. Carr M5/699 C. H. Bredall M5/690 J. B. Bryson M5/669 R. L. Porter M5/692 T. M. Bedbury M5/669 R. D. Smith

  14. Chameleon gravity and satellite geodesy

    CERN Document Server

    Morris, J R


    We consider the possibility of the detection of a chameleon effect by an earth orbiting satellite such as LAGEOS, and possible constraints that might be placed on chameleon model parameters. Approximate constraints presented here result from using a simple monopole approximation for the gravitational field of the earth, along with results from the Khoury-Weltman chameleon model, solar system constraints obtained from the Cassini mission, and parameter bounds obtained from the LAGEOS satellite. It is furthermore suggested that a comparison of ground-based and space-based multipole moments of the geopotential could reveal a possible chameleon effect.

  15. The Cosmic Background Explorer Satellite (United States)

    Mather, J.; Kelsall, T.


    The Cosmic Background Explorer (COBE) satellite, planned for launch in 1985, will measure the diffuse infrared and microwave radiation of the universe over the entire wavelength range from a few microns to 1.3 cm. It will include three instruments: a set of microwave isotropy radiometers at 23, 31, 53, and 90 GHz, an interferometer spectrometer from 1 to 100/cm, and a filter photometer from 1 to 300 microns. The COBE satellite is designed to reach the sensitivity limits set by foreground sources such as the interstellar and interplanetary dust, starlight, and galactic synchrotron radiation, so that a diffuse residual radiation may be interpreted unambiguously as extragalactic

  16. Vocoders in mobile satellite communications (United States)

    Kriedte, W.; Canavesio, F.; dal Degan, N.; Pirani, G.; Rusina, F.; Usai, P.

    Owing to the power constraints that characterize onboard transmission sections, low-bit-rate coders seem suitable for speech communications inside mobile satellite systems. Vocoders that operate at rates below 4.8 kbit/s could therefore be a desirable solution for this application, providing also the redundancy that must be added to cope with the channel error rate. After reviewing the mobile-satellite-systems aspects, the paper outlines the features of two different types of vocoders that are likely to be employed, and the relevant methods of assessing their performances. Finally, some results from computer simulations of the speech transmission systems are reported.

  17. Advanced Communications Technology Satellite (ACTS) (United States)

    Olmstead, Dean A.; Schertler, Ronald J.

    The benefits that will be offered by the NASA-sponsored communication spacecraft ACTS which is scheduled for launch in 1992 are described together with examples of demonstrations on proposed data, video, and voice applications supported by the advanced ACTS technologies. Compared to existing satellite service, the ACTS will provide lower cost, better service, greater convenience, and improved service reliability of telecommunications to customers around the world. In addition, the pioneering ACTS technology will provide many capabilities qualitatively different from those of current satellite systems, such as on-demand assignment, frequency reuse, and the flexible targeting of spot beams directly to the very-small-aperture terminals at customer premises.

  18. Mobile satellite communications for consumers (United States)

    Noreen, Gary K.


    The RadioSat system based on MSAT satellites and scheduled for launch in 1994 is described. The RadioSat system will provide integrated communications and navigation services to consumers, including nationwide digital audio broadcasts, data broadcasts, precision navigation, and two-way voice and data communications. Particular attention is given to the MSAT satellite system capabilities and economics. It is concluded that the RadioSat system will be capable of providing a low-cost, highly flexible two-way communications for consumers that can be adapted to various applications.

  19. Broadcast satellite service: The international dimension (United States)

    Samara, Noah


    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  20. Distinguishing and grading human gliomas by IR spectroscopy. (United States)

    Steiner, Gerald; Shaw, Anthony; Choo-Smith, Lin-P'ing; Abuid, Mario H; Schackert, Gabriele; Sobottka, Stephan; Steller, Wolfram; Salzer, Reiner; Mantsch, Henry H


    As a molecular probe of tissue composition, IR spectroscopy can potentially serve as an adjunct to histopathology in detecting and diagnosing disease. This study demonstrates that cancerous brain tissue (astrocytoma, glioblastoma) is distinguishable from control tissue on the basis of the IR spectra of thin tissue sections. It is further shown that the IR spectra of astrocytoma and glioblastoma affected tissue can be discriminated from one another, thus providing insight into the malignancy grade of the tissue. Both the spectra and the methods employed for their classification reveal characteristic differences in tissue composition. In particular, the nature and relative amounts of brain lipids, including both the gangliosides and phospholipids, appear to be altered in cancerous compared to control tissue. Using a genetic classification approach, classification success rates of up to 89% accuracy were obtained, depending on the number of regions included in the model. The diagnostic potential and practical applications of IR spectroscopy in brain tumor diagnosis are discussed.

  1. Lojalaus vartotojo elgsenos ir įtakos sporto organizacijai vertinimas


    Urbonavičiūtė, Ernesta


    Darbo objektas – Lojalių klientų elgsena ir įtaka. Tikslas –Įvertinti lojalaus kliento elgseną ir įtaką „X“ sporto organizacijai. Uždaviniai: 1. Išanalizuoti vartotojų lojalumo raišką, jo stadijas ir sąlygojančius veiksnius; 2. Atskleisti lojalaus kliento teikiamą naudą sporto organizacijai; 3. Nustatyti lojalaus kliento elgseną ir įtaką „X“ sporto organizacijoje Rezultatai: Lojalumą lemia daug įvairių veiksnių tačiau svarbiausios yra žmogaus asmeninės savybės, tokios ...

  2. IR fixed points in $SU(3)$ gauge Theories

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, Y


    We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the $SU(3)$ gauge theories with $N_f$ fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off, which we cannot remove in the conformal field theories in sharp contrast with the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for $N_f=16, 12, 8 $ and $N_f=7$ and indeed identify the location of the IR fixed points in all cases.

  3. Maximum Principle for Nonlinear Cooperative Elliptic Systems on IR N

    Institute of Scientific and Technical Information of China (English)

    LEADI Liamidi; MARCOS Aboubacar


    We investigate in this work necessary and sufficient conditions for having a Maximum Principle for a cooperative elliptic system on the whole (IR)N.Moreover,we prove the existence of solutions by an approximation method for the considered system.

  4. IR wireless cluster synapses of HYDRA very large neural networks (United States)

    Jannson, Tomasz; Forrester, Thomas


    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  5. Infrared spectroscopy of radio-luminous OH/IR stars (United States)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.


    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  6. One-Dimensional Tunable Photonic-Crystal IR Filter Project (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  7. Laser Induced Fluorescence Spectroscopy of IrN

    Institute of Scientific and Technical Information of China (English)

    H. F. Pang; A. S. C. Cheung


    High resolution laser induced fluorescence spectra of IrN in the spectral region between 394and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. TwoΩ=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.

  8. A new method for compression-rebuilding of IR spectra

    Institute of Scientific and Technical Information of China (English)


    This work presents a new spectral data compression-rebuilding technique to translate the full IR spectral data into compact codes based on the analysis and comprehension encoding approach. This method has been successfully applied to a sample set of 505 IR spectra randomly picked from 100 000 spectra. The results show that the compression ratio reaches 12.7:1 under a very weak curve distortion. The choice of the number and shape of the basis functions is flexible. The IR spectra can be compressed in a fixed data size in fulfilling the distortion criteria. The data after compression have no significance in the sense of IR spectra. To recover the original spectra, a specific algorithm must be applied. So the method can be used as a cryptic tool. Furthermore, the method can be applied to the compression of other complex curve by utilizing some of proper basis functions.

  9. Calculation of IR-spectra of structural fragments of lignins (United States)

    Derkacheva, O. Yu.; Ishankhodzhaeva, M. M.


    To study structure of softwood lignins the experimental and theoretical IR-spectra in middle IR-diapason were analyzed. To interpret these data the quantum chemical calculations of IR-spectra of general dimmer fragments of softwood lignins by method of density functional theory (DFT/B3LYP) with 6-31G(d,p) as basis set were carried out. These calculations showed that frequencies of normal vibrations of fragment with β-alkyl-aryl linkage are close to the experimental values of the IR absorption bands of lignin, and infrared spectrum of this structure is similar to the experimental spectrum of lignin. The calculations with accounting for the solvent showed a strong increase in the intensity of the majority of the bands and the solvent effect on the frequencies of vibrations.

  10. Characterization of Momordica charantia Ussing FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Attila Keseru


    In this paper, because earlier claim shows that the plant used as stomachic, carminative, tonic, antipyretic, antidiabetic, in rheumatoid arthritis and gout, the present investigation was carried to characterized a principal components of plant using FT-IR technique

  11. One-Dimensional Tunable Photonic-Crystal IR Filter Project (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  12. Electronic and atomic structures of the Sr3Ir4Sn13 single crystal: A possible charge density wave material (United States)

    Wang, H.-T.; Srivastava, M. K.; Wu, C.-C.; Hsieh, S.-H.; Wang, Y.-F.; Shao, Y.-C.; Liang, Y.-H.; Du, C.-H.; Chiou, J.-W.; Cheng, C.-M.; Chen, J.-L.; Pao, C.-W.; Lee, J.-F.; Kuo, C. N.; Lue, C. S.; Wu, M.-K.; Pong, W.-F.


    X-ray scattering (XRS), x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopic techniques were used to study the electronic and atomic structures of the high-quality Sr3Ir4Sn13 (SIS) single crystal below and above the transition temperature (T* ≈ 147 K). The evolution of a series of modulated satellite peaks below the transition temperature in the XRS experiment indicated the formation of a possible charge density wave (CDW) in the (110) plane. The EXAFS phase derivative analysis supports the CDW-like formation by revealing different bond distances [Sn1(2)-Sn2] below and above T* in the (110) plane. XANES spectra at the Ir L3-edge and Sn K-edge demonstrated an increase (decrease) in the unoccupied (occupied) density of Ir 5d-derived states and a nearly constant density of Sn 5p-derived states at temperatures T atomic structures and the CDW-like phase in the SIS single crystal. PMID:28106144

  13. A study of the Al–Pt–Ir phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Grushko, B., E-mail: [MaTecK, 52428 Jülich (Germany); PGI-5, Forschungszentrum Jülich, 52425 Jülich (Germany); Samuha, S. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel); NRCN, P.O. Box 9001, 84190 Beer-Sheva (Israel); Meshi, L. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel)


    Phase equilibria in Al–Pt–Ir were studied up to 50 at.% Al at 1100 °C, up to 70 at.% Al at 900 °C and up to 75 at.% Al at 810 °C. At elevated temperatures the isostructural AlIr and high-temperature AlPt β-phases probably form a continuous compositional region. The ternary extensions of the phases Al{sub 4}Pt, Al{sub 21}Pt{sub 8}, Al{sub 3}Pt{sub 2} and low-temperature AlPt were revealed along approximately constant Al concentrations up to 15, 11, 20 and 10 at.% Ir, respectively. The Al–Ir C-phase dissolved up to 12 at.% Pt, and the χ-phase propagated up to almost Al{sub 3}Pt. A new ternary B-phase (I4{sub 1}/acd, a = 0.86250, c = 2.18409 nm) was revealed around Al{sub 69}Pt{sub 7}Ir{sub 24}. Its structural model was derived from the electron diffraction data. - Highlights: • The Al–Pt–Ir phase diagram was studied at 810, 900 and 1100 °C. • The majority of binaries extend widely along about constant Al. • The new ternary B-phase of the Ga{sub 4}Ir{sub 8}B type was revealed at Al{sub 69}Pt{sub 7}Ir{sub 24}. • The structural model of the B-phase was derived from electron diffraction.

  14. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer;


    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered.......Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  15. Results obtained by investigating saffron ussing FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Luisa Andronie


    Full Text Available The biological activity and the pharmaceutical properties of plants are strongly dependent on their structure. The FT-IR spectra of saffron (commercial have been obtained. The vibrational fundamentals from the IR spectrum, were analyzed  and assigned acoording to the available literature. In the present research work the genus saffron is selected because it is famous in wold as foods and also as medicine.

  16. IR emission from the target during plasma magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, P.-A. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Thomann, A.-L., E-mail: [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Dolique, V. [LMA, Université Claude Bernard Lyon I 7 Avenue Pierre de Coubertin, 69622 Villeurbanne Cedex (France); Balhamri, A. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Université Hassan 1, École Supérieure de Technologie, 218 Berrechid (Morocco); Dussart, R.; Semmar, N.; Lecas, T.; Brault, P. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Snyders, R. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium); Konstantinidis, S. [Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium)


    In this article, energy flux measurements at the substrate location are reported. In particular, the energy flux related to IR radiation emanating from the titanium (10 cm in diam.) target surface is quantified during magnetron sputter deposition processes. In order to modulate the plasma–target surface interaction and the radiative energy flux thereof, the working conditions were varied systematically. The experiments were performed in balanced and unbalanced magnetic field configurations with direct current (DC), pulsed DC and high power impulse magnetron sputtering (HiPIMS) discharges. The power delivered to the plasma was varied too, typically from 100 to 800 W. Our data show that the IR contribution to the total energy flux at the substrate increases with the supplied sputter power and as the discharge is driven in a pulse regime. In the case of HiPIMS discharge generated with a balanced magnetic field, the energy flux associated to the IR radiation produced by the target becomes comparable to the energy flux originating from collisional processes (interaction of plasma particles such as ions, electron, sputtered atoms etc. with the substrate). From IR contribution, it was possible to estimate the rise of the target surface temperature during the sputtering process. Typical values found for a titanium target are in the range 210 °C to 870 °C. - Highlights: • During magnetron sputtering process the heated target emits IR radiation. • We follow in real time the energy transferred to the deposited film by IR radiation. • IR radiation can be the main energy contribution in balanced pulsed processes. • IR radiation might affect the deposition process and the final film properties.

  17. Installation and first light of the BOOTES-IR near-IR camera (United States)

    Cunniffe, R.; Castro-Tirado, A. J.; Kubánek, P.; Jelínek, M.; Vítek, S.; Gorosabel, J.; de Ugarte Postigo, A.; Riva, A.; Zerbi, F.; Claret, A.; Sánchez-Fernández, C.


    BIRCAM is a near-infrared (0.8-2.5um) cryogenic camera based on a 1Kx1K HgCdTe array. It was designed for - and is now mounted at - one of the Nasmyth foci of the fast-slewing 0.6 m BOOTES-IR telescope at the Sierra Nevada Observatory (OSN) in Spain. The primary science mission is prompt Gamma Ray-Burst afterglow research, with an implied demand for extremely time-efficient operation. We describe the challenges of installing a heavy camera on a small high-speed telescope, of integrating the dithering mechanism, the filterwheel, and the array itself into a high-efficiency instrument, the design of the software to meet the requirements.

  18. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen


    @@ (Continued) Applications In Global Environment And Natural Disaster Monitoring 1) Application in world crop yield estimation China is now one of the few nations in the world that can provide operational service with both GEO and polar-orbit meteorological satellites.

  19. Water Quality Monitoring by Satellite (United States)

    Journal of Chemical Education, 2004


    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  20. Introductory Course on Satellite Navigation (United States)

    Giger, Kaspar; Knogl, J. Sebastian


    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  1. Satellite imager calibration and validation

    CSIR Research Space (South Africa)

    Vhengani, L


    Full Text Available The success or failure of any earth observation mission depends on the quality of its data. Data quality is assessed by determining the radiometric, spatial, spectral and geometric fidelity of the satellite sensor. The process is termed calval...

  2. GOES-R: Satellite Insight (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.


    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  3. The Omninet mobile satellite system (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  4. Platelet satellitism in infectious disease? (United States)

    Laskaj, Renata; Sikiric, Dubravka; Skerk, Visnja


    Background Platelet satellitism is a phenomenon of unknown etiology of aggregating platelets around polymorphonuclear neutrophils and other blood cells which causes pseudothrombocytopenia, visible by microscopic examination of blood smears. It has been observed so far in about a hundred cases in the world. Case subject and methods Our case involves a 73-year-old female patient with a urinary infection. Biochemical serum analysis (CRP, glucose, AST, ALT, ALP, GGT, bilirubin, sodium, potassium, chloride, urea, creatinine) and blood cell count were performed with standard methods on autoanalyzers. Serum protein fractions were examined by electrophoresis and urinalysis with standard methods on autoanalyzer together with microscopic examination of urine sediment. Erythrocyte sedimentation rate, blood culture and urine culture tests were performed with standard methods. Results Due to typical pathological values for bacterial urinary infection, the patient was admitted to the hospital. Blood smear examination revealed phenomenon, which has persisted for three weeks after the disease has been cured. Blood smears with EDTA as an anticoagulant had platelet satellitism whereas the phenomenon was not observed in tubes with different anticoagulants (Na, Li-heparin) and capillary blood. Discussion We hypothesize that satellitism was induced by some immunological mechanism through formation of antibodies which have mediated platelets binding to neutrophil membranes and vice versa. Unfortunately we were unable to determine the putative trigger for this phenomenon. To our knowledge this is the second case of platelet satellitism ever described in Croatia. PMID:26110042

  5. China Satcom: Innovating Satellite Communication

    Institute of Scientific and Technical Information of China (English)


    China Satellite Communications Group Corporation (China Satcom) is a state-owned large-sized key enterprise formally established on Dec. 19, 2001 according to the general deployment of the State Council on telecommunication system reform. Relying on its complete service system, China Satcom provides various users with specialized and high quality information communication service.

  6. University Satellite Campus Management Models (United States)

    Fraser, Doug; Stott, Ken


    Among the 60 or so university satellite campuses in Australia are many that are probably failing to meet the high expectations of their universities and the communities they were designed to serve. While in some cases this may be due to the demand driven system, it may also be attributable in part to the ways in which they are managed. The…

  7. Precipitation retrieval from satellite within EUMETSAT's H-SAF (United States)

    Mugnai, A.; Dietrich, S.; Levizzani, V.; Casella, D.; Cattani, E.; di Paola, F.; Formenton, M.; Laviola, S.; Sanò, P.


    The EUMETSAT Satellite Application Facility on support to Operational Hydrology and Water Management (H-SAF) was established by the EUMETSAT Council on July 3, 2005 and started activity at the official date of September 1, 2005. The Italian Meteorological Service serves as "Host Institute" on behalf of 12 European countries. The Project Plan focuses on the generation of the following products for the European and Mediterranean regions: • instantaneous and accumulated precipitation, including liquid/solid discrimination; • soil moisture in the surface layer and in the roots region; • snow parameters such as effective cover, wet/dry discrimination and water equivalent. In addition to products development and generation, the project includes a products validation programme and a hydrological validation programme. The development programme duration is 5 years, ending on August 31, 2010. A follow-on Continuous Development and Operations Phase (CDOP) will start in September 2010 to provide long-term perspective (2010-2017) to the initiative. Precipitation products are being generated according to algorithms developed by CNR-ISAC in collaboration with the international community, by exploiting the following satellites and instruments: • MW conically-scanning radiometers (SSM/I and SSMIS) on LEO satellites (DMSP); • MW cross-track scanning radiometers (AMSU-A and AMSU-B / MHS) on LEO operational satellites (NOAA and MetOp); • VIS/IR imagers (SEVIRI) on GEO satellites (MSG). These products are generated routinely at the Italian Centro Nazionale di Meteorologia e Climatologia Aeronautica (CNMCA), which is responsible of operational product generation and dissemination. Whilst precipitation products continue to be developed and improved, major focus is now on product validation. Products are generated in a pre-operational fashion, with a delay of few minutes to few hours from observation, depending on product and satellite data access. Access to products is

  8. RFP for the italien satellite AGILE

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Riis, Troels


    The document descibes the ASC Star Tracker (performance, functionality, requirements etc.) to the Italian satellite AGILE.......The document descibes the ASC Star Tracker (performance, functionality, requirements etc.) to the Italian satellite AGILE....

  9. Highly Enhanced Risk Management Emergency Satellite

    DEFF Research Database (Denmark)

    Dalmeir, Michael; Gataullin, Yunir; Indrajit, Agung

    HERMES (Highly Enhanced Risk Management Emergency Satellite) is potential European satellite mission for global flood management, being implemented by Technical University Munich and European Space Agency. With its main instrument - a reliable and precise Synthetic Aperture Radar (SAR) antenna...

  10. DIORAMA Model of Satellite Body Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The DIORAMA GPS satellite platform orientation model is described. Satellites need to keep sensors pointed towards the earth and solar panels oriented to face the sun (when not in the earth’s shadow) while they orbit the earth.

  11. New Equipment Training Center-Satellite Facility (United States)

    Federal Laboratory Consortium — The ARDEC Satellite Facility is a 24-hour on-site military satellite transmission and downlink capability to Southwest Asia and all other military OCONUS and CONUS...

  12. Satellite Tags- Guam/CNMI EEZ (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  13. Are rotating planes of satellite galaxies ubiquitous?

    CERN Document Server

    Phillips, John I; Bullock, James S; Boylan-Kolchin, Michael


    We compare the dynamics of satellite galaxies in the Sloan Digital Sky Survey to simple models in order to test the hypothesis that a large fraction of satellites co-rotate in coherent planes. We confirm the previously-reported excess of co-rotating satellite pairs located near diametric opposition with respect to the host, but show that this signal is unlikely to be due to rotating discs (or planes) of satellites. In particular, no overabundance of co-rotating satellites pairs is observed within $\\sim 20^{\\circ}-50^{\\circ}$ of direct opposition, as would be expected for planar distributions inclined relative to the line-of-sight. Instead, the excess co-rotation for satellite pairs within $\\sim 10^{\\circ}$ of opposition is consistent with random noise associated with undersampling of an underlying isotropic velocity distribution. We conclude that at most $10\\%$ of the hosts in our sample harbor co-rotating satellite planes (as traced by the luminous satellite population).

  14. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan


    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  15. Space Environment Deteation of Chinese Meteorological Satellites

    Institute of Scientific and Technical Information of China (English)

    XU Ying; WANG Shijin; ZHU Guangwu; LIANG Jinbao


    This paper presents the space environment detection of Chinese geosynchronous and sun-synchronous meteorological satellites and gives a short perspective of space environment observations on board meteorological satellites.

  16. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation (United States)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel


    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  17. Radiometric Analysis of Daytime Satellite Detection (United States)


    detector m No 300 km – 1500 km 400 km Cos(θs) cosine of satellite orientation angle unitless No 0-1 0.5 Δf noise-equivalent bandwidth Hz No...Dependence Asat area of satellite m2 9 m2 linear Rsat-det distance from satellite to detector m 400 km 2 1 x Cos(θs) cosine of satellite orientation angle

  18. Satellite cells: the architects of skeletal muscle. (United States)

    Chang, Natasha C; Rudnicki, Michael A


    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  19. ESPA Satellite Dispenser for ORBCOMM Generation 2



    ORBCOMM’s machine-to-machine (M2M) solutions offer global asset monitoring and messaging services through a powerful Low Earth Orbit (LEO) satellite constellation. The original constellation deployment consisted of thirtyfive satellites launched in the late 1990s. ORBCOMM is launching the new ORBCOMM Generation 2 (OG2) satellites to upgrade and expand the constellation network. The OG2 satellites being manufactured by Sierra Nevada Corporation will have more data capacity with the potential f...

  20. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data (United States)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with

  1. Eclipses of the inner satellites of Jupiter observed in 2015

    CERN Document Server

    Saquet, E; Colas, F; Arlot, J -E; Robert, V; Christophe, B; Dechambre, O


    During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These obs...

  2. Multispectral IR detection modules and applications (United States)

    Münzberg, M.; Breiter, R.; Cabanski, W.; Lutz, H.; Wendler, J.; Ziegler, J.; Rehm, R.; Walther, M.


    promising SL based detectors. Fully integrated IDCAs with a MWIR SL single color device with 256x256 pixels in 40 μm pitch have been integrated and tested. In the next step the pitch was reduced to 24μm in a 384x288 pixel configuration. With this design and further improved technology a very good pixel operabilities with very low cluster sizes (<= 4 pixel) and performances with quantum efficiencies as high as known from MCT is reached in the meantime. A dual color device based on SL technology on the existing 384x288 read-out circuit (ROIC) as used in the dual band QWIP device is available. It combines spectral selective detection in the 3-4.1 μm wavelength range and 4.1-5 μm wavelength range in each pixel with coincident integration in a 384x288x2 format and 40 μm pitch. Excellent thermal resolution with NETD < 17 mK @ F/2, 2.8 ms for the longer wavelength range (red band) and NETD < 30 mK @ F/2, 2.8 ms for the shorter wavelength range (blue band) has been achieved. The pixel outage rates remains below 1% in both colors. The spectral cross talk of the red band to the blue band is estimated below 1%o which is important to reduce significantly the false alarm rate in missile approach warning systems as the primarily intended use of the dual color detector is. Real time analysis of gases, i.e. the detection of toxic or agent gases, by multi spectral detection in the IR used the characteristic infrared emission or absorption lines of different gas types. Spectroscopic systems consisting of a spectrometer with the need for large linear MCT array with small pixel sizes are used in this case. Possibilities are outlined to use long linear arrays, such as the 576x7 MCT detector, to perform spectral selective measurements in the 2-11μm wavelength range. For these applications a 576x7 MCT FPA is integrated in an open dewar cooler assy without window able to operate directly coupled in an evacuated and cooled spectrometer. The sensitivity of the array is consequently not limited

  3. New infrared observations of IRS1, IRS3, and the adjacent nebula in the OMC-2 cluster (United States)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.


    Observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. Results show that the asymmetric distribution of the extended emission seen about IRS1 is another infrared reflection nebula. Energy distributions show that the spectral shape is fairly constant throughout the nebula which indicates there is little internal extinction within this region. Integrated surface brightness values show that the nebula is 5 times brighter than IRS1 at K. Energy distributions show that IRS1 has a more pronounced ice band absorption feature at 3.1 micron; suggesting that there is more extinction along the direct line of sight to IRS1 than along a line from IRS1 to the scattering grains and then to the observer. The distribution of the extended emission around IRS1 is similar to the reflection nebula seen in NGC 7538 (Werner et al. 1979). The asymmetric shapes of the two nebulae are similar and in each case there is excess extinction along line of sight to the illuminating source.

  4. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR (United States)

    Li, Dan; Jin, Zhexiong; Zhou, Qun; Chen, Jianbo; Lei, Yu; Sun, Suqin


    Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species ( Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years. The objective of this study is to discriminate five species of Beimu herbs and their total alkaloid extracts by Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy, and two-dimensional correlation infrared spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicated that, Beimu and their extract residues contain a large amount of starch, since some characteristic absorption peaks of the starch, such as 1158, 1080, 1015 and 987 cm -1 can be observed. Further more, the characteristic absorption peaks of the sulfate which arouse at 1120 ± 5 and 618 cm -1 in the IR spectra of Beimu aqueous extracts can be find. This validated that people used the sulfur fumigation method in the processing. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  5. Rapid discrimination of Panax notogeinseng of different grades by FT-IR and 2DCOS-IR (United States)

    Ma, Fang; Chen, Jian-bo; Wu, Xian-xue; Zhou, Qun; Sun, Su-qin


    The herbal material of Notoginseng (the root of Panax notoginseng) is sold by "Tou" (the number of Notoginseng in every 500 g) to distinguish the grade. Normally the better quality, the few number of the "Tou" and the size of Notoginseng is bigger. In this study, three grades of Notoginseng harvested from Yunnan province were discriminated and identified by Fourier transform infrared spectroscopy (FT-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR)). The correlation coefficient of IR spectra between the three grades of Notoginseng and starch are greater than 0.95 in the range of 1300-800 cm-1, means the main compositions of Notoginseng are starch polysaccharide. Also, when the size of Notoginseng is bigger, it may contain more polysaccharide. There is no difference in range of 815-1000 cm-1 of the 2DCOS-IR synchronous spectra of the three grades means polysaccharides possess good thermal stability. In the range of 1200-1300 cm-1 shows the inverse ration between the thermal sensitivity of C-O and the number of "Tou". Combination with the 2DCOS-IR asynchronous spectra, the response speed of amino acid (1640 cm-1) on the thermal perturbation is the fastest, followed by nitrate (1384 cm-1); the response speed of polysaccharides (1079 cm-1) is the slowest. The result proved that the 2DCOS-IR could discriminate different grades of Notoginseng.

  6. Magnetic polarization of Ir in underdoped nonsuperconducting Eu(Fe 0.94Ir0.06)2As2 (United States)

    Jin, W. T.; Xiao, Y.; Su, Y.; Nandi, S.; Jiao, W. H.; Nisbet, G.; Demirdis, S.; Cao, G. H.; Brückel, Th.


    Using polarized neutron diffraction and x-ray resonant magnetic scattering (XRMS) techniques, multiple phase transitions were revealed in an underdoped, nonsuperconducting Eu (Fe1 -xIrx )2As2 (x =0.06 ) single crystal. Compared with the parent compound EuFe2As2 , the tetragonal-to-orthorhombic structural phase transition and the antiferromagnetic order of the Fe+2 moments are significantly suppressed to TS=111 (2 ) K and TN,Fe=85 (2 ) K by 6% Ir doping, respectively. In addition, the Eu+2 spins order within the a b plane in the A-type antiferromagnetic structure similar to the parent compound. However, the order temperature is evidently suppressed to TN,Eu=16.0 (5 ) K by Ir doping. Most strikingly, the XRMS measurements at the Ir L3 edge demonstrates that the Ir 5 d states are also magnetically polarized, with the same propagation vector as the magnetic order of Fe. With TN,Ir=12.0 (5 ) K, they feature a much lower onset temperature compared with TN,Fe. Our observation suggests that the magnetism of the Eu sublattice has a considerable effect on the magnetic nature of the 5 d Ir dopant atoms and there exists a possible interplay between the localized Eu+2 moments and the conduction d electrons on the FeAs layers.

  7. New infrared observations of IRS1, IRS3, and the adjacent nebula in the OMC-2 cluster (United States)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.


    Observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. Results show that the asymmetric distribution of the extended emission seen about IRS1 is another infrared reflection nebula. Energy distributions show that the spectral shape is fairly constant throughout the nebula which indicates there is little internal extinction within this region. Integrated surface brightness values show that the nebula is 5 times brighter than IRS1 at K. Energy distributions show that IRS1 has a more pronounced ice band absorption feature at 3.1 micron; suggesting that there is more extinction along the direct line of sight to IRS1 than along a line from IRS1 to the scattering grains and then to the observer. The distribution of the extended emission around IRS1 is similar to the reflection nebula seen in NGC 7538 (Werner et al. 1979). The asymmetric shapes of the two nebulae are similar and in each case there is excess extinction along line of sight to the illuminating source.

  8. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)


    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.

  9. Satellite to measure equatorial ozone layer (United States)


    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  10. First China-Europe Satellite Successfully Launched

    Institute of Scientific and Technical Information of China (English)



    On December 30, 2003 China successfully launched TC-1,the first of two scientific satellites known as Double Star, The mission,the first time that European instruments were integrated with Chinese satellites,was carried out by a Long March 2C/SM rocket at 3:06 am from the Xichang Satellite Launch Center in Sichuan province.

  11. Smoothing of Fused Spectral Consistent Satellite Images

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli


    on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. (2005) proposed a method of fusion of satellite images that is based on the properties of imaging physics...

  12. TC-1 Satellite of DSP Delivered

    Institute of Scientific and Technical Information of China (English)



    TC-1 satellite of Double Star Program (DSP), a near-earth equatorial satellite, was delivered to the representative of the end user, the Research Center for Space Science and Application under the Chinese Academy of Sciences (CAS) on April 12, 2004, which symbolized that TC-1 satellite was put into operation formally.

  13. 14 CFR 141.91 - Satellite bases. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  14. The use of mobile satellite communication terminals (United States)

    Law, P. A.

    The role of small portable terminals in military satellite systems is examined; the discussion embraces terminals with an antenna reflector diameter of seven meters or less. Emphasis is placed on the specification of MARMOSET (Marconi Mobile Satellite Earth Terminal). Also considered are ship-borne satellite terminals, the improved SCOT terminal, interoperability, reduced downlink power, and reliability and availability.

  15. Advanced Extremely High Frequency Satellite (AEHF) (United States)


    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  16. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments (United States)

    Pepin, Gerard R.; Hager, E. Paul


    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  17. An Overview Of Operational Satellites Built By China: Communications Satellites (Part1)

    Institute of Scientific and Technical Information of China (English)

    Guang Bo


    @@ Communications satellite technology has seen great advances since Decemher 1958 when the Americans launched the first experimental communications satellite.Currently, satellite communications account for over 80 percent of the intercontinental communications traffic and 100 percent of international live TV broadcast, while taking part in domestic and regional services. Moreover, the satellite communication service is showing a favorable continuous growth tendency.

  18. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations (United States)

    Putman, William; Suarez, Max


    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  19. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations (United States)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song


    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  20. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others


    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  1. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé


    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  2. Satellite-Based Quantum Communications

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J [Los Alamos National Laboratory; Nordholt, Jane E [Los Alamos National Laboratory; McCabe, Kevin P [Los Alamos National Laboratory; Newell, Raymond T [Los Alamos National Laboratory; Peterson, Charles G [Los Alamos National Laboratory


    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.

  3. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil. (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  4. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y


    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  5. Satellite television analogue and digital reception techniques

    CERN Document Server

    Benoit, Herve


    Satellite television is part of the lives of millions of television viewers worldwide and its influence is set to increase significantly with the launch of digital satellite television services.This comprehensive reference book, written by the author of the highly successful 'Digital Television', provides a technical overview of both analogue and digital satellite TV. Written concisely and thoroughly, it covers all aspects of satellite TV necessary to understand its operation and installation. It also covers the evolution of satellite television, and contains a detailed glossary of tec


    Directory of Open Access Journals (Sweden)

    Nur Said


    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  7. Excess mid-IR emission in Cataclysmic Variables

    CERN Document Server

    Dubus, G; Kern, B; Taam, R E; Spruit, H C


    We present a search for excess mid-IR emission due to circumbinary material in the orbital plane of cataclysmic variables (CVs). Our motivation stems from the fact that the strong braking exerted by a circumbinary (CB) disc on the binary system could explain several puzzles in our current understanding of CV evolution. Since theoretical estimates predict that the emission from a CB disc can dominate the spectral energy distribution (SED) of the system at wavelengths > 5 microns, we obtained simultaneous visible to mid-IR SEDs for eight systems. We report detections of SS Cyg at 11.7 microns and AE Aqr at 17.6 microns, both in excess of the contribution from the secondary star. In AE Aqr, the IR likely originates from synchrotron-emitting clouds propelled by the white dwarf. In SS Cyg, we argue that the observed mid-IR variability is difficult to reconcile with simple models of CB discs and we consider free-free emission from a wind. In the other systems, our mid-IR upper limits place strong constraints on the...

  8. Short infrared (IR) laser pulses can induce nanoporation (United States)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.


    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  9. Room temperature mid-IR single photon spectral imaging

    CERN Document Server

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter


    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. While modern Quantum cascade lasers have evolved as ideal coherent mid-IR excitation sources, simple, low noise, room temperature detectors and imaging systems still lag behind. We address this need presenting a novel, field-deployable, upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured room temperature dark noise is 0.2 photons/spatial element/second, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single photon imaging and up to 200 x 100 spatial elements resolution is obtained reaching record high continuous wave quantum efficiency of about 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applicat...

  10. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method (United States)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk


    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  11. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...

  12. Small Satellite Reaction Wheel Optimization


    Michaelis, Ted


    The very "smallness" of small satellites mandates mass minimization. This paper addresses minimization of overall reaction wheel mass, including the incremental mass of the power subsystem needed to support the reaction wheel. The results are applicable to a wide range of wheel sizes and are suitable for optimization at the configuration level. For an average momentum and torque operating point, the minimization process yields wheel radius and angular velocity, as well as, the masses associat...

  13. Fire and Ice: IRS Mid-IR Spectroscopy of IRAS F00183--7111

    CERN Document Server

    Spoon, H W W; Cami, J; Tielens, A G G M; Chiar, J E; Peeters, E; Keane, J V; Charmandaris, V; Appleton, P N; Teplitz, H I; Burgdorf, M J


    We report the detection of strong absorption and weak emission features in the 4--27 micron Spitzer-IRS spectrum of the distant ultraluminous infrared galaxy (ULIRG) IRAS F00183--7111 (z=0.327). The absorption features of CO2 and CO gas, water ice, hydrocarbons and silicates are indicative of a strongly obscured (A[9.6]>=5.4; A[V]>=90) and complex line of sight through both hot diffuse ISM and shielded cold molecular clouds towards the nuclear power source. From the profile of the 4.67 micron CO fundamental vibration mode we deduce that the absorbing gas is dense (n~10^6 cm^-3) and warm (720 K) and has a CO column density of ~10^19.5 cm^-2, equivalent to N[H]~10^23.5 cm^-2. The high temperature and density, as well as the small infered size (<0.03pc), locates this absorbing gas close to the power source of this region. Weak emission features of molecular hydrogen, PAHs and Ne+, likely associated with star formation, are detected against the 9.7 micron silicate feature, indicating an origin away from the ab...

  14. 佳能IR1600/IR2000数码复印机的维修

    Institute of Scientific and Technical Information of China (English)



    IR1600数码复印机,复印到3万张左右机器前侧复印件出现黑带。拆下左侧盖,解锁拿下感光鼓,看到感光鼓右侧有大量的墨粉,并使机器的同一位置机体内有大量的废粉,并伴有“废粉满”信息(即ASTE TONER FULL)一直不熄灭。打开鼓组件上的两个小白盖倒出废粉,将鼓组件装回到机器上,复印几张又出现上述情况,再次拆下鼓组件,拆除鼓芯发现转矩限制器断下来(见图1)。由于转矩限制器断下,搅拌杆转动时转矩限制器不转动,结果废粉满传感器(PS120)被拨动,

  15. Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR. (United States)

    Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris


    As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO2). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.

  16. On the similarity of IR-bright and IR-dark molecular clouds

    CERN Document Server

    Schneider, N; Klessen, R S; Tremblin, P; Ossenkopf, V; Peretto, N


    Are Infrared Dark Clouds (IRDCs) special in terms of their physical properties (mass, temperature, star-formation activity) or do they behave as any other star-forming molecular cloud? In this letter, we display column density and temperature maps derived from Herschel, and ATLASGAL dust continuum observations of a sample of prominent massive IRDCs, i.e. G11.11-0.12 (the 'snake'), G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1-0 (BU-FCRAO GRS) and 12CO 3-2 (JCMT) data, showing that our IRDCs are embedded in massive giant molecular clouds (GMCs). The probability distribution function of column densities (PDF) for all clouds have a power-law tail for high column densities, independent of their evolutionary stage (G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, G28.53-0.25 shows no signs of star-formation), we attribute to self-gravity. This is in contrast with the purely lognormal PDFs reported using near/mid-IR extinction maps. The p...

  17. X-ray magnetic circular dichroism at IrL2,3 edges in Fe100-Ir and Co100-Ir alloys: Magnetism of 5d electronic states

    Indian Academy of Sciences (India)

    V V Krishnamurthy; M Suzuki; N Kawamura; T Ishikawa


    The formation of induced 5 magnetic moment on Ir in Fe100-Ir (=3, 10 and 17) and Co100-Ir (=5, 17, 25 and 32) alloys has been investigated by X-ray magnetic circular dichroism (XMCD) at Ir L2,3 absorption edges. Sum rule analysis of the XMCD data show that the orbital moment of Ir is in the range of -0.071(2)B to -0.030(1)B in Fe–Ir alloys and -0.067(2)B to 0.024(1)B in Co–Ir alloys. We find that the total moment of Ir in Fe–Ir alloys is approximately 1/5 of the total 3 moment on Fe at all the three compositions. In contrast, the total moment on Ir in Co–Ir alloys varies between 1/6 to 1/16 of the 3 moment on cobalt. The observed trends of Ir moments and the role of interatomic exchange interactions in 5 moment formation are discussed.

  18. Satellite cells in human skeletal muscle plasticity. (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni


    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  19. Discs of Satellites: the new dwarf spheroidals

    CERN Document Server

    Metz, Manuel; Jerjen, Helmut


    The spatial distributions of the most recently discovered ultra faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation we pay special attention to the selection bias introduced due to the limited sky coverage of SDSS. We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also notice a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the disc-of-satellites of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the discs-of-satellites are optical manifestations of a phase-space correlation of satellite galaxies.

  20. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti


    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  1. Configurable software for satellite graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hartzman, P D


    An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The level of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.

  2. IR Laboratory Astrophysics at Forty: Some Highlights and a Look to the Future (United States)

    Allamandola, Louis John


    Space was thought to be chemically barren until about forty years ago. Astrochemistry was in its infancy, the composition of interstellar dust was largely guessed at, the presence of mixed molecular ices in dense molecular clouds was not taken seriously, and the notion of large, gas phase, carbon-rich molecules (PAHs) abundant and widespread throughout the interstellar medium (ISM) was inconceivable. The rapid development of infrared astronomy between 1970 and 1985, especially observations made by the Kuiper Airborne Observatory (KAO) and the Infrared Astronomical Satellite IRAS), which made it possible to measure mid-infrared spectra between 2.5 to 14 µm, changed all that. Since then observations made from ground-based, airborne and orbiting IR telescopes, together with radio and submm observations, have revealed that we live in a Universe that is not a hydrogen-dominated, physicist's paradise, but in a molecular Universe with complex molecules directly interwoven into its fabric. Today we recognize that molecules are an abundant and important component of astronomical objects at all stages of their evolution and that they play important roles in many processes that contribute to the structure and evolution of galaxies. Furthermore, many of these organic molecules are thought to be delivered to habitable planets such as Earth, and their composition may be related to the origin of life. Laboratory astrophysics has been key to making this great progress; progress which has only been made possible thanks to the close collaboration of laboratory experimentalists with astronomers and theoreticians. These collaborations are essential to meet the growing interdisciplinary challenges posed by astrophysics. This talk will touch on some of the milestones that have been reached in IR astrospectroscopy over the past four decades, focusing on the experimental work that revealed the widespread presence of interstellar PAHs and the composition of interstellar/precometary ices

  3. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing (United States)


    winter period that the visible/NIR imagery can be used. Because the visible MODIS channels dim above a certain solar zenith angle , the MODIS 02...our algorithm to work. Based on a few specific case studies, we decided to not use visible MODIS channels when the solar zenith angle is above 89.0...and very public change is the reduction in the summertime sea ice cover. The Intergovernmental Panel on Climate Change (IPCC) models predict a

  4. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices (United States)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott


    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  5. Strong-field physics with mid-IR fields

    CERN Document Server

    Wolter, Benjamin; Baudisch, Matthias; Sclafani, Michele; Hemmer, Michaël; Senftleben, Arne; Schröter, Claus Dieter; Ullrich, Joachim; Moshammer, Robert; Biegert, Jens


    Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasi-static regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photo-ionization and allowed a discrimination amongst different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: 1) intense mid-IR sources that can create high energy photons and electrons while operating within the quasi-static regime, and 2) detection systems that can detect the generated high energy particles and image the entire momentum space of the interaction in full coincidence. Here we present a unique combination of these two essential ingredients, namely a 160\\~kHz mi...

  6. Comparison of Laboratory Measurements for IR Imaging System Performance

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-cai; XU Zong-chang; XIAO Shun-wang


    Sensitivity and human performance are two important parameters for IR imaging system. Noise equivalent temperature difference (NETD) and minimum resolvable temperature difference (MRTD) can describe sensitivity and human performance of IR imaging system. So a lot of engineers apply themselves to studying the methods to measure NETD and MRTD for IR imaging system. The classical laboratory measurement methodologies for NETD and MRTD are introduced. And, two new approaches to three-dimensional (3-D) noise and MRTD/MRC are also portrayed, which can overcome some of the disadvantages existed in classical testing of NETD and MRTD. With the help of the new laboratory measurements, the disadvantages of the classical methods to measure NETD and MRTD can be solved.

  7. The cell growth suppressor, mir-126, targets IRS-1. (United States)

    Zhang, Jin; Du, Ying-ying; Lin, Yi-feng; Chen, Ya-ting; Yang, Lu; Wang, Hui-jun; Ma, Duan


    miRNAs are a family of approximately 22-nuleotide-long noncoding RNAs involved in the formation and progress of tumors. Since traditional methods for the detection of miRNAs expression have many disadvantages, we developed a simple method called polyA RT PCR. With this method, we detected a series of miRNAs and found that mir-126 is one of the miRNAs underexpressed in breast cancer cells. Flow cytometry analysis showed that mir-126 inhibited cell cycle progression from G1/G0 to S. Further studies revealed that mir-126 targeted IRS-1 at the translation level. Knocking down of IRS-1 suppresses cell growth in HEK293 and breast cancer cell MCF-7, which recapitulates the effects of mir-126. In conclusion, we developed a simple method for high-throughput screening of miRNAs and found that mir-126, a cell growth suppressor, targets IRS-1.

  8. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Energy Technology Data Exchange (ETDEWEB)

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)


    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  9. A Parametric Study of Crack Propagation During Sonic IR Inspection (United States)

    Chen, J. C.; Kephart, J.; Riddell, W. T.


    We have developed an experiment to study the propagation of synthetic cracks under various controlled conditions during sonic IR inspection. The experiment provides for good repeatability in testing. The parameters of interest include the initial crack length, load history (stress intensity and load ratio) during crack generation, geometry of the crack, material, and also the various conditions involving the ultrasonic source. In general, we find that under typical sonic IR inspection conditions, the initial crack will propagate when subjected to sonic IR testing. The crack growth after each inspection event varies and exhibits a distribution in length of propagation. The results show that the average crack propagation decreases with increasing initial crack length and increasing stress intensity.

  10. Electronic transport properties of Ir-decorated graphene. (United States)

    Wang, Yilin; Xiao, Shudong; Cai, Xinghan; Bao, Wenzhong; Reutt-Robey, Janice; Fuhrer, Michael S


    Graphene decorated with 5d transitional metal atoms is predicted to exhibit many intriguing properties; for example iridium adatoms are proposed to induce a substantial topological gap in graphene. We extensively investigated the conductivity of single-layer graphene decorated with iridium deposited in ultra-high vacuum at low temperature (7 K) as a function of Ir concentration, carrier density, temperature, and annealing conditions. Our results are consistent with the formation of Ir clusters of ~100 atoms at low temperature, with each cluster donating a single electronic charge to graphene. Annealing graphene increases the cluster size, reducing the doping and increasing the mobility. We do not observe any sign of an energy gap induced by spin-orbit coupling, possibly due to the clustering of Ir.

  11. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth


    FT-IR and Raman spectroscopy are complementary techniques for the study of molecular vibrations and structure. The combination with a microscope results in an analytical method that allows spatially resolved investigation of the chemical composition of heterogeneous foods and food ingredients....... The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...... to different heterogeneous food systems. FT-IR and Raman microspectroscopy were applied to a number of different problems related to food analysis: (1) in situ determination of starch and pectin in the potato cell, (2) in situ determination of the distribution of amygdalin in bitter almonds, (3...

  12. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun


    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  13. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment (United States)

    Jewett, Christopher P.; Mecikalski, John R.


    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  14. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas;


    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38.......6 mW/cm2 simulated sunlight irradiation (λ > 635 nm, AM 1.5G) and measurements with quartz crystal microbalances. Films exceeding a thickness of 4 nm were shown to be highly active though metastable due to an amorphous character. By contrast, 2 nm IrOx films were stable, enabling OER at a current...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...


    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)


    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  16. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles (United States)

    Wu, Zhi-Jian; Zhao, Er-Jun; Xiang, Hong-Ping; Hao, Xian-Feng; Liu, Xiao-Juan; Meng, Jian


    First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3 , hexagonal P3221 , tetragonal P42/mnm , orthorhombic Pmmn , Pnnm , and Pnn2 , and monoclinic P21/c . Our calculation indicates that the P21/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414Å . These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P21/c . The calculated bulk modulus of 373GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357GPa within 4.3% and of 402GPa within 7.8%, but smaller than the experimental value of 428GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2 . For IrN3 , cubic skutterudite structure (Im-3) was assumed. Our calculation indicated that it is also promising to be superhard due to the large bulk modulus of 358GPa and shear modulus of 246GPa . The diatomic N-N bond distance is even shorter (1.272Å) .

  17. Design of IR EDM System with a DSP Phase Detector①

    Institute of Scientific and Technical Information of China (English)

    LIUJianguo; WEIQingnong


    The design and realization of a new generation of infra-red electronic distance measurement(IR EDM)system are presented.A DSP(Digital Signal Process)phase detector based on high speed analog-to-digital converter and DSP technique has been designed,in order to improve the precision and reliability of IR EDM system.As a result,the EDM system developed with a DSP phase detector has a precision of 3mm in the measuring range of 2 km.

  18. Low Dose IR Creates an Oncogenic Microenvironment by Inducing Premature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zhi-Min [Harvard School of Public Health


    Introduction Much of the work addressing ionizing radiation-induced cellular response has been carried out mainly with the traditional cell culture technique involving only one cell type, how cellular response to IR is influenced by the tissue microenvironment remains elusive. By use of a three-dimensional (3D) co-culture system to model critical interactions of different cell types with their neighbors and with their environment, we recently showed that low-dose IR-induced extracellular signaling via the tissue environment affects profoundly cellular responses. This proposal aims at determining the response of mammary epithelial cells in a tissue-like setting.

  19. Raman and FT-IR studies of ocular tissues (United States)

    Ozaki, Yukihiro; Mizuno, Aritake


    Two examples of Raman and FT-IR studies of the ocular tissues are reviewed in this paper. The first example treats Raman studies on cataract development cataract-related lens hydration and structural changes in the lens proteins monitored in situ by Raman spectroscopy are described. The second example is concerned with FT-IR studies on the ocular tissues contain ing collagen nondestructive identification of Type I and IV collagen in the tissues and their structural differences elucidated by infrared spectroscopy are discussed. 1 .

  20. New Material System for 3rd Generation IR Applications (United States)


    misfit dislocations need to be generated somewhere in the thin film stack to alleviate this energy which ultimately propagates into the IR-absorbing...Laboratory ARO U.S. Army Research Office As arsenic Cd cadmium CdSe cadmium selenide CdTe cadmium telluride CdZnTe cadmium zinc telluride CHM...Laboratory (ARL) has begun investigating mercury cadmium selenide (HgCdSe) for infrared (IR) applications. Analogous to HgCdTe, HgCdSe is a tunable