WorldWideScience

Sample records for satellite time transfer

  1. Relativistic Time Transfer for Inter-satellite Links

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yi, E-mail: yixie@nju.edu.cn [Department of Astronomy, School of Astronomy and Space Sciences, Nanjing University, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing (China)

    2016-04-26

    Inter-Satellite links (ISLs) will be an important technique for a global navigation satellite system (GNSS) in the future. Based on the principles of general relativity, the time transfer in an ISL is modeled and the algorithm for onboard computation is described. It is found, in general, satellites with circular orbits and identical semi-major axes can benefit inter-satellite time transfer by canceling out terms associated with the transformations between the proper times and the Geocentric Coordinate Time. For a GPS-like GNSS, the Shapiro delay is as large as 0.1 ns when the ISL passes at the limb of the Earth. However, in more realistic cases, this value will decrease to about 50 ps.

  2. Time Transfer Experiment by TCE on the ETS-VIII Satellite

    National Research Council Canada - National Science Library

    Nakagawa, Fumimaru; Takahashi, Yasuhiro; Amagai, Jun; Tabuchi, Ryo; Hama, Shin'ichi; Hosokawa, Mizuhiko

    2007-01-01

    .... At NICT, we developed Time Comparison Equipment (TCE) both onboard ETS-VIII and in the Earth station for precise time transfer between the atomic clocks on the satellite and a ground reference clock...

  3. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    Science.gov (United States)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  4. Web Transfer Over Satellites Being Improved

    Science.gov (United States)

    Allman, Mark

    1999-01-01

    Extensive research conducted by NASA Lewis Research Center's Satellite Networks and Architectures Branch and the Ohio University has demonstrated performance improvements in World Wide Web transfers over satellite-based networks. The use of a new version of the Hypertext Transfer Protocol (HTTP) reduced the time required to load web pages over a single Transmission Control Protocol (TCP) connection traversing a satellite channel. However, an older technique of simultaneously making multiple requests of a given server has been shown to provide even faster transfer time. Unfortunately, the use of multiple simultaneous requests has been shown to be harmful to the network in general. Therefore, we are developing new mechanisms for the HTTP protocol which may allow a single request at any given time to perform as well as, or better than, multiple simultaneous requests. In the course of study, we also demonstrated that the time for web pages to load is at least as short via a satellite link as it is via a standard 28.8-kbps dialup modem channel. This demonstrates that satellites are a viable means of accessing the Internet.

  5. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Science.gov (United States)

    Zhang, Pengfei; Zhang, Rui; Liu, Jinhai; Lu, Xiaochun

    2018-01-01

    This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF) combined precise point positioning (PPP) model with two dual-frequency combinations (IF-PPP1) and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2). A dataset with a short baseline (with a common external time frequency) and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS) triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration. PMID:29596330

  6. Modeling and Assessment of Precise Time Transfer by Using BeiDou Navigation Satellite System Triple-Frequency Signals

    Directory of Open Access Journals (Sweden)

    Rui Tu

    2018-03-01

    Full Text Available This study proposes two models for precise time transfer using the BeiDou Navigation Satellite System triple-frequency signals: ionosphere-free (IF combined precise point positioning (PPP model with two dual-frequency combinations (IF-PPP1 and ionosphere-free combined PPP model with a single triple-frequency combination (IF-PPP2. A dataset with a short baseline (with a common external time frequency and a long baseline are used for performance assessments. The results show that IF-PPP1 and IF-PPP2 models can both be used for precise time transfer using BeiDou Navigation Satellite System (BDS triple-frequency signals, and the accuracy and stability of time transfer is the same in both cases, except for a constant system bias caused by the hardware delay of different frequencies, which can be removed by the parameter estimation and prediction with long time datasets or by a priori calibration.

  7. Satellite data transferring subsystem based on system 'Materik'

    International Nuclear Information System (INIS)

    Belogub, V.P.; Kal'schikov, I.B.; Kirillov, Yu.K.; Kulikov, V.N.; Shumov, A.N.

    1998-01-01

    One of the most important indicators of successful function of the International Monitoring System is existence of highly reliable communication channels providing transfer data from observation points in a real time scales. Up to present, the most communication channels were provided with existing VF-channels (Voice Frequency) that are relatively low-speedy in transfer process (4.8-9.6 kbit/sec.). In addition, reliability of the channels is insufficient because of many retransmission points. In connection with it, the special control service of MD RF decided to improve the information transfer system (ITS) installed between the observation point and National Data Center (Dubna-city). The improvement of the ITS comprises replacement of wire lines of VF-channels with satellite ones within the framework of the computer-aided satellite communication system (CASCS) M aterik . Besides it was considered to be expedient that the satellite system of data transfer from NPP to the Crisis Center of 'ROSENERGOATOM' Concern would be combined with CASCS M aterik , using the facilities of the Central Earth Station of Satellite Communication (CESSC) in Dubna. Such approach to the creation of Satellite communication has advantages in solution of radiation safety and global monitoring issues

  8. Progress of BeiDou time transfer at NTSC

    Science.gov (United States)

    Guang, Wei; Dong, Shaowu; Wu, Wenjun; Zhang, Jihai; Yuan, Haibo; Zhang, Shougang

    2018-04-01

    Time transfer using global navigation satellite system (GNSS) is a primary method of remote atomic clock comparisons. As of today, there are four operational GNSS systems, namely GPS, GLONASS, Galileo and BeiDou Navigation Satellite System (BDS or BeiDou). All of them can continuously provide position, navigation and time services. This paper mainly focuses on the progress of BeiDou time transfer at the National Time Service Center, Chinese Academy of Sciences (NTSC). In order to realize the BeiDou common view (CV) time comparison, we developed the Rinex2CGGTTS software according to the guidelines of the Common GNSS Generic Time Transfer Standard, Version 2E (CGGTTS V2E). By comparing the solutions of the Rinex2CGGTTS software to the solutions of the sbf2cggtts software provided by the manufacturer of our multi-GNSS receiver, we found the sbf2cggtts (version 1.0.5) solutions contained biases in measurements to different BeiDou satellites. The biases are most likely caused by sbf2cggtts’ timing group delay corrections in data processing. The noise of the observation data is analyzed by code multipath and common clock difference. Finally, the BeiDou CV results are compared to the GPS/GLONASS/Galileo CV results between NTSC and three European UTC(k) laboratories, including Royal Observatory of Belgium (ORB), Real Institute y Observatory de la Armada (ROA), Research Institutes of Sweden (RISE or SP). For the comparisons of each baseline, we aligned the BeiDou/Galileo/GLONASS links to the calibrated GPS link with the double-difference method. The results show that the performance of BeiDou CV is correlated to the number of BeiDou satellites available in common view. With the current BeiDou constellation, the standard deviation of the differences between all BeiDou CV satellites averaging result and the GPS PPP result is 2.03 ns, 2.90 ns and 4.06 ns for ORB-NTSC, SP-NTSC and ROA-NTSC links respectively.

  9. CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT)

    Data.gov (United States)

    National Aeronautics and Space Administration — The CubeSat Handling of Multisystem Precision Time Transfer (CHOMPTT) mission is a precision timing satellite equipped with atomic clocks synchronized with a ground...

  10. Two-Way Satellite Time Transfer Between USNO and PTB

    National Research Council Canada - National Science Library

    Piester, D; Bauch, A; Becker, J; Polewka, T; McKinley, A; Breakiron, L; Smith, A; Fonville, B; Matsakis, D

    2005-01-01

    Two completely independent two-way time and frequency transfer (TWSTFT) links have been established between the institutions of USNO and PTB, with transponder frequencies in the Ku-band and X-band, respectively...

  11. Enhacements to the TTS-502 time transfer system

    Science.gov (United States)

    Vandierendonck, A. J.; Hua, Q. D.

    1985-04-01

    Two years ago STI introduced an affordable, relatively compact time transfer system on the market -- the TTS-502, and described that system at the 1981 PTTI conference. Over the past few months, that system has been improved, and new features have been added. In addition, new options have been made available to further enhance the capabilities of the system. These enhancements include the addition of a positioning algorithm and new options providing a corrected 5 MHz output that is phase coherent with the 1 pps output, and providing an internal Rubidium Oscillator. The Positioning Algorithm was developed because not all time transfer users had the luxury of the Defense Mapping Agency's (DMA) services for determining their position in WGS-72 coordinates. The enhanced TTS-502 determines the GPS position anywhere in the world, independent of how many GPS satellites are concurrently visible. However, convergence time to a solution is inversely proportional to the number of satellites concurrently visible and the quality of frequency standard used in conjunction with the TTS-502. Real World solution results will be presented for a variety of cases and satellite scheduling scenarios. Typically, positioning accuracies were achieved better than 5 to 10 meters r.s.s. using the C/A code only at Sunnyvale, California.

  12. On the potential of Galileo E5 for time transfer.

    Science.gov (United States)

    Martínez-Belda, Mari Carmen; Defraigne, Pascale; Bruyninx, Carine

    2013-01-01

    The main global navigation satellite systems (GNSS) technique currently used for accurate time and frequency transfer is based on an analysis of the ionosphere-free combinations of dual-frequency code and carrier phase measurements in a precise point positioning (PPP) mode. This technique analyses the observations of one GNSS station using external products for satellite clocks and orbits to determine the position and clock synchronization errors of this station. The frequency stability of this time transfer is limited by the noise and multipath of the Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) codes. In the near future, Galileo will offer a broadband signal E5, with low noise in the centimeter range and with the lowest multipath error ever observed. This paper investigates new analysis procedures based on the E5 codeplus- carrier (CPC) combination for time transfer. The CPC combination with E5 provides a noise level 10 times lower than the ionosphere-free combination of Galileo E1 and E5, which is very promising for improving GNSS time transfer performances. From some tests with simulated Galileo data, it is shown here that the use of the CPC combination with E5 does not improve, at present, the medium- and long-term stability of time transfer with respect to the ionosphere-free combination of Galileo E1 and E5 codes, because of the need for a second frequency signal to correct for the ionospheric delays and ambiguities.

  13. Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.

    Science.gov (United States)

    Yao, Jian; Levine, Judah; Weiss, Marc

    2015-01-01

    The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is "day boundary discontinuity," which has been studied extensively and can be solved by multiple methods [1-8]. The other category of discontinuity, called "anomaly boundary discontinuity (anomaly-BD)," comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as "jamming", can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer.

  14. Two-way laser ranging and time transfer experiments between LOLA and an Earth-based satellite laser ranging station

    Science.gov (United States)

    Mao, D.; Sun, X.; Neumann, G. A.; Barker, M. K.; Mazarico, E. M.; Hoffman, E.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    Satellite Laser Ranging (SLR) has established time-of-flight measurements with mm precision to targets orbiting the Earth and the Moon using single-ended round-trip laser ranging to passive optical retro-reflectors. These high-precision measurements enable advances in fundamental physics, solar system dynamics. However, the received signal strength suffers from a 1/R4 decay, which makes it impractical for measuring distances beyond the Moon's orbit. On the other hand, for a two-way laser transponder pair, where laser pulses are both transmitted to and received from each end of the laser links, the signal strength at both terminals only decreases by 1/R2, thus allowing a greater range of distances to be covered. The asynchronous transponder concept has been previously demonstrated by a test in 2005 between the Mercury Laser Altimeter (MLA) aboard the MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft and NASA's Goddard Geophysical and Astronomical Observatory (GGAO) at a distance of ˜0.16 AU. In October 2013, regular two-way transponder-type range measurements were obtained over 15 days between the Lunar Laser Communication Demonstration (LLCD) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and NASA's ground station at White Sands, NM. The Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) provides us a unique capability to test time-transfer beyond near Earth orbit. Here we present results from two-way transponder-type experiments between LOLA and GGAO conducted in March 2014 and 2017. As in the time-transfer by laser link (T2L2) experiments between a ground station and an earth-orbiting satellite, LOLA and GGAO ranged to each other simultaneously in these two-way tests at lunar distance. We measured the time-of-flight while cross-referencing the spacecraft clock to the ground station time. On May 4th, 2017, about 20 minutes of two-way measurements were collected. The

  15. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs

    Directory of Open Access Journals (Sweden)

    Xiaobo Gu

    2015-07-01

    Full Text Available An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD, synchronous time division (STDD duplex and code division multiple access (CDMA with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS methods to predict the clock error and employs a third-order phase lock loop (PLL to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.

  16. Plan of Time Management of Satellite Positioning System using Quasi-zenith Satellite

    Science.gov (United States)

    Takahashi, Yasuhiro; Fujieda, Miho; Amagai, Jun; Yokota, Shoichiro; Kimura, Kazuhiro; Ito, Hiroyuki; Hama, Shin'ichi; Morikawa, Takao; Kawano, Isao; Kogure, Satoshi

    The Quasi-Zenith satellites System (QZSS) is developed as an integrated satellite service system of communication, broadcasting and positioning for mobile users in specified regions of Japan from high elevation angle. Purposes of the satellite positioning system using Quasi-Zenith satellite (QZS) are to complement and augment the GPS. The national institutes concerned have been developing the positioning system using QZS since 2003 and will carry out experiments and researches in three years after the launch. In this system, National Institute of Information and Communications Technology (NICT) is mainly in charge of timing system for the satellite positioning system using QZS, such as onboard hydrogen maser atomic clock and precise time management system of the QZSS. We started to develop the engineering model of the time management system for the QZSS. The time management system for the QZSS will be used to compare time differences between QZS and earth station as well as to compare between three onboard atomic clocks. This paper introduces time management of satellite positioning system using the QZSS.

  17. Comparison of GLONASS and GPS time transfers between two west European time laboratories and VNIIFTRI

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, Wlodzimierz; Petit, Gerard; Thomas, Claudine

    1992-01-01

    The University of Leeds built a Global Positioning System/Global Orbiting Navigation Satellite System (GPS/GLONASS) receiver about five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years, VNIIFTRI (All Union Institute for Physical, Technical and Radiotechnical Measurements) and some other Soviet time laboratories have used Soviet built GLONASS navigation receivers for time comparisons. Since June 1991, VNIIFTIR has been operating a GPS time receiver on loan from the BIPM (Bureau International des Poids et Mesures). This offered, for the first time, an opportunity for direct comparison of time transfers using GPS and GLONASS. This experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  18. VLBI and GPS-based Time-Transfer Using CONT08 Data

    Science.gov (United States)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  19. Automated observatory in Antarctica: real-time data transfer on constrained networks in practice

    Science.gov (United States)

    Bracke, Stephan; Gonsette, Alexandre; Rasson, Jean; Poncelet, Antoine; Hendrickx, Olivier

    2017-08-01

    In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to -50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s-1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination-declination (DI) measurements (five times a day) with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP), email, rsync) show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT) protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT) and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.

  20. Automated observatory in Antarctica: real-time data transfer on constrained networks in practice

    Directory of Open Access Journals (Sweden)

    S. Bracke

    2017-08-01

    Full Text Available In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to −50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s−1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination–declination (DI measurements (five times a day with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP, email, rsync show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.

  1. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  2. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    Science.gov (United States)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  3. Time-Zone-Pattern Satellite Broadcasting Antenna

    Science.gov (United States)

    Galindo, Victor; Rahmat-Samii, Yahya; Imbriale, William A.; Cohen, Herb; Cagnon, Ronald R.

    1988-01-01

    Direct-broadcast satellite antenna designs provide contoured beams to match four time zones in 48 contiguous states and spot beams for Alaska, Hawaii, and Puerto Rico presented in 29-page report. Includes descriptions of procedures used to arrive at optimized designs. Arrangements, amplitudes, and phases of antenna feeds presented in tables. Gain contours shown graphically. Additional tables of performance data given for cities in service area of Eastern satellite.

  4. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  5. Video Streaming Transfer in a Smart Satellite Mobile Environment

    Directory of Open Access Journals (Sweden)

    Nedo Celandroni

    2009-01-01

    satellite link for transmitting video streams to a bus, where they are relayed to passengers' devices. We say that a bus works in smart mode if it takes advantage of the knowledge of the exact points where fixed obstacles will prevent receiving the satellite signal for a certain time period. This information is sent to the hub via a return channel. The hub, in its turn, suspends the transmissions to that specific bus for the given time interval, thus avoiding information losses and unnecessary bandwidth occupation. Buffering video packets, without any quality of service (QoS degradation, seamlessly compensates channel blockages up to a given duration. We determine the most appropriate transmission parameters for video streaming with good video QoS in a mobile satellite environment; moreover, we evaluate how “smart” the system can be in terms of bandwidth saving, by comparing it with the situation where the bus does not exploit the description of its route, still maintaining the same QoS requirements.

  6. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  7. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  8. Incorporating Satellite Time-Series Data into Modeling

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    In situ time series observations have provided a multi-decadal view of long-term changes in ocean biology. These observations are sufficiently reliable to enable discernment of even relatively small changes, and provide continuous information on a host of variables. Their key drawback is their limited domain. Satellite observations from ocean color sensors do not suffer the drawback of domain, and simultaneously view the global oceans. This attribute lends credence to their use in global and regional model validation and data assimilation. We focus on these applications using the NASA Ocean Biogeochemical Model. The enhancement of the satellite data using data assimilation is featured and the limitation of tongterm satellite data sets is also discussed.

  9. Understanding and Analyzing Latency of Near Real-time Satellite Data

    Science.gov (United States)

    Han, W.; Jochum, M.; Brust, J.

    2016-12-01

    Acquiring and disseminating time-sensitive satellite data in a timely manner is much concerned by researchers and decision makers of weather forecast, severe weather warning, disaster and emergency response, environmental monitoring, and so on. Understanding and analyzing the latency of near real-time satellite data is very useful and helpful to explore the whole data transmission flow, indentify the possible issues, and connect data providers and users better. The STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR) is a central repository to acquire, manipulate, and disseminate various types of near real-time satellite datasets to internal and external users. In this system, important timestamps, including observation beginning/end, processing, uploading, downloading, and ingestion, are retrieved and organized in the database, so the time length of each transmission phase can be figured out easily. Open source NoSQL database MongoDB is selected to manage the timestamp information because of features of dynamic schema, aggregation and data processing. A user-friendly user interface is developed to visualize and characterize the latency interactively. Taking the Himawari-8 HSD (Himawari Standard Data) file as an example, the data transmission phases, including creating HSD file from satellite observation, uploading the file to HimawariCloud, updating file link in the webpage, downloading and ingesting the file to SCDR, are worked out from the above mentioned timestamps. The latencies can be observed by time of period, day of week, or hour of day in chart or table format, and the anomaly latencies can be detected and reported through the user interface. Latency analysis provides data providers and users actionable insight on how to improve the data transmission of near real-time satellite data, and enhance its acquisition and management.

  10. Remote atomic clock synchronization via satellites and optical fibers

    OpenAIRE

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized...

  11. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.

    Science.gov (United States)

    Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2015-12-22

    Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.

  12. Near Real Time Processing Chain for Suomi NPP Satellite Data

    Science.gov (United States)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  13. European Telecommunications Satellite II (EUTELSAT II)

    Science.gov (United States)

    Laemmel, G.; Brittinger, P.

    1991-01-01

    EUTELSAT II is a regional public telecommunications system for Europe. The services which will be provided are telephone and television. The satellites will be placed at a geostationary orbit within the arcs of 6 degrees east to 19 degrees east or 26 degrees to 36 degrees east. The designed lifetime is 7 years. After separation of the satellites from the launch vehicles, telemetry, telecommand, and ranging will be performed within the S-band frequencies. After positioning of the satellite at its final geostationary orbit, the Ku-band telecommunication equipment will be activated. From this time on, all satellite control operations will be performed in Ku-band. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas at Goldstone and Canberra as prime support for the transfer and drift orbits. Maximum support will consist of a 7-day period, plus 14 days of contingency support. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking support responsibility.

  14. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    Science.gov (United States)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  15. Coordinating Transit Transfers in Real Time

    Science.gov (United States)

    2016-05-06

    Transfers are a major source of travel time variability for transit passengers. Coordinating transfers between transit routes in real time can reduce passenger waiting times and travel time variability, but these benefits need to be contrasted with t...

  16. Resource Transfers to the Elderly: Do Adult Children Substitute Financial Transfers for Time Transfers

    National Research Council Canada - National Science Library

    Zissimopoulos, Julie

    2001-01-01

    Using the Health and Retirement Study, this research investigates whether an adult child substitutes financial transfers to an elderly parent for time transfers as the cost of his or her time increases...

  17. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  18. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  19. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  20. Programming a real-time operating system for satellite control applications Satellite Control Applications

    International Nuclear Information System (INIS)

    Omer, M.; Anjum, O.; Suddle, M.R.

    2004-01-01

    With the realization of ideas like formation flights and multi-body space vehicles the demands on an attitude control system have become increasingly complex. Even in its most simplified form, the control system for a typical geostationary satellite has to run various supervisory functions along with determination and control algorithms side by side. Within each algorithm it has to employ multiple actuation and sensing mechanisms and service real time interrupts, for example, in the case of actuator saturation and sensor data fusion. This entails the idea of thread scheduling and program synchronization, tasks specifically meant for a real time OS. This paper explores the embedding of attitude determination and control loop within the framework of a real time operating system provided for TI's DSP C6xxx series. The paper details out the much functionality provided within the scaleable real time kernel and the analysis and configuration tools available, It goes on to describe a layered implementation stack associated with a typical control for Geo Stationary satellites. An application for control is then presented in which state of the art analysis tools are employed to view program threads, synchronization semaphores, hardware interrupts and data exchange pipes operating in real time. (author)

  1. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  2. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  3. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  4. Extension of SCIATRAN by coupling atmospheric and oceanic radiative transfer: First results of comparisons for in-situ and satellite data

    Science.gov (United States)

    Blum, Mirjam; Rozanov, Vladimir; Bracher, Astrid; Burrows, John P.

    The radiative transfer model SCIATRAN [V. V. Rozanov et al., 2002; A. Rozanov et al., 2005, 2008] has been developed to model atmospheric radiative transfer. This model is mainly applied to improve the analysis of high spectrally resolved satellite data as, for instance, data of the instrument SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHar-tographY) onboard the ENVISAT satellite. Within the present study, SCIATRAN has been extended by taking radiative processes as well as at the atmosphere-water interface as within the water into account, which were caused by water itself and its constituents. Comparisons of this extended version of SCIATRAN for in-situ data and for MERIS satellite information yield first results, which will be shown. It is expected that the new version of SCIATRAN, including the coupling of atmospheric and oceanic radiative transfer, will widen the use of high spectrally resolved data in the form of achieving new findings, such as information about ocean biooptics and biogeochemistry like, for example, biomass of different phytoplankton groups or CDOM fluorescence. In addition, it is awaited that the new version improves the retrieval of atmospheric trace gases above oceanic waters. References: 1. V. V. Rozanov, M. Buchwitz, K.-U. Eichmann, R. de Beek, and J. P. Burrows. Sciatran -a new radiative transfer model for geophysical applications in the 240-2400nm spectral region: the pseudo-spherical version. Adv. in Space Res. 29, 1831-1835 (2002) 2. A. Rozanov, V. V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows. SCIA-TRAN 2.0 -A new radiative tranfer model for geophysical applications in the 175-2400nm spectral region. Adv. in Space Res. 36, 1015-1019 (2005) 3. A. Rozanov. SCIATRAN 2.X: Radiative transfer model and retrieval software package. URL = http://www.iup.physik.uni-bremen.de/sciatran (2008)

  5. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  6. Building a satellite climate diagnostics data base for real-time climate monitoring

    International Nuclear Information System (INIS)

    Ropelewski, C.F.

    1991-01-01

    The paper discusses the development of a data base, the Satellite Climate Diagnostic Data Base (SCDDB), for real time operational climate monitoring utilizing current satellite data. Special attention is given to the satellite-derived quantities useful for monitoring global climate changes, the requirements of SCDDB, and the use of conventional meteorological data and model assimilated data in developing the SCDDB. Examples of prototype SCDDB products are presented. 10 refs

  7. Comparison of GLONASS and GPS Time Transfers

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.

    1993-01-01

    The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  8. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  9. Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.

    Science.gov (United States)

    Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming

    2017-06-12

    Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.

  10. Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning

    Directory of Open Access Journals (Sweden)

    Junbo Shi

    2017-06-01

    Full Text Available Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm–dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.

  11. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  12. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Time sharing between NOAA meteorological... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite... Atmospheric Administration (“NOAA”) satellite systems. When calculating the protection areas for a NOAA...

  13. Real time hardware-in-loop simulation of ESMO satellite attitude control system

    Directory of Open Access Journals (Sweden)

    Rune Finnset

    2006-04-01

    Full Text Available This paper studies attitude control of the ESMO satellite using six reaction thrusters. Bang-bang control with dead-zone and Pulse-Width Modulation (PWM for the modulation of the on-time of the thrusters are treated. Closed loop hardware-in-loop simulations, using themicrocontroller unit (MCU Microchip PIC18F452 for implementation of attitude control and MatLab in a standard PC for simulating satellite dynamics, are carried out. Results for real time simulation are compared with autonomous simulations. The controller gives a satisfactory performance in the real time environment.

  14. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  15. Satellite teleradiology test bed for digital mammography

    Science.gov (United States)

    Barnett, Bruce G.; Dudding, Kathryn E.; Abdel-Malek, Aiman A.; Mitchell, Robert J.

    1996-05-01

    Teleradiology offers significant improvement in efficiency and patient compliance over current practices in traditional film/screen-based diagnosis. The increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper will describe a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology and National Electrical Manufacturers Association. The testbed uses several Sun workstations running SunOS, which emulate a rural examination facility connected to a central diagnostic facility, and uses a TCP-based DICOM application to transfer images over a satellite link. Network performance depends on the product of the bandwidth times the round- trip time. A satellite link has a round trip of 513 milliseconds, making the bandwidth-delay a significant problem. This type of high bandwidth, high delay network is called a Long Fat Network, or LFN. The goal of this project was to quantify the performance of the satellite link, and evaluate the effectiveness of TCP over an LFN. Four workstations have Sun's HSI/S (High Speed Interface) option. Two are connected by a cable, and two are connected through a satellite link. Both interfaces have the same T1 bandwidth (1.544 Megabits per second). The only difference was the round trip time. Even with large window buffers, the time to transfer a file over the satellite link was significantly longer, due to the bandwidth-delay. To

  16. General post-Minkowskian expansion of time transfer functions

    Energy Technology Data Exchange (ETDEWEB)

    Teyssandier, Pierre; Poncin-Lafitte, Christophe Le [Departement Systemes de Reference Temps et Espace, CNRS/UMR 8630, Observatoire de Paris, 61 avenue de l' Observatoire, F-75014 Paris (France)

    2008-07-21

    Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation.

  17. General post-Minkowskian expansion of time transfer functions

    International Nuclear Information System (INIS)

    Teyssandier, Pierre; Poncin-Lafitte, Christophe Le

    2008-01-01

    Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation

  18. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  19. Satellite image time series simulation for environmental monitoring

    Science.gov (United States)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of

  20. Time assignment system and its performance aboard the Hitomi satellite

    Science.gov (United States)

    Terada, Yukikatsu; Yamaguchi, Sunao; Sugimoto, Shigenobu; Inoue, Taku; Nakaya, Souhei; Murakami, Maika; Yabe, Seiya; Oshimizu, Kenya; Ogawa, Mina; Dotani, Tadayasu; Ishisaki, Yoshitaka; Mizushima, Kazuyo; Kominato, Takashi; Mine, Hiroaki; Hihara, Hiroki; Iwase, Kaori; Kouzu, Tomomi; Tashiro, Makoto S.; Natsukari, Chikara; Ozaki, Masanobu; Kokubun, Motohide; Takahashi, Tadayuki; Kawakami, Satoko; Kasahara, Masaru; Kumagai, Susumu; Angelini, Lorella; Witthoeft, Michael

    2018-01-01

    Fast timing capability in x-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 or 35 μs are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details of the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc. under nominal conditions satisfies the mission requirements of 35 μs. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for midsized satellites using the SpaceWire (IEEE1355) network.

  1. Satellite Surveillance: Domestic Issues

    National Research Council Canada - National Science Library

    Best, Jr., Richard A; Elsea, Jennifer K

    2008-01-01

    ... and law enforcement purposes, in addition to the civil applications that have been supported for years. In 2007, it moved to transfer responsibility for coordinating civilian use of satellites to the Department of Homeland Security. The transfer occurred, however, apparently without notification of key congressional oversight committees.

  2. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  3. MODELING OF ADS-B MESSAGES TRANSMISSION THROUGH SATELLITE TELECOMMUNICATION CHANNEL IRIDIUM USING NETCRACKER PROFESSIONAL 4.1

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2012-04-01

    Full Text Available The model for the traffic analysis in a communication channel "aircraft - satellite - ground station" wasbuilt and used for modeling of transfer ADS-B messages with the help low-orbit satellite complex Іrіdіum.Dependences of factor BER on channel average working load and average utilization time were obtained.Dependences of package failure probabilities on average working load, average utilization time and signaltraveling time were analyzed. The developed model was applied for determination of traffic characteristics ina communication channel "aircraft - satellite - ground station": the dependence of average working load,average channel utilization time and message traveling time on the size of transaction, the dependence oftravelling time on channel delay time were built.

  4. Time: A Critical Parameter in Satellite Navigation and Positioning ...

    African Journals Online (AJOL)

    The applications of space-borne satellites are increasing in many aspects of human endeavours; the most among them being the provision of guaranteed access to users of precise time and location services. An investigation was therefore carried out through a review process mechanism to determine the orbit parameter ...

  5. Real-time transfer and display of radiography image

    International Nuclear Information System (INIS)

    Liu Ximing; Wu Zhifang; Miao Jicheng

    2000-01-01

    The information process network of cobalt-60 container inspection system is a local area network based on PC. The system requires reliable transfer of radiography image between collection station and process station and the real-time display of radiography image on process station. Due to the very high data acquisition rate, in order to realize the real-time transfer and display of radiography image, 100 M Ethernet technology and network process communication technology are adopted in the system. Windows Sockets is the most common process communication technology up to now. Several kinds of process communication way under Windows Sockets technology are compared and tested. Finally the author realized 1 Mbyte/s' inerrant image transfer and real-time display with blocked datagram transfer technology

  6. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  7. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    Science.gov (United States)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned

  8. Studies on Instabilities in Long-Baseline Two-Way Satellite Time and Frequency Transfer (TWSTFT) Including a Troposphere Delay Model

    Science.gov (United States)

    2007-11-01

    281.4 -281.2 -281.0 MJD 54270.0 to 54277.0 (June 2007) MJD 53767.0 to 53773.0 (Feb 2006) S ag na c de la y N IC T to P TB (n s) days from MJD...standards in Europe and the US at the 10-15 uncertainty level,” Metrologia , 43, 109-120. [2] D. Piester, A. Bauch, L. Breakiron, D. Matsakis, B...Blanzano, and O. Koudelka, 2008, “Time transfer with nanosecond accuracy for the realization of International Atomic Time,” submitted to Metrologia

  9. Monitoring Seasonal Evapotranspiration in Vulnerable Agriculture using Time Series VHSR Satellite Data

    Science.gov (United States)

    Dalezios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.

    2015-04-01

    The research work stems from the hypothesis that it is possible to perform an estimation of seasonal water needs of olive tree farms under drought periods by cross correlating high spatial, spectral and temporal resolution (~monthly) of satellite data, acquired at well defined time intervals of the phenological cycle of crops, with ground-truth information simultaneously applied during the image acquisitions. The present research is for the first time, demonstrating the coordinated efforts of space engineers, satellite mission control planners, remote sensing scientists and ground teams to record at specific time intervals of the phenological cycle of trees from ground "zero" and from 770 km above the Earth's surface, the status of plants for subsequent cross correlation and analysis regarding the estimation of the seasonal evapotranspiration in vulnerable agricultural environment. The ETo and ETc derived by Penman-Montieth equation and reference Kc tables, compared with new ETd using the Kc extracted from the time series satellite data. Several vegetation indices were also used especially the RedEdge and the chlorophyll one based on WorldView-2 RedEdge and second NIR bands to relate the tree status with water and nutrition needs. Keywords: Evapotransipration, Very High Spatial Resolution - VHSR, time series, remote sensing, vulnerability, agriculture, vegetation indeces.

  10. Estimating Time To Complete for ATLAS data transfers

    CERN Document Server

    Bogado Garcia, Joaquin Ignacio; The ATLAS collaboration; Monticelli, Fernando

    2018-01-01

    Transfer Time To Complete (T³C) is a new extension for the data management system Rucio that allows to make predictions about the duration of a file transfer. The extension has a modular architecture which allows to make predictions based on simple to more sophisticated models, depending on available data and computation power. The ability to predict file transfer times with reasonable accuracy provides a tool for better transfer scheduling  and thus reduces both the load on storage systems and the associated networks. The accuracy of the model requires fine tuning for its parameters on a link basis. As the underlying infrastructure varies depending on the source and destination of the transfer, the parameters modelling the network between these sites will also be studied.

  11. The life cycle dimension of time transfers in Europe

    Directory of Open Access Journals (Sweden)

    Marina Zannella

    2013-11-01

    Full Text Available Background: Reallocation of economic resources between generations and genders has important consequences for economic growth and inequality. Unpaid work is a relevant component of intergenerational transfers, but is invisible to traditional accounts. Time use data can complement accounts of monetary transfers. Objective: The main goal of this article is to provide estimates of life cycle profiles of consumption and production of unpaid activities. These profiles can be used to evaluate transfers of time by age and sex. Methods: We use data from the Multinational Time Use Study (MTUS to estimate profiles of time allocated to unpaid productive activities, by age, sex and household structure, for selected European countries. The unpaid working time is then distributed, with a statistical model, to those age groups that benefit from it, in order to estimate age-specific consumption profiles of time. Results: We observe large transfers of time from females to males, and from adults to children. Life course trajectories are qualitatively similar across countries, but with significant variations in levels. Differences in profiles by household structure may be associated with incentives or disincentives for particular fertility choices in different social and institutional settings. Conclusions: This article quantifies household production and non-market transfers. It offers insight into the underestimation of the economic contribution of women. Comments: This article provides some descriptive findings that could be incorporated with other research pursued by scholars in the National Transfer Accounts (NTA project to monetize the value of time and include it in standard transfer accounts.

  12. Satellite ATM Networks: Architectures and Guidelines Developed

    Science.gov (United States)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  13. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    Science.gov (United States)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  14. Real-Time and Seamless Monitoring of Ground-Level PM2.5 Using Satellite Remote Sensing

    Science.gov (United States)

    Li, Tongwen; Zhang, Chengyue; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Liangpei

    2018-04-01

    Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellitederived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2 = 0.80, RMSE = 17.49 μg/m3) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the realtime and seamless monitoring of ground-level PM2.5.

  15. Calibration of Galileo signals for time metrology.

    Science.gov (United States)

    Defraigne, Pascale; Aerts, Wim; Cerretto, Giancarlo; Cantoni, Elena; Sleewaegen, Jean-Marie

    2014-12-01

    Using global navigation satellite system (GNSS) signals for accurate timing and time transfer requires the knowledge of all electric delays of the signals inside the receiving system. GNSS stations dedicated to timing or time transfer are classically calibrated only for Global Positioning System (GPS) signals. This paper proposes a procedure to determine the hardware delays of a GNSS receiving station for Galileo signals, once the delays of the GPS signals are known. This approach makes use of the broadcast satellite inter-signal biases, and is based on the ionospheric delay measured from dual-frequency combinations of GPS and Galileo signals. The uncertainty on the so-determined hardware delays is estimated to 3.7 ns for each isolated code in the L5 frequency band, and 4.2 ns for the ionosphere-free combination of E1 with a code of the L5 frequency band. For the calibration of a time transfer link between two stations, another approach can be used, based on the difference between the common-view time transfer results obtained with calibrated GPS data and with uncalibrated Galileo data. It is shown that the results obtained with this approach or with the ionospheric method are equivalent.

  16. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  17. Research on orbit prediction for solar-based calibration proper satellite

    Science.gov (United States)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  18. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  19. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  20. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  1. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  2. The Impact of Time Difference between Satellite Overpass and Ground Observation on Cloud Cover Performance Statistics

    Directory of Open Access Journals (Sweden)

    Jędrzej S. Bojanowski

    2014-12-01

    Full Text Available Cloud property data sets derived from passive sensors onboard the polar orbiting satellites (such as the NOAA’s Advanced Very High Resolution Radiometer have global coverage and now span a climatological time period. Synoptic surface observations (SYNOP are often used to characterize the accuracy of satellite-based cloud cover. Infrequent overpasses of polar orbiting satellites combined with the 3- or 6-h SYNOP frequency lead to collocation time differences of up to 3 h. The associated collocation error degrades the cloud cover performance statistics such as the Hanssen-Kuiper’s discriminant (HK by up to 45%. Limiting the time difference to 10 min, on the other hand, introduces a sampling error due to a lower number of corresponding satellite and SYNOP observations. This error depends on both the length of the validated time series and the SYNOP frequency. The trade-off between collocation and sampling error call for an optimum collocation time difference. It however depends on cloud cover characteristics and SYNOP frequency, and cannot be generalized. Instead, a method is presented to reconstruct the unbiased (true HK from HK affected by the collocation differences, which significantly (t-test p < 0.01 improves the validation results.

  3. A Methodology for Selection of a Satellite Servicing Architecture. Volume 3. Appendices.

    Science.gov (United States)

    1985-12-01

    model transfers between inclined circu- lar orbits. If OSV time of flight becomes more critical . then a choice between the other two techniques is...ABSTRACT iContinue on ,viverse if necesary and identify by block, number) Title: A METODO ~LOGY FOR SELECION~ OF A SATELLITE SERVICING ARCHITEIR VOLUME

  4. Discovering significant evolution patterns from satellite image time series.

    Science.gov (United States)

    Petitjean, François; Masseglia, Florent; Gançarski, Pierre; Forestier, Germain

    2011-12-01

    Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the location, which complicates the mining and the analysis of series of images. This work focuses on frequent sequential pattern mining (FSPM) methods, since this family of methods fits the above-mentioned issues. This family of methods consists of finding the most frequent evolution behaviors, and is actually able to extract long-term changes as well as short term ones, whenever the change may start and end. However, applying FSPM methods to SITS implies confronting two main challenges, related to the characteristics of SITS and the domain's constraints. First, satellite images associate multiple measures with a single pixel (the radiometric levels of different wavelengths corresponding to infra-red, red, etc.), which makes the search space multi-dimensional and thus requires specific mining algorithms. Furthermore, the non evolving regions, which are the vast majority and overwhelm the evolving ones, challenge the discovery of these patterns. We propose a SITS mining framework that enables discovery of these patterns despite these constraints and characteristics. Our proposal is inspired from FSPM and provides a relevant visualization principle. Experiments carried out on 35 images sensed over 20 years show the proposed approach makes it possible to extract relevant evolution behaviors.

  5. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  6. Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members

    Science.gov (United States)

    Caro, L. A.; Martí-Vargas, J. R.; Serna, P.

    2013-11-01

    For design purposes, it is generally considered that prestressing strand transfer length does not change with time. However, some experimental studies on the effect of time on transfer lengths show contradictory results. In this paper, an experimental research to study transfer length changes over time is presented. A test procedure based on the ECADA testing technique to measure prestressing strand force variation over time in pretensioned prestressed concrete specimens has been set up. With this test method, an experimental program that varies concrete strength, specimen cross section, age of release, prestress transfer method, and embedment length has been carried out. Both the initial and long-term transfer lengths of 13-mm prestressing steel strands have been measured. The test results show that transfer length variation exists for some prestressing load conditions, resulting in increased transfer length over time. The applied test method based on prestressing strand force measurements has shown more reliable results than procedures based on measuring free end slips and longitudinal strains of concrete. An additional factor for transfer length models is proposed in order to include the time-dependent evolution of strand transfer length in pretensioned prestressed concrete members.

  7. Assimilation of Real-Time Satellite And Human Sensor Networks for Modeling Natural Disasters

    Science.gov (United States)

    Aulov, O.; Halem, M.; Lary, D. J.

    2011-12-01

    We describe the development of underlying technologies needed to address the merging of a web of real time satellite sensor Web (SSW) and Human Sensor Web (HSW) needed to augment the US response to extreme events. As an initial prototyping step and use case scenario, we consider the development of two major system tools that can be transitioned from research to the responding operational agency for mitigating coastal oil spills. These tools consist of the capture of Situation Aware (SA) Social Media (SM) Data, and assimilation of the processed information into forecasting models to provide incident decision managers with interactive virtual spatial temporal animations superimposed with probabilistic data estimates. The system methodologies are equally applicable to the wider class of extreme events such as plume dispersions from volcanoes or massive fires, major floods, hurricane impacts, radioactive isotope dispersions from nuclear accidents, etc. A successful feasibility demonstration of this technology has been shown in the case of the Deepwater Horizon Oil Spill where Human Sensor Networks have been combined with a geophysical model to perform parameter assessments. Flickr images of beached oil were mined from the spill area, geolocated and timestamped and converted into geophysical data. This data was incorporated into General NOAA Operational Modeling Environment (GNOME), a Lagrangian forecast model that uses near real-time surface winds, ocean currents, and satellite shape profiles of oil to generate a forecast of plume movement. As a result, improved estimates of diffusive coefficients and rates of oil spill were determined. Current approaches for providing satellite derived oil distributions are collected from a satellite sensor web of operational and research sensors from many countries, and a manual analysis is performed by NESDIS. A real time SA HSW processing system based on geolocated SM data from sources such as Twitter, Flickr, YouTube etc., greatly

  8. On the sample transport time of a pneumatic transfer system

    International Nuclear Information System (INIS)

    Kondo, Yoshihide

    1983-01-01

    The counts accumulated in measuring system are affected by the variations in transport time of the sample on cyclic activation experiments with a mechanical sample transfer system. In use of the pneumatic transfer system, which has been set up, the transport time is variable according to the differences as follows: The form, size and weight of samples, the pneumatic pressure and so on. Comprehending the relationships between the transpot time and these variable factors is essentially important to make experiments with this transfer system. (author)

  9. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  10. Distributed Extended Kalman Filter for Position, Velocity, Time, Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2013-09-01

    Full Text Available Common techniques for position-velocity-time estimation in satellite navigation, iterative least squares and the extended Kalman filter, involve matrix operations. The matrix inversion and inclusion of a matrix library pose requirements on a computational power and operating platform of the navigation processor. In this paper, we introduce a novel distributed algorithm suitable for implementation in simple parallel processing units each for a tracked satellite. Such a unit performs only scalar sum, subtraction, multiplication, and division. The algorithm can be efficiently implemented in hardware logic. Given the fast position-velocity-time estimator, frequent estimates can foster dynamic performance of a vector tracking receiver. The algorithm has been designed from a factor graph representing the extended Kalman filter by splitting vector nodes into scalar ones resulting in a cyclic graph with few iterations needed. Monte Carlo simulations have been conducted to investigate convergence and accuracy. Simulation case studies for a vector tracking architecture and experimental measurements with a real-time software receiver developed at CTU in Prague were conducted. The algorithm offers compromises in stability, accuracy, and complexity depending on the number of iterations. In scenarios with a large number of tracked satellites, it can outperform the traditional methods at low complexity.

  11. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    Science.gov (United States)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  12. Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products

    Science.gov (United States)

    Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.

    2017-12-01

    Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired

  13. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  14. On the feasibility of using satellite gravity observations for detecting large-scale solid mass transfer events

    Science.gov (United States)

    Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros

    2017-10-01

    The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.

  15. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  16. Development of the European Small Geostationary Satellite SGEO

    Science.gov (United States)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  17. Heating and melting of small icy satellites by the decay of Al-26

    International Nuclear Information System (INIS)

    Prialnik, D.; Bar-Nun, A.

    1990-01-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26). The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass). 34 refs

  18. Heating and melting of small icy satellites by the decay of Al-26

    Science.gov (United States)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-05-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26. The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass).

  19. A GeoServices Infrastructure for Near-Real-Time Access to Suomi NPP Satellite Data

    Science.gov (United States)

    Evans, J. D.; Valente, E. G.; Hao, W.; Chettri, S.

    2012-12-01

    The new Suomi National Polar-orbiting Partnership (NPP) satellite extends NASA's moderate-resolution, multispectral observations with a suite of powerful imagers and sounders to support a broad array of research and applications. However, NPP data products consist of a complex set of data and metadata files in highly specialized formats; which NPP's operational ground segment delivers to users only with several hours' delay. This severely limits their use in critical applications such as weather forecasting, emergency / disaster response, search and rescue, and other activities that require near-real-time access to satellite observations. Alternative approaches, based on distributed Direct Broadcast facilities, can reduce the delay in NPP data delivery from hours to minutes, and can make products more directly usable by practitioners in the field. To assess and fulfill this potential, we are developing a suite of software that couples Direct Broadcast data feeds with a streamlined, scalable processing chain and geospatial Web services, so as to permit many more time-sensitive applications to use NPP data. The resulting geoservices infrastructure links a variety of end-user tools and applications to NPP data from different sources, and to other rapidly-changing geospatial data. By using well-known, standard software interfaces (such as OGC Web Services or OPeNDAP), this infrastructure serves a variety of end-user analysis and visualization tools, giving them access into datasets of arbitrary size and resolution and allowing them to request and receive tailored products on demand. The standards-based approach may also streamline data sharing among independent satellite receiving facilities, thus helping them to interoperate in providing frequent, composite views of continent-scale or global regions. To enable others to build similar or derived systems, the service components we are developing (based in part on the Community Satellite Processing Package (CSPP) from

  20. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  1. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    Science.gov (United States)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  2. Evaluation of ceiling lifts: transfer time, patient comfort and staff perceptions.

    Science.gov (United States)

    Alamgir, Hasanat; Li, Olivia Wei; Yu, Shicheng; Gorman, Erin; Fast, Catherine; Kidd, Catherine

    2009-09-01

    Mechanical lifting devices have been developed to reduce healthcare worker injuries related to patient handling. The purpose of this study was to evaluate ceiling lifts in comparison to floor lifts based on transfer time, patient comfort and staff perceptions in three long-term care facilities with varying ceiling lift coverage. The time required to transfer or reposition patients along with patient comfort levels were recorded for 119 transfers. Transfers performed with ceiling lifts required on average less time (bed to chair transfers: 156.9 seconds for ceiling lift, 273.6 seconds for floor lift) and were found to be more comfortable for patients. In the three facilities, 143 healthcare workers were surveyed on their perceptions of patient handling tasks and equipment. For both transferring and repositioning tasks, staff preferred to use ceiling lifts and also found them to be less physically demanding. Further investigation is needed on repositioning tasks to ensure safe practice.

  3. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  4. AUTOMATIC CLOUD DETECTION FROM MULTI-TEMPORAL SATELLITE IMAGES: TOWARDS THE USE OF PLÉIADES TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2012-08-01

    Full Text Available Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images and is based on a region-growing procedure. Seeds (corresponding to clouds are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images. Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011. In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  5. Information transfer via implicit encoding with delay time modulation in a time-delay system

    Energy Technology Data Exchange (ETDEWEB)

    Kye, Won-Ho, E-mail: whkye@kipo.go.kr [Korean Intellectual Property Office, Government Complex Daejeon Building 4, 189, Cheongsa-ro, Seo-gu, Daejeon 302-701 (Korea, Republic of)

    2012-08-20

    A new encoding scheme for information transfer with modulated delay time in a time-delay system is proposed. In the scheme, the message is implicitly encoded into the modulated delay time. The information transfer rate as a function of encoding redundancy in various noise scales is presented and it is analyzed that the implicit encoding scheme (IES) has stronger resistance against channel noise than the explicit encoding scheme (EES). In addition, its advantages in terms of secure communication and feasible applications are discussed. -- Highlights: ► We propose new encoding scheme with delay time modulation. ► The message is implicitly encoded with modulated delay time. ► The proposed scheme shows stronger resistance against channel noise.

  6. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    Science.gov (United States)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  7. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260 Section 25.260 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES...

  8. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    OpenAIRE

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT bla...

  9. Full-Physics Inverse Learning Machine for Satellite Remote Sensing Retrievals

    Science.gov (United States)

    Loyola, D. G.

    2017-12-01

    The satellite remote sensing retrievals are usually ill-posed inverse problems that are typically solved by finding a state vector that minimizes the residual between simulated data and real measurements. The classical inversion methods are very time-consuming as they require iterative calls to complex radiative-transfer forward models to simulate radiances and Jacobians, and subsequent inversion of relatively large matrices. In this work we present a novel and extremely fast algorithm for solving inverse problems called full-physics inverse learning machine (FP-ILM). The FP-ILM algorithm consists of a training phase in which machine learning techniques are used to derive an inversion operator based on synthetic data generated using a radiative transfer model (which expresses the "full-physics" component) and the smart sampling technique, and an operational phase in which the inversion operator is applied to real measurements. FP-ILM has been successfully applied to the retrieval of the SO2 plume height during volcanic eruptions and to the retrieval of ozone profile shapes from UV/VIS satellite sensors. Furthermore, FP-ILM will be used for the near-real-time processing of the upcoming generation of European Sentinel sensors with their unprecedented spectral and spatial resolution and associated large increases in the amount of data.

  10. Frequency and time transfer for metrology and beyond using telecommunication network fibres

    OpenAIRE

    Lopez, Olivier; Kéfélian, Fabien; Jiang, Haifeng; Haboucha, Adil; Bercy, Anthony; Stefani, Fabio; Chanteau, Bruno; Kanj, Amale; Rovera, Daniele; Achkar, Joseph; Chardonnet, Christian; Pottie, Paul-Eric; Amy-Klein, Anne; Santarelli, Giorgio

    2015-01-01

    The distribution and the comparison of an ultra-stable optical frequency and accurate time using optical fibres have been greatly improved in the last ten years. The frequency stability and accuracy of optical links surpass well-established methods using the global navigation satellite system and geostationary satellites. In this paper, we present a review of the methods and the results obtained. We show that public telecommunication network carrying Internet data can be used to compare and d...

  11. Real time prediction and correction of ADCS problems in LEO satellites using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Yassin Mounir Yassin

    2017-06-01

    Full Text Available This approach is concerned with adapting the operations of attitude determination and control subsystem (ADCS of low earth orbit LEO satellites through analyzing the telemetry readings received by mission control center, and then responding to ADCS off-nominal situations. This can be achieved by sending corrective operational Tele-commands within real time. Our approach is related to the fuzzy membership of off-nominal telemetry readings of corrective actions through a set of fuzzy rules based on understanding the ADCS modes resulted from the satellite telemetry readings. Response in real time gives us a chance to avoid risky situations. The approach is tested on the EgyptSat-1 engineering model, which is our method to simulate the results.

  12. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  13. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    Science.gov (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  14. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit

    Science.gov (United States)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-01

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  15. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit.

    Science.gov (United States)

    Assawaworrarit, Sid; Yu, Xiaofang; Fan, Shanhui

    2017-06-14

    Considerable progress in wireless power transfer has been made in the realm of non-radiative transfer, which employs magnetic-field coupling in the near field. A combination of circuit resonance and impedance transformation is often used to help to achieve efficient transfer of power over a predetermined distance of about the size of the resonators. The development of non-radiative wireless power transfer has paved the way towards real-world applications such as wireless powering of implantable medical devices and wireless charging of stationary electric vehicles. However, it remains a fundamental challenge to create a wireless power transfer system in which the transfer efficiency is robust against the variation of operating conditions. Here we propose theoretically and demonstrate experimentally that a parity-time-symmetric circuit incorporating a nonlinear gain saturation element provides robust wireless power transfer. Our results show that the transfer efficiency remains near unity over a distance variation of approximately one metre, without the need for any tuning. This is in contrast with conventional methods where high transfer efficiency can only be maintained by constantly tuning the frequency or the internal coupling parameters as the transfer distance or the relative orientation of the source and receiver units is varied. The use of a nonlinear parity-time-symmetric circuit should enable robust wireless power transfer to moving devices or vehicles.

  16. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  17. TETRA Backhauling via Satellite: Improving Call Setup Times and Saving Bandwidth

    Directory of Open Access Journals (Sweden)

    Anton Donner

    2014-01-01

    Full Text Available In disaster management scenarios with seriously damaged, not existing, or saturated communication infrastructures satellite communications can be an ideal means to provide connectivity with unaffected remote terrestrial trunked radio (TETRA core networks. However, the propagation delay imposed by the satellite link affects the signalling protocols. This paper discusses the suitability of using a satellite link for TETRA backhauling, introducing two different architectures. In order to cope with the signal delay of the satellite link, the paper proposes and analyzes a suitable solution based on the use of a performance enhancing proxy (PEP. Additionally, robust header compression (ROHC is discussed as suitable technology to transmit TETRA voice via IP-based satellite networks.

  18. Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2017-10-01

    Full Text Available In recent years, sequential tests for detecting structural changes in time series have been adapted for deforestation monitoring using satellite data. The input time series of such sequential tests is typically a vegetation index (e.g., NDVI, which uses two or three bands and ignores all other bands. Being limited to a vegetation index will not benefit from the richer spectral information provided by newly launched satellites and will bring two bottle-necks for deforestation monitoring. Firstly, it is hard to select a suitable vegetation index a priori. Secondly, a single vegetation index is typically affected by seasonal signals, noise and other natural dynamics, which decrease its power for deforestation detection. A novel multispectral time series change monitoring method that combines dimension reduction methods with a sequential hypothesis test is proposed to address these limitations. For each location, the proposed method automatically chooses a “suitable” index for deforestation monitoring. To demonstrate our approach, we implemented it in two study areas: a dry tropical forest in Bolivia (time series length: 444 with strong seasonality and a moist tropical forest in Brazil (time series length: 225 with almost no seasonality. Our method significantly improves accuracy in the presence of strong seasonality, in particular the temporal lag between disturbance and its detection.

  19. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  20. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry

    2015-02-01

    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  1. The SSABLE system - Automated archive, catalog, browse and distribution of satellite data in near-real time

    Science.gov (United States)

    Simpson, James J.; Harkins, Daniel N.

    1993-01-01

    Historically, locating and browsing satellite data has been a cumbersome and expensive process. This has impeded the efficient and effective use of satellite data in the geosciences. SSABLE is a new interactive tool for the archive, browse, order, and distribution of satellite date based upon X Window, high bandwidth networks, and digital image rendering techniques. SSABLE provides for automatically constructing relational database queries to archived image datasets based on time, data, geographical location, and other selection criteria. SSABLE also provides a visual representation of the selected archived data for viewing on the user's X terminal. SSABLE is a near real-time system; for example, data are added to SSABLE's database within 10 min after capture. SSABLE is network and machine independent; it will run identically on any machine which satisfies the following three requirements: 1) has a bitmapped display (monochrome or greater); 2) is running the X Window system; and 3) is on a network directly reachable by the SSABLE system. SSABLE has been evaluated at over 100 international sites. Network response time in the United States and Canada varies between 4 and 7 s for browse image updates; reported transmission times to Europe and Australia typically are 20-25 s.

  2. Time Dependence of Collision Probabilities During Satellite Conjunctions

    Science.gov (United States)

    Hall, Doyle T.; Hejduk, Matthew D.; Johnson, Lauren C.

    2017-01-01

    The NASA Conjunction Assessment Risk Analysis (CARA) team has recently implemented updated software to calculate the probability of collision (P (sub c)) for Earth-orbiting satellites. The algorithm can employ complex dynamical models for orbital motion, and account for the effects of non-linear trajectories as well as both position and velocity uncertainties. This “3D P (sub c)” method entails computing a 3-dimensional numerical integral for each estimated probability. Our analysis indicates that the 3D method provides several new insights over the traditional “2D P (sub c)” method, even when approximating the orbital motion using the relatively simple Keplerian two-body dynamical model. First, the formulation provides the means to estimate variations in the time derivative of the collision probability, or the probability rate, R (sub c). For close-proximity satellites, such as those orbiting in formations or clusters, R (sub c) variations can show multiple peaks that repeat or blend with one another, providing insight into the ongoing temporal distribution of risk. For single, isolated conjunctions, R (sub c) analysis provides the means to identify and bound the times of peak collision risk. Additionally, analysis of multiple actual archived conjunctions demonstrates that the commonly used “2D P (sub c)” approximation can occasionally provide inaccurate estimates. These include cases in which the 2D method yields negligibly small probabilities (e.g., P (sub c)) is greater than 10 (sup -10)), but the 3D estimates are sufficiently large to prompt increased monitoring or collision mitigation (e.g., P (sub c) is greater than or equal to 10 (sup -5)). Finally, the archive analysis indicates that a relatively efficient calculation can be used to identify which conjunctions will have negligibly small probabilities. This small-P (sub c) screening test can significantly speed the overall risk analysis computation for large numbers of conjunctions.

  3. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  4. Interhospital Transfer of Neurosurgical Patients: Implications of Timing on Hospital Course and Clinical Outcomes.

    Science.gov (United States)

    Holland, Christopher M; Lovasik, Brendan P; Howard, Brian M; McClure, Evan W; Samuels, Owen B; Barrow, Daniel L

    2017-09-01

    Interhospital transfer of neurosurgical patients is common; however, little is known about the impact of transfer parameters on clinical outcomes. Lower survival rates have been reported for patients admitted at night and on weekends in other specialties. Whether time or day of admission affects neurosurgical patient outcomes, specifically those transferred from other facilities, is unknown. To examine the impact of the timing of interhospital transfer on the hospital course and clinical outcomes of neurosurgical patients. All consecutive admissions of patients transferred to our adult neurosurgical service were retrospectively analyzed for a 1-year study period using data from a central transfer database and the electronic health record. Patients arrived more often at night (70.8%) despite an even distribution of transfer requests. The lack of transfer imaging did not affect length of stay, intervention times, or patient outcomes. Daytime arrivals had shorter total transfer time, but longer intenstive care unit and overall length of stay (8.7 and 11.6 days, respectively), worse modified Rankin Scale scores, lower rates of functional independence, and almost twice the mortality rate. Weekend admissions had significantly worse modified Rankin Scale scores and lower rates of functional independence. The timing of transfer arrivals, both by hour or day of the week, is correlated with the time to intervention, hospital course, and overall patient outcomes. Patients admitted during the weekend suffered worse functional outcomes and a trend towards increased mortality. While transfer logistics clearly impact patient outcomes, further work is needed to understand these complex relationships. Copyright © 2017 by the Congress of Neurological Surgeons.

  5. Time course influences transfer of visual perceptual learning across spatial location.

    Science.gov (United States)

    Larcombe, S J; Kennard, C; Bridge, H

    2017-06-01

    Visual perceptual learning describes the improvement of visual perception with repeated practice. Previous research has established that the learning effects of perceptual training may be transferable to untrained stimulus attributes such as spatial location under certain circumstances. However, the mechanisms involved in transfer have not yet been fully elucidated. Here, we investigated the effect of altering training time course on the transferability of learning effects. Participants were trained on a motion direction discrimination task or a sinusoidal grating orientation discrimination task in a single visual hemifield. The 4000 training trials were either condensed into one day, or spread evenly across five training days. When participants were trained over a five-day period, there was transfer of learning to both the untrained visual hemifield and the untrained task. In contrast, when the same amount of training was condensed into a single day, participants did not show any transfer of learning. Thus, learning time course may influence the transferability of perceptual learning effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  7. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series

    Science.gov (United States)

    Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael

    2014-01-01

    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and

  8. Satellite Communications Using Commercial Protocols

    Science.gov (United States)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  9. LEAST SQUARE APPROACH FOR ESTIMATING OF LAND SURFACE TEMPERATURE FROM LANDSAT-8 SATELLITE DATA USING RADIATIVE TRANSFER EQUATION

    Directory of Open Access Journals (Sweden)

    Y. Jouybari-Moghaddam

    2017-09-01

    Full Text Available Land Surface Temperature (LST is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE. However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11 and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  10. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    Science.gov (United States)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  11. MITRA Virtual laboratory for operative application of satellite time series for land degradation risk estimation

    Science.gov (United States)

    Nole, Gabriele; Scorza, Francesco; Lanorte, Antonio; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper aims to present the development of a tool to integrate time series from active and passive satellite sensors (such as of MODIS, Vegetation, Landsat, ASTER, COSMO, Sentinel) into a virtual laboratory to support studies on landscape and archaeological landscape, investigation on environmental changes, estimation and monitoring of natural and anthropogenic risks. The virtual laboratory is composed by both data and open source tools specifically developed for the above mentioned applications. Results obtained for investigations carried out using the implemented tools for monitoring land degradation issues and subtle changes ongoing on forestry and natural areas are herein presented. In detail MODIS, SPOT Vegetation and Landsat time series were analyzed comparing results of different statistical analyses and the results integrated with ancillary data and evaluated with field survey. The comparison of the outputs we obtained for the Basilicata Region from satellite data analyses and independent data sets clearly pointed out the reliability for the diverse change analyses we performed, at the pixel level, using MODIS, SPOT Vegetation and Landsat TM data. Next steps are going to be implemented to further advance the current Virtual Laboratory tools, by extending current facilities adding new computational algorithms and applying to other geographic regions. Acknowledgement This research was performed within the framework of the project PO FESR Basilicata 2007/2013 - Progetto di cooperazione internazionale MITRA "Remote Sensing tecnologies for Natural and Cultural heritage Degradation Monitoring for Preservation and valorization" funded by Basilicata Region Reference 1. A. Lanorte, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance International Journal of Applied Earth Observation and

  12. Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands

    Directory of Open Access Journals (Sweden)

    Torge Steensen

    2015-03-01

    Full Text Available Quantifying volcanic ash emissions syneruptively is an important task for the global aviation community. However, due to the near real time nature of volcano monitoring, many parameters important for accurate ash mass estimates cannot be obtained easily. Even when using the best possible estimates of those parameters, uncertainties associated with the ash masses remain high, especially if the satellite data is only available in the traditional 10.8 and 12.0 μm bands. To counteract this limitation, we developed a quantitative comparison between the ash extents in satellite and model data. The focus is the manual cloud edge definition based on the available satellite reverse absorption (RA data as well as other knowledge like pilot reports or ground-based observations followed by an application of the Volcanic Ash Retrieval on the defined subset with an RA threshold of 0 K. This manual aspect, although subjective to the experience of the observer, can show a significant improvement as it provides the ability to highlight ash that otherwise would be obscured by meteorological clouds or, by passing over different surfaces with unaccounted temperatures, might be lost entirely and thus remains undetectable for an automated satellite approach. We show comparisons to Volcanic Ash Transport and Dispersion models and outline a quantitative match as well as percentages of overestimates based on satellite or dispersion model data which can be converted into a level of reliability for near real time volcano monitoring. 

  13. China: Possible Missile Technology Transfers from U.S. Satellite Export Policy - Actions and Chronology

    National Research Council Canada - National Science Library

    Kan, Shirley A

    2001-01-01

    .... Some critics opposed satellite exports to China, while others were concerned that the Clinton Administration relaxed export controls and monitoring of commercial satellites in moving the licensing...

  14. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  15. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  16. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals

    Directory of Open Access Journals (Sweden)

    Brenden Jongman

    2015-10-01

    Full Text Available Humanitarian organizations have a crucial role in response and relief efforts after floods. The effectiveness of disaster response is contingent on accurate and timely information regarding the location, timing and impacts of the event. Here we show how two near-real-time data sources, satellite observations of water coverage and flood-related social media activity from Twitter, can be used to support rapid disaster response, using case-studies in the Philippines and Pakistan. For these countries we analyze information from disaster response organizations, the Global Flood Detection System (GFDS satellite flood signal, and flood-related Twitter activity analysis. The results demonstrate that these sources of near-real-time information can be used to gain a quicker understanding of the location, the timing, as well as the causes and impacts of floods. In terms of location, we produce daily impact maps based on both satellite information and social media, which can dynamically and rapidly outline the affected area during a disaster. In terms of timing, the results show that GFDS and/or Twitter signals flagging ongoing or upcoming flooding are regularly available one to several days before the event was reported to humanitarian organizations. In terms of event understanding, we show that both GFDS and social media can be used to detect and understand unexpected or controversial flood events, for example due to the sudden opening of hydropower dams or the breaching of flood protection. The performance of the GFDS and Twitter data for early detection and location mapping is mixed, depending on specific hydrological circumstances (GFDS and social media penetration (Twitter. Further research is needed to improve the interpretation of the GFDS signal in different situations, and to improve the pre-processing of social media data for operational use.

  17. Financial time series analysis based on effective phase transfer entropy

    Science.gov (United States)

    Yang, Pengbo; Shang, Pengjian; Lin, Aijing

    2017-02-01

    Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.

  18. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  19. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  20. Satellite image collection optimization

    Science.gov (United States)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  1. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    International Nuclear Information System (INIS)

    Cao Zhongxiang; Li Quanliang; Han Ye; Qin Qi; Feng Peng; Liu Liyuan; Wu Nanjian

    2014-01-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques. (semiconductor devices)

  2. Local wavelet correlation: applicationto timing analysis of multi-satellite CLUSTER data

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2004-12-01

    Full Text Available Multi-spacecraft space observations, such as those of CLUSTER, can be used to infer information about local plasma structures by exploiting the timing differences between subsequent encounters of these structures by individual satellites. We introduce a novel wavelet-based technique, the Local Wavelet Correlation (LWC, which allows one to match the corresponding signatures of large-scale structures in the data from multiple spacecraft and determine the relative time shifts between the crossings. The LWC is especially suitable for analysis of strongly non-stationary time series, where it enables one to estimate the time lags in a more robust and systematic way than ordinary cross-correlation techniques. The technique, together with its properties and some examples of its application to timing analysis of bow shock and magnetopause crossing observed by CLUSTER, are presented. We also compare the performance and reliability of the technique with classical discontinuity analysis methods. Key words. Radio science (signal processing – Space plasma physics (discontinuities; instruments and techniques

  3. Population transfer HMQC for half-integer quadrupolar nuclei

    International Nuclear Information System (INIS)

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-01-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments

  4. Network Configuration Analysis for Formation Flying Satellites

    Science.gov (United States)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  5. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  6. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  7. TWSTFT Data Treatment for UTC Time Transfer

    Science.gov (United States)

    2009-11-01

    BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE...in [UTC-UTC(k)],” Metrologia , 43, 278-286. [4] BIPM Circular T 244, Section 6, May 2008, http://www.bipm.org [5] D. Piester, A. Bauch, L... Metrologia , 45, 185-198. [6] F. Arias, Z. Jiang, G. Petit, and W. Lewandowski, 2005, “BIPM Comparison of Time Transfer Techniques,” in Proceedings

  8. An improved grey model for the prediction of real-time GPS satellite clock bias

    Science.gov (United States)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  9. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    Science.gov (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  10. Analysis of smear in high-resolution remote sensing satellites

    Science.gov (United States)

    Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud

    2016-10-01

    High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.

  11. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  12. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  13. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    OpenAIRE

    Jong Won Eun

    2000-01-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifet...

  14. An Integrated Tool for Low Thrust Optimal Control Orbit Transfers in Interplanetary Trajectories

    Science.gov (United States)

    Dargent, T.; Martinot, V.

    In the last recent years a significant progress has been made in optimal control orbit transfers using low thrust electrical propulsion for interplanetary missions. The system objective is always the same: decrease the transfer duration and increase the useful satellite mass. The optimum control strategy to perform the minimum time to orbit or the minimum fuel consumption requires the use of sophisticated mathematical tools, most of the time dedicated to a specific mission and therefore hardly reusable. To improve this situation and enable Alcatel Space to perform rather quick trajectory design as requested by mission analysis, we have developed a software tool T-3D dedicated to optimal control orbit transfers which integrates various initial and terminal rendezvous conditions - e.g. fixed arrival time for planet encounter - and engine thrust profiles -e.g. thrust law variation with respect to the distance to the Sun -. This single and quite versatile tool allows to perform analyses like minimum consumption for orbit insertions around a planet from an hyperbolic trajectory, interplanetary orbit transfers, low thrust minimum time multiple revolution orbit transfers, etc… From a mathematical point of view, the software relies on the minimum principle formulation to find the necessary conditions of optimality. The satellite dynamics is a two body model and relies of an equinoctial formulation of the Gauss equation. This choice has been made for numerical purpose and to solve more quickly the two point boundaries values problem. In order to handle the classical problem of co-state variables initialization, problems simpler than the actual one can be solved straight forward by the tool and the values of the co-state variables are kept as first guess for a more complex problem. Finally, a synthesis of the test cases is presented to illustrate the capacities of the tool, mixing examples of interplanetary mission, orbit insertion, multiple revolution orbit transfers

  15. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  16. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    Science.gov (United States)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  17. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  18. Added value of online satellite data transmission for flood forecasting: warning systems in medium-size catchments.

    Science.gov (United States)

    Ruch, C; Stadler, H

    2009-01-01

    The present paper deals with the implementation of online data transferred via LEO satellite communication in a flood forecasting system. Although the project is ongoing, it is already recognised that the information chain: "measurement-transmission-forecast-alert" can be shortened, i.e., the flood danger can be more rapidly communicated to the population at risk. This gain is particularly valuable for medium size catchments where the concentration time (basin time of response to rainfall) is short.

  19. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  20. Propagation of Bayesian Belief for Near-Real Time Statistical Assessment of Geosynchronous Satellite Status Based on Non-Resolved Photometry Data

    Science.gov (United States)

    2014-09-01

    to B7 Week 1 is prior data and Week 2 is new data Figure Satellite Cases Week B1a C1 1 and 2 1 B1b C1 1 and 2 1 B2a C2 1 and 2 1 B2b C2 1 and...satellite. Figure B2a and B2b show the corresponding calculations for satellite C2.  The prior data is utilized to compute the prior probability...Figure B2a: Brightness Data vs. Time for satellite C2 (prior data) Figure B2b : Observed and Predicted (Modeled) Brightness Data for

  1. Quadrupolar transfer pathways

    Science.gov (United States)

    Antonijevic, Sasa; Bodenhausen, Geoffrey

    2006-06-01

    A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appreciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways. Quadrupolar transfer pathways not merely distinguish coherences with different orders -2 I ⩽ p ⩽ +2 I, but allow one to follow the fate of coherences associated with single transitions that have the same coherence orderp=mIr-mIs but can be distinguished by a satellite orderq=(mIr)2-(mIs)2.

  2. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  3. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    Science.gov (United States)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  4. On-orbit real-time magnetometer bias determination for micro-satellites without attitude information

    Directory of Open Access Journals (Sweden)

    Zhang Zhen

    2015-10-01

    Full Text Available Due to the disadvantages such as complex calculation, low accuracy of estimation, and being non real time in present methods, a new real-time algorithm is developed for on-orbit magnetometer bias determination of micro-satellites without attitude knowledge in this paper. This method uses the differential value approach. It avoids the impact of quartic nature and uses the iterative method to satisfy real-time applications. Simulation results indicate that the new real-time algorithm is more accurate compared with other methods, which are also tested by an experiment system using real noise data. With the new real-time algorithm, a magnetometer calibration can be taken on-orbit and will reduce the demand for computing power effectively.

  5. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    International Nuclear Information System (INIS)

    Ajayi, O. A.; Wong, C. W.; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-01-01

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices

  6. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, O. A., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu; Wong, C. W., E-mail: oaa2114@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Anderson, N. C.; Wolcott, A.; Owen, J. S. [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Cotlet, M. [Brookhaven National Laboratory, Upton, New York, New York 11973 (United States); Petrone, N.; Hone, J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Gu, T.; Gesuele, F. [Optical Nanostructures Laboratory, Center for Integrated Science and Engineering, Solid-State Science and Engineering, Columbia University, New York, New York 10027 (United States)

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4× reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  7. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  8. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    Science.gov (United States)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  9. AUTOMATIC DETECTION OF CLOUDS AND SHADOWS USING HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2016-06-01

    Full Text Available Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8

  10. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    Science.gov (United States)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  11. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    Science.gov (United States)

    Minnis, P.; Smith, W., Jr.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B. R.; Spangenberg, D.; Sun-Mack, S.; Fleeger, C.; Ayers, J. K.; Chang, F. L.; Heck, P. W.

    2014-12-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-real time globally from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  12. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    Science.gov (United States)

    Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.; hide

    2014-01-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-­-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-­-real time globally from both geostationary (GEO) and low-­-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  13. A framework to monitor activities of satellite data processing in real-time

    Science.gov (United States)

    Nguyen, M. D.; Kryukov, A. P.

    2018-01-01

    Space Monitoring Data Center (SMDC) of SINP MSU is one of the several centers in the world that collects data on the radiational conditions in near-Earth orbit from various Russian (Lomonosov, Electro-L1, Electro-L2, Meteor-M1, Meteor-M2, etc.) and foreign (GOES 13, GOES 15, ACE, SDO, etc.) satellites. The primary purposes of SMDC are: aggregating heterogeneous data from different sources; providing a unified interface for data retrieval, visualization, analysis, as well as development and testing new space weather models; and controlling the correctness and completeness of data. Space weather models rely on data provided by SMDC to produce forecasts. Therefore, monitoring the whole data processing cycle is crucial for further success in the modeling of physical processes in near-Earth orbit based on the collected data. To solve the problem described above, we have developed a framework called Live Monitor at SMDC. Live Monitor allows watching all stages and program components involved in each data processing cycle. All activities of each stage are logged by Live Monitor and shown in real-time on a web interface. When an error occurs, a notification message will be sent to satellite operators via email and the Telegram messenger service so that they could take measures in time. The Live Monitor’s API can be used to create a customized monitoring service with minimum coding.

  14. Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time

    Science.gov (United States)

    Yang, Wen-Zheng; Xu, De-Wang; Yu, Qing-Shan; Liu, Jie; Xie, Yi

    2017-08-01

    As the second step of relativistic time transfer for a Mars lander, we investigate the transformation between Areocentric Coordinate Time (TCA) and Barycentric Coordinate Time (TCB) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation has two parts: contributions associated with gravitational bodies and those depending on the position of the lander. After setting the instability of an onboard clock to 10-13 and considering that the uncertainty in time is about 3.2 microseconds after one Earth year, we find that the contributions of the Sun, Mars, Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account. Other terms can be safely ignored in this transformation for a Mars lander.

  15. Two-Way Satellite Time and Frequency Transfer Using 1 MChips/s Codes

    Science.gov (United States)

    2009-11-01

    Bundesanstalt, Braunschweig, Germany ROA Real Instituto y Observatorio de la Armada, San Fernando, Spain SP Sveriges Provnings- och...International Atomic Time,” Metrologia , 45, 185- 198. [4] A. Bauch, J. Achkar, R. Dach, R. Hlavac, L. Lorini, T. Parker, G. Petit, and P. Uhrich

  16. Family Events and the Timing of Intergenerational Transfers

    Science.gov (United States)

    Leopold, Thomas; Schneider, Thorsten

    2011-01-01

    This research investigates how family events in adult children's lives influence the timing of their parents' financial transfers. We draw on retrospective data collected by the German Socio-Economic Panel Study and use event history models to study the effects of marriage, divorce and childbirth on the receipt of large gifts from parents. We find…

  17. Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.

    Science.gov (United States)

    Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq

    2009-04-01

    We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.

  18. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  19. Intergenerational money and time transfers by gender in Spain: Who are the actual dependants?

    Directory of Open Access Journals (Sweden)

    Elisenda Rentería

    2016-04-01

    Full Text Available Background: The analysis of intergenerational transfers can shed light on the interaction between population age structure and welfare. Nevertheless, a thorough examination of this issue requires consideration of both monetary (market and time (non-market transfers. Objective: We analyse market and non-market production, consumption, and transfers by age and gender for Spain from 2009−2010 using National (Time Transfer Accounts (NTA and NTTA methodology. Methods: Using National Accounts, microdata from different surveys, and the Time Use Survey, we estimate age and sex-specific profiles of monetary and time production and consumption for Spain. Consequently, a surplus or deficit and the resulting transfers are obtained. Results: We observe higher labour income for men with respect to women throughout the age profile. Nevertheless, women spend more hours in total (market and non-market activities than men. This division drives an asymmetry in private transfers. While men are net donors of money to other age groups during their working life, women are net donors of time to other household members (mainly children and their partners over their lives. Conclusions: The inclusion of the non-market economy in the analysis of intergenerational transfers is crucial to observe real inequalities between genders throughout the life cycle. This challenges the 'economic dependency' of women based on a market economy. The results suggest that the public sector in Spain should reinforce policies that take into account women's contribution to the welfare of other population groups, and call for policies that reconcile professional and family obligations.

  20. Minimizing Gaps of Daily Ndvi Map with Geostationary Satellite Remote Sensing Data

    Science.gov (United States)

    Lee, S.; Ryu, Y.; Jiang, C.

    2015-12-01

    Satellite based remote sensing has been used to monitor plant phenology. Numerous studies have generally utilized normalized difference vegetation index (NDVI) to quantify phenological patterns and changes in regional to the global scales. Obtaining the NDVI values during summer in East Asian Monsoon regions is important because most plants grow vigorously in this season. However, satellite derived NDVI data are error prone to clouds during most of the period. Various methods have attempted to reduce the effect of cloud in temporal and spatial NDVI monitoring; the fundamental solution is to have a large data pool that includes multiple images in short period and supplements NDVI values in same period. Multiple images of geostationary satellite in a day can be a method to expand the pool. In this study, we suggest an approach that minimizes data gaps in NDVI of the day through geostationary satellite derived NDVI composition. We acquired data from Geostationary Ocean Color Imager (GOCI) which is a satellite that was launched to monitor ocean around the Korean peninsula, China, Japan and Russia. The satellite observes eight times per day (09:00 - 16:00, every hour) at 500 x 500 m resolution from 2011 to 2015. GOCI red- and near infrared radiance was converted into surface reflectance by using 6S Radiative Transfer Model (6S). We calculated NDVI tiles for each of observed eight tiles per day and made one day NDVI through maximum-value composite method. We evaluated the composite GOCI derived NDVI by comparing with daily MODIS-derived NDVI (composited from MOD09GA and MYD09GA), 16-day Landsat 8-derived NDVI, and in-situ light emitting diode (LED) NDVI measurements at a homogeneous deciduous forest and rice paddy sites. We found that GOCI-derived NDVI maps revealed little data gaps compared to MODIS and Landsat, and GOCI derived NDVI time series were smoother than MODIS derived NDVI time series in summer. GOCI-derived NDVI agreed well with in-situ observations of NDVI

  1. Finite life time effects in the coherent exciton transfer

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1992-04-01

    The paper addresses a specific problem in the exciton transfer in molecular aggregates, namely the influence of the finite life time effects, on the memory functions entering the Generalized Master Equation (GME) which connect different sites of the system. 7 refs, 2 figs

  2. Video Streaming Transfer in a Smart Satellite Mobile Environment

    OpenAIRE

    Celandroni, Nedo; Davoli, Franco; Ferro, Erina; Gotta, Alberto

    2009-01-01

    In the near future, transportation media are likely to become "smart spaces", where sophisticated services are offered to the passengers. Among such services, we concentrate on video streaming provided on buses that move in urban, suburban, or highway environments. A contents' source utilizes a satellite DVB-S2 link for transmitting video streams to a bus, which, in its turn, relays it to its passengers' devices. A bus works in a smart mode taking advantage of the knowledge of the exact point...

  3. On the Relationship Between Transfer Function-derived Response Times and Hydrograph Analysis Timing Parameters: Are there Similarities?

    Science.gov (United States)

    Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.

    2017-12-01

    The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.

  4. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  5. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  6. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Realtime and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guojon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 deg latitude-longitude resolution over the latitude range from 50 deg N-50 deg S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  7. Satellites for U.S. education - Needs, opportunities and systems.

    Science.gov (United States)

    Morgan, R. P.; Singh, J. P.; Anderson, B. D.; Greenberg, E.

    1972-01-01

    This paper presents results of a continuing interdisciplinary study of the potential applications of Fixed- and Broadcast-Satellites for educational information transfer in the United States for the period 1975-1985. The status of U.S. education is examined and needs, trends and issues are discussed. The existing educational telecommunications infrastructure is examined and opportunities for satellite services are defined. Potential uses include networking of educational institutions and service centers for delivery of public and instructional television, computer-aided instruction, computing and information resources to regions and groups not now adequately served. Systems alternatives and some of the organizational and economic issues inherent in the deployment of an educational satellite system are discussed.-

  8. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Science.gov (United States)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  9. Survey and analysis of satellite-based telemedicine projects involving Japan and developing nations: investigation of transmission rates, channel numbers, and node numbers.

    Science.gov (United States)

    Nakajima, I; Natori, M; Takizawa, M; Kaihara, S

    2001-01-01

    We surveyed interactive telemedicine projects via telecommunications satellite (AMINE-PARTNERS, Post-PARTNERS, and Shinshu University Project using Inmarsat satellites) offered by Japan as assistance to developing countries. The survey helped clarify channel occupation time and data transfer rates. Using our survey results, we proposed an optimized satellite model with VSATs simulating the number of required channels and bandwidth magnitude. For future implementation of VSATs for medical use in developing nations, design of telecommunication channels should take into consideration TCP/IP-based operations. We calculated that one hub station with 30-76 VSATs in developing nation can be operated on bandwidth 6 Mbps using with 128 Kbps videoconferencing system for teleconsultation and teleconference, and linking with Internet.

  10. A Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    Directory of Open Access Journals (Sweden)

    Jong Won Eun

    2000-12-01

    Full Text Available It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  11. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    Science.gov (United States)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  12. Using Six Sigma methodology to reduce patient transfer times from floor to critical-care beds.

    Science.gov (United States)

    Silich, Stephan J; Wetz, Robert V; Riebling, Nancy; Coleman, Christine; Khoueiry, Georges; Abi Rafeh, Nidal; Bagon, Emma; Szerszen, Anita

    2012-01-01

    In response to concerns regarding delays in transferring critically ill patients to intensive care units (ICU), a quality improvement project, using the Six Sigma process, was undertaken to correct issues leading to transfer delay. To test the efficacy of a Six Sigma intervention to reduce transfer time and establish a patient transfer process that would effectively enhance communication between hospital caregivers and improve the continuum of care for patients. The project was conducted at a 714-bed tertiary care hospital in Staten Island, New York. A Six Sigma multidisciplinary team was assembled to assess areas that needed improvement, manage the intervention, and analyze the results. The Six Sigma process identified eight key steps in the transfer of patients from general medical floors to critical care areas. Preintervention data and a root-cause analysis helped to establish the goal transfer-time limits of 3 h for any individual transfer and 90 min for the average of all transfers. The Six Sigma approach is a problem-solving methodology that resulted in almost a 60% reduction in patient transfer time from a general medical floor to a critical care area. The Six Sigma process is a feasible method for implementing healthcare related quality of care projects, especially those that are complex. © 2011 National Association for Healthcare Quality.

  13. The study of diagnosis status and, transfer time of stroke patients transferred by pre-hospital emergency medical system (EMS to Vali-Asr hospital in Arak City

    Directory of Open Access Journals (Sweden)

    Saiedeh Bahrampouri

    2013-08-01

    Full Text Available Introduction: Stroke is main cause of death and disability in worldwide and emergency care can decrease complications. Emergency Medical System transferred half of stroke patients to hospital, so improve accuracy of diagnosis may accelerated treatment. This study aimed to determine diagnosis status and, transfer time of stroke patients transferred by prehospital Emergency Medical System to hospital in Arak City. Methods: This study was descriptive -analytic study and all 43 patient’s records with a diagnosis of stroke that transferred by Emergency Medical System to hospital in Arak City was selected. The study Checklist was contained information about age, sex, type of accident prehospital, response time, scene time, transfer time and total time from inpatients records and Emergency Center statistics .Regarding data analysis,SPSS19 software and descriptive statistical tests were used. Results: Mean (SD of age all patients were 73/7±3/8 and 51/2% were women. Ambulance paramedics' stroke diagnosis was correct in 15 (34/9%,20(46/5%of false and 8(18/6% not diagnosed for stroke patients who initially presented to them. The most common non stroke conditions were confusion. Mean response time and scene time, transfer time and total time were 6/9,16/9,9/1 and 35/3 minutes, respectively. In patients with correct diagnose stroke, mean response, scene, transfer and total time were 7,17/1,3/9 and 35/7 minutes. The people with the wrong diagnosis or no diagnosis of stroke by emergency medical personnel were taken to hospital, Mean response, scene, transfer and total time were 6/9, 16/8,9/7 and 33/5 minutes. Conclusions: The results of this study showed that, the correct diagnosis by EMS personnel could be resulted faster transferring patient to definite treatment center.It is recommended to develop prehospital diagnosis tool of stroke, which is contextually adapted and appropriate to facilitate diagnose of strokes and improve the quality of care.

  14. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    Science.gov (United States)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  15. Automatic detection of health changes using statistical process control techniques on measured transfer times of elderly.

    Science.gov (United States)

    Baldewijns, Greet; Luca, Stijn; Nagels, William; Vanrumste, Bart; Croonenborghs, Tom

    2015-01-01

    It has been shown that gait speed and transfer times are good measures of functional ability in elderly. However, data currently acquired by systems that measure either gait speed or transfer times in the homes of elderly people require manual reviewing by healthcare workers. This reviewing process is time-consuming. To alleviate this burden, this paper proposes the use of statistical process control methods to automatically detect both positive and negative changes in transfer times. Three SPC techniques: tabular CUSUM, standardized CUSUM and EWMA, known for their ability to detect small shifts in the data, are evaluated on simulated transfer times. This analysis shows that EWMA is the best-suited method with a detection accuracy of 82% and an average detection time of 9.64 days.

  16. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  17. Study of chaos in chaotic satellite systems

    Science.gov (United States)

    Khan, Ayub; Kumar, Sanjay

    2018-01-01

    In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.

  18. A Long-Term Comparison of GPS Carrierphase Frequency Transfer and Two-Way Satellite Time/Frequency Transfer

    Science.gov (United States)

    2007-01-01

    14 1.E-13 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 AVERAGING TIME τ (s) O V E R LA P P IN G σ y ( τ )/T H E O _B R (F R A C F R E Q ) METAS-NIST NPL-NIST... Metrologia , 42, 411-422. [2] C. Hackman, J. Levine, T. E. Parker, D. Piester and J. Becker, 2006, “A Straightforward Frequency- Estimation Technique for... Metrologia , 43, 109-120. [6] http://igscb.jpl.nasa.gov [7] G. Blewitt, 1989, “Carrier-Phase Ambiguity Resolution for the Global Positioning System Applied

  19. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  20. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  1. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  2. Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series

    Directory of Open Access Journals (Sweden)

    Lee Joon

    2012-04-01

    Full Text Available Abstract Background The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers. Methods With respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE, and the Darbellay-Vajda (D-V adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratory-related chemosensitivity to O2 and CO2 induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO2 and PCO2 on minute ventilation (V˙E before and after administration of domperidone was analyzed. Results In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2→V˙E. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO2→V˙E, in agreement with experimental findings. Conclusions Transfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results

  3. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  4. The CACAO Method for Smoothing, Gap Filling, and Characterizing Seasonal Anomalies in Satellite Time Series

    Science.gov (United States)

    Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.

    2013-01-01

    Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.

  5. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  6. RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes

    Science.gov (United States)

    Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.

    2018-05-01

    Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor

  7. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  8. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Directory of Open Access Journals (Sweden)

    Duc Nguyen Minh

    2017-01-01

    Full Text Available This work describes Live Monitor, the monitoring subsystem of SDDS – an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  9. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    Science.gov (United States)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  10. Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2004-01-01

    The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions

  11. Tank 21 and Tank 24 Blend and Feed Study: Blending Times, Settling Times, and Transfers

    International Nuclear Information System (INIS)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 (micro)m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

  12. NEAR REAL-TIME AUTOMATIC MARINE VESSEL DETECTION ON OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    G. Máttyus

    2013-05-01

    Full Text Available Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation. Optical satellite images (OSI can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  13. Near Real-Time Automatic Marine Vessel Detection on Optical Satellite Images

    Science.gov (United States)

    Máttyus, G.

    2013-05-01

    Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR) satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI) can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation). Optical satellite images (OSI) can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width) and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image) on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  14. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    Science.gov (United States)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  15. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    International Nuclear Information System (INIS)

    Huang Bormin; Mielikainen, Jarno; Oh, Hyunjong; Allen Huang, Hung-Lung

    2011-01-01

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x

  16. Effect of the time spent by the photon in the absorbed state on the time-dependent transfer of radiation

    International Nuclear Information System (INIS)

    Rao, D.M.; Rangarajan, K.E.; Peraiah, A.

    1990-01-01

    The time-dependent transfer equation is derived for a two-level atomic model which takes both bound-bound and bound-free transitions into account. A numerical scheme is proposed for solving the monochromatic time-dependent transfer equation when the time spent by the photon in the absorbed state is significant. The method can be easily extended to solve the problem of time-dependent line formation of the bound-free continuum. It is used here to study three types of boundary conditions of the incident radiation incident on a scattering atmosphere. The quantitative results show that the relaxation of the radiation field depends on the optical depth of the medium and on the ray's angle of emergence. 21 refs

  17. Moving object detection in video satellite image based on deep learning

    Science.gov (United States)

    Zhang, Xueyang; Xiang, Junhua

    2017-11-01

    Moving object detection in video satellite image is studied. A detection algorithm based on deep learning is proposed. The small scale characteristics of remote sensing video objects are analyzed. Firstly, background subtraction algorithm of adaptive Gauss mixture model is used to generate region proposals. Then the objects in region proposals are classified via the deep convolutional neural network. Thus moving objects of interest are detected combined with prior information of sub-satellite point. The deep convolution neural network employs a 21-layer residual convolutional neural network, and trains the network parameters by transfer learning. Experimental results about video from Tiantuo-2 satellite demonstrate the effectiveness of the algorithm.

  18. Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    We address the challenge of classifying financial time series via a newly proposed multiscale symbolic phase transfer entropy (MSPTE). Using MSPTE method, we succeed to quantify the strength and direction of information flow between financial systems and classify financial time series, which are the stock indices from Europe, America and China during the period from 2006 to 2016 and the stocks of banking, aviation industry and pharmacy during the period from 2007 to 2016, simultaneously. The MSPTE analysis shows that the value of symbolic phase transfer entropy (SPTE) among stocks decreases with the increasing scale factor. It is demonstrated that MSPTE method can well divide stocks into groups by areas and industries. In addition, it can be concluded that the MSPTE analysis quantify the similarity among the stock markets. The symbolic phase transfer entropy (SPTE) between the two stocks from the same area is far less than the SPTE between stocks from different areas. The results also indicate that four stocks from America and Europe have relatively high degree of similarity and the stocks of banking and pharmaceutical industry have higher similarity for CA. It is worth mentioning that the pharmaceutical industry has weaker particular market mechanism than banking and aviation industry.

  19. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation

    Science.gov (United States)

    Chen, Shijun; Sun, Fuyu; Bai, Qingsong; Chen, Dawei; Chen, Qiang; Hou, Dong

    2017-10-01

    We demonstrated a timing fluctuation suppression in outdoor laser-based atmospheric radio-frequency transfer over a 110 m one-way free-space link using an electronic phase compensation technique. Timing fluctuations and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process. With transferring a 1 GHz microwave signal over a timing fluctuation suppressed transmission link, the total root-mean-square (rms) timing fluctuation was measured to be 920 femtoseconds in 5000 s, with fractional frequency instability on the order of 1 × 10-12 at 1 s, and order of 2 × 10-16 at 1000 s. This atmospheric frequency transfer scheme with the timing fluctuation suppression technique can be used to fast build an atomic clock-based frequency free-space transmission link since its stability is superior to a commercial Cs and Rb clock.

  20. Dynamical history of coplanar two-satellite systems

    International Nuclear Information System (INIS)

    Ruskol, E.L.; Nikolajeva, E.V.; Syzdykov, A.S.

    1975-01-01

    One of the possible early states of the Earth-Moon system was a system of several large satellites around the Earth. The dynamical evolution of coplanar three-body systems is studied; a planet (Earth) and two massive satellites (proto-moons) with geocentric orbits of slightly different radii. Such configurations may arise in multiple satellite systems receding from a planet due to tidal friction. The numerical integration of the equations of motion shows that initially circular Keplerian orbits are soon transformed into disturbed elliptic orbits which are intersecting. The life-time of such a coplanar system between two probable physical collisions of satellites is roughly from one day to one year for satellite systems with radii less than 20 R(Earth), and may reach 100 yr for three-dimensional systems. This time-scale is short in comparison with the duration of the removal of satellites due to tides raised on the planet, which is estimated as 10 6 -10 8 yr for the same orbital dimensions. Therefore, the life-time of a system of several proto-moons is mainly determined by their tidal interactions with the Earth. For conditions which we have considered, the most probable result of the evolution was coalescence of satellites as the consequence of the collisions. (Auth.)

  1. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  2. jade: An End-To-End Data Transfer and Catalog Tool

    Science.gov (United States)

    Meade, P.

    2017-10-01

    The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. IceCube collects 1 TB of data every day. An online filtering farm processes this data in real time and selects 10% to be sent via satellite to the main data center at the University of Wisconsin-Madison. IceCube has two year-round on-site operators. New operators are hired every year, due to the hard conditions of wintering at the South Pole. These operators are tasked with the daily operations of running a complex detector in serious isolation conditions. One of the systems they operate is the data archiving and transfer system. Due to these challenging operational conditions, the data archive and transfer system must above all be simple and robust. It must also share the limited resource of satellite bandwidth, and collect and preserve useful metadata. The original data archive and transfer software for IceCube was written in 2005. After running in production for several years, the decision was taken to fully rewrite it, in order to address a number of structural drawbacks. The new data archive and transfer software (JADE2) has been in production for several months providing improved performance and resiliency. One of the main goals for JADE2 is to provide a unified system that handles the IceCube data end-to-end: from collection at the South Pole, all the way to long-term archive and preservation in dedicated repositories at the North. In this contribution, we describe our experiences and lessons learned from developing and operating the data archive and transfer software for a particle physics experiment in extreme operational conditions like IceCube.

  3. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  4. Communications Satellite Systems Conference, 9th, San Diego, CA, March 7-11, 1982, Collection of Technical Papers

    Science.gov (United States)

    The Shuttle-to-Geostationary Orbital Transfer by mid-level thrust is considered along with multibeam antenna concepts for global communications, the antenna pointing systems for large communication satellites, the connection phase of multidestination protocols for broadcast satellites, and an experiment in high-speed international packet switching. Attention is given to a dynamic switch matrix for the TDMA satellite switching system, the characterization of 16 bit microprocessors for space use, in-orbit operation and test of Intelsat V satellites, the first operational communications system via satellite in Europe, the Arab satellite communications systems, second generation business satellite systems for Europe, and a high performance Ku-band satellite for the 1980's. Other topics investigated are related to Ku-band terminal design tradeoffs, progress in the definition of the Italian satellite for domestic telecommunications, future global satellite systems for Intelsat, and satellite refuelling in orbit.

  5. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  6. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    Science.gov (United States)

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  7. Time-To-Complete Prediction for Data Transfers

    CERN Document Server

    Toler, Wesley

    2016-01-01

    Currently, there is no prediction provided to users for the amount of time a particular data transfer from one site in the Worldwide LHC Computing Grid to another will take to complete. To develop a time-to-complete prediction, network performance data and per-file information is gathered from two separate databases and fused, and the resulting cleaned data is fitted using random forest regression. Results are shown for two separate links: the link from CERN Data Centre to Brookhaven National Laboratory’s ATLAS data center, and the link from CERN Data Centre to SARA-MATRIX in Amsterdam. A total RMS error of 25.93 minutes between predicted and test data is found for the CERN-PROD -> BNL-ATLAS link, while the CERN-PROD -> SARA-MATRIX link yields a total RMS error of 3.00 minutes.

  8. High accuracy satellite drag model (HASDM)

    Science.gov (United States)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  9. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    Science.gov (United States)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  10. Modeling and Simulation of Bus Dispatching Policy for Timed Transfers on Signalized Networks

    Science.gov (United States)

    Cho, Hsun-Jung; Lin, Guey-Shii

    2007-12-01

    The major work of this study is to formulate the system cost functions and to integrate the bus dispatching policy with signal control. The integrated model mainly includes the flow dispersion model for links, signal control model for nodes, and dispatching control model for transfer terminals. All such models are inter-related for transfer operations in one-center transit network. The integrated model that combines dispatching policies with flexible signal control modes can be applied to assess the effectiveness of transfer operations. It is found that, if bus arrival information is reliable, an early dispatching decision made at the mean bus arrival times is preferable. The costs for coordinated operations with slack times are relatively low at the optimal common headway when applying adaptive route control. Based on such findings, a threshold function of bus headway for justifying an adaptive signal route control under various time values of auto drivers is developed.

  11. Detection of land cover change using an Artificial Neural Network on a time-series of MODIS satellite data

    CSIR Research Space (South Africa)

    Olivier, JC

    2007-11-01

    Full Text Available An Artificial Neural Network (ANN) is proposed to detect human-induced land cover change using a sliding window through a time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite surface reflectance pixel values. Training...

  12. Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements

    Science.gov (United States)

    Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan

    2018-01-01

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  13. Applying Toyota Production System principles to a psychiatric hospital: making transfers safer and more timely.

    Science.gov (United States)

    Young, John Q; Wachter, Robert M

    2009-09-01

    Health care organizations have increasingly embraced industrial methods, such as the Toyota Production System (TPS), to improve quality, safety, timeliness, and efficiency. However, the use of such methods in psychiatric hospitals has been limited. A psychiatric hospital applied TPS principles to patient transfers to the outpatient medication management clinics (MMCs) from all other inpatient and outpatient services within the hospital's system. Sources of error and delay were identified, and a new process was designed to improve timely access (measured by elapsed time from request for transfer to scheduling of an appointment and to the actual visit) and patient safety by decreasing communication errors (measured by number of failed transfers). Complexity was substantially reduced, with one streamlined pathway replacing five distinct and more complicated pathways. To assess sustainability, the postintervention period was divided into Period 1 (first 12 months) and Period 2 (next 24 months). Time required to process the transfer and schedule the first appointment was reduced by 74.1% in Period 1 (p < .001) and by an additional 52.7% in Period 2 (p < .0001) for an overall reduction of 87% (p < .0001). Similarly, time to the actual appointment was reduced 31.2% in Period 1 (p < .0001), but was stable in Period 2 (p = .48). The number of transfers per month successfully processed and scheduled increased 95% in the postintervention period compared with the pre-implementation period (p = .015). Finally, data for failed transfers were only available for the postintervention period, and the rate decreased 89% in Period 2 compared with Period 1 (p = .017). The application of TPS principles enhanced access and safety through marked and sustained improvements in the transfer process's timeliness and reliability. Almost all transfer processes have now been standardized.

  14. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    International Nuclear Information System (INIS)

    Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.

    2002-01-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)

  15. Light-Time Effect and Mass Transfer in the Triple Star SW Lyncis

    Directory of Open Access Journals (Sweden)

    Chun-Hwey Kim

    1999-06-01

    Full Text Available In this paper all the photoelectric times of minimum for the triple star SW Lyn have been analyzed in terms of light-time e ect due to the third-body and secular period decreases induced by mass transfer process. The light-time orbit determined recently by Ogloza et al.(1998 were modi ed and improved. And it is found that the orbital period of SW Lyn have been decreasing secularly. The third-body revolves around the mass center of triple stars every 5y.77 in a highly eccentric elliptical orbit(e=0.61. The third-body with a minimum mass of 1.13M may be a binary or a white dwarf. The rate of secular period-decrease were obtained as ¡âP/P = -12.45 x 10^-11, implying the mass-transfer from the massive primary star to the secondary. The mass losing rate from the primary were calculated as about 1.24 x 10^-8M /y. It is noticed that the mass-transfer in SW Lyn system is opposite in direction to that deduced from it's Roche geometry by previous investigators.

  16. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    Science.gov (United States)

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  17. The synchronization method for distributed small satellite SAR

    Science.gov (United States)

    Xing, Lei; Gong, Xiaochun; Qiu, Wenxun; Sun, Zhaowei

    2007-11-01

    One of critical requirement for distributed small satellite SAR is the trigger time precision when all satellites turning on radar loads. This trigger operation is controlled by a dedicated communication tool or GPS system. In this paper a hardware platform is proposed which has integrated navigation, attitude control, and data handling system together. Based on it, a probabilistic synchronization method is proposed for SAR time precision requirement with ring architecture. To simplify design of transceiver, half-duplex communication way is used in this method. Research shows that time precision is relevant to relative frequency drift rate, satellite number, retry times, read error and round delay length. Installed with crystal oscillator short-term stability 10 -11 magnitude, this platform can achieve and maintain nanosecond order time error with a typical three satellites formation experiment during whole operating process.

  18. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  19. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  20. Impact of Air Distribution on Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Artmann, Nikolai; Jensen, Rasmus Lund

    2009-01-01

    Passive cooling by night-time ventilation is seen as a promising approach for energy efficient cooling of buildings. However, uncertainties in prediction of cooling potential and consequenses for thermal comfort restrain architects and engineers from applying this technique. Heat transfer...... at internal room surfaces determines the performance of night-time ventilation. In order to improve predictability, heat transfer mechanism in case of either mixing or displacement ventilation has been investigated in a full scale test room with an exposed ceiling as the dominating thermal mass. The influence...... of air distribution principle, air flow rate and inlet air temperature were investigated. Results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher airflow rates the air jet flowing along the ceiling has a significant effect, and mixing...

  1. The method of quick satellite aiming with 3-Steps on the mobile satellite station

    Directory of Open Access Journals (Sweden)

    Sheng Liang

    2017-02-01

    Full Text Available The study analyses and concludes the technology of the satellite aiming during real-time broadcast of mobile video.We conclude a method of quick satellite aiming with 3-steps according to practical exercises and users' requirement to meet situation of facts and standardized operation,which can improve efficiency and quality of service.

  2. Study of chaos in chaotic satellite systems

    Indian Academy of Sciences (India)

    Lyapunov exponents are estimated. From these studies, chaosin satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the ...

  3. Investigation of Adaptive-threshold Approaches for Determining Area-Time Integrals from Satellite Infrared Data to Estimate Convective Rain Volumes

    Science.gov (United States)

    Smith, Paul L.; VonderHaar, Thomas H.

    1996-01-01

    The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.

  4. Ship Detection Using Transfer Learned Single Shot Multi Box Detector

    Directory of Open Access Journals (Sweden)

    Nie Gu-Hong

    2017-01-01

    Full Text Available Ship detection in satellite images is a challenging task. In this paper, we introduce a transfer learned Single Shot MultiBox Detector (SSD for ship detection. To this end, a state-of-the-art object detection model pre-trained from a large number of natural images was transfer learned for ship detection with limited labeled satellite images. To the best of our knowledge, this could be one of the first studies which introduce SSD into ship detection on satellite images. Experiments demonstrated that our method could achieve 87.9% AP at 47 FPS using NVIDIA TITAN X. In comparison with Faster R-CNN, 6.7% AP improvement could be achieved. Effects of the observation resolution has also been studied with the changing input sizes among 300 × 300, 600 × 600 and 900 × 900. It has been noted that the detection accuracy declined sharply with the decreasing resolution that is mainly caused by the missing small ships.

  5. Kagawa Satellite “STARS” in Shikoku

    Science.gov (United States)

    Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke

    The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.

  6. Time constants and transfer functions for a homogeneous 900 MWt metallic fueled LMR

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Nodal transfer functions are calculated for a 900 MWt U10Zr-fueled sodium cooled reactor. From the transfer functions the time constants, feedback reactivity transfer function coefficients, and power coefficients can be determined. These quantities are calculated for core fuel, upper and lower axial reflector steel, radial blanket fuel, radial reflector steel, and B 4 C rod shaft expansion effect. The quantities are compared to the analogous quantities of a 60 MWt metallic-fueled sodium cooled Experimental Breeder Reactor II configuration. 8 refs., 2 figs., 6 tabs

  7. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    Due to the development of faster communication networks and improving computer technology beside postprocessing techniques real-time applications and services are more and more created and used in the eld of precise positioning and navigation using global navigation satellite systems (GNSS) like GPS. Data formats like RTCM (NTRIP) or RTIGS serve in this manner as basic tool to transmit real-time GNSS observation data to a eld of users. To handle this trend to real-time, the International GNSS Service (IGS) or more precisely the Real-Time Working Group (RTWG) of the IGS started to establish a global GNSS station network several years ago. These reference stations (RTIGS stations) transmit their observation data in real-time via the open internet to registerd users to support the development of potential new real-time products and services. One example for such a new real-time application based on the observations of the RTIGS network is the software RTIGU-Control developed within this PHD thesis. RTIGU-Control fulls 2 main tasks. The rst task is the monitoring (integrity) of the predicted IGS orbit and clock products (IGU products) using real-time observations from the station network. The second task deals with calculating more precise satellite and station clock corrections compared to the predicted values of the IGU solutions based on the already very precise IGU orbit solutions. In a rst step RTIGU-Control calculates based on the IGU orbit predictions together with code-smoothed station observations precise values for the satellite and station clock corrections.The code-smoothed observations are additionally corrected for several corrections eecting the GNSS observations (for example the delay of the signal propagation time due to the atmosphere, relativistic eects, etc.). The second calculation step deals with monitoring the IGU predicted orbits using the calculated clock solution in the calculation step before and again the corrected real-time observations

  8. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  9. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean

    Science.gov (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien

    2015-01-01

    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  10. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  11. Comparative analysis of long-time variations of multicomponent ion ring current according to data of geostationary Gorizont satellite

    International Nuclear Information System (INIS)

    Kovtyukh, A.S.; Panasyuk, M.I.; Vlasova, N.A.; Sosnovets, Eh.N.

    1990-01-01

    Long-time variations of the fluxes of the H + , [N,O] 2+ and [C,N,O] 6 6 + ions with energy E/Q∼60-120 keV/e measured by the GORIZONT (1985-07A) satellite in the geostationary orbit at noon time are analyzed. The results are dsicussed and are compared with current models of the formation of the Earth's ion ring current

  12. Time to failure of hierarchical load-transfer models of fracture

    DEFF Research Database (Denmark)

    Vázquez-Prada, M; Gómez, J B; Moreno, Y

    1999-01-01

    The time to failure, T, of dynamical models of fracture for a hierarchical load-transfer geometry is studied. Using a probabilistic strategy and juxtaposing hierarchical structures of height n, we devise an exact method to compute T, for structures of height n+1. Bounding T, for large n, we are a...... are able to deduce that the time to failure tends to a nonzero value when n tends to infinity. This numerical conclusion is deduced for both power law and exponential breakdown rules....

  13. Escape of natural satellites from Mercury and Venus

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)

    1977-09-01

    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability.

  14. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  15. Do First Time House Buyers Receive Financial Transfers from Their Parents?

    DEFF Research Database (Denmark)

    Kolodziejczyk, Christophe; Leth-Petersen, Søren

    2013-01-01

    Using Danish longitudinal data with information about wealth for a sample of first-time house buyers and their parents, we test whether there are direct financial transfers from parents to children in connection with the house purchase, or in connection with unemployment spells occurring just after...... the purchase, when children typically hold few liquid assets. First, we document that child and parent financial resources are correlated. Then, we introduce conditioning variables and exploit the panel aspect of the data to also condition on fixed unobserved factors, which arguably govern preferences and....../or productivity. We find no evidence of direct financial transfers....

  16. Solar energy estimated from geostationary satellites and its application on the energy management system

    Science.gov (United States)

    Nakajima, T. Y.; Takamatsu, T.; Funayama, T.; Yamamoto, Y.; Takenaka, H.; Nakajima, T.; Irie, H.; Higuchi, A.

    2017-12-01

    Recently, estimating and forecasting the solar radiation in terms of the electric power generation by photovoltaic (PV) systems is needed for the energy management system (EMS). The estimation technique depends on the latest atmospheric sciences. For instance, when one like to estimate solar radiation reached to ground surface, one will focus on the existence of clouds and their properties, because clouds exert an important influence to the radiative transfer. Visible-to-infared imaging radiometer aboard the geostationary satellites, Himawari, GOES, and Meteosat are useful for such objective, since they observe clouds for full disk of the Earth with high temporal frequency and moderately spatial resolution. Estimation of solar radiation at the ground surface from satellite imagery consists of two steps. The first step is retrieval of cloud optical and microphysical properties by use of the multispectral imaging data. Indeed, we retrieve cloud optical thickness, cloud particle sizes, and cloud top height from visible, near-infrared, and thermal infrared wavelength of the satellite imageries, respectively. The second step is the radiative transfer calculation. We will obtain solar radiation reached to the ground surface, using cloud properties retrieved from the first step, and radiative transfer calculations. We have built a system for near-real time estimation of solar radiation for global scale, named the AMATERASS system, under the support of JST (Japan Science and Technology Agency), CREST/EMS (Energy Management System). The AMATERASS dataset has been used for several researches. For example, Waseda University group applied the AMATERASS data in the electric power system, considering accidental blackout in the electric system for local scale. They made it clear that when AMATERASS data exists the chance of electric voltage deviancy is mitigated when the blackout is over. We have supported a solar car race in Australia, named World Solar Challenge (WSC) 2013

  17. Clock Management Data Analysis for Satellite Communications

    National Research Council Canada - National Science Library

    Gross, Rachel; Melkers, Raimond

    2005-01-01

    The U.S. Naval Research Laboratory has installed GPS-based timing systems in several Defense Satellite Communication System "DSCS-III" satellite communication facilities to support the Single Channel Transponder "SCT" program...

  18. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  19. Inexpensive land-use maps extracted from satellite data

    Science.gov (United States)

    Barney, T. W.; Barr, D. J.; Elifrits, C. D.; Johannsen, C. J.

    1979-01-01

    Satellite images are interpretable with minimal skill and equipment by employing method which uses false color composite print of image of area transmitted from Landsat satellite. Method is effective for those who have little experience with satellite imagery, little time, and little money available.

  20. Satellite cluster flight using on-off cyclic control

    Science.gov (United States)

    Zhang, Hao; Gurfil, Pini

    2015-01-01

    Nano-satellite clusters and disaggregated satellites are new concepts in the realm of distributed satellite systems, which require complex cluster management - mainly regulating the maximal and minimal inter-satellite distances on time scales of years - while utilizing simple on-off propulsion systems. The simple actuators and long time scales require judicious astrodynamical modeling coupled with specialized orbit control. This paper offers a satellite cluster orbit control law which works for long time scales in a perturbed environment while utilizing fixed-magnitude thrusters. The main idea is to design a distributed controller which balances the fuel consumption among the satellites, thus mitigating the effect of differential drag perturbations. The underlying methodology utilizes a cyclic control algorithm based on a mean orbital elements feedback. Stability properties of the closed-loop cyclic control system do not adhere to the classical Lyapunov stability theory, so an effort is made to define and implement a suitable stability theory of noncompact equilibria sets. A state selection scheme is proposed for efficiently establishing a low Earth orbit cluster. Several simulations, including a real mission study, and several comparative investigations, are performed to show the strengths of the proposed control law.

  1. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  2. Data manage and communication of lunar orbital X-ray imaging analyzer in CE-1 satellite

    International Nuclear Information System (INIS)

    Wang Jinzhou; Wang Huanyu; Zhang Chengmo; Liang Xiaohua; Gao Min; CaoXuelei; Zhang Jiayu; Peng Wenxi; Cui Xingzhu; Xu Yupeng; Zhang Yongjie

    2006-01-01

    We present the software design for data management and communication software designed for the Lunar Orbital X-ray Imaging Analyzer in CE-1 Satellite. The software uses the appropriate format to assemble science data package and appropriate command respond mode, realizes the data transferring tasks through the 1553B bus on time, event though the channel bandwidth is under the limited. Also, the memory distribution and management of LOXIA (remote terminal) that fitted the communication with BC(Bus Controller) was introduced. Furthermore, for the spatial application, the security and reliability of software are emphasized. (authors)

  3. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory optimization

    Science.gov (United States)

    Libraro, Paola

    The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.

  4. Satellite Demonstration: The Videodisc Technology.

    Science.gov (United States)

    Propp, George; And Others

    1979-01-01

    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  5. Mapping Impervious Surface Expansion using Medium-resolution Satellite Image Time Series: A Case Study in the Yangtze River Delta, China

    Science.gov (United States)

    Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe

    2012-01-01

    Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived

  6. Thermospheric density and satellite drag modeling

    Science.gov (United States)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and

  7. A general real-time formulation for multi-rate mass transfer problems

    Directory of Open Access Journals (Sweden)

    O. Silva

    2009-08-01

    Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.

  8. Application of time transfer functions to Gaia's global astrometry. Validation on DPAC simulated Gaia-like observations

    Science.gov (United States)

    Bertone, Stefano; Vecchiato, Alberto; Bucciarelli, Beatrice; Crosta, Mariateresa; Lattanzi, Mario G.; Bianchi, Luca; Angonin, Marie-Christine; Le Poncin-Lafitte, Christophe

    2017-12-01

    Context. A key objective of the ESA Gaia satellite is the realization of a quasi-inertial reference frame at visual wavelengths by means of global astrometric techniques. This requires accurate mathematical and numerical modeling of relativistic light propagation, as well as double-blind-like procedures for the internal validation of the results, before they are released to the scientific community at large. Aims: We aim to specialize the time transfer functions (TTF) formalism to the case of the Gaia observer and prove its applicability to the task of global sphere reconstruction (GSR), in anticipation of its inclusion in the GSR system, already featuring the Relativistic Astrometric MODel (RAMOD) suite, as an additional semi-external validation of the forthcoming Gaia baseline astrometric solutions. Methods: We extended the current GSR framework and software infrastructure (GSR2) to include TTF relativistic observation equations compatible with Gaia's operations. We used simulated data generated by the Gaia Data Processing and Analysis Consortium (DPAC) to obtain different least-squares estimations of the full (five-parameter) stellar spheres and gauge results. These were compared to analogous solutions obtained with the current RAMOD model in GSR2 (RAMOD@GSR2) and to the catalog generated with the Gaia RElativistic Model (GREM), the model baselined for Gaia and used to generate the DPAC synthetic data. Results: Linearized least-squares TTF solutions are based on spheres of about 132 000 primary stars uniformly distributed on the sky and simulated observations spanning the entire 5 yr range of Gaia's nominal operational lifetime. The statistical properties of the results compare well with those of GREM. Finally, comparisons to RAMOD@GSR2 solutions confirmed the known lower accuracy of that model and allowed us to establish firm limits on the quality of the linearization point outside of which an iteration for non-linearity is required for its proper convergence

  9. HiTempo: a platform for time-series analysis of remote-sensing satellite data in a high-performance computing environment

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2012-08-01

    Full Text Available Course resolution earth observation satellites offer large data sets with daily observations at global scales. These data sets represent a rich resource that, because of the high acquisition rate, allows the application of time-series analysis...

  10. Toward the Public Dividend: A Report on Satellite Telecommunications and the Public Interest Satellite Association.

    Science.gov (United States)

    McGraw, Walter

    This report points out that the communications satellite appears to be on its way to becoming one of the most dominant and controlling technologies of our time, and this requires that a new evaluation be made of our entire communications process. The first section of the report discusses many aspects of the history of satellites, including the…

  11. Time to delivery: Transfers for threatened preterm labour and prelabour rupture of membranes in Western Australia.

    Science.gov (United States)

    Hollingworth, Jade; Pietsch, Rachel; Epee-Bekima, Mathias; Nathan, Elizabeth

    2018-02-01

    To describe the outcomes of patients transferred to King Edward Memorial Hospital (KEMH) with signs of labour at preterm gestations. A retrospective observational study of the 69 cases transferred to KEMH during 2015. Patient transfers from all locations across Western Australia (WA) to the sole tertiary perinatal centre in Perth. Pregnant women within WA with threatened or actual preterm labour (PTL) or preterm prelabour rupture of membranes (PPROM) between 23 and 32 weeks gestation. The occurrence of delivery during the admission and time-to-delivery as well as length of admission and association between clinical factors and time-to-delivery. The percentage of the study population delivered during the admission following transfer was 72.5%. Eighty-six per cent of those who delivered did so within 72 hours of transfer. The median time from transfer to delivery was 1 day. Sixty-three per cent of those who did not deliver during the admission progressed to 36 weeks gestation. Patients transferred with PPROM were less likely to deliver during the admission compared to those with uterine activity (50% versus 19.6%, P = 0.007) and nulliparas were more likely to deliver (93.5% versus 55.3%, P < 0.001). The majority of women transferred with signs of PTL progress to delivery during the same admission with the highest risk of delivery being the first 72 hours following transfer. If the pregnancy is ongoing at 72 hours, there is a reasonable chance of progression to late preterm gestation supporting the return of woman to their place of origin for antenatal care following discharge. © 2017 National Rural Health Alliance Inc.

  12. Mass savings domain of plasma propulsion for LEO to GEO transfer

    International Nuclear Information System (INIS)

    Choueiri, E.Y.; Kelly, A.J.; Jahn, R.G.

    1993-01-01

    A parametric model is used to study the mass savings of plasma propulsion over advanced chemical propulsion for lower earth orbit (LEO) to geosynchronous orbit (GEO) transfer. Such savings are characterized by stringent requirements of massive payloads (O(10) metric tons) and high power levels (O(100) kW). Mass savings on the order of the payload mass are possible but at the expense of longer transfer times (8--20 months). Typical of the savings domain is the case of a self-field magnetoplasmadynamic (MPD) thruster running quasi-steadily, at an I s of 2000 s, with 600 kW of input power, raising a 50 metric ton satellite in 270 days. The initial mass at LEO will be 65 tons less than a 155 ton LO 2 /LH 2 advanced chemical high thrust spacecraft. An optimum I s can only be found if the cost savings associated with mass savings are counterbalanced by the cost losses incurred by longer transfer times. A simplistic cost model that illustrates the overall trends in the optimization yielded an optimum I s of about 2200 s for a cost effective baseline MPD system

  13. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  14. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    Science.gov (United States)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  15. Data transfer over the wide area network with a large round trip time

    Science.gov (United States)

    Matsunaga, H.; Isobe, T.; Mashimo, T.; Sakamoto, H.; Ueda, I.

    2010-04-01

    A Tier-2 regional center is running at the University of Tokyo in Japan. This center receives a large amount of data of the ATLAS experiment from the Tier-1 center in France. Although the link between the two centers has 10Gbps bandwidth, it is not a dedicated link but is shared with other traffic, and the round trip time is 290ms. It is not easy to exploit the available bandwidth for such a link, so-called long fat network. We performed data transfer tests by using GridFTP in various combinations of the parameters, such as the number of parallel streams and the TCP window size. In addition, we have gained experience of the actual data transfer in our production system where the Disk Pool Manager (DPM) is used as the Storage Element and the data transfer is controlled by the File Transfer Service (FTS). We report results of the tests and the daily activity, and discuss the improvement of the data transfer throughput.

  16. Data transfer over the wide area network with a large round trip time

    International Nuclear Information System (INIS)

    Matsunaga, H; Isobe, T; Mashimo, T; Sakamoto, H; Ueda, I

    2010-01-01

    A Tier-2 regional center is running at the University of Tokyo in Japan. This center receives a large amount of data of the ATLAS experiment from the Tier-1 center in France. Although the link between the two centers has 10Gbps bandwidth, it is not a dedicated link but is shared with other traffic, and the round trip time is 290ms. It is not easy to exploit the available bandwidth for such a link, so-called long fat network. We performed data transfer tests by using GridFTP in various combinations of the parameters, such as the number of parallel streams and the TCP window size. In addition, we have gained experience of the actual data transfer in our production system where the Disk Pool Manager (DPM) is used as the Storage Element and the data transfer is controlled by the File Transfer Service (FTS). We report results of the tests and the daily activity, and discuss the improvement of the data transfer throughput.

  17. Low-cost monitoring of the wavelength difference of two transmitters for two-way time transfer over optical fibre

    OpenAIRE

    Slavík, Radan; Vojtěch, Josef; Smotlacha, Vladimir

    2015-01-01

    Accurate time transfer is routinely performed using GPS, however an order of magnitude better accuracy can be achieved when signal transfer over optical fibres is used (e.g., in [1], fibre transfer over 73 km with <100 ps precision was achieved as compared to <700 ps for the GPS-based system). Unfortunately, the propagation delay through an optical fibre changes due to temperature variation. This is commonly compensated for by transferring the time information bi-directionally over a si...

  18. Analytical Solution of Heat Conduction for Hollow Cylinders with Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Te-Wen Tu

    2015-01-01

    Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.

  19. GOES-R: Satellite Insight

    Science.gov (United States)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  20. Temperature diagnostics using lithium-like satellites

    International Nuclear Information System (INIS)

    Datla, R.U.; Jones, L.A.; Thomson, D.B.

    1980-10-01

    A 60-kJ theta-pinch was operated at a filling pressure of 16 mtorr using a gas mixture of 2% neon and 98% helium. The resonance and intercombination lines from Ne IX and the Li-like satellites were observed with a Bragg crystal monochromator. The electron temperature of the plasma was deduced from the intensity ratios of the Ne IX resonance line and the dielectronic satellites using recent theoretical calculations. The temperature values ranged from 210 eV to 340 eV during the time of occurrence of these satellites. The temperature measured at 1.0 μs by laser scattering for a similar plasma condition was in close agreement with that obtained by the resonance line/satellite ratio. This lends confidence to use of the satellite technique for temperature measurements in other plasmas

  1. Modular approach for satellite communication ground terminals

    Science.gov (United States)

    Gould, G. R.

    1984-01-01

    The trend in satellite communications is toward completely digital, time division multiple access (TDMA) systems with uplink and downlink data rates dictated by the type of service offered. Trunking terminals will operate in the 550 MBPS (megabit per second) region uplink and downlink, whereas customer premise service (CPS) terminals will operate in the 25 to 10 MBPS region uplink and in the 200 MBPS region downlink. Additional criteria for the ground terminals will be to maintain clock sychronization with the system and burst time integrity to within a matter of nanoseconds, to process required order-fire information, to provide adaptive data scrambing, and to compensate for variations in the user input output data rates, and for changes in range in the satellite communications links resulting from satellite perturbations in orbit. To achieve the required adaptability of a ground terminal to the above mentioned variables, programmable building blocks can be developed that will meet all of these requirements. To maintain system synchronization, i.e., all bursted data arriving at the satellite within assigned TDMA windows, ground terminal transmit data rates and burst timing must be maintained within tight tolerances. With a programmable synchronizer as the heart of the terminal timing generation, variable data rates and burst timing tolerances are achievable. In essence, the unit inputs microprocessor generated timing words and outputs discrete timing pulses.

  2. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  3. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  4. Decreasing Postanesthesia Care Unit to Floor Transfer Times to Facilitate Short Stay Total Joint Replacements.

    Science.gov (United States)

    Sibia, Udai S; Grover, Jennifer; Turcotte, Justin J; Seanger, Michelle L; England, Kimberly A; King, Jennifer L; King, Paul J

    2018-04-01

    We describe a process for studying and improving baseline postanesthesia care unit (PACU)-to-floor transfer times after total joint replacements. Quality improvement project using lean methodology. Phase I of the investigational process involved collection of baseline data. Phase II involved developing targeted solutions to improve throughput. Phase III involved measured project sustainability. Phase I investigations revealed that patients spent an additional 62 minutes waiting in the PACU after being designated ready for transfer. Five to 16 telephone calls were needed between the PACU and the unit to facilitate each patient transfer. The most common reason for delay was unavailability of the unit nurse who was attending to another patient (58%). Phase II interventions resulted in transfer times decreasing to 13 minutes (79% reduction, P care at other institutions. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  6. Time constants and feedback transfer functions of EBR-II subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel. (author)

  7. Time biases in laser ranging observations: A concerning issue of Space Geodesy

    Science.gov (United States)

    Exertier, Pierre; Belli, A.; Lemoine, J. M.

    2017-09-01

    Time transfer by Laser Ranging (LR) recently demonstrated a remarkable stability (a few ps over ∼1000 s) and accuracy (synchronizing both space and ground clocks over distances from a few thousands to tens of thousands kilometers. Given its potential role in navigation, fundamental physics and metrology, it is crucial that synergy between laser ranging and Time&Frequency (T/F) technologies improves to meet the present and future space geodesy requirements. In this article, we examine the behavior of T/F systems that are used in LR tracking stations of the international laser ranging service. The approach we investigate is to compute time synchronization between clocks used at LR stations using accurate data of the Time Transfer by Laser Link (T2L2) experiment onboard the satellite Jason-2 (Samain et al., 2014). Systematic time biases are estimated against the UTC time scale for a set of 22 observing stations in 2013, in the range of zero to a few μ s. Our results suggest that the ILRS network suffers from accuracy issues, due to time biases in the laser ranging observations. We discuss how these systematic effects impact the precise orbit determination of LAGEOS geodetic satellites over a 1-year analysis, and additionally give a measure of the local effect into station coordinates, regarding in particular the effect in the east-west component that is of 2-6 mm for a typical systematic time bias of one μ s.

  8. Variations in soil-to-red pepper transfer factors of radionuclides with time of their application and fruit harvest

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lee, Won Yun; Lim, Kwang Muk; Park, Soo Won; Lee, Myung Ho; Lee, Chang Woo; Lee, Hyun Duk; Lee, Jeong Ho

    1997-01-01

    A mixed solution of 54 Mn, 60 Co, 85 Sr and 137 Cs was applied to the soil of culture boxes in a greenhouse 2 days before transplanting red pepper and at 3 different times during its growth for investigating transfer factors (m 2 /kg-dry) for its green and red fruits. Transfer factors varied with radionuclide, application time and harvest time by factors of about 20-100. They decreased mostly radionuclide, application time and harvest time by factors of about 20-100. They decreased mostly in the order of 85 Sr> 54 Mn> 60 Co> 137 Cs while 54 Mn and 60 Co was higher than 85 Sr when time lapse between application and harvest was short. Transfer factors of 85 Sr and 137 Cs at the last application were lower than those at the previous one by factors of 3-20 depending on harvest time. Variations in 54 Mn and 60 Co transfer factors with application time after transplanting were comparatively low. Transfer factors of 54 Mn, 60 Co and 85 Sr mixed with topsoil before transplanting were up to 3-9 times higher than those for the application onto soil surface 2 days after transplanting root-uptake concentrations of the radionuclides in red pepper fruit and taking proper measures for its harvest and consumption at the event of an accidental release during the growing season of red pepper

  9. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  10. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series

    Directory of Open Access Journals (Sweden)

    David Sheeren

    2016-09-01

    Full Text Available Mapping forest composition is a major concern for forest management, biodiversity assessment and for understanding the potential impacts of climate change on tree species distribution. In this study, the suitability of a dense high spatial resolution multispectral Formosat-2 satellite image time-series (SITS to discriminate tree species in temperate forests is investigated. Based on a 17-date SITS acquired across one year, thirteen major tree species (8 broadleaves and 5 conifers are classified in a study area of southwest France. The performance of parametric (GMM and nonparametric (k-NN, RF, SVM methods are compared at three class hierarchy levels for different versions of the SITS: (i a smoothed noise-free version based on the Whittaker smoother; (ii a non-smoothed cloudy version including all the dates; (iii a non-smoothed noise-free version including only 14 dates. Noise refers to pixels contaminated by clouds and cloud shadows. The results of the 108 distinct classifications show a very high suitability of the SITS to identify the forest tree species based on phenological differences (average κ = 0 . 93 estimated by cross-validation based on 1235 field-collected plots. SVM is found to be the best classifier with very close results from the other classifiers. No clear benefit of removing noise by smoothing can be observed. Classification accuracy is even improved using the non-smoothed cloudy version of the SITS compared to the 14 cloud-free image time series. However conclusions of the results need to be considered with caution because of possible overfitting. Disagreements also appear between the maps produced by the classifiers for complex mixed forests, suggesting a higher classification uncertainty in these contexts. Our findings suggest that time-series data can be a good alternative to hyperspectral data for mapping forest types. It also demonstrates the potential contribution of the recently launched Sentinel-2 satellite for

  11. A Framework for Developing Artificial Intelligence for Autonomous Satellite Operations

    Science.gov (United States)

    Anderson, Jason L.; Kurfess, Franz J.; Puig-Suari, Jordi

    2009-09-01

    In the world of educational satellites, student teams manually conduct operations daily. Educational satellites typically travel in a Low Earth Orbit allowing communication for approximately thirty minutes each day. Manual operations during these times is manageable for student teams as the required manpower is minimal. The international Global Educational Network for Satellite Operations (GENSO), however, promises satellite contact upwards of sixteen hours per day by connecting earth stations globally through the Internet. This large increase in satellite communication time makes manual student operations unreasonable and alternatives must be explored. This paper introduces a framework to conduct autonomous satellite operations using different AI methodologies. This paper additionally demonstrates the framework's usability by introducing a sample rule-based implementation for Cal Poly's CubeSat, CP3.

  12. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  13. Improvement of Ka-band satellite link availability for real-time IP-based video contribution

    Directory of Open Access Journals (Sweden)

    G. Berretta

    2017-09-01

    Full Text Available New High Throughput Satellite (HTS systems allow high throughput IP uplinks/contribution at Ka-band frequencies for relatively lower costs when compared to broadcasting satellite uplinks at Ku band. This technology offers an advantage for live video contribution from remote areas, where the terrestrial infrastructure may not be adequate. On the other hand, the Ka-band is more subject to impairments due to rain or bad weather. This paper addresses the target system specification and provides an optimized approach for the transmission of IP-based video flows through HTS commercial services operating at Ka-band frequencies. In particular, the focus of this study is on the service requirements and the propagation analysis that provide a reference architecture to improve the overall link availability. The approach proposed herein leads to the introduction of a new concept of live service contribution using pairs of small satellite antennas and cheap satellite terminals.

  14. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...

  15. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  16. Core-level satellites and outer core-level multiplet splitting in Mn model compounds

    International Nuclear Information System (INIS)

    Nelson, A. J.; Reynolds, John G.; Roos, Joseph W.

    2000-01-01

    We report a systematic study of the Mn 2p, 3s, and 3p core-level photoemission and satellite structures for Mn model compounds. Charge transfer from the ligand state to the 3d metal state is observed and is distinguished by prominent shake-up satellites. We also observe that the Mn 3s multiplet splitting becomes smaller as the Mn oxidation state increases, and that 3s-3d electron correlation reduces the branching ratio of the 7 S: 5 S states in the Mn 3s spectra. In addition, as the ligand electronegativity decreases, the spin-state purity is lost in the 3s spectra, as evidenced by peak broadening. Our results are best understood in terms of the configuration-interaction model including intrashell electron correlation, charge transfer, and final-state screening. (c) 2000 American Vacuum Society

  17. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  18. The escape of natural satellites from Mercury and Venus

    International Nuclear Information System (INIS)

    Kumar, S.S.

    1977-01-01

    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability. (Auth.)

  19. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  20. Investigations in Satellite MIMO Channel Modeling: Accent on Polarization

    Directory of Open Access Journals (Sweden)

    Karagiannidis George K

    2007-01-01

    Full Text Available Due to the much different environment in satellite and terrestrial links, possibilities in and design of MIMO systems are rather different as well. After pointing out these differences and problems arising from them, two MIMO designs are shown rather well adapted to satellite link characteristics. Cooperative diversity seems to be applicable; its concept is briefly presented without a detailed discussion, leaving solving particular satellite problems to later work. On the other hand, a detailed discussion of polarization time-coded diversity (PTC is given. A physical-statistical model for dual-polarized satellite links is presented together with measuring results validating the model. The concept of 3D polarization is presented as well as briefly describing compact 3D-polarized antennas known from the literature and applicable in satellite links. A synthetic satellite-to-indoor link is constructed and its electromagnetic behavior is simulated via the FDTD (finite-difference time-domain method. Previous result of the authors states that in 3D-PTC situations, MIMO capacity can be about two times higher than SIMO (single-input multiple-output capacity while a diversity gain of nearly is further verified via extensive FDTD computer simulation.

  1. Transfer time estimation of 129I, 99Tc and 14C in the geological layers of the Saligny site

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Niculae, Ortenzia; Terente, M.; Jinescu, Gh.; Duliu, O.G.

    2009-01-01

    The paper describes the assessment of transfer time of 129 I, 99 Tc and 14 C in the geological layers of Saligny site, selected as Near Surface Final Repository for short-lived low and intermediate level radioactive waste generated by the operation and decommissioning of the four units of Cernavoda NPP equipped with the CANDU-6 Canadian type reactors. The geological aspects of Saligny site are presented for which the transfer time of radio-nuclides is necessary to assess. The conceptual model of the repository as well as the associated mathematical model which describes the transfer of radio-nuclides from radioactive waste disposal system to aquifer is also presented in the paper. The transfer time of these radionuclides is derived from the time difference when a radionuclide reaches the highest peak value of concentration into two adjacent compartments. The transfer time is compared with the half-life of radio-nuclides in order to asses the role of geological layers of the site in delaying the transfer of radio-nuclides. The evaluation was performed using the AMBER computing code. also a comparison with results from HYDRUS computer code is done. (authors)

  2. SOVCAN STAR: An international satellite system

    Science.gov (United States)

    Skatchkov, Valery A.

    SOVCAN STAR is a Russian-Canadian cooperative venture company formed to manufacture, test, launch and operate a Ku-band satellite system. Drawing on the more than twenty years communications satellite experience of the founding companies, the SOVCAN STAR satellites are being designed to be competitive and cost effective. They will be equipped with 24 transponders and four steerable antennas. The design allows the operators to switch individual transponders between the various antenna coverage beams. These satellites will offer a high degree of operational flexibility and performance. The SOVCAN STAR strategy is to develop a network of satellites in parallel with the growth and evolution of the traffic requirements. Such an approach minimizes the technical, schedule and program risks while at the same time significantly reduces the financial exposure. The first SOVCAN STAR satellite will be commissioned in 1996 and operated at 14 deg W. The beams will be aligned to North America and Europe offering International service between Canada, the Eastern U.S.A., Europe, Russia and the Western C.I.S. Republics. The second SOVCAN STAR satellite will be commissioned a year later and operated at 145 deg E. This satellite will cover the Western Pacific Ocean, Eastern Asia and Australasia.

  3. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  4. Laser experiments in light cloudiness with the geostationary satellite ARTEMIS

    Science.gov (United States)

    Kuzkov, V.; Kuzkov, S.; Sodnik, Z.

    2016-08-01

    The geostationary satellite ARTEMIS was launched in July 2001. The satellite is equipped with a laser communication terminal, which was used for the world's first inter-satellite laser communication link between ARTEMIS and the low earth orbit satellite SPOT-4. Ground-to-space laser communication experiments were also conducted under various atmospheric conditions involving ESA's optical ground station. With a rapidly increasing volume of information transferred by geostationary satellites, there is a rising demand for high-speed data links between ground stations and satellites. For ground-to-space laser communications there are a number of important design parameters that need to be addressed, among them, the influence of atmospheric turbulence in different atmospheric conditions and link geometries. The Main Astronomical Observatory of NAS of Ukraine developed a precise computer tracking system for its 0.7 m AZT-2 telescope and a compact laser communication package LACES (Laser Atmosphere and Communication experiments with Satellites) for laser communication experiments with geostationary satellites. The specially developed software allows computerized tracking of the satellites using their orbital data. A number of laser experiments between MAO and ARTEMIS were conducted in partial cloudiness with some amount of laser light observed through clouds. Such conditions caused high break-up (splitting) of images from the laser beacon of ARTEMIS. One possible explanation is Raman scattering of photons on molecules of a water vapor in the atmosphere. Raman scattering causes a shift in a wavelength of the photons.In addition, a different value for the refraction index appears in the direction of the meridian for the wavelength-shifted photons. This is similar to the anomalous atmospheric refraction that appears at low angular altitudes above the horizon. We have also estimated the atmospheric attenuation and the influence of atmospheric turbulence on observed results

  5. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  6. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT. Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5 during development of cattle generated either by artificial insemination (AI or in vitro fertilization (IVF and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic

  7. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  8. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    Science.gov (United States)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  9. Reionization of the Milky Way, M31, and their satellites - I. Reionization history and star formation

    Science.gov (United States)

    Dixon, Keri L.; Iliev, Ilian T.; Gottlöber, Stefan; Yepes, Gustavo; Knebe, Alexander; Libeskind, Noam; Hoffman, Yehuda

    2018-06-01

    Observations of the Milky Way (MW), M31, and their vicinity, known as the Local Group (LG), can provide clues about the sources of reionization. We present a suite of radiative transfer simulations based on initial conditions provided by the Constrained Local UniversE Simulations (CLUES) project that are designed to recreate the Local Universe, including a realistic MW-M31 pair and a nearby Virgo. Our box size (91 Mpc) is large enough to incorporate the relevant sources of ionizing photons for the LG. We employ a range of source models, mimicking the potential effects of radiative feedback for dark matter haloes between {˜ }10^8 and 10^9 M_{⊙}. Although the LG mostly reionizes in an inside-out fashion, the final 40 per cent of its ionization shows some outside influence. For the LG satellites, we find no evidence that their redshift of reionization is related to the present-day mass of the satellite or the distance from the central galaxy. We find that fewer than 20 per cent of present-day satellites for MW and M31 have undergone any star formation prior to the end of global reionization. Approximately 5 per cent of these satellites could be classified as fossils, meaning the majority of star formation occurred at these early times. The more massive satellites have more cumulative star formation prior to the end of global reionization, but the scatter is significant, especially at the low-mass end. Present-day mass and distance from the central galaxy are poor predictors for the presence of ancient stellar populations in satellite galaxies.

  10. Solar power satellite - A geostationary channel tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, C

    1981-12-01

    The concept-development status of solar power satellite (SPS) systems is considered, with attention to Heavy-Lift Launch Vehicles (HLLVs), the construction methods to be used in either geostationary or low earth orbit, and the configuration of the solar array. By comparison with the 30-ton payload of the Space Shuttle, HLLV designs under consideration have payloads of 114 to 425 tons. The unit cost for 5-GW satellites, in 1977 dollars, is estimated at five billion dollars. Consideration is given to the possible deleterious environmental effects of both the 400 or more launches required for each SPS and such results of radio frequency energy transfer beam operation as the suppression of blood platelet production in human beings and ionospheric heating. The uncertainty that still surrounds the relative advantages of competing designs and the need for long-range, billion-dollar funding appear to be insuperable obstacles to the construction of SPSs.

  11. Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web

    Science.gov (United States)

    Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2017-12-01

    The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.

  12. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    Science.gov (United States)

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  13. Real-time Identification and Control of Satellite Signal Impairments Solution and Application of the Stratonovich Equation Part 1. Theoretical Development

    Science.gov (United States)

    Manning, Robert M.

    2016-01-01

    As satellite communications systems become both more complex and reliant with respect to their operating environment, it has become imperative to be able to identify, during real-time operation, the onset of one or more impairments to the quality of overall communications system integrity. One of the most important aspects to monitor of a satellite link operating within the Earth's atmosphere is the signal fading due to the occurrence of rain and/or phase scintillations. This, of course, must be done in the presence of the associated measurement uncertainty or potentially faulty measurement equipment such as in the Advanced Communication Technology Satellite (ACTS) experiment. In the present work, an approach originally suggested in 1991, and apparently still considered iconoclastic, will be significantly developed and applied to the satellite communications link on which the deleterious composite signal fade is the result of one or many component fade mechanisms. Through the measurement (with the attendant uncertainty or 'error' in the measurement) of such a composite fading satellite signal, it is desired to extract the level of each of the individual fading mechanisms so they can be appropriately mitigated before they impact the overall performance of the communications network. Rather than employing simple-minded deterministic filtering to the real-time fading, the present approach is built around all the models and/or descriptions used to describe the individual fade components, including their dynamic evolution. The latter is usually given by a first-order Langevin equation. This circumstance allows the description of the associated temporal transition probability densities of each of the component processes. By using this description, along with the real-time measurements of the composite fade (along with the measurement errors), one can obtain statistical estimates of the levels of each of the component fading mechanisms as well as their predicted values

  14. Comparison of transfer entropy methods for financial time series

    Science.gov (United States)

    He, Jiayi; Shang, Pengjian

    2017-09-01

    There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.

  15. Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.

    2005-01-01

    The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled

  16. Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variable-Complexity Empirical Snow Model in Space and Time

    Science.gov (United States)

    Lute, A. C.; Luce, Charles H.

    2017-11-01

    The related challenges of predictions in ungauged basins and predictions in ungauged climates point to the need to develop environmental models that are transferable across both space and time. Hydrologic modeling has historically focused on modelling one or only a few basins using highly parameterized conceptual or physically based models. However, model parameters and structures have been shown to change significantly when calibrated to new basins or time periods, suggesting that model complexity and model transferability may be antithetical. Empirical space-for-time models provide a framework within which to assess model transferability and any tradeoff with model complexity. Using 497 SNOTEL sites in the western U.S., we develop space-for-time models of April 1 SWE and Snow Residence Time based on mean winter temperature and cumulative winter precipitation. The transferability of the models to new conditions (in both space and time) is assessed using non-random cross-validation tests with consideration of the influence of model complexity on transferability. As others have noted, the algorithmic empirical models transfer best when minimal extrapolation in input variables is required. Temporal split-sample validations use pseudoreplicated samples, resulting in the selection of overly complex models, which has implications for the design of hydrologic model validation tests. Finally, we show that low to moderate complexity models transfer most successfully to new conditions in space and time, providing empirical confirmation of the parsimony principal.

  17. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  18. Towards a Cloud Computing Environment: Near Real-time Cloud Product Processing and Distribution for Next Generation Satellites

    Science.gov (United States)

    Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.

    2016-12-01

    The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.

  19. Solar power satellites: Commercialization and socio-economic impacts

    International Nuclear Information System (INIS)

    Storelli, V.

    1993-01-01

    Commercialization prospects for solar power satellites are assessed with reference to their possible impacts on the viability of the fossil fuel market and on international energy and environmental policies. The technical aspects which are examined include: solar panel sizing in relation to solar cell efficiency; the development of point-contact solar cell technology; the feasibility of the use of lunar materials; microwave transmission from the moon; optimum satellite positioning; the use of robots for in-space satellite assembly; satellite transmitted power for hydrogen production and storage; marketable product estimated development time

  20. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    Science.gov (United States)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general

  1. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  2. ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests

    Science.gov (United States)

    Ivancic, William D.; Brooks, David E.; Frantz, Brian D.

    1997-01-01

    A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail.

  3. Implications of the Galilean satellites ice envelope explosions. 3

    International Nuclear Information System (INIS)

    Agafonova, I.I.; Drobyshevski, E.M.

    1985-01-01

    Secondary explosions of the primary ice fragments ejected in the explosion of the electrolyzed massive ice envelopes of the Galilean satellites are capable of imparting velocities of up to 5 km s -1 to the secondary fragments. As a result, the secondary fragments can enter the orbits of the irregular satellites and the Trojan libration orbits. Since the icy mix of the fragments contains hydrocarbons and particulate material (silicates and the like), after ice sublimation from the surface layers the Trojans should reveal type C and RD spectra typical for Jupiter's irregular satellites, comet nuclei and other distant ice bodies of similar origin. Among the Trojans there cannot be rocky or metallic objects which are known to exist in the main asteroid belt. It is shown that a velocity perturbation of 150-200 m s -1 resulting from a purely mechanical impact of two bodies may be sufficient to move collision fragments from the orbits of the Trojans to horseshoe-shaped trajectories with a subsequent transfer to the cometary orbits of Jupiter's family. (Auth.)

  4. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    Science.gov (United States)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS

  5. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  6. Choosing ESRO's first scientific satellites

    Science.gov (United States)

    Russo, Arturo

    1992-11-01

    The choice of the scientific payloads of the European Space Research Organization's (ESRO's) first generation of satellites is analyzed. Concentration is on those aspects of the decision process that involved more directly the scientific community and that emerged as major issues in the discussion of the Launching Program Advisory Committee (LPAC). The main theme was the growing competition between the various fields of space science within the progressive retrenching of the Organization's financial resources available for the satellite program. A general overview of the status of the program by the end of 1966 is presented. The choice of the first small satellites' payloads (ESRO 1 and 2, and HEOS-A) and the difficult definition of the TD satellite program are discussed. This part covers a time span going from early 1963 to the spring of 1966. In the second part, the narrative starts from the spring of 1967, when the decision to recommend a second HEOS-type satellite was taken, and then analyzes the complex situation determined by the crisis of the TD program in 1968, and the debates which eventually led to the abandonment of TD-2 and the start of the far less ambitious ESRO 5 project.

  7. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1997-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...... systems is limited, nevertheless, a solution of the Riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when a satellite is on a near polar orbit is used throughout this paper. Three types of attitude...... controllers are proposed: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the realistic environment....

  8. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field......, nevertheless, a solution of the riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when satellite is on a near polar orbit is used throughout this paper. Three types of attitude controllers are proposed......: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the environment...

  9. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  10. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  11. NASA to launch second business communications satellite

    Science.gov (United States)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  12. Are satellite products good proxies for gauge precipitation over Singapore?

    Science.gov (United States)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  13. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France

    Science.gov (United States)

    Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco

    2017-05-01

    Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.

  14. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  15. Satellite-borne time-of-flight particle spectrometer and its response to protons

    International Nuclear Information System (INIS)

    Shino, T.

    1994-01-01

    One of the purposes of the high energy particle (HEP) experiment of the GEOTAIL satellite launched in 1992 is the elucidation of plasma dynamics in the tail region of planetary magnetosphere. For that purpose, a low energy particle detector (LD) was on board, which mainly observed relatively low energy particles up to a few MeV. The LD is the particle spectrometer based on time of flight technique. In order to confirm further its sensitivity to high energy protons, the beam experiment was carried out at Waseda University using the engineering model of the LD spectrometer that is exactly the same as the launched one. The LD spectrometer is shown, and its functions are explained. The LD was designed to identify electrons of 30 - 400 keV, protons of 30 - 1500 keV, helium ions of 80 - 4000 keV, and heavy ions (mainly C, N and O) of 160 - 1500 keV. The relation of measured time of flight signals with energy signals is shown. There are several factors that determine the detection efficiency of the spectrometer, which are discussed. The experiment and the results are reported. (K.I.)

  16. Technical Note: Animal-borne CTD-Satellite Relay Data Loggers for real-time oceanographic data collection

    Directory of Open Access Journals (Sweden)

    L. Boehme

    2009-12-01

    Full Text Available The increasing need for continuous monitoring of the world oceans has stimulated the development of a range of autonomous sampling platforms. One novel addition to these approaches is a small, relatively inexpensive data-relaying device that can be deployed on marine mammals to provide vertical oceanographic profiles throughout the upper 2000 m of the water column. When an animal dives, the CTD-Satellite Relay Data Logger (CTD-SRDL records vertical profiles of temperature, conductivity and pressure. Data are compressed once the animal returns to the surface where it is located by, and relays data to, the Argos satellite system. The technical challenges met in the design of the CTD-SRDL are the maximising of energy efficiency and minimising size, whilst simultaneously maintaining the reliability of an instrument that cannot be recovered and is required to survive its lifetime attached to a marine mammal. The CTD-SRDLs record temperature and salinity with an accuracy of better than 0.005 °C and 0.02 respectively. However, due to the limited availability of reference data, real-time data from remote places are often associated with slightly higher errors. The potential to collect large numbers of profiles cost-effectively makes data collection using CTD-SRDL technology particularly beneficial in regions where traditional oceanographic measurements are scarce or even absent. Depending on the CTD-SRDL configuration, it is possible to sample and transmit hydrographic profiles on a daily basis, providing valuable and often unique information for a real-time ocean observing system.

  17. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    Science.gov (United States)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  18. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP

    Science.gov (United States)

    Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.

  19. Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis

    International Nuclear Information System (INIS)

    Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I.; Drago, A.

    1993-12-01

    Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches' phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC

  20. Towards linearization of atmospheric radiative transfer in spherical geometry

    International Nuclear Information System (INIS)

    Walter, Holger H.; Landgraf, Jochen

    2005-01-01

    We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument

  1. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    Science.gov (United States)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we

  2. On the time-dependent radiative transfer in photospheric plasmas

    International Nuclear Information System (INIS)

    Schultz, A.L.; Schweizer, M.A.

    1987-01-01

    The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)

  3. Sensor and computing resource management for a small satellite

    Science.gov (United States)

    Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose

    A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.

  4. A case of timely satellite image acquisitions in support of coastal emergency environmental response management

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Lu, Zhong; Rangoonwala, Amina; Suzuoki, Yukihiro

    2009-01-01

    The synergistic application of optical and radar satellite imagery improves emergency response and advance coastal monitoring from the realm of “opportunistic” to that of “strategic.” As illustrated by the Hurricane Ike example, synthetic aperture radar imaging capabilities are clearly applicable for emergency response operations, but they are also relevant to emergency environmental management. Integrated with optical monitoring, the nearly real-time availability of synthetic aperture radar provides superior consistency in status and trends monitoring and enhanced information concerning causal forces of change that are critical to coastal resource sustainability, including flooding extent, depth, and frequency.

  5. 47 CFR 76.502 - Time limits applicable to franchise authority consideration of transfer applications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Time limits applicable to franchise authority... Cable Systems § 76.502 Time limits applicable to franchise authority consideration of transfer applications. (a) A franchise authority shall have 120 days from the date of submission of a completed FCC Form...

  6. Probing the earth's gravity field by means of satellite-to-satellite tracking

    Science.gov (United States)

    Vonbun, F. O.

    1977-01-01

    Two satellite-to-satellite tracking (sst) tests are described in detail: (1) the ATS-6/Geos-3 and (2) the ATS-6/Apollo-Soyuz experiment. The main purpose of these two experiments was to track via ATS-6 the Geos-3, as well as the Apollo-Soyuz and to use these tracking data to determine both of the orbits at the same time, each of the orbits alone, and to test the two sst links to study local gravity anomalies. A second purpose was to test communications, command and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground.

  7. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    Science.gov (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  8. Time-dependent mixed convection heat transfer from a sphere in a micro-gravity environment

    International Nuclear Information System (INIS)

    Hommel, M.J.

    1987-01-01

    A fundamental problem of interest for crystal growth in micro-gravity applications involves the mixed convection heat transfer from a sphere in a uniform flow of fluid at a differing temperature. Under the combined influence of the imposed free stream as well as an induced buoyancy force due to thermal expansion of the fluid, the heat transfer from the sphere will be different from that of either the pure forced convection flow or the pure free convection flow. For the present study, the method of matched asymptotic expansions is applied to the laminar flow problem of an impulsively heated, impulsively started sphere in an originally quiescent fluid. Time series expansions are developed for the dependent variables by acknowledging the existence of two district regions: one, an inner region, near the sphere, in which viscous effects are significant; and two, an outer region in which the fluid may be treated as inviscid. The time series expansions are developed in terms of the Reynolds number and Richardson number (Buoyancy Parameter), and the relevant heat transfer and drag coefficients are calculated and plotted

  9. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can

  10. Origin of Lαx satellite in the light rare earths on the basis of plasmon theory

    International Nuclear Information System (INIS)

    Jain, Manjula; Shrivastava, B. D.

    2015-01-01

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα x has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα 1 . In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα 1 has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite

  11. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  12. Satellite Attitude Control Using Only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    when a satellite is on a throughout this thesis. Confined computer capacity and a limit on electrical power supply were separate obstacles.They demanded computational simplicity and power optimality from the attitude control system. The design of quasi optimal controllers for a real-time implementation...... to provide four stable equilibria, one of which was the desired orientation. It was explained how the equilibria depended on the ratio of the satellite's moments of inertia. It was further investigated how to control the attitude, such that the satellite was globally asymptotically stable in the desired...

  13. Exobiology of icy satellites

    Science.gov (United States)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  14. MODVOLC2: A Hybrid Time Series Analysis for Detecting Thermal Anomalies Applied to Thermal Infrared Satellite Data

    Science.gov (United States)

    Koeppen, W. C.; Wright, R.; Pilger, E.

    2009-12-01

    We developed and tested a new, automated algorithm, MODVOLC2, which analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes, fires, and gas flares. MODVOLC2 combines two previously developed algorithms, a simple point operation algorithm (MODVOLC) and a more complex time series analysis (Robust AVHRR Techniques, or RAT) to overcome the limitations of using each approach alone. MODVOLC2 has four main steps: (1) it uses the original MODVOLC algorithm to process the satellite data on a pixel-by-pixel basis and remove thermal outliers, (2) it uses the remaining data to calculate reference and variability images for each calendar month, (3) it compares the original satellite data and any newly acquired data to the reference images normalized by their variability, and it detects pixels that fall outside the envelope of normal thermal behavior, (4) it adds any pixels detected by MODVOLC to those detected in the time series analysis. Using test sites at Anatahan and Kilauea volcanoes, we show that MODVOLC2 was able to detect ~15% more thermal anomalies than using MODVOLC alone, with very few, if any, known false detections. Using gas flares from the Cantarell oil field in the Gulf of Mexico, we show that MODVOLC2 provided results that were unattainable using a time series-only approach. Some thermal anomalies (e.g., Cantarell oil field flares) are so persistent that an additional, semi-automated 12-µm correction must be applied in order to correctly estimate both the number of anomalies and the total excess radiance being emitted by them. Although all available data should be included to make the best possible reference and variability images necessary for the MODVOLC2, we estimate that at least 80 images per calendar month are required to generate relatively good statistics from which to run MODVOLC2, a condition now globally met by a decade of MODIS observations. We also found

  15. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  16. Scientific Satellites

    Science.gov (United States)

    1967-01-01

    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  17. Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data

    Directory of Open Access Journals (Sweden)

    T. B. Titkova

    2017-01-01

    Full Text Available Time of the snow cover appearance, existence and disappearance on the Russia’s territory in the early 21st century (2000–2015 was corrected using the MODIS/Terra satellite data (the 8-day discreteness, and the 0.5×0.5° resolution. The satellite data errors were estimated from data of the ground stations observations. The errors were found to be maximal in autumn and minimal in spring. The relationship between the snow cover characteristics and the climate ones was investigated using data obtained at the ground-based stations together with correlation between dates of snow appearance and loss and the climate parameters. The dependences obtained were tested by means of correlation and regression analysis over the longitudinal sectors. Significant coefficients of correlation (the Student criterion of probability was equal to 0.95 were found between time of the snow cover presence and dates of the temperature drop below 0 °С and the amount of days with negative temperatures. Changes in the climate characteristics result in that due to decreasing of the solid precipitation in winter time the snow presence duration becomes shorter over the European part of Russia and in the Western Siberia. The shortening in the Middle Siberia is caused by the spring warming. Durations of the snow occurrence in the Far East area are different. On the Chukotka peninsula the duration is longer because of the autumn fall in temperature while in the Kamchatka region the snow occurrence time is shorter due to significant decrease of a period with negative temperatures in both the autumn and spring seasons.

  18. The Study of a Super Low Altitude Satellite

    Science.gov (United States)

    Noda, Atsushi; Homma, Masanori; Utashima, Masayoshi

    This paper reports the result of a study for super low altitude satellite. The altitude of this satellite's orbit is lower than ever. The altitude of a conventional earth observing satellite is generally around from 600km to 900km. The lowest altitude of earth observing satellite launched in Japan was 350km; the Tropical Rainfall Measuring Mission (TRMM). By comparison, the satellite reported in this paper is much lower than that and it is planned to orbit below 200km. Furthermore, the duration of the flight planned is more than two years. Any satellite in the world has not achieved to keep such a low altitude that long term. The satellite in such a low orbit drops quickly because of the strong air drag. Our satellite will cancel the air drag effect by ion engine thrust. To realize this idea, a drag-free system will be applied. This usually leads a complicated and expensive satellite system. We, however, succeeded in finding a robust control law for a simple system even under the unpredictable change of air drag. When the altitude of the satellite is lowered successfully, the spatial resolution of an optical sensor can be highly improved. If a SAR is equipped with the satellite, it enables the drastic reduction of electric power consumption and the fabulous spatial resolution improvement at the same time.

  19. Use of NASA Near Real-Time and Archived Satellite Data to Support Disaster Assessment

    Science.gov (United States)

    McGrath, Kevin M.; Molthan, Andrew L.; Burks, Jason E.

    2014-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) Center partners with the NWS to provide near realtime data in support of a variety of weather applications, including disasters. SPoRT supports NASA's Applied Sciences Program: Disasters focus area by developing techniques that will aid the disaster monitoring, response, and assessment communities. SPoRT has explored a variety of techniques for utilizing archived and near real-time NASA satellite data. An increasing number of end-users - such as the NWS Damage Assessment Toolkit (DAT) - access geospatial data via a Web Mapping Service (WMS). SPoRT has begun developing open-standard Geographic Information Systems (GIS) data sets via WMS to respond to end-user needs.

  20. Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM

    Science.gov (United States)

    Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.

    1999-01-01

    The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.

  1. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    leading face of Iapetus has not been well characterized because the time period where optimum detection of the dark material occurs only lasts about one-half day and past scheduling has not permitted data acquisition In this time-window. We wish to carefully arrange the observations to permit this critical measurement, as well as acquiring a few other orbital phase angles for Dione and Rhea. The Voyager spacecraft made a few broad-band measurements at 260 nm but IUE data are needed to fix the low solar phase angle data. These data will form the basis of a UV spectral geometric albedo set for these satellites.

  2. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of veg...

  3. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  4. Advanced domestic digital satellite communications systems experiments

    Science.gov (United States)

    Iso, A.; Izumisawa, T.; Ishida, N.

    1984-02-01

    The characteristics of advanced digital transmission systems were measured, using newly developed small earth stations and a K-band and C-band communication satellite. Satellite link performance for data, facsimile, video and packet switching information transmission at bit rates ranging from 6.4 kbit/s to 6.3 Mbit/s have been confirmed, using a small K-band earth station and a demand-assignment time division multiple access system. A low-capacity omni-use C-band terminal experiment has verified a telephone channel transmission performance by spread-spectrum multiple access. Single point to multipoint transmission characteristics of the 64 kbit/s data signals from the computer center were tested, using a receive-only 4 GHz earth terminal. Basic satellite link performance was confirmed under clear-sky conditions. Precise satellite orbit and attitude keeping experiments were carried out to obtain precise satellite antenna pointing accuracy for development of K-band earth stations that do not require satellite tracking equipment. Precise station keeping accuracy of 0.02 degrees was obtained.

  5. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    Science.gov (United States)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  6. Orbital evolution and origin of the Martian satellites

    International Nuclear Information System (INIS)

    Szeto, A.M.K.

    1983-01-01

    The orbital evolution of the Martian satellites is considered from a dynamical point of view. Celestial mechanics relevant to the calculation of satellite orbital evolution is introduced and the physical parameters to be incorporated in the modeling of tidal dissipation are discussed. Results of extrapolating the satellite orbits backward and forward in time are presented and compared with those of other published work. Collision probability calculations and results for the Martian satellite system are presented and discussed. The implications of these calculations for the origin scenarios of the satellites are assessed. It is concluded that Deimos in its present form could not have been captured, for if it had been, it would have collided with Phobos at some point. An accretion model is therefore preferred over capture, although such a model consistent with the likely carbonaceous chondritic composition of the satellites has yet to be established. 91 references

  7. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Barna, N [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Vass, Cs [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Antal, Zs [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Kredics, L [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Chrisey, D [Naval Research Laboratory, Washington, DC 20375 (United States)

    2005-03-21

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser ({lambda} = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam ({lambda} = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s{sup -1} at 355 mJ cm{sup -2} applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10{sup 9} x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  8. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    International Nuclear Information System (INIS)

    Hopp, B; Smausz, T; Barna, N; Vass, Cs; Antal, Zs; Kredics, L; Chrisey, D

    2005-01-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s -1 at 355 mJ cm -2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10 9 x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications

  9. An interactive software package for validating satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.

    to be highly correlated (r = 0.75) with the satellite data. Very good correlation (r = 0.80) is obtained for wind speed measured from both Moored buoy and Autonomous Weather Station. Night time SSTs are found to be closer to the satellite values for wind speed...

  10. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Science.gov (United States)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  11. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    International Nuclear Information System (INIS)

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.

    2011-01-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  12. Semi-analog Monte Carlo (SMC) method for time-dependent non-linear three-dimensional heterogeneous radiative transfer problems

    International Nuclear Information System (INIS)

    Yun, Sung Hwan

    2004-02-01

    Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with

  13. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  14. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  15. Quasi-resonant K-K charge transfer

    International Nuclear Information System (INIS)

    Hagmann, S.; Cocke, C.L.; Richard, P.; Skutlartz, A.; Kelbch, S.; Schmidt-Boecking, H.; Schuch, R.

    1983-01-01

    The impact parameter dependence, P(b), of single and double K to K charge transfer have been deduced from the coincidences between K-Auger electrons and scattered particles for F 9+ + Ne and F 9+ + Ne collisions at 10 MeV and 4.4 MeV. The 4.4 MeV single K-K transfer probability exhibits oscillations with b. The P(b) for delta-electron emission is also reported. To obtain more details on the mechanism, K-Auger electron-Ne recoil ion coincidences are measured for both F 8+ and F 9+ projectiles. The relative amounts of recoil ions and of satellite and hypersatellite Auger transitions vary substantially with projectile charge state. 11 references, 11 figures

  16. Time averaging procedure for calculating the mass and energy transfer rates in adiabatic two phase flow

    International Nuclear Information System (INIS)

    Boccaccini, L.V.

    1986-07-01

    To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de

  17. Satellite disintegration dynamics

    Science.gov (United States)

    Dasenbrock, R. R.; Kaufman, B.; Heard, W. B.

    1975-01-01

    The subject of satellite disintegration is examined in detail. Elements of the orbits of individual fragments, determined by DOD space surveillance systems, are used to accurately predict the time and place of fragmentation. Dual time independent and time dependent analyses are performed for simulated and real breakups. Methods of statistical mechanics are used to study the evolution of the fragment clouds. The fragments are treated as an ensemble of non-interacting particles. A solution of Liouville's equation is obtained which enables the spatial density to be calculated as a function of position, time and initial velocity distribution.

  18. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  19. Difference in peak weight transfer and timing based on golf handicap.

    Science.gov (United States)

    Queen, Robin M; Butler, Robert J; Dai, Boyi; Barnes, C Lowry

    2013-09-01

    Weight shift during the golf swing has been a topic of discussion among golf professionals; however, it is still unclear how weight shift varies in golfers of different performance levels. The main purpose of this study was to examine the following: (a) the changes in the peak ground reaction forces (GRF) and the timing of these events between high (HHCP) and low handicap (LHCP) golfers and (b) the differences between the leading and trailing legs. Twenty-eight male golfers were recruited and divided based on having an LHCP 9. Three-dimensional GRF peaks and the timing of the peaks were recorded bilaterally during a golf swing. The golf swing was divided into different phases: (a) address to the top of the backswing, (b) top of the backswing to ball contact, and (c) ball contact to the end of follow through. Repeated measures analyses of variance (α = 0.05) were completed for each study variable: the magnitude and the timing of peak vertical GRF, peak lateral GRF, and peak medial GRF (α = 0.05). The LHCP group had a greater transfer of vertical force from the trailing foot to the leading foot in phase 2 than the HHCP group. The LHCP group also demonstrated earlier timing of peak vertical force throughout the golf swing than the HHCP group. The LHCP and HHCP groups demonstrated different magnitudes of peak lateral force. The LHCP group had an earlier timing of peak lateral GRF in phase 2 and earlier timing of peak medial GRF in phases 1 and 2 than the HHCP group. In general, LHCP golfers demonstrated greater and earlier force generation than HHCP golfers. It may be relevant to consider both the magnitude of the forces and the timing of these events during golf-specific training to improve performance. These data reveal weight shifting differences that can be addressed by teaching professionals to help their students better understand weight transfer during the golf swing to optimize performance.

  20. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  1. Research of the key technology in satellite communication networks

    Science.gov (United States)

    Zeng, Yuan

    2018-02-01

    According to the prediction, in the next 10 years the wireless data traffic will be increased by 500-1000 times. Not only the wireless data traffic will be increased exponentially, and the demand for diversified traffic will be increased. Higher requirements for future mobile wireless communication system had brought huge market space for satellite communication system. At the same time, the space information networks had been greatly developed with the depth of human exploration of space activities, the development of space application, the expansion of military and civilian application. The core of spatial information networks is the satellite communication. The dissertation presented the communication system architecture, the communication protocol, the routing strategy, switch scheduling algorithm and the handoff strategy based on the satellite communication system. We built the simulation platform of the LEO satellites networks and simulated the key technology using OPNET.

  2. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  3. Origin of Lα{sup x} satellite in the light rare earths on the basis of plasmon theory

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manjula, E-mail: rainbow-mjain@yahoo.co.in [Physics Department, Madhav Science College, Ujjain – 456010 (India); Shrivastava, B. D., E-mail: rashmibasant@gmail.com [School of Studies in Physics, Vikram University, Ujjain – 456010 (India)

    2015-07-31

    The origin of most of the X-ray satellites can be explained on the basis of multiple ionization theory. However, there are several satellites which can be explained on the basis of plasmon theory. When a plasmon is excited during the X-ray emission process, one can get a low energy satellite because energy is used up in exciting the plasmon oscillations in the electron gas. A plasmon on decay can also transfer its energy to the transiting electron which subsequently fills the core vacancy giving rise to a high energy satellite. In our laboratory, a new high energy satellite Lα{sup x} has been observed in the Lα - emission spectra of the oxides of some light rare earths on the high energy side of the diagram line Lα{sub 1}. In the present paper, the origin of this high energy satellite has been explained using the theory of plasma oscillations in solids. The energy separation of the satellite from the emission line Lα{sub 1} has been calculated and then compared with the theoretical separation based on the plasmon theory. The agreement between the theoretical and experimental values is found to be good. Hence, the observed satellite can be designated as plasmon satellite.

  4. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    Science.gov (United States)

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  5. IDP camp evolvement analysis in Darfur using VHSR optical satellite image time series and scientific visualization on virtual globes

    Science.gov (United States)

    Tiede, Dirk; Lang, Stefan

    2010-11-01

    In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.

  6. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability

    Czech Academy of Sciences Publication Activity Database

    Kodet, J.; Pánek, Petr; Procházka, I.

    2015-01-01

    Roč. 53, č. 1 (2015), s. 18-26 ISSN 0026-1394 Institutional support: RVO:67985882 Keywords : optical fiber * time transfer * TWOTT Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.500, year: 2015

  7. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  8. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  9. Perceived barriers to communication between hospital and nursing home at time of patient transfer.

    Science.gov (United States)

    Shah, Faraaz; Burack, Orah; Boockvar, Kenneth S

    2010-05-01

    To identify perceived barriers to communication between hospital and nursing home at the time of patient transfer and examine associations between perceived barriers and hospital and nursing home characteristics. Mailed survey. Medicare- or Medicaid-certified nursing homes in New York State. Nursing home administrators, with input from other nursing home staff. Respondents rated the importance as a barrier to hospital-nursing home communication of (1) hospital providers' attitude, time, effort, training, payment, and familiarity with nursing home patients; (2) unplanned and off-hours transfers; (3) HIPAA privacy regulations; and (4) lost or failed information transmission. Associations were determined between barriers and the following organizational characteristics: (1) hospital-nursing home affiliations, pharmacy or laboratory agreements, cross-site staff visits, and cross-site physician care; (2) hospital size, teaching status, and frequency of geriatrics specialty care; (3) nursing home size, location, type, staffing, and Medicare quality indicators; and (4) hospital-to-nursing home communication, consistency of hospital care with health care goals, and communication quality improvement efforts. Of 647 questionnaires sent, 229 were returned (35.4%). The most frequently reported perceived barriers to communication were sudden or unplanned transfers (44.4%), transfers that occur at night or on the weekend (41.4%), and hospital providers' lack of effort (51.0%), lack of familiarity with patients (45.0%), and lack of time (43.5%). Increased hospital size, teaching hospitals, and urban nursing home location were associated with greater perceived importance of these barriers, and cross-site staff visits and hospital provision of laboratory and pharmacy services to the nursing home were associated with lower perceived importance of these barriers. Hospital and nursing home characteristics and interorganizational relationships were associated with nursing home

  10. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    Science.gov (United States)

    2017-09-01

    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  11. Two-way time transfer via optical fiber providing subpicosecond precision and high temperature stability

    Czech Academy of Sciences Publication Activity Database

    Kodet, J.; Pánek, Petr; Procházka, I.

    2016-01-01

    Roč. 53, č. 1 (2016), s. 18-26 ISSN 0026-1394 Institutional support: RVO:67985882 Keywords : TWOTT * Time transfer * Optical fiber Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.411, year: 2016

  12. The Design and Application of Data Storage System in Miyun Satellite Ground Station

    Science.gov (United States)

    Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu

    2015-04-01

    China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16

  13. Time Discounting and Credit Market Access in a Large-Scale Cash Transfer Programme

    Science.gov (United States)

    Handa, Sudhanshu; Martorano, Bruno; Halpern, Carolyn; Pettifor, Audrey; Thirumurthy, Harsha

    2017-01-01

    Summary Time discounting is thought to influence decision-making in almost every sphere of life, including personal finances, diet, exercise and sexual behavior. In this article we provide evidence on whether a national poverty alleviation program in Kenya can affect inter-temporal decisions. We administered a preferences module as part of a large-scale impact evaluation of the Kenyan Government’s Cash Transfer for Orphans and Vulnerable Children. Four years into the program we find that individuals in the treatment group are only marginally more likely to wait for future money, due in part to the erosion of the value of the transfer by inflation. However among the poorest households for whom the value of transfer is still relatively large we find significant program effects on the propensity to wait. We also find strong program effects among those who have access to credit markets though the program itself does not improve access to credit. PMID:28260842

  14. Time Discounting and Credit Market Access in a Large-Scale Cash Transfer Programme.

    Science.gov (United States)

    Handa, Sudhanshu; Martorano, Bruno; Halpern, Carolyn; Pettifor, Audrey; Thirumurthy, Harsha

    2016-06-01

    Time discounting is thought to influence decision-making in almost every sphere of life, including personal finances, diet, exercise and sexual behavior. In this article we provide evidence on whether a national poverty alleviation program in Kenya can affect inter-temporal decisions. We administered a preferences module as part of a large-scale impact evaluation of the Kenyan Government's Cash Transfer for Orphans and Vulnerable Children. Four years into the program we find that individuals in the treatment group are only marginally more likely to wait for future money, due in part to the erosion of the value of the transfer by inflation. However among the poorest households for whom the value of transfer is still relatively large we find significant program effects on the propensity to wait. We also find strong program effects among those who have access to credit markets though the program itself does not improve access to credit.

  15. Global Warming: Evidence from Satellite Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  16. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  17. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  18. Lunar occultation of Saturn. IV - Astrometric results from observations of the satellites

    Science.gov (United States)

    Dunham, D. W.; Elliot, J. L.

    1978-01-01

    The method of determining local lunar limb slopes, and the consequent time scale needed for diameter studies, from accurate occultation timings at two nearby telescopes is described. Results for photoelectric observations made at Mauna Kea Observatory during the occultation of Saturn's satellites on March 30, 1974, are discussed. Analysis of all observations of occultations of Saturn's satellites during 1974 indicates possible errors in the ephemerides of Saturn and its satellites.

  19. Transfer entropy in physical systems and the arrow of time

    Science.gov (United States)

    Spinney, Richard E.; Lizier, Joseph T.; Prokopenko, Mikhail

    2016-08-01

    Recent developments have cemented the realization that many concepts and quantities in thermodynamics and information theory are shared. In this paper, we consider a highly relevant quantity in information theory and complex systems, the transfer entropy, and explore its thermodynamic role by considering the implications of time reversal upon it. By doing so we highlight the role of information dynamics on the nuanced question of observer perspective within thermodynamics by relating the temporal irreversibility in the information dynamics to the configurational (or spatial) resolution of the thermodynamics. We then highlight its role in perhaps the most enduring paradox in modern physics, the manifestation of a (thermodynamic) arrow of time. We find that for systems that process information such as those undergoing feedback, a robust arrow of time can be formulated by considering both the apparent physical behavior which leads to conventional entropy production and the information dynamics which leads to a quantity we call the information theoretic arrow of time. We also offer an interpretation in terms of optimal encoding of observed physical behavior.

  20. Design of the data management system for hard X-ray modulation telescope based on real-time Linux

    International Nuclear Information System (INIS)

    Jia Tao; Zhang Zhi

    2004-01-01

    Hard X-ray Modulation Telescope is an electronic subsystem, the data management system for capturing the data of the telescope, then managing and transferring them. The data management system also deals with the communication with the satellite. Because of these functions, it needs highly steady quality and good real-time performance. This paper describes the design of the system. (authors)

  1. Satellite-Relayed Intercontinental Quantum Network.

    Science.gov (United States)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-19

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  2. Satellite-Relayed Intercontinental Quantum Network

    Science.gov (United States)

    Liao, Sheng-Kai; Cai, Wen-Qi; Handsteiner, Johannes; Liu, Bo; Yin, Juan; Zhang, Liang; Rauch, Dominik; Fink, Matthias; Ren, Ji-Gang; Liu, Wei-Yue; Li, Yang; Shen, Qi; Cao, Yuan; Li, Feng-Zhi; Wang, Jian-Feng; Huang, Yong-Mei; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Li, Li; Liu, Nai-Le; Koidl, Franz; Wang, Peiyuan; Chen, Yu-Ao; Wang, Xiang-Bin; Steindorfer, Michael; Kirchner, Georg; Lu, Chao-Yang; Shu, Rong; Ursin, Rupert; Scheidl, Thomas; Peng, Cheng-Zhi; Wang, Jian-Yu; Zeilinger, Anton; Pan, Jian-Wei

    2018-01-01

    We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ˜kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

  3. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  4. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  5. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  6. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  7. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  8. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  9. About mechanisms of tetonic activity of the satellites

    Science.gov (United States)

    Barkin, Yu. V.

    2003-04-01

    ABOUT MECHANISMS OF TECTONIC ACTIVITY OF THE SATELLITES Yu.V. Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Due to attraction of the central planet and others external bodies satellite is subjected by tidal and non-tidal deformations. Elastic energy is changed in dependence from mutual position and motion of celestial bodies and as result the tensional state of satellite and its tectonic (endogenous) activity also is changed. Satellites of the planets have the definite shell’s structure and due to own rotation these shells are characterized by different oblatenesses. Gravitational interaction of the satellite and its mother planet generates big additional mechanical forces (and moments) between the neighboring non-spherical shells of the satellite (mantle, core and crust). These forces and moments are cyclic functions of time, which are changed in the different time-scales. They generate corresponding cyclic perturbations of the tensional state of the shells, their deformations, small relative transnational displacements and slow rotation of the shells and others. In geological period of time it leads to a fundamental tectonic reconstruction of the body. Definite contribution to discussed phenomena are caused by classical tidal mechanism. of planet-satellite interaction. But in this report we discuss in first the new mechanisms of endogenous activity of celestial bodies. They are connected with differential gravitational attraction of non-spherical satellite shells by the external celestial bodies which leads: 1) to small relative rotation (nutations) of the shells; 2) to small relative translational motions of the shells (displacements of their center of mass); 3) to relative displacements and rotations of the shells due to eccentricity of their center of mass positions; 4) to viscous elastic deformations of the shells and oth. (Barkin, 2001). For higher evaluations of the power of satellite endogenous activities were obtained

  10. Effects of stimulus pair orientation and hand switching on reaction time estimates of interhemispheric transfer.

    Science.gov (United States)

    Leblanc-Sirois, Yanick; Braun, Claude M J; Elie-Fortier, Jonathan

    2018-03-26

    Two behavioral estimates of interhemispheric transfer time, the crossed-uncrossed difference (CUD) and the unilateral field advantage (UFA), are thought to, respectively, index transfer of premotor and visual information across the corpus callosum in neurotypical participants. However, no attempt to manipulate visual and motor contingencies in a set of tasks while measuring the CUD and the UFA has yet been reported. In two go/no-go comparison experiments, stimulus pair orientations were manipulated. The hand of response changed after each correct response in the second, but not the first experiment. No correlation was found between the CUD and the UFA, supporting the hypothesis that these two measures index different types of information transfer across hemispheres. An effect of manipulation of stimulus pair orientation on UFAs was attributed to the homotopy of callosal fibers transferring visual information, while an effect of hand switching on CUDs was attributed mostly to spatial compatibility.

  11. Symposium on radiation transfer problems and satellite measurements in meteorology and oceanography. Symposium ueber Strahlungstransportprobleme und Satellitenmessungen in der Meteorologie und der Ozeanographie. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The atmospherical cloud fields in the mesoscale and the synoptic scale are studied and classified with respect to brightness, form, structure, horizontal and vertical dimension, and surface temperature on the basis of satellite observations. The different developing stages and the drift of the clouds are analysed by satellite measurements; which give insight into the atmospheric processes, improving the possibilities for predictions. The wind velocities in the higher troposphere are of particular interest for civil aviation. The world climate program takes profit from the covering statistics of the cloud fields, and from measurements of the surface temperature, covering the continents and the sea. Such measurements can be performed by satellite-born radiometers, e.g. also with Meteosat. The surface radiation temperature distributions are the initial data for climate models aiming at climate predictions for the human society on a time scale of several years. Models describing the circulation in the atmosphere and in the sea as well as in the boundary region in between can be considered as a first step in this direction. Several reports are dedicated to the role of the radiation budget for the simulation and description of such physical processes. The changes of the radiation budget components in space and time as well as the resulting meteorological effects, in particular the number and the properties (first of all radiation temperature and albedo) of the clouds have an essential influence on the calculation of the radiation fluxes and divergencies in different layers of the atmosphere. Abstracts are available for 59 papers of this conference report.

  12. Touchscreen Facilitates Young Children’s Transfer of Learning to Tell Time

    Directory of Open Access Journals (Sweden)

    Fuxing Wang

    2016-11-01

    Full Text Available Young children are devoting increasing time to playing on handheld touchscreen devices (e.g., iPads. Though thousands of touchscreen apps are claimed to be educational, there is a lack of sufficient evidence examining the impact of touchscreens on children’s learning outcomes. In the present study, the two questions we focused on were (a whether using a touchscreen was helpful in teaching children to tell time, and (b to what extent young children could transfer what they had learned on the touchscreen to other media. A pre- and posttest design was adopted. After learning to read the time on the iPad touchscreen for 10 minutes, three groups of 5- to 6-year-old children (N = 65 were respectively tested with an iPad touchscreen, a toy clock or a drawing of a clock on paper. The results revealed that posttest scores in the iPad touchscreen test group were significantly higher than those at pretest, indicating that the touchscreen itself could provide support for young children’s learning. Similarly, regardless of being tested with a toy clock or paper drawing, children’s posttest performance was also better than pretest, suggesting that children could transfer what they had learned on an iPad touchscreen to other media. However, comparison among groups showed that children tested with the paper drawing underperformed those tested with the other two media. The theoretical and practical implications of the results, as well as limitations of the present study, are discussed.

  13. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  14. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  15. Planning and Scheduling for Fleets of Earth Observing Satellites

    Science.gov (United States)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  16. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    Science.gov (United States)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  17. An access alternative for mobile satellite networks

    Science.gov (United States)

    Wu, W. W.

    1988-01-01

    Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.

  18. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    Science.gov (United States)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We

  19. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  20. SPATIOTEMPORAL VISUALIZATION OF TIME-SERIES SATELLITE-DERIVED CO2 FLUX DATA USING VOLUME RENDERING AND GPU-BASED INTERPOLATION ON A CLOUD-DRIVEN DIGITAL EARTH

    Directory of Open Access Journals (Sweden)

    S. Wu

    2017-10-01

    Full Text Available The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  1. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  2. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    Science.gov (United States)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for

  3. In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity.

    Science.gov (United States)

    Guo, Yuxi; Huang, Hongwei; He, Ying; Tian, Na; Zhang, Tierui; Chu, Paul K; An, Qi; Zhang, Yihe

    2015-07-21

    We demonstrate the fabrication of a core-satellite structured BiOBr-CdS photocatalyst with highly efficient photocatalytic reactivity via a facile in situ crystallization approach at room temperature. The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) results reveal that the BiOBr flakes are surrounded by CdS particles. The coverage of the satellites on the surface of the BiOBr nanosheets could be controlled by changing the content of the CdS, which contributes to the enhanced level of photocatalytic performance. The UV-vis diffuse reflection spectra demonstrate that the visible light absorption of the BiOBr-CdS photocatalyst is also enhanced by the CdS loaded. The excellent structural and spectral properties endow the BiOBr-CdS heterojunctions with improved photocatalytic performance pertaining to bisphenol A (BPA) degradation and photocurrent generation. Under visible light irradiation, the optimum photocatalytic activity of BiOBr-CdS at a molar ratio of 1 : 5 (CdS/BiOBr) is almost 2.8 times and 24.6 times as high as that of pure BiOBr and CdS. The remarkably enhanced photoreactivity should be attributed to the match in the energy levels and close core-satellite structural coupling between the CdS and BiOBr, which greatly facilitates the separation and transfer of photoinduced electron-hole pairs, as confirmed by photoluminescence (PL) and electrochemical impedance spectra (EIS). The present work sheds new light on the construction of highly efficient core-satellite heterojunctional photocatalysts for practical applications.

  4. Scheduling algorithm for data relay satellite optical communication based on artificial intelligent optimization

    Science.gov (United States)

    Zhao, Wei-hu; Zhao, Jing; Zhao, Shang-hong; Li, Yong-jun; Wang, Xiang; Dong, Yi; Dong, Chen

    2013-08-01

    Optical satellite communication with the advantages of broadband, large capacity and low power consuming broke the bottleneck of the traditional microwave satellite communication. The formation of the Space-based Information System with the technology of high performance optical inter-satellite communication and the realization of global seamless coverage and mobile terminal accessing are the necessary trend of the development of optical satellite communication. Considering the resources, missions and restraints of Data Relay Satellite Optical Communication System, a model of optical communication resources scheduling is established and a scheduling algorithm based on artificial intelligent optimization is put forwarded. According to the multi-relay-satellite, multi-user-satellite, multi-optical-antenna and multi-mission with several priority weights, the resources are scheduled reasonable by the operation: "Ascertain Current Mission Scheduling Time" and "Refresh Latter Mission Time-Window". The priority weight is considered as the parameter of the fitness function and the scheduling project is optimized by the Genetic Algorithm. The simulation scenarios including 3 relay satellites with 6 optical antennas, 12 user satellites and 30 missions, the simulation result reveals that the algorithm obtain satisfactory results in both efficiency and performance and resources scheduling model and the optimization algorithm are suitable in multi-relay-satellite, multi-user-satellite, and multi-optical-antenna recourses scheduling problem.

  5. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  6. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery

    International Nuclear Information System (INIS)

    Doll, Christopher N.H.; Pachauri, Shonali

    2010-01-01

    A lack of access to energy and, in particular, electricity is a less obvious manifestation of poverty but arguably one of the most important. This paper investigates the extent to which electricity access can be investigated using night-time light satellite data and spatially explicit population datasets to compare electricity access between 1990 and 2000. We present here the first satellite derived estimates of rural population without access to electricity in developing countries to draw insights on issues surrounding the delivery of electricity to populations in rural areas. The paper provides additional evidence of the slow progress in expansion of energy access to households in Sub-Saharan Africa and shows how this might be ascribed in part due to the low population densities in rural areas. The fact that this is a continent with some of the lowest per-capita income levels aggravates the intrinsic difficulties associated with making the investments needed to supply electricity in areas with low population density and high dispersion. Clearly, these spatial dimensions of the distributions of the remaining unelectrified populations in the world have an impact on what options are considered the most appropriate in expanding access to these households and the relative attractiveness of decentralized options.

  7. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  8. Experimental Investigation of the Heat Transfer in a Room using Night-Time Coling by Mixing Ventilation

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Nørgaard, Jesper; Daniels, Ole

    2011-01-01

    of full-scale measurements. The efficiency of night-time ventilation depends on the outdoor temperature and the heat transfer between the room air and the building constructions. In a full-scale test room the heat transfer was investigated during 12 hour of discharging by night-time ventilation. Three...... areas and the convective heat transfer coefficient ranged between 5 and 30 W/m2. The ratio of convective to total heat flow from the ceiling depends on the air change rate, ranging from approximately 40% at the low air change rates to approximately 70% at the high air change rate. Even though radiation......For many years focus has been on reducing the energy need for heating in buildings. This has lead to buildings with low energy demands for heating but often at the expense of the need for cooling of the building. In order to design buildings with low or zero energy need energy efficient strategies...

  9. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  10. Monitoring auroral electrojets with satellite data

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.

    2013-01-01

    satellites. The method is simple enough to be implemented for real-time monitoring, especially since it does not require the full vector field measurement. We demonstrate the method on 5 years of Challenging Minisatellite Payload (CHAMP) data and show how the monitoring depends on the local time...

  11. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feinaeugle, M., E-mail: m.feinaeugle@utwente.nl [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Gregorčič, P. [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000, Ljubljana (Slovenia); Heath, D.J. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Mills, B., E-mail: bm602@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Eason, R.W. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2017-02-28

    Highlights: • Laser-induced backward transfer was investigated by time-resolved shadowgraphy. • Flyer velocity was a function of carrier, donor thickness, delay and fluence. • We investigated the fluence window for intact transfer and the role of the receiver. • Donor-crater profile variation was studied for different ejection regimes. • Conditions for intact and fragmented flyers were determined. - Abstract: We have studied the transfer regimes and dynamics of polymer flyers from laser-induced backward transfer (LIBT) via time-resolved shadowgraphy. Imaging of the flyer ejection phase of LIBT of 3.8 μm and 6.4 μm thick SU-8 polymer films on germanium and silicon carrier substrates was performed over a time delay range of 1.4–16.4 μs after arrival of the laser pulse. The experiments were carried out with 150 fs, 800 nm pulses spatially shaped using a digital micromirror device, and laser fluences of up to 3.5 J/cm{sup 2} while images were recorded via a CCD camera and a spark discharge lamp. Velocities of flyers found in the range of 6–20 m/s, and the intact and fragmented ejection regimes, were a function of donor thickness, carrier and laser fluence. The crater profile of the donor after transfer and the resulting flyer profile indicated different flyer ejection modes for Si carriers and high fluences. The results contribute to better understanding of the LIBT process, and help to determine experimental parameters for successful LIBT of intact deposits.

  12. Effect of Sitting Pause Times on Balance After Supine to Standing Transfer in Dim Light.

    Science.gov (United States)

    Johnson, Eric G; Albalwi, Abdulaziz A; Al-Dabbak, Fuad M; Daher, Noha S

    2017-06-01

    The risk of falling for older adults increases in dimly lit environments. Longer sitting pause times, before getting out of bed and standing during the night, may improve postural stability. The purpose of this study was to measure the effect of sitting pause times on postural sway velocity immediately after a supine to standing transfer in a dimly lit room in older adult women. Eighteen healthy women aged 65 to 75 years who were able to independently perform supine to standing transfers participated in the study. On each of 2 consecutive days, participants assumed the supine position on a mat table and closed their eyes for 45 minutes. Then, participants were instructed to open their eyes and transfer from supine to sitting, with either 2- or 30-second pause in the sitting position followed by standing. The sitting pause time order was randomized. A significant difference was observed in postural sway velocity between the 2- and 30-second sitting pause times. The results revealed that there was less postural sway velocity after 30-second than 2-second sitting pause time (0.61 ± 0.19 vs 1.22 ± 0.68, P Falls related to bathroom usage at night are the most common reported falls among older adults. In the present study, the investigators studied the effect of sitting pause times on postural sway velocity after changing position from supine to standing in a dimly lit environment. The findings showed that the mean postural sway velocity was significantly less after 30-second sitting pause time compared with 2-second sitting pause time. Postural sway velocity decreased when participants performed a sitting pause of 30 seconds before standing in a dimly lit environment. These results suggest that longer sitting pause times may improve adaptability to dimly lit environments, contributing to improved postural stability and reduced risk of fall in older adult women when getting out of bed at night.

  13. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    Science.gov (United States)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  14. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin

    2009-12-01

    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  15. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  16. Probing the earth's gravity field using Satellite-to-Satellite Tracking (SST)

    Science.gov (United States)

    Vonbun, F. O.

    1976-01-01

    Satellite-to-Satellite (SST) tests, namely: (a) the ATS-6/GEOS-3 and (b) the ATS-6/Apollo-Soyuz experiment and some of the results obtained are described. The main purpose of these two experiments was first to track via ATS-6 the GEOS-3 as well as the Apollo-Soyuz and to use these tracking data to determine (a) both orbits, that is, ATS-6, GEOS-3 and/or the Apollo-Soyuz orbits at the same time; (b) each of these orbits alone; and (c) test the ATS-6/GEOS-3 and/or Apollo-Soyuz SST link to study local gravity anomalies; and, second, to test communications, command, and data transmission from the ground via ATS-6 to these spacecraft and back again to the ground. The Apollo-Soyuz Geodynamics Experiment is discussed in some detail.

  17. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    Directory of Open Access Journals (Sweden)

    P. Subrahmanyam

    2005-11-01

    Full Text Available Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a direct penetration of the magnetospheric electric fields to low latitudes, (b development of disturbance dynamo, (c changes in atmospheric neutral winds at ionospheric level and (d changes in neutral composition triggered by the storm time atmospheric heating.

    In the present study an attempt is made to further understand some of the observed storm time effects in terms of storm time changes in zonal electric fields and meridional neutral winds. For this purpose, observations made by the Retarding Potential Analyzer (RPA payload on board the Indian satellite SROSS-C2 are examined for four prominent geomagnetic storm events that occurred during the high solar activity period of 1997-2000. Available simultaneous observations, from the GPS satellite network, are also used. The daytime passes of SROSS-C2 have been selected to examine the redistribution of ionization in the equatorial ionization anomaly (EIA region. In general, EIA is observed to be weakened 12-24 h after the main phase onset (MPO of the storm. The storm time behaviour inferred by SROSS-C2 and the GPS satellite network during the geomagnetic storm of 13 November 1998, for which simultaneous observations are available, is found to be consistent. Storm time changes in the delay of received GPS signals are noted to be ~1-3 m, which is a significant component of the total delay observed on a quiet day.

    An attempt is made to identify and

  18. MoMoSat -- Mobile Service for Monitoring with GeoNotes via Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Irmgard [Forschungszentrum Juelich (Germany). Programme Group Systems Analysis and Technology Evaluation (STE); Jonas, Karl [Univ. of Applied Science Bonn-Rhein-Sieg, Sankt Augustin (Germany). FhG FOKUS CC SATCom; Horz, Alexander [horz informatik, Sankt Augustin (Germany); Wettschereck, Dietrich; Schmidt, Dirk [DIALOGIS GmbH, Bonn (Germany)

    2003-05-01

    The MoMoSat service will enable mobile end-users to view, manage, annotate, and communicate mapbased information in the field. The handled information exists of a huge volume of raster (satellite or aerial images) and vector data (i.e. street networks, cadastral maps or points of interest), as well as text-specific geo-referenced textual notes (the so-called 'GeoNotes') and real-time voice. A secure real-time communication between mobile units and the primary data store is an essential task of the MoMoSat service. The basic information is stored in the primary database that is accessible through a virtual private network (VPN) and cached at a server at a base station in order to ensure data availability. The base station may be installed in a car or another mobile vehicle. The two servers will periodically communicate with each other via secure satellite communication in order to check for updates. The base station supplies the relevant GIS data for the mobile units (people or even robots in the field at remote solutions). The communication between the mobile units is based on a peer-to-peer wireless local area network (WLAN) architecture. The mobile units are equipped with mobile computers (i.e. laptop, tablet PC or PDA) combined with a satellite-based positioning system (GPS) that enables them to request the proper geographic data sets from yhe base station's map server. An interactive mapping software shows the actual location on the map and allows the user to navigate (zoom, pan) through the high-resolution map display. The user can switch 'on' or 'off' several thematic layers (i.e. street network or points of interest) on the map. The software also supports collaborative aspects of MoMoSat by offering tools for the management of the GeoNotes that can be visualized by categories. The user can extend the existing GeoNotes with his personnel comments or create new GeoNotes by defining categories, recipients and the level of

  19. The structure of control and data transfer management system for the GAMMA-400 scientific complex

    International Nuclear Information System (INIS)

    Arkhangelskiy, A I; Bobkov, S G; Serdin, O V; Gorbunov, M S; Topchiev, N P

    2016-01-01

    A description of the control and data transfer management system for scientific instrumentation involved in the GAMMA-400 space project is given. The technical capabilities of all specialized equipment to provide the functioning of the scientific instrumentation and satellite support systems are unified in a single structure. Control of the scientific instruments is maintained using one-time pulse radio commands, as well as program commands in the form of 16-bit code words, which are transmitted via onboard control system and scientific data acquisition system. Up to 100 GByte of data per day can be transferred to the ground segment of the project. The correctness of the proposed and implemented structure, engineering solutions and electronic elemental base selection has been verified by the experimental working-off of the prototype of the GAMMA-400 scientific complex in laboratory conditions. (paper)

  20. SISCAL project: establishing an internet-based delivery of near-real-time data products on coastal areas and lakes from satellite imagery

    Science.gov (United States)

    Fell, Frank; Burgess, Phelim; Gruenewald, Alexander; Meyer, Mia V.; Santer, Richard P.; Koslowsky, Dirk; Ganor, Dov; Herut, Barak; Nimre, Saleem; Tibor, Gideon; Berastegui, Diego A.; Nyborg, Lotte; Schultz-Rasmussen, Michael; Johansen, Torunn; Johnsen, Geir; Brozek, Morten; Joergensen, Henrik; Habberstad, Jan; Hanssen, Frank; Amir, Ran; Zask, Alon; Koehler, Antje

    2003-05-01

    SISCAL (Satellite-based Information System on Coastal Areas and Lakes) is a pan-European project dedicated to develop facilities to provide end-users with customized and easy-to-use data for environmental monitoring of coastal areas and lakes. The main task will be to create a software system providing Near-Real-Time information on the aquatic environment (using instruments such as AVHRR, MODIS or MERIS) and ancillary GIS-data. These products will be tailored to individual customers needs, allowing them to exploit Earth Observation (EO) data without extensive in-house knowledge. This way, SISCAL aims at closing the gap between research institutes, satellite data providers and the actual end-users. Data and information exchange will entirely take place over the internet, from the acquisition of satellite data raw from the providers to the dissemination of finalized data products to the end-users. The focus of SISCAL is set on the optimal integration of existing techniques. The co-operation between the ten SISCAL partners, including four end-users representative of public authorities from local to national scale, aims at strengthening the operational use of EO data in the management of coastal areas and lakes.

  1. Implementation of Multiple Access Techniques Applicable for Maritime Satellite Communications

    OpenAIRE

    Stojce Dimov Ilcev

    2013-01-01

    In this paper are introduced fundamentals, characteristics, advantages and disadvantages of Multiple Access (MA) employed as transmission techniques in the Maritime Mobile Satellite Communications (MMSC) between ships and Coast Earth Station (CES) via Geostationary Earth Orbit (GEO) or Not-GEO satellite constellations. In fixed satellite communication, as a rule, especially in MMSC many users are active at the same time. The problem of simultaneous communications between many single or multip...

  2. Using a Cloud Computing System to Reduce Door-to-Balloon Time in Acute ST-Elevation Myocardial Infarction Patients Transferred for Percutaneous Coronary Intervention.

    Science.gov (United States)

    Ho, Chi-Kung; Chen, Fu-Cheng; Chen, Yung-Lung; Wang, Hui-Ting; Lee, Chien-Ho; Chung, Wen-Jung; Lin, Cheng-Jui; Hsueh, Shu-Kai; Hung, Shin-Chiang; Wu, Kuan-Han; Liu, Chu-Feng; Kung, Chia-Te; Cheng, Cheng-I

    2017-01-01

    This study evaluated the impact on clinical outcomes using a cloud computing system to reduce percutaneous coronary intervention hospital door-to-balloon (DTB) time for ST segment elevation myocardial infarction (STEMI). A total of 369 patients before and after implementation of the transfer protocol were enrolled. Of these patients, 262 were transferred through protocol while the other 107 patients were transferred through the traditional referral process. There were no significant differences in DTB time, pain to door of STEMI receiving center arrival time, and pain to balloon time between the two groups. Pain to electrocardiography time in patients with Killip I/II and catheterization laboratory to balloon time in patients with Killip III/IV were significantly reduced in transferred through protocol group compared to in traditional referral process group (both p cloud computing system in our present protocol did not reduce DTB time.

  3. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    Science.gov (United States)

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  4. Analysis of GPS Satellite Allocation for the United States Nuclear Detonation Detection System (USNDS)

    National Research Council Canada - National Science Library

    Bell, Aaron

    2002-01-01

    ...) satellites to detect atmospheric nuclear detonations. Though there are currently over 24 operational GPS satellites, USNDS ground based antennas are only capable of actively monitoring 24 satellites at a time...

  5. Real-time observation of intersystem crossing induced by charge recombination during bimolecular electron transfer reactions

    KAUST Repository

    Alsam, Amani Abdu

    2016-09-21

    Real-time probing of intersystem crossing (ISC) and triplet-state formation after photoinduced electron transfer (ET) is a particularly challenging task that can be achieved by time-resolved spectroscopy with broadband capability. Here, we examine the mechanism of charge separation (CS), charge recombination (CR) and ISC of bimolecular photoinduced electron transfer (PET) between poly[(9,9-di(3,3′-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and dicyanobenzene (DCB) using time-resolved spectroscopy. PET from PFN to DCB is confirmed by monitoring the transient absorption (TA) and infrared spectroscopic signatures for the radical ion pair (DCB─•-PFN+•). In addition, our time-resolved results clearly demonstrate that CS takes place within picoseconds followed by CR within nanoseconds. The ns-TA data exhibit the clear spectroscopic signature of PFN triplet-triplet absorption, induced by the CR of the radical ion pairs (DCB─•-PFN+•). As a result, the triplet state of PFN (3PFN*) forms and subsequently, the ground singlet state is replenished within microseconds. © 2016

  6. How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.

    2017-12-01

    Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly

  7. Non-exclusive satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.E. (Power Conversion Technology, Inc., San Diego, Calif.); Cowhey, P.F. (California, University, La Jolla, Calif.)

    1980-09-01

    A modification of the satellite solar power system employing smaller satellites that are not stationary but move in circular or elliptical orbits of two or three hour periods is discussed. The orbits could be inclined at plus or minus 63.4 deg, 73.1 deg, or 14.3 deg to the equatorial plane. This Interregional or Isoinsolation Power System (IPS) greatly reduces the mass and cost of the antenna needed in the sky and the area required for the rectenna and safety region on the ground (the product of the areas of the antennas and rectennas of the IPS system being between 10 and 20 times lower than that required in the conventional SPS system). International control of IPS through a Solar Satellite Consortium (Solsat) is advocated, patterned after the successful Intelsat consortium, and it is stressed that the system must not be allowed to acquire a military capacity. It is emphasized that the smaller rectennas would not destabilize the ionosphere.

  8. Effects of Transferring to the Rehabilitation Ward on Long-Term Mortality Rate of First-Time Stroke Survivors: A Population-Based Study.

    Science.gov (United States)

    Chen, Chien-Min; Yang, Yao-Hsu; Chang, Chia-Hao; Chen, Pau-Chung

    2017-12-01

    To assess the long-term health outcomes of acute stroke survivors transferred to the rehabilitation ward. Long-term mortality rates of first-time stroke survivors during hospitalization were compared among the following sets of patients: patients transferred to the rehabilitation ward, patients receiving rehabilitation without being transferred to the rehabilitation ward, and patients receiving no rehabilitation. Retrospective cohort study. Patients (N = 11,419) with stroke from 2005 to 2008 were initially assessed for eligibility. After propensity score matching, 390 first-time stroke survivors were included. None. Cox proportional hazards regression model was used to assess differences in 5-year poststroke mortality rates. Based on adjusted hazard ratios (HRs), the patients receiving rehabilitation without being transferred to the rehabilitation ward (adjusted HR, 2.20; 95% confidence interval [CI], 1.36-3.57) and patients receiving no rehabilitation (adjusted HR, 4.00; 95% CI, 2.55-6.27) had significantly higher mortality risk than the patients transferred to the rehabilitation ward. Mortality rate of the stroke survivors was affected by age ≥65 years (compared with age stroke (adjusted HR, 1.55), stroke severity (Stroke Severity Index [SSI] score≥20, compared with SSI scorestroke survivors transferred to the rehabilitation ward had a 5-year mortality rate 2.2 times lower than those who received rehabilitation without transfer to the rehabilitation ward and 4 times lower than those who received no rehabilitation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Coupling mammalian demography to climate through satellite time series of plant phenology

    Science.gov (United States)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2016-12-01

    The seasonality of plant productivity governs the demography of primary and secondary consumers, and in arid ecosystems primary production is constrained by water availability. We relate the behavior, demography, and spatial distribution of large mammalian herbivores and their principal predator to remotely sensed indices of climate and vegetation across the western United States from 2000-2014. Terrain and plant community composition moderate the effects of climatological drought on primary productivity, resulting in spatial variation in ecosystem susceptibility to water stress. Herbivores track these patterns through habitat selection during key periods such as birthing and migration. Across a broad climatological gradient, timing of the start of growing season explains 75% of the variation in herbivore birth timing and 56% of the variation in neonatal survival rates. Initiation of autumn migration corresponds with the end of the growing season. Although indirectly coupled to primary production, carnivore home range size and population density are strongly correlated with plant productivity and growing-season length. Satellite measures of green reflectance during the peak of the growing season explain over 84% of the variation in carnivore home range size and 59% of the variation in density. Climate projections for the western United States predict warming temperatures and shifts in the timing and form of precipitation. Our analyses suggest that increased climatological variability will contribute to fluctuations in the composition and phenology of plant communities. These changes will propagate through consumer trophic levels, manifesting as increased home range area, shifts in the timing of migration, and greater volatility in large mammal populations. Combined with expansion and amplification of human land uses, these changes will likely have economic implications stemming from increased human-wildlife conflict and loss of ecosystem services.

  10. A Conceptual Design for a Small Deployer Satellite

    Science.gov (United States)

    Zumbo, S.

    2002-01-01

    In the last few years, the space scientific and industrial communities have demonstrated a renewed interest for small missions based on new categories of space platforms: micro &nano satellites. The cost reduction w.r.t. larger satellite missions, the shorter time from concept to launch, the risk distribution and the possibility to use this kind of bus both for stand-alone projects and as complementary to larger programs, are key factors that make this new kind of technology suitable for a wide range of space related activities. In particular it is now possible to conceive new mission philosophy implying the realisation of micro satellite constellations, with S/C flying in close formation to form a network of distributed sensors either for near-real time telecommunication or Earth remote sensing and disaster monitoring systems or physics and astronomical researches for Earth-Sun dynamics and high energy radiation studies. At the same time micro satellite are becoming important test- beds for new technologies that will eventually be used on larger missions, with relevant spin-offs potentialities towards other industrial fields. The foreseen social and economical direct benefits, the reduced mission costs and the possibility even for a small skilled team to manage all the project, represent very attractive arguments for universities and research institutes to invest funds and human resources to get first order technical and theoretical skills in the field of micro satellite design, with important influences on the training programs of motivated students that are directly involved in all the project's phases. In consideration of these space market important new trends and of the academic benefits that could be guaranteed by undertaking a micro satellite mission project, basing on its long space activities heritage, University of Rome "La Sapienza" - Aerospace and Astronautics Department, with the support of the Italian Space Agency, Alenia Spazio and of important

  11. Mission studies on constellation of LEO satellites with remote-sensing and communication payloads

    Science.gov (United States)

    Chen, Chia-Ray; Hwang, Feng-Tai; Hsueh, Chuang-Wei

    2017-09-01

    Revisiting time and global coverage are two major requirements for most of the remote sensing satellites. Constellation of satellites can get the benefit of short revisit time and global coverage. Typically, remote sensing satellites prefer to choose Sun Synchronous Orbit (SSO) because of fixed revisiting time and Sun beta angle. The system design and mission operation will be simple and straightforward. However, if we focus on providing remote sensing and store-and-forward communication services for low latitude countries, Sun Synchronous Orbit will not be the best choice because we need more satellites to cover the communication service gap in low latitude region. Sometimes the design drivers for remote sensing payloads are conflicted with the communication payloads. For example, lower orbit altitude is better for remote sensing payload performance, but the communication service zone will be smaller and we need more satellites to provide all time communication service. The current studies focus on how to provide remote sensing and communication services for low latitude countries. A cost effective approach for the mission, i.e. constellation of microsatellites, will be evaluated in this paper.

  12. Ground-to-satellite quantum teleportation.

    Science.gov (United States)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  13. Overview of intercalibration of satellite instruments

    Science.gov (United States)

    Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J.

    2013-01-01

    Inter-calibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be inter-operable, the instruments must be cross-calibrated. To meet the stringent needs of such applications requires that instruments provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust Système International d'unités (SI) traceable Calibration and Validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stability monitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Inter-calibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Inter-calibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated inter-calibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms

  14. Optical neural network system for pose determination of spinning satellites

    Science.gov (United States)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  15. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    Science.gov (United States)

    Liu, Z.; Su, J.; Acker, J. G.; Huffman, G. J.; Vollmer, B.; Wei, J.; Meyer, D. J.

    2017-12-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. Satellite data at 12 NASA data centers can also be used for STEM activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programing languages, etc. Over the years, many efforts have been developed to improve satellite data access, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses the popular online video sharing web site, YouTube, to access visualization of global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without necessity to learn new software or download data. The dataset in this activity is the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA). The video consists of over 50,000 data files collected since 1998 onwards, covering a zone between 50°N-S. The YouTube video will last 36 minutes for the entire dataset record (over 19 years). Since the time stamp is on each frame of the video, users can begin at any time by dragging the time progress bar. This precipitation animation will allow viewing precipitation events and processes (e.g., hurricanes, fronts, atmospheric rivers, etc.) on a global scale. The next plan is to develop a similar animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellitE Retrievals for GPM (IMERG). The IMERG provides precipitation on a near-global (60°N-S) coverage at half-hourly time interval, showing more details on precipitation processes and development, compared to the 3

  16. Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Liying Geng

    2014-03-01

    Full Text Available More than 20 techniques have been developed to de-noise time-series vegetation index data from different satellite sensors to reconstruct long time-series data sets. Although many studies have compared Normalized Difference Vegetation Index (NDVI noise-reduction techniques, few studies have compared these techniques systematically and comprehensively. This study tested eight techniques for smoothing different vegetation types using different types of multi-temporal NDVI data (Advanced Very High Resolution Radiometer (AVHRR (Global Inventory Modeling and Map Studies (GIMMS and Pathfinder AVHRR Land (PAL, Satellite Pour l’ Observation de la Terre (SPOT VEGETATION (VGT, and Moderate Resolution Imaging Spectroradiometer (MODIS (Terra with the ultimate purpose of determining the best reconstruction technique for each type of vegetation captured with four satellite sensors. These techniques include the modified best index slope extraction (M-BISE technique, the Savitzky-Golay (S-G technique, the mean value iteration filter (MVI technique, the asymmetric Gaussian (A-G technique, the double logistic (D-L technique, the changing-weight filter (CW technique, the interpolation for data reconstruction (IDR technique, and the Whittaker smoother (WS technique. These techniques were evaluated by calculating the root mean square error (RMSE, the Akaike Information Criterion (AIC, and the Bayesian Information Criterion (BIC. The results indicate that the S-G, CW, and WS techniques perform better than the other tested techniques, while the IDR, M-BISE, and MVI techniques performed worse than the other techniques. The best de-noise technique varies with different vegetation types and NDVI data sources. The S-G performs best in most situations. In addition, the CW and WS are effective techniques that were exceeded only by the S-G technique. The assessment results are consistent in terms of the three evaluation indexes for GIMMS, PAL, and SPOT data in the study

  17. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  18. The solar panels on the GOES-L satellite are deployed

    Science.gov (United States)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  19. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  20. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    Science.gov (United States)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  1. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    Science.gov (United States)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  2. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  3. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    Science.gov (United States)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  4. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    Science.gov (United States)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  5. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  6. Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Aguero, M.

    2006-01-01

    Rapid identification of the etiologic agent in infected animals is important for the control of an outbreak of vesicular disease in livestock. We have in the present study developed a multiplex real-time reverse transcription-PCR, based on primer-probe energy transfer (PriProET), for simultaneous...

  7. Sources of Error in Satellite Navigation Positioning

    Directory of Open Access Journals (Sweden)

    Jacek Januszewski

    2017-09-01

    Full Text Available An uninterrupted information about the user’s position can be obtained generally from satellite navigation system (SNS. At the time of this writing (January 2017 currently two global SNSs, GPS and GLONASS, are fully operational, two next, also global, Galileo and BeiDou are under construction. In each SNS the accuracy of the user’s position is affected by the three main factors: accuracy of each satellite position, accuracy of pseudorange measurement and satellite geometry. The user’s position error is a function of both the pseudorange error called UERE (User Equivalent Range Error and user/satellite geometry expressed by right Dilution Of Precision (DOP coefficient. This error is decomposed into two types of errors: the signal in space ranging error called URE (User Range Error and the user equipment error UEE. The detailed analyses of URE, UEE, UERE and DOP coefficients, and the changes of DOP coefficients in different days are presented in this paper.

  8. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  9. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resourcestudies. Comparison results from complex...... terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined withroughness data from field observation or literature values. Land cover type maps constitute...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  10. The effect of interhospital transfers, emergency medical services, and distance on ischemic time in a rural ST-elevation myocardial infarction system of care.

    Science.gov (United States)

    Langabeer, James R; Prasad, Sapna; Seo, Munseok; Smith, Derek T; Segrest, Wendy; Owan, Theophilus; Gerard, Daniela; Eisenhauer, Michael D

    2015-07-01

    Regional myocardial infarction systems of care have been shown to improve timely access to primary percutaneous coronary intervention (PCI). However, there is a relatively sparse research on rural "frontier" regions. Arrival mode, high rates of interhospital transfers, long transport times, low population density, and mostly volunteer emergency medical services (EMS) distinguish this region from metropolitan systems of care. We sought to assess the effect of interhospital transfers, distance, and arrival mode on total ischemic times for patients with ST-elevation myocardial infarctions undergoing primary PCI. We assessed patient data from our observational cohort of 395 patients with ST-elevation myocardial infarction with PCI as their primary treatment strategy. Data came from the 10 PCI hospitals participating in the Wyoming Mission: Lifeline program from January 2013 to September 2014. We performed both regression and tests of differences. Median total ischemic time was nearly 2.7 times greater in transferred patients than those presenting directly (379 vs 140 minutes). Distance in miles traveled between patient's home and PCI facility was 2.5 times larger in transfer patients (51 vs 20 miles). Emergency medical services arrival was associated with 23% shorter total ischemic times than self-arrival. Transfer patients from referral hospitals had significantly greater total ischemic time, and use of EMS was associated with significantly lower times. Transport distance was mixed in its effect. These findings suggest a continued focus on improving transitions between referral and receiving centers and enhancing coordination in rural systems of care to reduce the multiplier effect of transfers on total ischemic time. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  12. Time constants and feedback transfer functions of EBR-II [Experimental Breeder Reactor] subassembly types

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel

  13. Robust satellite techniques for remote sensing of seismically active areas

    Energy Technology Data Exchange (ETDEWEB)

    Tramutoli, V; Di Bello, G [Potenza Univ., Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente; Pergola, N; Piscitelli, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate di Analisi Ambientale, Potenza (Italy)

    2001-04-01

    Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity) whose variable contributions to the investigated signal can be so high as to completely mask (or simulate) the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT) has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks) which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observation field also in the presence of highly variable contributions from atmospheric (transmittance), surface (emissivity and morphology) and observational (time/season, but also solar and satellite zenithal angles) conditions. This work presents the first preliminary results, based on several years of NOA A/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications) as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  14. Robust satellite techniques for remote sensing of seismically active areas

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available Several satellite techniques have been recently proposed to remotely map seismically active zones and to monitor geophysical phenomena possibly associated with earthquakes. Even if questionable in terms of their effective applicability, all these techniques highlight as the major problem, still to be overcome, the high number of natural factors (independent of any seismic activity whose variable contributions to the investigated signal can be so high as to completely mask (or simulate the space-time anomaly possibly associated to the seismic event under study. A robust approach (RAT has recently been proposed (and successfully applied in the field of the monitoring of the major environmental risks which, better than other methods, seems suitable for recognising space-time anomalies in the satellite observational field also in the presence of highly variable contributions from atmospheric (transmittance, surface (emissivity and morphology and observational (time/season, but also solar and satellite zenithal angles conditions.This work presents the first preliminary results, based on several years of NOAA/AVHRR observations, regarding its extension to satellite monitoring of thermal anomalies possibly associated to seismically active areas of Southern Italy. The main merits of this approach are its robustness against the possibility of false events detection (specially important for this kind of applications as well as its intrinsic exportability not only to different geographic areas but also to different satellite instrumental packages.

  15. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  16. Near-real time Monitoring of the widespread winter Fog over the Indo-Gangetic Plains using satellite data

    Science.gov (United States)

    Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.

    2016-12-01

    The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  17. Solution of the time-dependent inertial-frame equation of radiative transfer in moving media to O(v/c)

    International Nuclear Information System (INIS)

    Mihalas, D.; Klein, R.I.

    1982-01-01

    A stable and efficient mixed-frame method has been formulated for the solution of the time-dependent equation of radiative transfer with full retention of all velocity dependent terms to O(ν/c). The method retains the simplicity of the differential operator found in the inertial frame while transforming the absorption and emission coefficients to the comoving frame keeping them isotropic. The method is ideally suited to continuum calculations. To correctly treat the time dependence of the radiation field over fluid-flow time increments, the velocity-dependent terms on the right-hand side of both the transfer and moment equations must be retained for consistency

  18. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    Science.gov (United States)

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  19. History of Satellite TV Broadcasting and Satellite Broadcasting Market in Turkey

    Directory of Open Access Journals (Sweden)

    Mihalis KUYUCU

    2015-09-01

    Full Text Available The present study analyses the satellite broadcasting that is the first important development that emerged as a result of digitalization in communication technologies and its reflections in Turkey. As the first milestone in the globalization of television broadcasting, satellite broadcasting provided substantial contribution towards the development of the media. Satellite bro adcasting both increased the broadcasting quality and geographical coverage of the television media. A conceptual study was carried out in the first part of the study in connection with the history of satellite broadcasting in Turkey and across the world. In the research part of the study, an analysis was performed on 160 television channels that broadcast in Turkey via Turksat Satellite. Economic structure of the television channels broadcasting in Turkey via satellite was studied and an analysis was perfo rmed on the operational structure of the channels. As a result of the study, it was emphasized that the television channels broadcasting via satellite platform also use other platforms for the purpose of spreading their broadcasts and television channel ow ners make investments in different branches of the media, too. Capital owners invest in different business areas other than the media although television channels broadcasting via Turksat mostly focus on thematic broadcasting and make effort to generate ec onomic income from advertisements. Delays are encountered in the course of the convergence between the new media and television channels that broadcast only from the satellite platform and such television channels experience more economic problems than the other channels. New media and many TV broadcasting platforms emerged as a result of the developments in the communication technologies. In television broadcasting, satellite platform is not an effective platform on its own. Channels make effort to reach t o more people by using other platforms in addition to

  20. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  1. Relative tracking control of constellation satellites considering inter-satellite link

    Science.gov (United States)

    Fakoor, M.; Amozegary, F.; Bakhtiari, M.; Daneshjou, K.

    2017-11-01

    In this article, two main issues related to the large-scale relative motion of satellites in the constellation are investigated to establish the Inter Satellite Link (ISL) which means the dynamic and control problems. In the section related to dynamic problems, a detailed and effective analytical solution is initially provided for the problem of satellite relative motion considering perturbations. The direct geometric method utilizing spherical coordinates is employed to achieve this solution. The evaluation of simulation shows that the solution obtained from the geometric method calculates the relative motion of the satellite with high accuracy. Thus, the proposed analytical solution will be applicable and effective. In the section related to control problems, the relative tracking control system between two satellites will be designed in order to establish a communication link between the satellites utilizing analytical solution for relative motion of satellites with respect to the reference trajectory. Sliding mode control approach is employed to develop the relative tracking control system for body to body and payload to payload tracking control. Efficiency of sliding mode control approach is compared with PID and LQR controllers. Two types of payload to payload tracking control considering with and without payload degree of freedom are designed and suitable one for practical ISL applications is introduced. Also, Fuzzy controller is utilized to eliminate the control input in the sliding mode controller.

  2. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  3. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  4. Characterizing SPDY over High Latency Satellite Channels

    Directory of Open Access Journals (Sweden)

    Luca Caviglione

    2014-12-01

    Full Text Available The increasing complexity ofWeb contents and the growing diffusion of mobile terminals, which use wireless and satellite links to get access to the Internet, impose the adoption of more specialized protocols. In particular, we focus on SPDY, a novel protocol introduced by Google to optimize the retrieval of complex webpages, to manage large Round Trip Times and high packet losses channels. In this perspective, the paper characterizes SPDY over high latency satellite links, especially with the goal of understanding whether it could be an efficient solution to cope with performance degradations typically affecting Web 2.0 services. To this aim, we implemented an experimental set-up, composed of an ad-hoc proxy, a wireless link emulator, and an instrumented Web browser. The results clearly indicate that SPDY can enhance the performances in terms of loading times, and reduce the traffic fragmentation. Moreover, owing to its connection multiplexing architecture, SPDY can also mitigate the transport layer complexity, which is critical when in presence of Performance Enhancing Proxies usually deployed to isolate satellite trunks.

  5. Mutual Events in the Uranian satellite system in 2007

    Science.gov (United States)

    Arlot, J. E.

    2008-09-01

    The equinox time on the giant planets When the Sun crosses the equatorial plane of a giant planet, it is the equinox time occurring every half orbit of the planet, i.e. every 6 years for Jupiter, 14 years for Saturn, 42 years for Uranus and 82 years for Neptune. Except Neptune, each planet have several major satellites orbiting in the equatorial plane, then, during the equinox time, the satellites will eclipse each other mutually. Since the Earth follows the Sun, during the equinox time, a terrestrial observer will see each satellite occulting each other during the same period. These events may be observed with photometric receivers since the light from the satellites will decrease during the events. The light curve will provide information on the geometric configuration of the the satellites at the time of the event with an accuracy of a few kilometers, not depending on the distance of the satellite system. Then, we are able to get an astrometric observation with an accuracy several times better than using direct imaging for positions. Equinox on Uranus in 2007 In 2007, it was equinox time on Uranus. The Sun crossed the equatorial plane of Uranus on December 6, 2007. Since the opposition Uranus-Sun was at the end of August 2007, observations were performed from May to December 2007. Since the declination of Uranus was between -5 and -6 degrees, observations were better to make in the southern hemisphere. However, some difficulties had to be solved: the faintness of the satellites (magnitude between 14 and 16), the brightness of the planet (magnitude 5) making difficult the photometric observation of the satellites. The used of K' filter associated to a large telescope allows to increase the number of observable events. Dynamics of the Uranian satellites One of the goals of the observations was to evaluate the accuracy of the current dynamical models of the motion of the satellites. This knowledge is important for several reasons: most of time the Uranian system is

  6. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  7. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  8. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    Science.gov (United States)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  9. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    Science.gov (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  10. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  11. Asynchronous timing and Doppler recovery in DSP based DPSK modems for fixed and mobile satellite applications

    Science.gov (United States)

    Koblents, B.; Belanger, M.; Woods, D.; McLane, P. J.

    While conventional analog modems employ some kind of clock wave regenerator circuit for synchronous timing recovery, in sampled modem receivers the timing is recovered asynchronously to the incoming data stream, with no adjustment being made to the input sampling rate. All timing corrections are accomplished by digital operations on the sampled data stream, and timing recovery is asynchronous with the uncontrolled, input A/D system. A good timing error measurement algorithm is a zero crossing tracker proposed by Gardner. Digital, speech rate (2400 - 4800 bps) M-PSK modem receivers employing Gardner's zero crossing tracker were implemented and tested and found to achieve BER performance very close to theoretical values on the AWGN channel. Nyguist pulse shaped modem systems with excess bandwidth factors ranging from 100 to 60 percent were considered. We can show that for any symmetric M-PSK signal set Gardner's NDA algorithm is free of pattern jitter for any carrier phase offset for rectangular pulses and for Nyquist pulses having 100 percent excess bandwidth. Also, the Nyquist pulse shaped system is studied on the mobile satellite channel, where Doppler shifts and multipath fading degrade the pi/4-DQPSK signal. Two simple modifications to Gardner's zero crossing tracker enable it to remain useful in the presence of multipath fading.

  12. Control of particle precipitation by energy transfer from solar wind

    Science.gov (United States)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  13. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  14. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    globally valid. The latency of the estimated clocks is approximately 7 seconds. Another limiting factor is the frequency of satellite downlinks and the latency of the data transfer from the ground station to the computation center. Therefore a near real-time scenario is examined in which the satellite has about one ground station contact per orbit or respectively one contact in 90 minutes. The results of the near real-time POD are evaluated in an internal consistency check and compared against the science orbit solution and laser ranging observations.

  15. The effect of the number of transferred embryos, the interval between nuclear transfer and embryo transfer, and the transfer pattern on pig cloning efficiency.

    Science.gov (United States)

    Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong

    2013-12-01

    To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, pcloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  17. Bias correction for rainrate retrievals from satellite passive microwave sensors

    Science.gov (United States)

    Short, David A.

    1990-01-01

    Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.

  18. Inferring a Drive-Response Network from Time Series of Topological Measures in Complex Networks with Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Xinbo Ai

    2014-11-01

    Full Text Available Topological measures are crucial to describe, classify and understand complex networks. Lots of measures are proposed to characterize specific features of specific networks, but the relationships among these measures remain unclear. Taking into account that pulling networks from different domains together for statistical analysis might provide incorrect conclusions, we conduct our investigation with data observed from the same network in the form of simultaneously measured time series. We synthesize a transfer entropy-based framework to quantify the relationships among topological measures, and then to provide a holistic scenario of these measures by inferring a drive-response network. Techniques from Symbolic Transfer Entropy, Effective Transfer Entropy, and Partial Transfer Entropy are synthesized to deal with challenges such as time series being non-stationary, finite sample effects and indirect effects. We resort to kernel density estimation to assess significance of the results based on surrogate data. The framework is applied to study 20 measures across 2779 records in the Technology Exchange Network, and the results are consistent with some existing knowledge. With the drive-response network, we evaluate the influence of each measure by calculating its strength, and cluster them into three classes, i.e., driving measures, responding measures and standalone measures, according to the network communities.

  19. Using a Cloud Computing System to Reduce Door-to-Balloon Time in Acute ST-Elevation Myocardial Infarction Patients Transferred for Percutaneous Coronary Intervention

    Directory of Open Access Journals (Sweden)

    Chi-Kung Ho

    2017-01-01

    Full Text Available Background. This study evaluated the impact on clinical outcomes using a cloud computing system to reduce percutaneous coronary intervention hospital door-to-balloon (DTB time for ST segment elevation myocardial infarction (STEMI. Methods. A total of 369 patients before and after implementation of the transfer protocol were enrolled. Of these patients, 262 were transferred through protocol while the other 107 patients were transferred through the traditional referral process. Results. There were no significant differences in DTB time, pain to door of STEMI receiving center arrival time, and pain to balloon time between the two groups. Pain to electrocardiography time in patients with Killip I/II and catheterization laboratory to balloon time in patients with Killip III/IV were significantly reduced in transferred through protocol group compared to in traditional referral process group (both p<0.05. There were also no remarkable differences in the complication rate and 30-day mortality between two groups. The multivariate analysis revealed that the independent predictors of 30-day mortality were elderly patients, advanced Killip score, and higher level of troponin-I. Conclusions. This study showed that patients transferred through our present protocol could reduce pain to electrocardiography and catheterization laboratory to balloon time in Killip I/II and III/IV patients separately. However, this study showed that using a cloud computing system in our present protocol did not reduce DTB time.

  20. Tele-ultrasound using ATM over a T-1 satellite connection

    Science.gov (United States)

    Williamson, Morgan P.; Suitor, Charles T.; de Treville, Robert E.; Freckleton, Michael W.; Kinsey, Van; Goeringer, Fred; Lyche, David K.; Hunter, Bruce; Jennings, Neal E.; Shelton, Philip D.; Marcy, Jon; Poore, Tom; North, Jack

    1996-04-01

    In September 1995 the United States military conducted a demonstration project to provide live ultrasound video and diagnostic DICOM still images using GTE's asynchronous transfer mode (ATM) technologies over an Orion T-1 satellite link. Still images were frame-grabbed from a Diasonics ultrasound and sent to the ALI Wide Area Network system. A group of diagnostic images was then sent in DICOM 3.0 format over a virtual ethernet satellite link from Chantilly, Virginia to Dayton, Ohio. These images came across a DICOM gateway into the Medical Diagnostic Imaging Support (MDIS) System. Live video from the ultrasound was also routed through a CLI Radiance VTC over the satellite to a VTC in Ohio. The video bandwidth was progressively narrowed with two radiologists determining the minimal acceptable bandwidth for detecting test objects in a phantom. The radiologists accepted live video ultrasound at bandwidths as low as 384 kbps from the hands of an experienced ultrasonographer located hundreds of miles away. DICOM still images were sent uncompressed and were of acceptable image quality when viewed on the MDIS system. The technology demonstrated holds great promise for both deployed U.S. Military Forces and civil uses of remote radiology. Detailed network drawings and videotapes of the ultrasound examinations at the remote site are provided.