Sample records for satellite thermal ir

  1. Thermal IR satellite data application for earthquake research in Pakistan (United States)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat


    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  2. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data (United States)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  3. Design and Operation of an IR-CAGE For Thermal Vacuum Testing of a Communication Satellite (United States)

    Wuersching, C.


    A specific infrared radiation device was designed and manufactured for infrared simulation on a communication satellite. For the thermal vacuum test of this satellite, radiation fields with different sizes, shapes and radiation intensities were required to deliver additional heating power onto the space- craft panels. Five of the six sides of the cube- shaped satellite had to be equipped with flat IR- frames so that a cage surrounding the S/C had to be designed. The following features of the IR-cage were re- quired: A lightweight, but still rigid construction of the frame with space-proofed materials; using of standard components for cost reasons; radiation intensities of 400 to 1100 W/m2; a computer-based system for individual control of the heating circuits; a user friendly and safe handling of the operation panel and the recording of all operational parame- ter. The mechanical construction was realised by using aluminium profiles. The standard components al- lowed completing the mechanical set-up within a short time. After some investigation concerning the heating devices it was decided to use heating strips for the radiation fields of low intensity and com- mercial IR-quartz radiators for fields with higher intensity. A special suspension for the heating strips was designed to keep them under defined tension. The power supplies for the heating circuits were computer-controlled. The software allowed the individual power setting of each heater. Addition- ally an automatic mode for controlling the heaters by a reference thermocouple was foreseen. Beside design features of the cage, this paper will also describe the heater concept and the control system, and it will have a look at QA relevant mat- ters.

  4. Future development of IR thermovision weather satellite equipment (United States)

    Listratov, A. V.


    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  5. Computing Thermal Imbalance Forces On Satellites (United States)

    Vigue, Yvonne; Schutz, Robert E.; Sewell, Granville; Abusali, Pothai A. M.


    HEAT.PRO computer program calculates imbalance force caused by heating of surfaces of satellite. Calculates thermal imbalance force and determines its effect on orbit of satellite, especially where shadow cast by Earth Causes periodic changes in thermal environment around satellite. Written in FORTRAN 77.

  6. Thermal-to-visible transducer (TVT) for thermal-IR imaging (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven


    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  7. Ice contamination on satellite IR sensors: the MIPAS case (United States)

    Niro, F.; Fehr, T.; Kleinert, A.; Laur, H.; Lecomte, P.; Perron, G.


    MIPAS on board the ENVISAT platform is a Michelson Interferometer measuring the atmospheric limb emission in the mid-infrared (IR), from 4.15 µm to 14.5 µm [1]. The calibrated MIPAS measurements are radiance spectra as a function of wavenumber. The radiometric and spectral calibrations of the raw data are part of the Level 1 processing in the Ground Segment [2]. The accuracy of the radiometric calibration is essential in order to ensure precise temperature and trace gas retrieval in the Level 2 processing. This calibration process requires a set of cold space measurements and a series of measurements of a black body source to determine the radiometric gain function and to correct for instrument self-emission. The deep space measurements are repeated every four limb scanning sequences with the purpose of compensating the variation of instrument's temperature along the orbit. The radiometric gain function is updated every week to correct for a degraded transmission at the detector due to ice contamination. The ice contamination leads to a decrease of the signal, mainly due to ice absorption of the incoming IR radiation. This paper presents an analysis of the effect of ice contamination during the MIPAS mission; in particular we will study its impact on the radiometric accuracy and on the Level 2 retrieval precision. We will highlight the importance of the ice monitoring for the MIPAS mission and we will show that this type of monitoring allows improving the stability and the overall performances of the MIPAS instrument. The effect of ice in other ENVISAT instruments will be also mentioned (e.g., AATSR). The lessons learned during the mission about ice contamination are very important, especially for IR sensors that are the most affected by this type of problem. These lessons will be useful in order to improve the in-flight operations of present and future satellite missions. [1] H. Fischer, M. Birk, C. Blom, B. Carli, M. Carlotti, T. von Clarmann, L. Delbouille, A

  8. Discriminating satellite IR anomalies associated with the MS 7.1 Yushu earthquake in China (United States)

    Qin, Kai; Wu, Lixin; Zheng, Shuo; Ma, Weiyu


    In the process of exploring pre-earthquake thermal anomalies using satellite infrared data, Blackett et al. (2011) found that the previously reported anomalies before the 2001 Mw 7.7 Gujarat earthquake, in India, were related to positive biases caused by data gaps due to cloud cover and mosaicing of neighboring orbits of MODIS satellite data. They supposed that such effects could also be responsible for other cases. We noted a strip-shaped TIR anomaly on March 17th, 2010, 28 days before the Ms. 7.1 Yushu earthquake (Qin et al., 2011). Here we again investigate multi-year infrared satellite data in different bands to discriminate whether the anomaly is associated with the earthquake, or is only bias caused by the data gaps. From the water vapor images, we find lots of clouds that have TIR anomalies. However, on the cloudiness background, there is an obvious strip-shaped gap matching the tectonic faults almost perfectly. In particular, the animation loops of hourly water vapor images show that the cloud kept moving from west to east, while they never covered the strip-shaped gap. We consider that the cloud with this special spatial pattern should have implied the abnormal signals associated with the seismogenic process. Based on current physical models, the satellite IR anomalies both on TIR and water vapor bands can qualitatively be explained using synthetic mechanisms.

  9. Camouflage in thermal IR: spectral design (United States)

    Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman


    In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.

  10. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin


    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  11. Thermal IR exitance model of a plant canopy (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.


    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  12. Evaluation of IRS-1C LISS-3 satellite data for Norway spruce defoliation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Falkenstroem, H.


    Satellite based remote sensing supported by air photo and field surveys, provide a means to area covering forest health assessment on a regional scale. Landsat TM data has been extensively used in studies of spruce and fir defoliation in Europe and North America. The temporal coverage of Landsat TM in combination with cloudiness however restrict the availability of data. In this study the LISS-3 sensor onboard the Indian Resource Satellite, IRS-1C, was evaluated for defoliation assessments in Norway spruce (Picea abies) in the central part of Sweden. The near infrared wavelength band proved to be best correlated with mean stand defoliation. After normalisation of satellite data for topographic conditions, the correlation coefficient increased from -0,19 to -0,83. Normalising satellite data for species composition did not improve the results though. The correction coefficients involved in the procedure were originally developed for Landsat TM, and proved to be inadequate for the LISS-3 data set. A thorough examination of the effects of species composition on LISS-3 data is needed to yield better results. The correlation between observed defoliation in the verification stands and predicted (based on the inverse regression function between corrected NIR values and defoliation in reference stands) was 0,70, despite a very limited range of defoliation in the verification set. IRS-1C LISS-3 is fully comparable to Landsat TM for spruce defoliation studies, although the results would probably not be significantly improved 49 refs, 7 figs, 10 tabs

  13. Laser guide stars for daytime thermal IR observations (United States)

    Beckers, Jacques M.


    In connection with the planning for Extremely Large Telescopes, I revisit a 2001 paper in which Cacciani and I describe the use of Sodium Laser Guide Stars (LGSs) for diffraction limited daytime astronomical observations. The enabling technology for seeing LGSs in broad daylight is the availability of very narrow band magneto-optical filters. Considering the dominance of the atmospheric scattering of sunlight at wavelengths below 3.5 μm, daytime use is only indicated for mid- and thermal IR observations. The launch of the 6.5 meter aperture James Web Space Telescope (JWST) appears to be assured and planned for 2013, preceding the most optimistic projections for the completion date of the first ELT. The projected thermal background of the JWST is very much less than that of ground-based telescopes so that any competing ground-based observations are limited to those parameters not covered by the JWST: angular resolution (requiring apertures > 6.5 meter) and spectral resolution (R>3000). I compare the benefits of daytime observations with Na-LGS equipped telescopes and interferometers at moderate latitudes and in the Antarctic (specifically Dome C). In both cases daytime observations extend the amount of observing time available for TIR observations. Antarctic observations have the advantage of having very good seeing during the daytime, significantly better than nighttime seeing. In contrast the seeing at moderate latitude sites significantly deteriorates during daytime resulting in lower quality observations than during nighttime. In addition Antarctic sites are less hostile to maintenance and operations during daytime (summer) observations as compared to nighttime (winter) observations.

  14. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain


    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  15. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey


    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  16. Thermal Conductivity Measurements on Icy Satellite Analogs (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu


    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  17. Thermal emission before earthquakes by analyzing satellite infra-red data (United States)

    Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.


    Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.

  18. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system. (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji


    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.


    Directory of Open Access Journals (Sweden)



    Full Text Available The amount of precipitable water (TPW in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional characteristics – due to local processes acting as modulating factors - may be lost. For the Black Sea area, studies on the climatological features of atmospheric moisture are available from sparse or not readily available observational databases or from global reanalysis. These studies show that, although a basin of relatively small dimensions, the Black Sea presents features that may significantly impact on the atmospheric circulation and its general characteristics. Satellite observations provide new opportunities for extending the knowledge on this area and for monitoring atmospheric properties at various scales. In particular, observations in infrared (IR spectrum are suitable for studies on small-scale basins, due to the finer spatial sampling and reliable information in the coastal areas. As a first step toward the characterization of atmospheric moisture over the Black Sea from satellite-based information, we investigate three datasets of IR-based products which contain information on the total amount of moisture and on its vertical distribution, available in the area of interest. The aim is to provide a comparison of these data with regard to main climatological features of moisture in this area and to highlight particular strengths and limits of each of them, which may be helpful in the choice of the most suitable dataset for a certain application.

  20. Non-invasive thermal IR detection of breast tumor development in vivo (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.


    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  1. NCTM workshop splinter session, IR thermal measurement instruments (United States)

    Kaplan, Herbert


    The splinter session dealing with commercial industrial thermal measurement state-of-the-hardware had a total attendance of 15. Two papers were presented in the splinter session as follows: (1) Development of an Infrared Imaging System for the Surface Tension Driven Convection Experiment, Alexander D. Pline, NASA LeRC; (2) A Space-qualified PtSi Thermal Imaging System, Robert W. Astheimer, Barnes Engineering Div., EDO Corp. In addition a brief description of SPRITE detector technology was presented by Richard F. Leftwich of Magnovox. As anticipated, the discussions were concerned mainly with thermal imaging figures of merit rather than those for point measurement instruments. The need for uniform guidelines whereby infrared thermal imaging instruments could be specified and evaluated was identified as most important, particularly where temperature measurements are required. Presently there are differences in the way different manufacturers present significant performance parameters in their instrument data sheets. Furthermore, the prospective user has difficulty relating these parameters to actual measurement needs, and procedures by which performance can be verified are poorly defined. The current availability of powerful thermal imaging diagnostic software was discussed.

  2. Management applications for thermal IR imagery of lake processes (United States)

    Whipple, J. M.; Haynes, R. B.


    A thermal infrared scanning program was conducted in the Lake Ontario Basin region in an effort to determine: (1) limonologic data that could be collected by remote sensing techniques, and (2) local interest in and routine use of such data in water management programs. Difficulties encountered in the development of an infrared survey program in New York suggest that some of the major obstacles to acceptance of remotely sensed data for routine use are factors of psychology rather than technology. Also, terminology used should suit the measurement technique in order to encourage acceptance of the surface thermal data obtained.

  3. New flexible thermal control material for long-life satellite

    International Nuclear Information System (INIS)

    Sasaki, Shigekuni; Hasuda, Yoshinori; Ichino, Toshihiro


    Flexible thermal control materials are light weight, cheap and excellent in the practical applicability, and are expected to be applied to future long life, large capacity satellites. However, the flexible thermal control materials used at present have the defect that either the space environment withstanding capability or the thermal control performance is poor. Therefore, the authors examined the flexible thermal control materials which are excellent in both these properties, and have developed the thermal control material PEI-OSR using polyether imide films as the substrate. In this study, while comparing with the FEP Teflon with silver vapor deposition, which has been used so far for short life satellites, the long term reliability of the PEI-OSR supposing the use for seven years was examined. As the results, the FEP Teflon with silver vapor deposition caused cracking and separation by irradiation and heat cycle test, and became unusable, but the PEI-OSR did not change its flexibility at all. Also the thermal control performance of the PEI-OSR after the test equivalent to seven years was superior to the initial performance of the Kaptone with aluminum vapor deposition, which has excellent space environment endurance, thus it was clarified that the PEI-OSR is the most excellent for this purpose. (Kako, I.)

  4. Remote thermal IR surveying to detect abandoned mineshafts in former mining areas

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, D.A.; Marsh, S.H.; Gibson, A.; Ager, G.J.; McManus, K.B.; Caunt, S.; Culshaw, M.G. [British Geological Survey, Nottingham (United Kingdom)


    In former mining areas it is critical to locate unknown, abandoned mineshafts prior to the development of a site. Abandoned mineshafts are ground disturbances that have very localized effects on the morphology and the physical, chemical, drainage and moisture properties of the surface geological materials and thus thermo-physical properties. Remotely sensed thermal IR surveys provide the potential for a rapid, inexpensive and non-intrusive technique for mineshaft detection. The key parameters of thermal IR radiation and the application of remote thermal IR surveys to planning are described, using case histories from former mining areas in Lancashire, Yorkshire and Nottinghamshire. Field-measured IR temperature differences correlated well with different ground conditions caused by changes in vegetation, disturbance, compaction and moisture-drainage regimes. A thermal anomaly over an area of c. 6 m{sup 2} above a known mineshaft was characterized by traces of methane and temperatures higher by 0.5-1{sup o}C than those of the adjacent ground surface. Using thermal IR images, collected with the Daedalus 1260 Airborne Thematic Mapper, a scheme was developed to classify and map mineshafts with and without any observed visual characteristics. When applied using thermal imagery obtained from commercial flights the scheme identified several potential sites of abandoned mineshafts in an area designated for the redevelopment of the Nottingham Business Park, East Midlands. The thermal anomalies were associated with minor topographic features such as mounds, depressions and dereliction, as well as compositional features caused by coal enrichment and Coal Measures mudstone infill. These features had very little surface expression and were confirmed only using soil stripping.

  5. Remote Thermal IR Spectroscopy of our Solar System (United States)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly


    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra


    Directory of Open Access Journals (Sweden)

    A. H. Ahrari


    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  7. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6 (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.


    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  8. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail:; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)


    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  9. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.


    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  10. Thermal Analysis of Iodine Satellite (iSAT) (United States)

    Mauro, Stephanie


    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  11. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.


    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  12. Model and measurements of linear mixing in thermal IR ground leaving radiance spectra (United States)

    Balick, Lee; Clodius, William; Jeffery, Christopher; Theiler, James; McCabe, Matthew; Gillespie, Alan; Mushkin, Amit; Danilina, Iryna


    Hyperspectral thermal IR remote sensing is an effective tool for the detection and identification of gas plumes and solid materials. Virtually all remotely sensed thermal IR pixels are mixtures of different materials and temperatures. As sensors improve and hyperspectral thermal IR remote sensing becomes more quantitative, the concept of homogeneous pixels becomes inadequate. The contributions of the constituents to the pixel spectral ground leaving radiance are weighted by their spectral emissivities and their temperature, or more correctly, temperature distributions, because real pixels are rarely thermally homogeneous. Planck's Law defines a relationship between temperature and radiance that is strongly wavelength dependent, even for blackbodies. Spectral ground leaving radiance (GLR) from mixed pixels is temperature and wavelength dependent and the relationship between observed radiance spectra from mixed pixels and library emissivity spectra of mixtures of 'pure' materials is indirect. A simple model of linear mixing of subpixel radiance as a function of material type, the temperature distribution of each material and the abundance of the material within a pixel is presented. The model indicates that, qualitatively and given normal environmental temperature variability, spectral features remain observable in mixtures as long as the material occupies more than roughly 10% of the pixel. Field measurements of known targets made on the ground and by an airborne sensor are presented here and serve as a reality check on the model. Target spectral GLR from mixtures as a function of temperature distribution and abundance within the pixel at day and night are presented and compare well qualitatively with model output.

  13. Structural, electronic, and thermal properties of indium-filled InxIr4Sb12 skutterudites (United States)

    Wallace, M. K.; Li, Jun; Subramanian, M. A.


    The "phonon-glass/electron-crystal" approach has been implemented through incorporation of "rattlers" into skutterudite void sites to increase phonon scattering and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar. The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cubic structure (space group : Im 3 bar) with ∼8% antimony site vacancy and with indium partially occupying the 16f site. Unlike known rattler filled skutterudites, under synthetic conditions employed, indium filling in IrSb3 significantly increases the electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing the thermal conductivity by ∼30%. The resultant power factor offsets the decrease in total thermal conductivity giving rise to a substantial decrease in ZT. Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were performed to unravel the effect of spin-orbit interaction on the electronic properties. These results serve to advance the understanding of filled skutterudites, and provide additional insight on the less explored smaller "rattlers" and their influence on key thermoelectric properties.

  14. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A


    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  15. Automated Recognition of Vegetation and Water Bodies on the Territory of Megacities in Satellite Images of Visible and IR Bands (United States)

    Mozgovoy, Dmitry k.; Hnatushenko, Volodymyr V.; Vasyliev, Volodymyr V.


    Vegetation and water bodies are a fundamental element of urban ecosystems, and water mapping is critical for urban and landscape planning and management. A methodology of automated recognition of vegetation and water bodies on the territory of megacities in satellite images of sub-meter spatial resolution of the visible and IR bands is proposed. By processing multispectral images from the satellite SuperView-1A, vector layers of recognized plant and water objects were obtained. Analysis of the results of image processing showed a sufficiently high accuracy of the delineation of the boundaries of recognized objects and a good separation of classes. The developed methodology provides a significant increase of the efficiency and reliability of updating maps of large cities while reducing financial costs. Due to the high degree of automation, the proposed methodology can be implemented in the form of a geo-information web service functioning in the interests of a wide range of public services and commercial institutions.

  16. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.


    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  17. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation. (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J


    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  18. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro


    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  19. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S


    Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures (United States)

    Kaul, Anupama B.; Coles, James B.


    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the

  1. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto


    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  2. Thermal imbalance force modelling for a GPS satellite using the finite element method (United States)

    Vigue, Yvonne; Schutz, Bob E.


    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  3. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.


    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  4. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product (United States)

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  5. Icy Saturnian satellites: Disk-integrated UV-IR characteristics and links to exogenic processes (United States)

    Hendrix, Amanda R.; Filacchione, Gianrico; Paranicas, Chris; Schenk, Paul; Scipioni, Francesca


    Combined Cassini observations obtained at similar observing geometries in the ultraviolet through infrared spectral range, along with additional ultraviolet (UV) data from Hubble Space Telescope where available, are used to study system-wide trends in spectral albedos of the inner icy Saturnian satellites (Mimas, Enceladus, Tethys, Dione, Rhea). We derive UV and visible geometric albedos and UV absorption strengths of the leading and trailing hemispheres and compare with E ring grain flux and charged particle intensities (electrons and ions of varying energies) to those hemispheres. We find that the UV absorption strength on the leading and trailing hemispheres is anti-correlated with E ring grain flux. On the trailing hemispheres, the UV absorption strength is correlated with intensity of electrons in the tens of keV range. We suggest that these relationships could imply links with the organic component of the E ring. Radiolytic processing of organics causes the products to become spectrally redder, increasing the UV absorption strength. Such processing occurs while organic-rich grains are in the E ring, and increases with exposure time in the E ring, such that grains interacting with Rhea are redder (more processed) than those impacting moons closer to Enceladus. Further processing (and associated darkening/reddening) occurs on the trailing hemispheres of the satellites, via radiolysis by electrons in the tens of keV range. Silicates and salts also redden with weathering; however because organics are present in the E ring in significantly greater abundance than salts or silicates, we suggest here that weathering of organics dominates the coloring of the inner Saturnian moons.

  6. IR thermography for the assessment of the thermal conductivity of aluminum alloys (United States)

    Nazarov, S.; Rossi, S.; Bison, P.; Calliari, I.


    Aluminium alloys are here considered as a structural material for aerospace applications, guaranteeing lightness and strength at the same time. As aluminium alone is not particularly performing from a mechanical point of view, in this experimental solution it is produced as an alloy with Lithium added at 6 % in weight. To increase furtherly the strength of the material, two new alloys are produced by adding 0.5 % in weight of the rare earth elements Neodymium (Nd) and Yttrium (Y). The improvement of the mechanical properties is measured by means of hardness tests. At the same time the thermophysical properties are measured as well, at various temperature, from 80 °C to 500 °C. Thermal diffusivity is measured by Laser Flash equipment in vacuum. One possible drawback of the Al-Li alloy produced at so high percentage of Li (6 %) is an essential anisotropy that is evaluated by IR thermography thank to its imaging properties that allows to measure simultaneously both the in-plane and through-depth thermal diffusivity.

  7. Thermalization in 2D critical quench and UV/IR mixing (United States)

    Mandal, Gautam; Paranjape, Shruti; Sorokhaibam, Nilakash


    We consider quantum quenches in models of free scalars and fermions with a generic time-dependent mass m( t) that goes from m 0 to zero. We prove that, as anticipated in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized Calabrese-Cardy form | ψ〉 = exp[- κ 2 H - ∑ n >2 ∞ κ n W n ]|Bd〉. The W n ( n = 2, 3, . . ., W 2 = H) here represent the conserved W ∞ charges and |Bd〉 represents a conformal boundary state. Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed state, and is proved without recourse to perturbation expansion in the κ n 's as in MSS. We compute exact time-dependent correlators for some specific quench protocols m( t). The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE), with inverse temperature β = 4 κ 2, and chemical potentials μ n = 4 κ n . In case the pre-quench state is a ground state, it is possible to retrieve the exact quench protocol m( t) from the final GGE, by an application of inverse scattering techniques. Another notable result, which we interpret as a UV/IR mixing, is that the long distance and long time (IR) behaviour of some correlators depends crucially on all κ n 's, although they are highly irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments when applied to non-equilibrium dynamics.

  8. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications (United States)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.


    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  9. Automated Burned Area Delineation Using IRS AWiFS satellite data (United States)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.


    spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  10. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.


    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  11. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9. (United States)

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G


    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  12. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.


    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  13. Thermal expansion and magnetostriction measurements on PrIr{sub 2}Zn{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Woerl, Andreas; Stingl, Christian; Sakai, Akito; Gegenwart, Philipp [Experimentalphysics VI, Center for Electronic Correlations and Magnetism, University of Augsburg (Germany); Matsumoto, Keisuke T.; Onimaru, Takahiro [Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Takabatake, Toshiro [Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima (Japan); Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima (Japan)


    Strong hybridization between electric quadrupole moments and conduction electrons gives rise to interesting physical phenomena such as new quantum phases and novel metallic properties. Non-fermi-liquid behavior based on the two channel Kondo effect is predicted by theory. PrIr{sub 2}Zn{sub 20} crystallizes in the CeCr{sub 2}Al{sub 20}-type structure, where the Pr{sup 3+} ions are surrounded by the highly symmetric cubic crystal field of 16 Zn atoms. The ground state is the non-magnetic Γ{sub 3} doublet and carries only electric quadrupole and a magnetic octupole moment. At T{sub Q}=0.11 K the electric quadrupole moments order in a antiferroquadrupolar way. A superconducting transition occurs at T{sub c}=0.05 K. The phase transition at T{sub Q}=0.11 K can be suppressed by high magnetic fields parallel to the [100] direction. We investigate the thermal expansion and magnetostriction at low temperatures. By applying high magnetic fields the system is tuned towards a quadrupolar quantum critical point. Furthermore the reaction of the system on breaking the cubic symmetry by compressive stress is explored.

  14. Thermal effects of CO2 capture by solid adsorbents: some approaches by IR image processing

    International Nuclear Information System (INIS)

    Benevides Ferreira, J.F.; Pradere, C.; Batsale, J.C.; Jolly, J.; Pavageau, B.; Le Bourdon, G.; Mascetti, J.; Servant, L.


    Thanks to infrared thermography, we have studied the mechanisms of CO 2 capture by solid adsorbents (CO 2 capture via gas adsorption on various types of porous substrates) to better understand the physico-chemical mechanisms that control CO 2 -surface interactions. In order to develop in the future an efficient process for post-combustion CO 2 capture, it is necessary to quantify the energy of adsorption of the gas on the adsorbent (exothermic process). The released heat (heat of adsorption) is a key parameter for the choice of materials and for the design of capture processes. Infrared thermography is used, at first approach, to detect the temperature fields on a thin-layer of adsorbent during CO 2 adsorption. An analytical heat transfer model was developed to evaluate the adsorption heat flux and to estimate, via an inverse technique, the heat of adsorption. The main originality of our method is to estimate heat losses directly from the heat generated during the adsorption process. Then, the estimated heat loss is taken for an a posteriori calculation of the adsorption heat flux. Finally, the heat of adsorption may be estimated. The interest in using infrared thermography is also its ability to quickly change the experimental setup, for example, to switch from the adsorbent thin-layer to the adsorbent bed configuration. We present the first results tempting to link the thin-layer data to the propagation speed of the thermal front in a milli-fluidics adsorption bed, also observed by IR thermography. (authors)

  15. Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design

    International Nuclear Information System (INIS)

    Boudjemai, A.; Mankour, A.; Salem, H.; Amri, R.; Hocine, R.; Chouchaoui, B.


    Mechanical joints and fasteners are essential elements in joining structural components in mechanical systems. The thermal coupling effect between the adjacent inserts depends to a great extent on the thermal properties of the inserts and the clearance. In this paper the Finite-Element Method (FEM) has been employed to study the insert thermal coupling behaviour of the hexagonal honeycomb panel. Fully coupled thermal analysis was conducted in order to predict thermal coupling phenomena caused by the adjacent inserts under extreme thermal loading conditions. Detailed finite elements models for a honeycomb panel are developed in this study including the insert joints. New approach of the adhesive joint is modelled. Thermal simulations showed that the adjacent inserts cause thermal interference and the adjacent inserts are highly sensitive to the effect of high temperatures. The clearance and thermal interference between the adjacent inserts have an important influence on the satellite equipments (such as the electronics box), which can cause the satellite equipments failures. The results of the model presented in this analysis are significant in the preliminary satellites structural dimensioning which present an effective approach of development by reducing the cost and the time of analysis. - Highlights: •In this work we perform thermal analysis of honeycomb plates using finite element method. •Detailed finite elements models for honeycomb panel are developed in this study including the insert joints. •New approach of the adhesive joint is modelled. •The adjacent inserts cause the thermal interference. •We conclude that this work will help in the analysis and the design of complex satellite structures

  16. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy) (United States)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.


    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been

  17. NanoSatellite Thermal Overload Protection System (nSTOPS) (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate a laboratory version of a means to electrically dissipate excess thermal energy from 3-cube (and larger) nanosatellites:...

  18. Development of a Microelectromechanical System for Small Satellite Thermal Control

    National Research Council Canada - National Science Library

    Beasley, Matthew


    .... This new direction requires a similar evolution in thermal control. Previous techniques such as heat pipes and conventional radiators have large masses themselves and are not scaleable to fit these smaller designs...

  19. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.


    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  20. Application of satellite data to the studies of agricultural meteorology: Relationship between ground temperature from GMS IR data and AMeDAS air temperature

    International Nuclear Information System (INIS)

    Tani, H.; Horiguchi, I.; Motoki, T.


    The purpose of the present study is to estimate air temperature in areas where there is no meteorological observation site, using satellite thermal IR data. Surface temperature from GMS IR data derived by eq. (1) was compared with AMeDAS (meteorological observation site) air temperature. The results are summarized as follows: 1) The maximum correlation coefficients between AMeDAS air temperature and surface temperature from GMS IR data is 0.90, the minimum is 0.30 and the mean is 0.60±0.15. 2) The correlation coefficients are affected by the precipitable water and decrease with increasing precipitable Water as shown in Fig. 2. 3) The correlation coefficients for each GMS observed time are better at night and in the morning than during the day (Table 2). 4) Also, the small values of the regression coefficients appear during the day and the large values at night and in the morning (Table 2). 5) The standard deviations which indicated scattering around the regression line are large at 12:00 and 15:00, but small at 06:00 and 09:00 (Table 2). The reason that correlation coefficients, regression coefficients and standard deviations between AMeDAS air temperature and surface temperature from GMS IR data are less during the day than at night and in the morning, is caused by ground conditions because the effects of solar radiation on surface temperature depend on ground surface conditions: plant cover, incline of slope etc. The hourly mean deviation from the regression line for surface temperature was calculated to investigate the characteristic of ground surface conditions for each AMeDAS observation site. AMeDAS observation sites were classified into four types according to the patterns of the hourly mean deviation as shown in Fig. 5. Most of type I were distributed in the plain regions: Ishikari, Konsen and Tokachi. Type II appears in the basin regions and type III on the coast of the Pacific Ocean and the Sea of Okhotsuk. The remaining areas are type IV. The standard

  1. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin


    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  2. Photovoltaic and thermal energy conversion for solar powered satellites (United States)

    Von Tiesenhausen, G. F.


    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  3. A data mining approach for sharpening satellite thermal imagery over land (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  4. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.


    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  5. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.


    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  6. MODVOLC2: A Hybrid Time Series Analysis for Detecting Thermal Anomalies Applied to Thermal Infrared Satellite Data (United States)

    Koeppen, W. C.; Wright, R.; Pilger, E.


    We developed and tested a new, automated algorithm, MODVOLC2, which analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes, fires, and gas flares. MODVOLC2 combines two previously developed algorithms, a simple point operation algorithm (MODVOLC) and a more complex time series analysis (Robust AVHRR Techniques, or RAT) to overcome the limitations of using each approach alone. MODVOLC2 has four main steps: (1) it uses the original MODVOLC algorithm to process the satellite data on a pixel-by-pixel basis and remove thermal outliers, (2) it uses the remaining data to calculate reference and variability images for each calendar month, (3) it compares the original satellite data and any newly acquired data to the reference images normalized by their variability, and it detects pixels that fall outside the envelope of normal thermal behavior, (4) it adds any pixels detected by MODVOLC to those detected in the time series analysis. Using test sites at Anatahan and Kilauea volcanoes, we show that MODVOLC2 was able to detect ~15% more thermal anomalies than using MODVOLC alone, with very few, if any, known false detections. Using gas flares from the Cantarell oil field in the Gulf of Mexico, we show that MODVOLC2 provided results that were unattainable using a time series-only approach. Some thermal anomalies (e.g., Cantarell oil field flares) are so persistent that an additional, semi-automated 12-µm correction must be applied in order to correctly estimate both the number of anomalies and the total excess radiance being emitted by them. Although all available data should be included to make the best possible reference and variability images necessary for the MODVOLC2, we estimate that at least 80 images per calendar month are required to generate relatively good statistics from which to run MODVOLC2, a condition now globally met by a decade of MODIS observations. We also found

  7. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. (United States)

    Reed, Kent M; Mendoza, Kristelle M; Abrahante, Juan E; Barnes, Natalie E; Velleman, Sandra G; Strasburg, Gale M


    Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.

  8. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.


    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  9. Measurements of scattering, transmittance/reflectance, IR-transmittance and thermal conductivity of small aerogel samples

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard


    By providing at the same time thermal insulation and transparency the silica aerogel is a very attractive material for the purpose of improving the thermal performance of windows. Nevertheless a lot of problems have to be solved on the way from concept to the developed product. The B1 Aerogels...... project deals with some of these problems.This report summarizes the work that has been carried out on the subject of characterizing the optical and thermal performance of different types of aerogels and aerogel-like materials for the purpose of using aerogel in clear glazings.All measurements presented...

  10. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells

    Directory of Open Access Journals (Sweden)

    Kent M. Reed


    Full Text Available Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development.Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo from two breeding lines: the F-line (16 wk body weight-selected and RBC2 (randombred control line were used in this study. Cultured cells were induced to differentiate at 38°C (control or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101 with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment.Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the

  11. Near-IR imaging of thermal changes in enamel during laser ablation (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel


    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  12. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina


    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  13. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  14. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System (United States)

    Hudson, Troy L.; Hecht, Michael H.


    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  15. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.


    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .


    African Journals Online (AJOL)

    Preferred Customer

    Charge-transfer complexes using organic species are intensively studied [6, .... 1242 ms. 1698 s. 1647 s. 1608 vs. 1530 s. 1501 s. 1446 mw. 1364 s. 1318 vs .... thermal decomposition process of Rh6G/iodine complex is non-spontaneous, i.e..

  17. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters (United States)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  18. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.


    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  19. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data (United States)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars


    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  20. Thermal structure of the Martian atmosphere retrieved from the IR- spectrometry in the 15 mkm CO2 band (United States)

    Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.

    Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.

  1. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))


    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  2. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, M. W.; Yang, B.; Granvik, M.


    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared ( 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle [1] on the Gemini North telescope on UT November 9 and 10, 2011. An extensive radar campaign [2] together with optical lightcurves [3,4] established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J m-2 s-1/2 K-1, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed. The authors gratefully acknowledge the assistance of observatory staff and the support of the NASA NEOO program (LFL and JPE), the Carnegie fellowship (NAM), and NASA AES, NSF, and the NRAO Jansky Fellowship (MWB). [1] De Buizer, J. and R. Fisher, Proc. Hris (2005), pp. 84-87. [2] Busch, M.W. et al., ACM (2012), abstract #6179. [3] Warner, B., MPBull 39 (2), 84 [4] Pravec, P.

  3. Thermal Analysis, FT-IR Spectroscopy and Optical Microscopy as a Tool for Characterization of Marble

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Kožušníková, Alena; Vaculíková, Lenka


    Roč. 5, č. 9 (2009), s. 149-150 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare] R&D Projects: GA ČR GP105/07/P416; GA ČR GA105/08/1398 Institutional research plan: CEZ:AV0Z30860518 Keywords : marbles * thermal analysis * thermomechanical analysis Subject RIV: CB - Analytical Chemistry, Separation

  4. Adaptation of thermal power plants: The (ir)relevance of climate (change) information

    International Nuclear Information System (INIS)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, Michelle T.H. van


    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate and hydrological projections, is then numerically solved to analyze the adaptation decisions of a selection of real power plants. We find that operators that base their decisions on current climatic conditions are likely to make identical choices and perform just as well as operators that are fully ‘informed’ about climate change. Where electricity supply is mainly generated by thermal power plants, heat waves, droughts and low river flow may impact electricity supply for decades to come. - Highlights: • We analyze adaptation to climate change by thermal power plants. • A numerical investment model is applied to a coal plant and a nuclear power plant. • The numerical analysis is based on climate and hydrological projections. • Climate change information has a relatively small effect on a power plant's NPV. • Uncertainty and no-regret benefits lower the value of climate change information.

  5. Thiobarbiturate and barbiturate salts of pefloxacin drug: Growth, structure, thermal stability and IR-spectra (United States)

    Golovnev, Nicolay N.; Molokeev, Maxim S.; Lesnikov, Maxim K.; Sterkhova, Irina V.; Atuchin, Victor V.


    Three new salts of pefloxacin (PefH) with thiobarbituric (H2tba) and barbituric (H2ba) acids, pefloxacinium 2-thiobarbiturate trihydrate, PefH2(Htba)·3H2O (1), pefloxacinium 2-thiobarbiturate, PefH2(Htba) (2) and bis(pefloxacinium barbiturate) hydrate, (PefH2)2(Hba)2·2.56H2O (3) are synthesized and structurally characterized by the X-ray single-crystal diffraction. The structures of 1-3 contain intramolecular hydrogen bonds Csbnd H⋯F, Osbnd H⋯O. Intermolecular hydrogen bonds Nsbnd H⋯O and Osbnd H⋯O form a 2D plane network in 1. In 2 and 3, intermolecular hydrogen bonds Nsbnd H⋯O form the infinite chains. In 1-3, the Htba- and Hba- ions are connected with PefH2+ only by one intermolecular hydrogen bond Nsbnd H⋯O. In 2 and 3, two Htba- and Hba- ions are connected by two hydrogen bonds Nsbnd H⋯O. These pairs form infinite chains. All three structures are stabilized by the π-π interactions of the head-to-tail type between PefH2+ ions. Compounds 2 and 3 are characterized by powder XRD, TG-DSC and FT-IR.

  6. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  7. Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data

    Directory of Open Access Journals (Sweden)

    Amir Eslam Bonyad


    Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.

  8. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.


    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  9. Looking For Thermal IR Polarization In Saturn's Rings With Cassini/CIRS (United States)

    Edgington, Scott G.; Spilker, L. J.; Jennings, D. E.; Altobelli, N.; Pilorz, S. H.; Pearl, J. C.; Leyrat, C.; CIRS Team


    The Cassini Composite Infrared Spectrometer (CIRS) FP1 channel is a polarizing interferometer covering the spectral range from 10 to 600 cm-1. By rotating the instrument about its optical axis, it is possible to measure the IR polarization of target objects over that spectral range. This requires the FP1 footprint on the rings, the emission angle, and the phase angle to be fairly constant for the duration of the observation. With these constraints, we turned two composition observations, both allocated long periods of time for sitting-and-staring, into polarization observations. The time was divided equally amongst observations of the A, B, and C rings, with one observation taking place on the lit side and the other on the unlit side. We chose relative rotations of 0, 30, and 60 degrees (future observations will use 0, 45, 90, and 135 degree rotations). For each ring, we will determine the Stokes Vector (I, Q, U, V) and the degree of polarization, (Q+U+V)/I. We will also examine the degree to which the temperature and emissivity varies with the orientation of the field of view. One of the observation takes place at low phase angles. At low phase angles, the filling factor of the C-Ring has been shown to increase steeply with decreasing spacecraft elevation (Altobelli, et al., 2007). We will determine the limitations of this physical effect on the determination of the polarization of the C-ring. Successful measurements should provide information on the microscopic roughness of ring particles. We will report on results of these observations. For a similar analysis pertaining to Iapetus' surface, see J. C. Pearl, et al. (this meeting). The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. Centralized vs. decentralized thermal IR inspection policy: experience from a major Brazilian electric power company (United States)

    dos Santos, Laerte; da Costa Bortoni, Edson; Barbosa, Luiz C.; Araujo, Reyler A.


    Furnas Centrais Elétricas S.A is one of the greatest companies of the Brazilian electric power sector and a pioneer in using infrared thermography. In the early 70s, the maintenance policy used was a centralized approach, with only one inspection team to cover all the company"s facilities. In the early 90s, FURNAS decided to decentralize the thermography inspections creating several inspection teams. This new maintenance policy presented several advantages when compared to the previous one. However the credibility of the results obtained with the thermal inspection was frequently being questioned, in part due to the lack of a detailed planning to carry out the transition from the centralized inspection to the decentralized one. In some areas of the company it was suggested the inactivation of the thermography. This paper presents the experience of FURNAS with these different maintenance policies and details the procedures which have been taken that nowadays the infrared thermal inspection has become one of the most important techniques of predictive maintenance in the company.

  11. Results of agriclimatological studies using multiple satellite sensors like NOAA AVHRR; GMS IR and LANDSAT MSS and TM

    International Nuclear Information System (INIS)

    Choudhury, A.M.


    Bangladesh Space Research and Remote Sensing Organization (SPARRSO) routinely receives NOAA and GMS imagery and uses them in agrometeorological monitoring, it also uses LANDSAT MSS and TM data for this purpose. Analysis of multiple satellite sensor data shows advantages for high resolution sensors. However, in the ease of crop monitoring, a good correlation has been obtained between results obtained with NOAA AVHRR and LANDSAT MSS for vegetation index. Crop estimation has been made using all kinds of sensors and it has been found that higher resolution data always give more accurate results. (author). 3 refs

  12. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.


    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  13. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.


    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  14. Evaluation of a temporal fire risk index in Mediterranean forests from NOAA thermal IR

    International Nuclear Information System (INIS)

    Vidal, A.; Pinglo, F.; Durand, H.; Devaux-Ros, C.; Maillet, A.


    Mediterranean forests are regularly subjected to a large number of fires; 537,000 ha were burned during the severe European drought of 1990. The French Ministries of Environment, Interior, and Agriculture are trying to implement efficient methods to prevent forest fires and to reduce their incidence. Fire risk is composed of human, ecological, and climatic factors that are already accounted for in prevention methods. However, the importance of biophysical factors, especially the water status of forest trees, bushes, grasses, and litter should also be considered. In a first step, thermal infrared data from NOAA-AVHRR daily images covering an 18-month period were used to estimate temporal variations of forest evapotranspiration through an energy budget-based relationship. Results were related to statistics on fire starts, in order to derive a fire risk index that can be used for a real-time regional alarm. (author)

  15. A diagnostic approach to obtaining planetary boundary layer winds using satellite-derived thermal data (United States)

    Belt, Carol L.; Fuelberg, Henry E.


    The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.

  16. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission

    International Nuclear Information System (INIS)

    Escobar, Emanuel; Diaz, Marcos; Zagal, Juan Cristóbal


    Highlights: • GAs applied to automate design of CubeSat passive thermal control system (coating). • Simulation adapted with real physical data (mockup experiment in vacuum chamber). • Obtained coating patterns consistently outperform engineered solutions (by 5 K). • Evolved coating patterns are far superior (by 8 K) than unpainted aluminum. - Abstract: This paper studies the use of artificial evolution to automate the design of a satellite passive thermal control system. This type of adaptation often requires the use of computer simulations to evaluate fitness of a large number of candidate solutions. Simulations are required to be expedient and accurate so that solutions can be successfully transferred to reality. We explore a design process that involves three steps. On a first step candidate solutions (implemented as surface paint tiling patterns) are tested using a FEM model and ranked according to their quality to meet mission temperature requirements. On a second step the best individual is implemented as a real physical satellite mockup and tested inside a vacuum chamber, having light sources imitating the effect of solar light. On a third step the simulation model is adapted with data obtained during the real evaluation. These updated models can be further employed for continuing genetic search. Current differences between our simulation and our real physical setup are in the order of 1.45 K mean squared error for faces pointing toward the light source and 2.4 K mean squared errors for shadowed faces. We found that evolved tiling patterns can be 5 K below engineered patterns and 8 K below using unpainted aluminum satellite surfaces.

  17. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao


    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  18. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei


    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  19. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P


    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (∼1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible

  20. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)


    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  1. Thermal design, analysis and comparison on three concepts of space solar power satellite (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li


    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  2. Giant-Planet Chemistry: Ammonium Hydrosulfide (NH4SH), Its IR Spectra and Thermal and Radiolytic Stabilities (United States)

    Loeffler, Mark J.; Hudson, Reggie L.; Chanover, Nancy J.; Simon, Amy A.


    Here we present our recent studies of proton-irradiated and unirradiated ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. We irradiated both crystalline and amorphous NH4SH at 10-160 K and used IR spectroscopy to observe and identify reaction products in the ice, specifically NH3 and long-chained sulfur-containing ions. Crystalline NH4SH was amorphized during irradiation at all temperatures studied with the rate being the fastest at the lowest temperatures. Irradiation of amorphous NH4SH at approximately 10-75 K showed that 60-80% of the NH4 + remained when equilibrium was reached, and that NH4SH destruction rates were relatively constant within this temperature range. Irradiations at higher temperatures produced different dose dependence and were accompanied by pressure outbursts that, in some cases, fractured the ice. The thermal stability of irradiated NH4SH was found to be greater than that of unirradiated NH4SH, suggesting that an irradiated giant-planet cloud precipitate can exist at temperatures and altitudes not previously considered.

  3. Experimental design for the evaluation of high-T(sub c) superconductive thermal bridges in a sensor satellite (United States)

    Scott, Elaine P.; Lee, Kasey M.


    Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.

  4. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites (United States)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.


    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  5. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.


    order of magnitude more photons than SOT, relatively shorter telescope length of 2.8 m to accommodate a launcher's nosecone size for possible dual-satellite-launch configuration, and much wider observing wavelength from UV (down to 250 nm) through near IR (up to 1100 nm). The large aperture is essentially important to attain scientific goals of the plan-B, especially for accurate diagnostics of the dynamic solar chromosphere as revealed by Hinode, although this make it difficult to design the telescope because of ten times more solar heat load introduced into the telescope. The SUVIT consists of two optically separable components; the telescope assembly (TA) and an accompanying focal plane package equipped with filtergraphs and spectrographs. Opto-mechanical and -thermal performance of the TA is crucial to attain high-quality solar observations and here we present a status of feasible study in its optical and thermal designing for diffraction-limited performance at visible wavelength in a reasonably wide field of view.

  6. Investigating the Capability of IRS-P6-LISS IV Satellite Image for Pistachio Forests Density Mapping (case Study: Northeast of Iran) (United States)

    Hoseini, F.; Darvishsefat, A. A.; Zargham, N.


    In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.

  7. Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa (United States)

    Prieto-Ballesteros, O.; Kargel, J.S.


    The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are "painted" into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would

  8. Utilisation of Indian Remote Sensing Satellite (IRS) data for assessment of soil erosion process of a watershed in Chhotanagpur plateau region, India (United States)

    Pramod Krishna, Akhouri

    A watershed in Chhotanagpur plateau region was investigated utilizing space data from Indian Remote Sensing (IRS) Satellite towards spatial and temporal soil erosion process study. Geomorphologically, this plateau region is an undulating pediplain. The watershed namely Potpoto river watershed covering an area of 8160 hectares is situated in the vicinity of Ranchi, capital city of newly created Jharkahnd state. As per the national watershed atlas, Potpoto river is a tributary of Subarnarekha river system within the Upper Subarnarekha river basin under watershed no. 4H3C8. This rural to semi-urban watershed is important towards various services to Ranchi city as well as experiencing direct or indirect pressures of development. Drivers of land use changes at ground level are responsible for change in soil erosion rates in any watershed in coupled human-environment systems. This may adversely affect the soil cover of such watersheds depicted through changed rates of erosion. In a rural to semi-urban watershed like this, there are general tendencies of land use and thereby land cover changes from forests to agricultural lands, within agricultural land in terms of cropping pattern changes to cash-crops, orchards, commercial plantations and conversions to other land use categories as well towards infrastructure expansions. Universal Soil Loss Equation (USLE) was used as a basis to observe the intensity of erosion using remote sensing, rainfall data, soil data and land use/land cover map. IRS1C LISSIII and IRSP6 LISSIII data were used to identify land use status for the years 1996 and 2004 respectively. LISSIII sensor provides data in the visible to near infrared (Bands 2, 3, 4) as well as short wave infrared (Band 5) range of electromagnetic spectrum. In this study, bands 2 (0.52-0.59 microns), 3 (0.62-0.68 microns) and 4 (0.77-0.86 microns) were used with spatial resolution of 23.5 meters at nadir. Digital image processing was carried out using ERDAS Imagine software

  9. Evaluation of Three Parametric Models for Estimating Directional Thermal Radiation from Simulation, Airborne, and Satellite Data

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu


    Full Text Available An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST. This paper evaluated the performance of three published directional thermal radiation models—the Roujean–Lagouarde (RL model, the Bidirectional Reflectance Distribution Function (BRDF model, and the Vinnikov model—at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1 the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI; (2 the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3 the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland and low LAI (barren or sparsely vegetated areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD-measured LST demonstrated that the root mean square (RMSE of the Moderate Resolution Imaging Spectroradiometer (MODIS LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.

  10. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements. (United States)

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph


    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  11. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik


    An entirely novel satellite thermal architecture, connecting the east and west radiators of a geostationary telecommunications satellite via loop heat pipes (LHPs), is proposed. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). A transient numerical model is developed to simulate the thermal dynamic behavior of the proposed system. The details of the proposed architecture and mathematical model are presented. The model is used to analyze a set of critical design cases to identify potential failure modes prior to the qualification and in-orbit tests. The mathematical model results for critical cases are presented and discussed. The model results demonstrated the robustness and versatility of the proposed architecture under the predicted worst-case conditions. - Highlights: •We developed a mathematical model of a novel satellite thermal architecture. •We provided the dimensioning cases to design the thermal architecture. •We provided the failure mode cases to verify the thermal architecture. •We provided the results of the corresponding dimensioning and failure cases

  12. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum (United States)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.


    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  13. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing. (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo


    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  14. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven


    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  15. Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 μm CO2 band: input to MIRA (United States)

    Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.

    This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.

  16. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel


    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  17. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.


    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  18. Climate Prediction Center IR 4km Dataset (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  19. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico (United States)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.


    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  20. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions (United States)

    Loeffler, Mark J.; Hudson, Reggie L.


    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  1. One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites (United States)

    Kamata, Shunichi


    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state.

  2. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR) (United States)

    Mauro, Stephanie


    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  3. Electron-beam-welded segmental heat pipes of AlMgSi 1 for the thermal model of the satellite Aeros-A

    Energy Technology Data Exchange (ETDEWEB)

    Hoell, H.; Lasar, H.


    For the purposes of tests with the thermal model of the German aeronomy satellite Aeros-A, a heat pipe system of optimized weight was developed in order to transport thermal energy from the solar cells of the cylindrical satellite to the conical bottom. Because of stringent requirements on the fabrication process, electron beam welding is used for bonding. The welding process is described and preliminary test results are given. (LEW)

  4. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures. (United States)

    Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie


    In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.

  5. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)


    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  6. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.


    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....

  7. Infrared Astronomy Satellite (United States)

    Ferrera, G. A.


    In 1982, the Infrared Astronomy Satellite (IRAS) will be launched into a 900-km sun-synchronous (twilight) orbit to perform an unbiased, all-sky survey of the far-infrared spectrum from 8 to 120 microns. Observations telemetered to ground stations will be compiled into an IR astronomy catalog. Attention is given the cryogenically cooled, 60-cm Ritchey-Chretien telescope carried by the satellite, whose primary and secondary mirrors are fabricated from beryllium by means of 'Cryo-Null Figuring'. This technique anticipates the mirror distortions that will result from cryogenic cooling of the telescope and introduces dimensional compensations for them during machining and polishing. Consideration is also given to the interferometric characterization of telescope performance and Cryo/Thermal/Vacuum simulated space environment testing.

  8. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications (United States)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.


    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  9. Thermal behavior of J-aggregates in a Langmuir-Blodgett film of pure merocyanine dye investigated by UV-visible and IR absorption spectroscopy. (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Maio, Ari; Ozaki, Yukihiro


    We have characterized the structure of J-aggregate in a Langmuir-Blodgett film of pure merocyanine dye (MS18) fabricated under an aqueous subphase containing a cadmium ion (Cd2+) and have investigated its thermal behavior by UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR absorption spectra indicate that temperature-dependent changes in the MS18 aggregation state in the pure MS18 system are closely and mildly linked with the MS18 intramolecular charge transfer and the behavior of the packing, orientation, conformation, and thermal mobility of MS18 hydrocarbon chain, respectively. The J-aggregate in the pure MS18 system dissociates from 25 to 150 degrees C, and the dissociation temperature at 150 degrees C is higher by 50 degrees C than that in the previous MS18- arachidic acid (C20) binary system. The lower dissociation temperature in the binary system originates from the fact that temperature-dependent structural disorder of cadmium arachidate (CdC20), being phase-separated from MS18, has an influence on the dissociation of J-aggregate. From 160 to 180 degrees C, thermally induced blue-shifted bands, caused by the oligomeric MS18 aggregation, appear at around 520 nm in the pure MS18 system by contraries, regardless of the lack of driving force by the melting phenomenon of CdC20. The temperature at which the 520 nm bands occur is in good agreement with the melting point (160 degrees C) of hydrocarbon chain in MS18 with Cd2+, whereas its chromophore part is clearly observed to melt near 205 degrees C by UV-visible spectra. Therefore, it is suggested that the driving force that induces the 520 nm band in the pure MS18 system arises from the partial melting of hydrocarbon chain in MS18 with Cd2+.

  10. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II) (United States)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.


    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  11. One-dimensional thermal evolution calculation based on a mixing length theory: Application to Saturnian icy satellites (United States)

    Kamata, S.


    Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection. Adopting this new definition of l, I investigate the thermal evolution of Dione and Enceladus under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a 30-km-thick global subsurface ocean. Dynamical tides may be able to account for such an amount of heat, though their ices need to be highly viscous.

  12. Thermally induced vibrations of smart solar panel in a low-orbit satellite (United States)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.


    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  13. Research on Space Environmental Effect of Organic Composite Materials for Thermal Management of Satellites Using MC-50 Cyclotron

    Directory of Open Access Journals (Sweden)

    Dae-Weon Kim


    Full Text Available The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mega electron volt, observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy etc.

  14. Towards improved knowledge of geology and global thermal regime from Swarm satellites magnetic gradient observations

    DEFF Research Database (Denmark)

    Ravat, Dhananjay; Olsen, Nils; Sabaka, Terence

    Gradients of magnetic field have higher spatial resolution than the fields themselves and are helpful in improving the resolution of downward continued satellite magnetic anomaly maps (Kotsiaros et al., 2015, Geophys. J. Int.; Sabaka et al., 2015, Geophys. J. Int.). Higher spatial resolution and ...

  15. Characterization of the anaerobic digestion of thermal pre-treated slaughterhouse waste by applying new IR techniques


    Rodríguez-Abalde, Ángela; Gómez, X.; Blanco, D.; Cuetos, María José; Flotats Ripoll, Xavier; Fernández, B.


    In this work, thermal analysis and infrared spectrometry were used to explain the behaviour of two different pasteurized animal by-products with different protein/fat/carbohydrate composition. The presence of hardly degradable nitrogen containing components, identified by infrared spectrometry, and produced during Maillard reactions at pasteurization temperature, explained the different behaviour (methane rate and yield) under anaerobic conditions of pig and poultry wastes

  16. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices (United States)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.


    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  17. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data (United States)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.


    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  18. TIRCIS: A Thermal Infrared, Compact Imaging Spectrometer for Small Satellite Applications (United States)

    National Aeronautics and Space Administration — This project will demonstrate how hyperspectral thermal infrared (TIR; 8-14 microns) image data, with a spectral resolution of up to 8 wavenumbers, can be acquired...

  19. Applications of satellite data to the studies of agricultural meteorology, 3: District classification and local temperature estimation by GMS IR data

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Motoki, T.


    In estimating air temperature using ground temperature from GMS IR data, ground effect corrections are equally important as atmospheric effect corrections. However, ground effect corrections are very difficult to conduct, requiring a great amount of analyses because of complicated relationship between air temperatures and ground temperatures.In our previous study (Tani et al, 1984), it was found that the classification of AMeDAS meteorological sites using deviation between temperatures estimated from the GMS IR data and those obtained from AMeDAS data, indicated that meteorological sites of the same type tend to form groups. This shows that the accuracy of temperature estimations increases when the estimation is carried out by small districts. The classification of AMeDAS meteorological sites in Hokkaido was conducted by cluster analysis using temperature deviations. The following two kinds of data were used for the cluster analysis: sixty-one GMS IR data and AMeDAS data collected from 1979 through 1984. Mean deviations between the temperatures estimated from GMS IR data obtained at three hour intervals and those obtained from AMeDAS data were calculated. Using these deviations, cluster analyses of AMeDAS meteorological sites were made. The results are shown in Fig. 2. Furthermore, AMeDAS meteorological sites were classified based on the deviations between the time average temperatures of AMeDAS and the time temperature of AMeDAS. The results are shown in Fig. 3.Using the results of this classification, temperatures of the five districts were estimated, shown in Figs. 2 and 3. The temperature estimations of the five districts were conducted using four methods (six different calculation methods) and the accuracies clarified.1) The regression equation of surface temperature from GMS data and AMeDAS temperature was calculated throughout Hokkaido island. The regression equation was applied to five districts. (named One-equation method)2) The regression equations were


    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko


    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  1. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification? (United States)

    Hudson, Reggie L.; Loeffler, Mark J.


    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  2. Seasonal variability of thermal fronts in the northern South China Sea from satellite data (United States)

    Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping

    The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.

  3. Implementing GPS into Pave-IR. (United States)


    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  4. A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR (United States)

    Hansell, R. A., Jr.; Reid, J. S.; Tsay, S. C.; Roush, T. L.; Kalashnikova, O. V.


    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects.

  5. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system (United States)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep


    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  6. Measuring effusion rates of obsidian lava flows by means of satellite thermal data (United States)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.


    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  7. Characterizing Temporal and Spatial Changes in Land Surface Temperature across the Amazon Basin using Thermal and Infrared Satellite Data (United States)

    Cak, A. D.


    The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.

  8. Synergistic Use of Thermal Infrared Field and Satellite Data: Eruption Detection, Monitoring and Science (United States)

    Ramsey, Michael


    The ASTER-based observational success of active volcanic processes early in the Terra mission later gave rise to a funded NASA program designed to both increase the number of ASTER scenes following an eruption and perform the ground-based science needed to validate that data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER visible and thermal infrared (TIR) data are being acquired at numerous active volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many new targets such as Mt. Etna, the URP has increased the observational frequency by as much 50%. Examples of these datasets will be presented, which have been used for operational response to new eruptions as well as longer-term scientific studies. These studies include emplacement of new lava flows, detection of endogenous dome growth, and interpretation of hazardous dome collapse events. As a means to validate the ASTER TIR data and capture higher-resolution images, a new ground-based sensor has recently been developed that consists of standard FLIR camera modified with wavelength filters similar to the ASTER bands. Data from this instrument have been acquired of the lava lake at Kilauea and reveal differences in emissivity between molten and cooled surfaces confirming prior laboratory results and providing important constraints on lava

  9. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation (United States)

    Sato, Tomohiro O.; Sato, Takao M.; Sagawa, Hideo; Noguchi, Katsuyuki; Saitoh, Naoko; Irie, Hitoshi; Kita, Kazuyuki; Mahani, Mona E.; Zettsu, Koji; Imasu, Ryoichi; Hayashida, Sachiko; Kasai, Yasuko


    We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV), thermal infrared (TIR), and microwave (MW) ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area) and two observation times (one during summer and one during winter) were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT), middle troposphere (MT), and lowermost troposphere (LMT) were estimated using the degree of freedom for signal (DFS), the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU), respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding constraints

  10. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    Directory of Open Access Journals (Sweden)

    T. O. Sato


    Full Text Available We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV, thermal infrared (TIR, and microwave (MW ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area and two observation times (one during summer and one during winter were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT, middle troposphere (MT, and lowermost troposphere (LMT were estimated using the degree of freedom for signal (DFS, the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM, and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU, respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding

  11. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.


    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  12. Descent with Modification: Thermal Reactions of Subsurface H2O2 of Relevance to Icy Satellites and Other Small Bodies (United States)

    Hudson, Reggie L.; Loefler, Mark J.


    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Similarly, cosmic radiation (mainly protons) acting on cometary and interstellar ices can promote extensive chemical change. Among the products that have been identified in irradiated H20-ice is hydrogen peroxide (H202), which has been observed on Europa and is suspected on other worlds. Although the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, the thermally-induced solid-phase chemistry of H2O2 is largely unknown. Therefore, in this presentation we report new laboratory results on reactions at 50 - 130 K in ices containing H2O2 and other molecules, both in the presence and absence of H2O. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to SO4(2-). We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto. If other molecules prove to be just as reactive with frozen H2O2 then it may explain why H2O2 has been absent from surfaces of many of the small icy bodies that are known to be exposed to ionizing radiation. Our results also have implications for the survival of H2O2 as it descends towards a subsurface ocean on Europa.

  13. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration (United States)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.


    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (, we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  14. Combined MW-IR Precipitation Evolving Technique (PET of convective rain fields

    Directory of Open Access Journals (Sweden)

    F. Di Paola


    Full Text Available This paper describes a new multi-sensor approach for convective rain cell continuous monitoring based on rainfall derived from Passive Microwave (PM remote sensing from the Low Earth Orbit (LEO satellite coupled with Infrared (IR remote sensing Brightness Temperature (TB from the Geosynchronous (GEO orbit satellite. The proposed technique, which we call Precipitation Evolving Technique (PET, propagates forward in time and space the last available rain-rate (RR maps derived from Advanced Microwave Sounding Units (AMSU and Microwave Humidity Sounder (MHS observations by using IR TB maps of water vapor (6.2 μm and thermal-IR (10.8 μm channels from a Spinning Enhanced Visible and Infrared Imager (SEVIRI radiometer. PET is based on two different modules, the first for morphing and tracking rain cells and the second for dynamic calibration IR-RR. The Morphing module uses two consecutive IR data to identify the motion vector to be applied to the rain field so as to propagate it in time and space, whilst the Calibration module computes the dynamic relationship between IR and RR in order to take into account genesis, extinction or size variation of rain cells. Finally, a combination of the Morphing and Calibration output provides a rainfall map at IR space and time scale, and the whole procedure is reiterated by using the last RR map output until a new MW-based rainfall is available. The PET results have been analyzed with respect to two different PM-RR retrieval algorithms for seven case studies referring to different rainfall convective events. The qualitative, dichotomous and continuous assessments show an overall ability of this technique to propagate rain field at least for 2–3 h propagation time.

  15. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields (United States)

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  16. Structure of the Saint Francois Mountains and surrounding lead belt, S.E. Missouri: Inference from thermal IR and other data sets (United States)

    Arvidson, R. E. (Principal Investigator)


    Progress in the preparation of manuscripts on the discovery of a Precambrian rift running NW-SE through Missouri as seen in free air and Bouguer gravity anomalies and in HCMM data, and on digital image processing of potential field and topographic data on the rift is reported. Copies of the papers are attached. Contrast-enhanced HCMM images that have been transformed to Mercator projections are presented. Shaded relief map overlays of thermal and apparent thermal inertia images used as part of a masers thesis examining correlations between HCMM data products, linears, and geologic units are presented. Progress in examination of the difference in information content of daytime infrared, night time infrared, albedo, and thermal inertia images and their application to he identification of linears not directly controlled by topography is reported. Thermal infrared and albedo data were coded as hue, saturation and brightness values to generate a color display, which is included.

  17. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR (United States)

    Ustinov, E.


    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  18. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.


    The soil thermal properties (soil thermal conductivity, soil heat capacity and soil diffusivity) are the main parameters in the applications that need quantitative information on soil heat transfer. Conventionally, these properties are either measured in situ or estimated by semi-empirical models

  19. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú


    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  20. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú


    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  1. Aircraft and satellite remote sensing of desert soils and landscapes (United States)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.


    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  2. Thermal behavior of H-aggregate in a mixed Langmuir-Blodgett film of merocyanine dye, arachidic acid, and n-octadecane ternary system investigated by UV-visible and IR absorption spectroscopy. (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Yamashita, Yoshihide; Ozaki, Yukihiro


    We have investigated the thermal behavior of H-aggregate in a mixed Langmuir-Blodgett (LB) film of the merocyanine dye (MS18)-arachidic acid (C20)- n-octadecane (AL18) ternary system by means of UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR spectra indicate that the temperature-dependent variation in MS 18 aggregation state is linked not only with the degree of intramolecular charge transfer and the behavior of packing, orientation, conformation, and thermal mobility of the MS18 hydrocarbon chain but also with the presence and absence of AL18. The H-aggregate dissociates from 25 up to 50 degrees C, which is caused by the AL18 evaporation from the mixed LB film and the increment of thermal mobility of the MS18 hydrocarbon chain. From 110 to 160 degrees C, blue-shifted bands, attributed to the oligomeric MS18 aggregation, appear near 515 nm in the MS18-C 20-AL18 ternary system as well. The temperature at which the 515 nm band occurs is identical for both present ternary system and previously investigated MS18-deuterated arachidic acid (C20- d) binary system, and it is in good agreement with the melting point (110 degrees C) of cadmium arachidate (CdC20). Therefore, it is indicated that the driving force which induces the 515 nm band comes from the melting phenomenon of CdC20 molecules which are phase-separated from MS 18 molecules in as-deposited LB films.

  3. On the Relationship Between Satellite-Estimated Bio-Optical and Thermal Properties in the Gulf of Mexico

    National Research Council Canada - National Science Library

    Jolliff, Jason K; Kindle, John C; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor G; Amone, Robert A; Rowley, Clark D


    .... Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure...

  4. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka


    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  5. Robust satellite techniques (RST for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events

    Directory of Open Access Journals (Sweden)

    V. Tramutoli


    Full Text Available Several authors claim a space-time correlation between increases in Earth’s emitted Thermal Infra-Red (TIR radiation and earthquake occurrence. The main problems of such studies regard data analysis and interpretation, which are often done without a validation/confutation control. In this context, a robust data analysis technique (RST, i.e. Robust Satellite Techniques is proposed which permits a statistically based definition of TIR «anomaly » and uses a validation/confutation approach. This technique was already applied to satellite TIR surveys in seismic regions for about twenty earthquakes that occurred in the world. In this work RST is applied for the first time to a time sequence of seismic events. Nine years of Meteosat TIR observations have been analyzed to characterize the unperturbed TIR signal behaviour at specific observation times and locations. The main seismic events of the October 1997 Umbria-Marche sequence have been considered for validation, and relatively unperturbed periods (no earthquakes with Mb ? 4 were taken for confutation purposes. Positive time-space persistent TIR anomalies were observed during seismic periods, generally overlapping the principal tectonic lineaments of the region and sometimes focusing on the vicinity of the epicentre. No similar (in terms of relative intensity and space-time persistence TIR anomalies were detected during seismically unperturbed periods.

  6. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan


    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  7. An improved method to compute supra glacial debris thickness using thermal satellite images together with an Energy Balance Model in the Nepal Himalayas (United States)

    Egli, Pascal; Ayala, Alvaro; Buri, Pascal; Pellicciotti, Francesca


    A significant proportion of Himalayan glaciers is debris covered. Knowing the thickness of the debris cover is essential to obtain accurate estimates of melt rates. Due to the remoteness of these glaciers, collecting field measurements of debris thickness for a large number of glaciers is not realistic. For this reason, previous studies have proposed an approach based on computing the energy balance at the debris surface using surface temperature from satellite imagery together with meteorological data and solving the energy balance for debris thickness. These studies differ only in the way they account for the nonlinearity of debris temperature profiles and the heat stored in the debris layer. In our study we aim to 1) assess the performance of three existing models, and 2) develop a new methodology for calculating the conductive heat flux within the debris, which accounts for the history of debris temperature profiles by solving the advection-diffusion equation of heat numerically. Additionally, we found that in the previous studies several input variables are considered as uniform and we improved this by using distributed representations. As a study case we use Lirung glacier in Langtang valley, Nepal, and we work with Landsat satellite thermal images. Results are validated using measurements of debris thickness on the glacier from October 2012 and 2015. In some cases the existing models yield realistic results. But there is very little consistency between results for different satellite images. In general, computed debris thickness is frequently too thin compared to reality. Two of the existing models were able to accurately reproduce the extent of thin debris cover on the upper part of Lirung glacier. The mean debris thickness on Lirung obtained with the existing models lies between 0.1 m and 0.3 m depending on the model used, whereby the upper value of 0.3 m corresponds best to the field measurements. Preliminary results from our new model show a larger

  8. An Overview of Thermal Measurements (IR) at the Summit of Piton de la Fournaise Active Volcano and Inferences on the Structure and Dynamics of its Hydrothermal System (United States)

    Fontaine, F.; Peltier, A.; Kowalski, P.; Di Muro, A.; Villeneuve, N.; Ferrazzini, V.; Staudacher, T.


    Piton de la Fournaise, located on La Réunion Island in the South East Indian Ocean, is one of the most active basaltic volcanoes (hotspot) of the world with a mean eruption frequency 100×106 m3) on the island, led to the formation of a 400-m-deep, 1000-m-large, funnel-shaped summit caldera. Since then, the floor and inner flanks of this summit depression hosting hot grounds and active fumaroles, are monitored using an infra-red camera device permanently installed on the caldera rim.This thermal dataset constitutes the first opportunity to understand the structure and dynamics of the hydrothermal system and its ability to relay deep-seated heat and mass perturbations. We present in this communication an overview of this thermal datasets focusing on ground/fumaroles temperature evolution during volcanic crisis and rest periods and analyzing correlations with the other permanently acquired data such as the temporal evolution of gas geochemistry (CO2, SO2, H2S), ground deformation and micro-seismic activity. We finally propose a conceptual model of fluid flow architecture within the edifice which paves the way for future quantitative models of hydrothermal heat and mass transfers.

  9. Quantifying the clear-sky bias of satellite-derived infrared LST (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.


    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  10. On the Relationship Between Satellite-Estimated Bio-Optical and Thermal Properties in the Gulf of Mexico (United States)


    MOODS ). MODAS then assimilates particularly in terms of identifying episodes of potential remotely sensed SST and sea surface height (SSH) data that...of the seasonal (or onto a two-dimensional grid. Departure from the subsurface background) bio-thermal patterns of the deep Gulf, and then MOODS long...circulation. In contrast, isotherms oxidation of CDOM to dissolved inorganic carbon, the are uplifted within divergent, cyclonic circulation features

  11. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin


    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  12. Transport of liquid state nitrogen through long length service lines during thermal/vacuum testing. [in a Nimbus 6 satellite (United States)

    Florio, F. A.


    Physical and analytical aspects associated with the transport are presented. Included is a definition of the problems and difficulties imposed by the servicing of a typical solid cryogen system, as well as a discussion of the transport requirements and of the rationale which governed their solution. A successful detailed transport configuration is defined, and the application of established mathematics to the design approach is demonstrated. The significance of head pressure, pressure drop, line friction, heat leak, Reynolds number, and the fundamental equilibrium demands of pressure and temperature were examined as they relate to the achievement of liquid state flow. Performance predictions were made for the transport system, and several analytical quantities are tabulated. These data are analyzed and compared with measured and calculated results obtained while actually servicing a solid cryogen system during thermal/vacuum testing.

  13. Improved Radio Emissivities for Satellites of Saturn (United States)

    Ries, Paul


    The size distribution of TNOs is one of the most important constraints on the history of the early solar system. However, while TNOs are most detectable in the visible and near-IR wavelengths, their albedos vary substantially, thus creating uncertainty in their sizes when determined from reflected light alone. One way of determining the size distribution for a large number of TNOs is to measure their thermal emission, such as has been done with Spitzer and Herschel. However, in just a few year's time, ALMA will be coming online, and will be able to detect thermal emission from even more TNOs. However, thermal emission from Solar System bodies in the millimeter and submillimeter, such as that which ALMA will detect, is not that of a pure blackbody. Pluto, the Gallillean satellites, and Vesta have all shown deviations from unity emissivity. However, the cause of this variation is not well understood. Here we re-analayze data from the Cassini RADAR instrument at 2.5 cm. Cassini RADAR measured the brightness temperature and emissivity of several of Saturn's icy satellites, at least one of which, Phoebe, is thought to be a captured TNO. Previous emissivity determinations relied on relatively simple thermal models. We recalculate emissivities using thermal models based on recent data obtained with the CIRS (infrared) instrument on Cassini which account for, among other things, diurnal effects and the rotation during the RADAR observations. For one important result, we demonstrate that deviation from unity emissivity on Iapetus is due solely to surface depth effects at long wavelengths when RADAR data at 2.5 cm is combined with data obtained at 3.3 mm on the Green Bank Telescope (GBT). This research is supported by a grant under the NRAO Student Observing Support program.

  14. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)


    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  15. Automatic Cloud and Shadow Detection in Optical Satellite Imagery Without Using Thermal Bands—Application to Suomi NPP VIIRS Images over Fennoscandia

    Directory of Open Access Journals (Sweden)

    Eija Parmes


    Full Text Available In land monitoring applications, clouds and shadows are considered noise that should be removed as automatically and quickly as possible, before further analysis. This paper presents a method to detect clouds and shadows in Suomi NPP satellite’s VIIRS (Visible Infrared Imaging Radiometer Suite satellite images. The proposed cloud and shadow detection method has two distinct features when compared to many other methods. First, the method does not use the thermal bands and can thus be applied to other sensors which do not contain thermal channels, such as Sentinel-2 data. Secondly, the method uses the ratio between blue and green reflectance to detect shadows. Seven hundred and forty-seven VIIRS images over Fennoscandia from August 2014 to April 2016 were processed to train and develop the method. Twenty four points from every tenth of the images were used in accuracy assessment. These 1752 points were interpreted visually to cloud, cloud shadow and clear classes, then compared to the output of the cloud and shadow detection. The comparison on VIIRS images showed 94.2% correct detection rates and 11.1% false alarms for clouds, and respectively 36.1% and 82.7% for shadows. The results on cloud detection were similar to state-of-the-art methods. Shadows showed correctly on the northern edge of the clouds, but many shadows were wrongly assigned to other classes in some cases (e.g., to water class on lake and forest boundary, or with shadows over cloud. This may be due to the low spatial resolution of VIIRS images, where shadows are only a few pixels wide and contain lots of mixed pixels.

  16. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013 (United States)

    Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng


    Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought

  17. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Dikusar, Evgenij; Yahyaei, Hooriye; Kumar, Rakesh; Khaleghian, Mehrnoosh


    In the present work, the molecular structures of two new azomethine dyes: have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by B3LYP/6-31+G* level of theory. The electronic spectra of these azomethine dyes in a DMF solvent was carried out by using TD-B3LYP/6-31+G* method. After quantum-chemical calculations two new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for visible region of spectrum were developed. The main optical parameters of the polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal and electrical conductivity of the PVA-films have been studied and explained.

  18. A study of the middle atmospheric thermal structure over western India: Satellite data and comparisons with models (United States)

    Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Beig, G.


    Long term variations of the middle atmospheric thermal structure in the upper stratosphere and lower mesosphere (20-90 km) have been studied over Ahmedabad (23.1°N, 72.3°E, 55 m amsl), India using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) observations during year 2002 to year 2014. For the same period, three different atmospheric models show over-estimation of temperature (∼10 K) near the stratopause and in the upper mesosphere, and a signature of under-estimation is seen above mesopause when compared against SABER measured temperature profiles. Estimation of monthly temperature anomalies reveals a semiannual and ter-annual oscillation moving downward from the mesosphere to the stratosphere during January to December. Moreover, Lomb Scargle periodogram (LSP) and Wavelet transform techniques are employed to characterize the semi-annual, annual and quasi-biennial oscillations to diagnose the wave dynamics in the stratosphere-mesosphere system. Results suggested that semi-annual, annual and quasi-biennial oscillations are exist in stratosphere, whereas, semi-annual and annual oscillations are observed in mesosphere. In lower mesosphere, LSP analyses revealed conspicuous absence of annual oscillations in altitude range of ∼55-65 km, and semi-annual oscillations are not existing in 35-45 km. Four monthly oscillations are also reported in the altitude range of about 45-65 km. The temporal localization of oscillations using wavelet analysis shows strong annual oscillation during year 2004-2006 and 2009-2011.

  19. IOT Overview: IR Instruments (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  20. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin


    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  1. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira


    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  2. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  3. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.


    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  4. Climate Prediction Center(CPC)Infra-Red (IR) 0.5 degree Dataset (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate Prediction Center 0.5 degree IR dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless...

  5. Development of Ir/Au-TES microcalorimeter

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Fukuda, Daiji; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Ataka, Manabu; Ohkubo, Masataka; Hirayama, Fuminori


    We are developing X-ray microcalorimeters using transition edge sensors (TES) for high resolution x-ray spectroscopy. Microcalorimeters are thermal detectors which measure the energy of an incident x-ray photon using a TES thermometer operated at a sharp transition edge between normal and superconducting states. TES microcalorimeters can achieve faster response than conventional microcalorimeters by keeping the operating point of TES in the transition region through the use of strong negative electrothermal feedback (ETF). We developed a bilayer TES where a normal metal Au was deposited on a superconductor Ir in order to improve the thermal conductivity of the Ir-TES. We investigated resistance-temperature characteristics. As a result, it showed a very sharp transition within 1 mK at the temperature of 110 mK. The energy resolution of 9.4 eV (FWHM) was achieved for a 5899 eV Mn K al line. (author)

  6. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.


    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  7. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon


    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  8. Iodine Satellite (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew


    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  9. Data fusion of Landsat TM and IRS images in forest classification (United States)

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen


    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  10. Detection of environmental disturbance using color aerial photography and thermal infrared imagery

    International Nuclear Information System (INIS)

    Aronoff, S.; Ross, G.A.


    Characteristics of a program for satellite remote sensing for long-period environmental monitoring are examined, noting that establishing early mapping surveys of areas of concern aids in detection of stressful environmental conditions. The process is described with an example from IR and color photography of a 30,000 sq km area in the Athabasca Oil Sands, with the photography carried out from aircraft and satellite. The IR data was gathered between 8-14 microns and the photographs were taken at a 1:11,000 scale. Water-related disturbances detected included turbidity which indicated the possible presence of oil, and higher thermal emission near a tailings pond which also suggested an oil source. The presence of surface aquatic vegetation is an indicator of nutrient imbalance in a pond near a sewage pond. Finally, dead trees were observed near improperly installed culverts along new roads

  11. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  12. Satellite Communications

    CERN Document Server

    Pelton, Joseph N


    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  13. Surface temperature and evapotranspiration: application of local scale methods to regional scales using satellite data

    International Nuclear Information System (INIS)

    Seguin, B.; Courault, D.; Guerif, M.


    Remotely sensed surface temperatures have proven useful for monitoring evapotranspiration (ET) rates and crop water use because of their direct relationship with sensible and latent energy exchange processes. Procedures for using the thermal infrared (IR) obtained with hand-held radiometers deployed at ground level are now well established and even routine for many agricultural research and management purposes. The availability of IR from meteorological satellites at scales from 1 km (NOAA-AVHRR) to 5 km (METEOSAT) permits extension of local, ground-based approaches to larger scale crop monitoring programs. Regional observations of surface minus air temperature (i.e., the stress degree day) and remote estimates of daily ET were derived from satellite data over sites in France, the Sahel, and North Africa and summarized here. Results confirm that similar approaches can be applied at local and regional scales despite differences in pixel size and heterogeneity. This article analyzes methods for obtaining these data and outlines the potential utility of satellite data for operational use at the regional scale. (author)

  14. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley


    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  15. Cross calibration of IRS-P4 OCM satellite sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    Vol. 6404 640414-2 Proc. of SPIE Vol. 6404 640414-3 Proc. of SPIE Vol. 6404 640414-4 S. ..t . . Proc. of SPIE Vol. 6404 640414-5 Proc. of SPIE Vol. 6404 640414-6 0,E 0,E VC) I-a C C) C) Cu Cl) 1.0 0.8 0.6 0.2 0.0 0.0 0.6 Measured (mg/rn3) Proc...

  16. Contribution To The Data Warehouse And Prospects Of The IRS Program (United States)

    Barner, Frithjof; Haydn, Rupert; Parmar, Manish; Makiola, Jens


    Over the past two years, the IRS program has again significantly contributed to the GSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, multispectral data from the HR LISS-III and MR AWiFS sensors have been provided. Both cameras are implemented on board of Resourcesat-1 and Resourcesat-2 respectively. Despite reduced capacities, the Resourcesat constellation of satellites so far acquired cloud-free images of a vast majority of the first HR coverage of CORE_001 and several monthly MR coverages for CORE_008 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  17. Satellite myths (United States)

    Easton, Roger L.; Hall, David


    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  18. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia


    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  19. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department


    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  20. Boomerang Satellites (United States)

    Hesselbrock, Andrew; Minton, David A.


    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  1. Statistical study of phase relationships between magnetic and plasma thermal pressures in the near-earth magnetosphere using the THEMIS satellites (United States)

    Nishi, K.; Kazuo, S.


    The auroral finger-like structures appear in the equatorward part of the auroral oval in the diffuse auroral region, and contribute to the auroral fragmentation into patches during substorm recovery phase. In our previous presentations, we reported the first conjugate observation of auroral finger-like structures using the THEMIS GBO cameras and the THEMIS satellites, which was located at a radial distance of 9 Re in the dawnside plasma sheet. In this conjugate event, we found anti-phase fluctuation of plasma pressure and magnetic pressure with a time scale of 5-20 min in the plasma sheet. This observational fact is consistent with the idea that the finger-like structures are caused by a pressure-driven instability in the balance of plasma and magnetic pressures in the magnetosphere. Then we also searched simultaneous observation events of auroral finger-like structures with the RBSP satellites which have an apogee of 5.8 Re in the inner magnetosphere. Contrary to the first result, the observed variation of plasma and magnetic pressures do not show systematic phase relationship. In order to investigate these phase relationships between plasma and magnetic pressures in the magnetosphere, we statistically analyzed these pressure data using the THEMIS-E satellite for one year in 2011. In the preliminary analysis of pressure variation spectra, we found that out of phase relationship between magnetic and plasma pressures occupied 40 % of the entire period of study. In the presentation, we will discuss these results in the context of relationships between the pressure fluctuations and the magnetospheric instabilities that can cause auroral finger-like structures.

  2. The detectability of cracks using sonic IR (United States)

    Morbidini, Marco; Cawley, Peter


    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  3. Assessment of different topographic corrections in AWiFS satellite ...

    Indian Academy of Sciences (India)

    Snow and Avalanche Study Establishment, Defence Research and Development Organisation,. Chandigarh 160 ... IRS P6 satellite images and the qualitative and quantitative comparative analysis in detail. Both .... Top: AWiFS satellite image of Western Himalaya and bottom: zoom image of the study area shown with white.

  4. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin


    Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surf...

  5. The IRS-1 signaling system. (United States)

    Myers, M G; Sun, X J; White, M F


    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  6. Assessing Recent Improvements in the GOSAT TANSO-FTS Thermal InfraRed Emission Spectrum using Satellite Inter-Comparison with NASA AIRS, EUMETSAT IASI, and JPSS CrIS (United States)

    Knuteson, R.; Burgess, G.; Shiomi, K.; Kuze, A.; Yoshida, J.; Kataoka, F.; Suto, H.


    The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has been providing global space-borne observations of carbon dioxide (CO2) and methane (CH4) since 2009 (Kuze et al. 2012). The TANSO-FTS sensor is an interferometer spectrometer measuring shortwave reflected solar radiation with high spectral resolution in three spectral bands. A bore-sighted band 4 uses the same interferometer to measure thermal infrared radiation (TIR) at the top of the atmosphere. This paper is a comparison of the TANSO-FTS TIR band with coincident measurements of the NASA Atmospheric InfraRed Sounder (AIRS) grating spectrometer. The time and space coincident matchups are at the Simultaneous Nadir Overpass (SNO) locations of the orbits of GOSAT and the NASA AQUA satellite. GOSAT/AQUA SNOs occur at about 40N and 40S latitude. A continuous set of SNO matchups has been found from the start of valid radiance data collection in April 2009 through the end of 2015. UW-SSEC has obtained the time, latitude, and longitude of the SNO location using the ORBNAV software at UW-SSEC obtained the matching AIRS v5 L1B radiances from the NASA archive. JAXA has reprocessed the entire TANSO-FTS TIR band using the previous v161and a new calibration version (v203) which includes calibration parameter optimizations. The TANSO-FTS has been reduced to the AIRS spectral channels using the AIRS spectral response functions (SRFs). This paper will show the time series of observed brightness temperatures from AIRS and GOSAT TANSO-FTS TIR observations from the SNO matchups. Similar results are obtained by comparison with the EUMETSAT Infrared Atmospheric Sounding Interferometer (IASI) on the METOP platform and the JPSS Cross-track InfraRed Sounder (CrIS) on the Suomi-NPP platform. This paper validates the improvements in the GOSAT ground calibration software by providing a reference

  7. Atmospheric Entry Experiments at IRS (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.


    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  8. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  9. Automatic temperature computation for realistic IR simulation (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe


    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  10. Low-Temperature Thermal Reactions Between SO2 and H2O2 and Their Relevance to the Jovian Icy Satellites (United States)

    Loeffler, Mark J.; Hudson, Reggie L.


    Here we present first results on a non-radiolytic, thermally-driven reaction sequence in solid H2O +SO2 + H2O2 mixtures at 50-130 K, which produces sulfate (SO(-2)/(4)), and has an activation energy of 53 kJ/mole. We suspect that these results may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  11. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center


    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  12. Scientific Satellites (United States)


    noise signal level exceeds 10 times the normal background. EXPERIMENTS FOR SATELLITE ASTRONOMY 615 ANTENNA MONOPOLE -., PREAMPLFE = BANDPASS-FILTER...OUTPUT TO AND DETECTOR TELEMETRYCHANNELS (18) CALIBRATION NOISE MATRIX CLOCK NOISE SOURCE ’ON’ SOURCE COMMAND F ROM PROGRAMERP ANTENNA MONOPOLE FIGURE 13...Animal Tempera- ture Sensing for Studying the Effect of Prolonged Orbital Flight on the Circadian Rhythms of Pocket Mice . Unmanned Spacecraft Meeting

  13. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.


    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  14. Solar satellites (United States)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  15. Contributions to the Data Warehouse 2 and Prospects of the IRS Program (United States)

    Barner, Frithjof; Venkataraman, V. Raghu; Makiola, Jens


    During 2015 and 2016, the IRS program has significantly contributed to the CSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, data from the HR LISS-III and MR AWiFS sensors on board of Resourcesat-2 have been provided. Resourcesat-2 so far acquired cloud-free images of a vast majority of the first and second coverage of HR_IMAGE_2015 and several monthly MR coverages for MR_IMAGE_2015 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  16. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Jain, Mayank; Tidemand-Lichtenberg, Peter


    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (700–1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also...

  17. Space Solar Power: Satellite Concepts (United States)

    Little, Frank E.


    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  18. Sediment dispersal during ne monsoon over northern Bay of Bengal: Preliminary results using IRS-P4 OCM data

    Digital Repository Service at National Institute of Oceanography (India)

    Anuradha, T.; Suneethi, J.; Dash, S.K.; Pradhan, Y.; Prasad, J.S.; Rajawat, A.S.; Nayak, S.R.; Chauhan, O.S.

    False Color Composite (FCC) from the sequential satellite images of Indian Remote Sensing Satellite IRS-P4 OCM (bands around 443, 555, and 845 nm) together with sea truth data acquisition at 42 stations along the Orissa coast have been used...

  19. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.


    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  20. CCD and IR array controllers (United States)

    Leach, Robert W.; Low, Frank J.


    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  1. Thermal particle image velocity estimation of fire plume flow (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise


    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  2. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system (United States)

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.


    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  3. Advanced satellite servicing facility studies (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.


    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  4. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)


    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  5. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko


    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  6. The Infrared Astronomical Satellite (IRAS) mission (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.


    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  7. Geostationary Satellite (GOES) Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  8. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.


    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  9. Thermal And Gamma-Radiation Annealing Of The Iridium-192 Recoil Species In Crystalline Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Recuit Thermique et par Rayonnement Gamma de l'espece {sup 192}Ir de Recul dans des Cristaux de Na{sub 2}IrCl{sub 6} * 6H{sub 2}O; 0422 0415 041f 041b 041e 0412 041e 0419 0418 0413 0410 041c 041c 0410 - 041e 0422 0416 0418 0413 041f 0420 041e 0414 0423 041a 0422 041e 0412 041e 0422 0414 0410 0427 0418 0418 0420 0418 0414 0418 042f -192 0412 041a 0420 0418 0421 0422 0410 041b 041b 0418 0427 0415 0421 041a 041e 041c Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O; Regeneracion Termica y por Irradiacion Gamma de las Especies de Retroceso del Iridio-192 en Na{sub 2}IrCl{sub 6} {center_dot} 6H{sub 2}O Cristalino

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Rita; Herr, W. [Kernforschungsanlage Juelich, Institut fuer Kernchemie der Universitaet Koeln, Cologne, Federal Republic of Germany (Germany)


    Ii is possible to separate by means of paper electrophoresis as many as 13 different recoil compounds from Na{sub 2}IrCl{sub 6}H{sub 2}O {center_dot} 6H{sub 2}O as a result of the nuclear reaction Ir{sup 191} (n, {gamma}) Ir{sup 192}. While most of them have anionic character, two of them act as Irwz-labelled cations. These carrier-free compounds have been studied as regards their behaviour towards reducing and oxidizing agents and aging in solution. Independently the hydrolysis of the hexachloro complexes of ter- and quadrivalent iridium, which had been labelled with Cl{sup 36} and Ir{sup 192}, was investigated. A comparison between these two series of results supported by further results from neutron activation analysis enables the recoil products to be identified mostly as octahedral complexes of Ir-III containing Cl{sup -}, H{sub 2}O and OH{sup -} ligands to a different extent. Evidently the water of crystallization plays an important role in the formation of the recoil species. The thermal annealing of these products at 120 Degree-Sign C shows a rapid decrease in the yields of the aquochloro, hydroxochloro and aquohydroxochloro complexes towards formation of the mother compound with the exception of the pentachloro complex. This complex decreases only after an initial increase, indicating that it is involved as an intermediate from other accompanying products during their annealing. Gamma-radiation annealing reveals many single steps whose general trend is a transition from lesser Cl-containing species to a higher Cl content leading finally to the hexachloro complex. This shows that the annealing process consists in the re-entering of Cl atoms (or ions) into the ligand sphere with the accompanying displacement of H{sub 2}O as well as OH (OH{sup -}). (author) [French] Il est possible de separer de Na{sub 2}IrCl{sub 6}(6H{sub 2}O), au moyen de l'electrophorese sur papier, jusqu'a 13 composes de recul resultant de la reaction nucleaire {sup 191}Ir(n, {gamma

  10. Detection of marine aerosols with IRS P4-Ocean Colour Monitor

    Indian Academy of Sciences (India)

    The atmospheric correction bands 7 and 8 (765nm and 865nm respectively) of the Indian Remote Sensing Satellite IRS P4-OCM (Ocean Colour Monitor) can be used for deriving aerosol optical depth (AOD) over the oceans. A retrieval algorithm has been developed which computes the AOD using band 7 data by treating ...

  11. Estimation of surface Latent Heat Fluxes from IRS-P4/MSMR ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    IRS-P4/MSMR satellite data. Randhir Singh, B Simon and P C Joshi. Atmospheric Sciences Division, Meteorology & Oceanography Group, Space Applications Centre, ISRO. Ahmedabad 380 015, India. The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave. Radiometer) launched ...

  12. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu


    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  13. Rescue and Calibration of NIMBUS 1-4 IR Film Products, 1964 TO 1972 (United States)

    Morgan, T.; Campbell, G. G.


    Digital data exists from the high resolution infrared instruments on Nimbus 1 to 4 for about 1/4 of the possible orbits for parts of 1964, 1966, 1969 and 1970. We are now digitizing and navigating 35 mm film products from those instruments into digital files. Some of those orbits overlap with the digital data so we can "calibrate" the gray scale pictures into temperatures by comparison. Then that calibration can be extended to orbits with no digital data. This greatly improves the coverage of the night time IR view of the earth. Ultimately these data will be inserted into the NASA archive for general use. We will review our progress on this project and discuss an error estimate for the calibration of the HRIR (High Resolution Infrared Radiometer) data from Nimbus 1, 2 and 3 as well as the THIR (Thermal Infrared Radiometer) data on Nimbus 4. These more complete Infrared views of the Earth provide the opportunity to better understand the weather in this period. Comparisons will be made with pre-satellite era reanalysis products.

  14. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data (United States)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory


    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  15. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai


    Mockevičius, Arminas


    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  16. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI (United States)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.


    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  17. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.


    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  18. Oferta ir akceptas vartojimo sutartyse


    Ežerskytė, Ramunė


    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  19. Asteroid Satellites (United States)

    Merline, W. J.


    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  20. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J


    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  1. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan


    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  2. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.


    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  3. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment (United States)

    Pereverzev, Sergey


    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  4. Thermal and IR studies on copper doped polyvinyl alcohol

    Indian Academy of Sciences (India)


    and K VEERA BRAHMAM*. Advanced Systems Laboratory, Kanchanbagh, Hyderabad 500 058, India ... and transient data storage materials or as a basic material for the fabrication of ... of the polymer. The aim of the present work was to study.

  5. Far-IR and Radio Thermal Continua in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Heinzel, Petr; Karlický, Marian; Moravec, Z.; Varady, M.


    Roč. 33, - (2009), s. 309-315 ISSN 1845-8319 R&D Projects: GA ČR GA205/04/0358; GA ČR GP205/06/P135; GA ČR GA205/07/1100 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar flares * radiative hydrodynamics * continuum emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  6. IR characteristic simulation of city scenes based on radiosity model (United States)

    Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu


    Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.

  7. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  8. Power-Law Template for IR Point Source Clustering (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide


    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  9. Satellite image collection optimization (United States)

    Martin, William


    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  10. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  11. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data (United States)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.


    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  12. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.


    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  13. GPS Satellite Simulation Facility (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  14. Hybrid nanomaterial and its applications: IR sensing and energy harvesting (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  15. IR-based spot weld NDT in automotive applications (United States)

    Chen, Jian; Feng, Zhili


    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  16. IR-laser assisted additive freeform optics manufacturing. (United States)

    Hong, Zhihan; Liang, Rongguang


    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  17. Photometric Study of Uranian Satellites (United States)

    Kesten, Philip R.


    The best summary of my work at NASA is expressed in the following abstract, submitted the Division for Planetary Science of the American Astronomical Society and to be presented at the annual meeting in Madison in October. We report photometric measurements of Uranian satellites Miranda, Ariel, Umbriel and Titania (10.4 Aug. 1995), and Neptune's satellite Triton (21.2 Sept. 1995) with the infrared camera (IRCAM) and standard J (1.13 - 1.42 microns), H (1.53 - 1.81 microns), and K (2.00 - 2.41 microns) filters at the 3.8-m UKIRT telescope on Mauna Kea. The individual images frames are 256 x 256 pixels with a platescale of .286 arcsec/pixel, resulting in a 1.22 arc min field of view. This summer brought the IR photometry measurements nearly to a close. As indicated by the abstract above, I will present this work at the annual DPS meeting in October. In anticipation of the opening of the new Carl Sagan Laboratory for Cosmochemisty, of which I will be a participating member, I also devoted a considerable fraction of the summer to learning the biochemistry which underlies the experiments to be conducted. To put the end of the summary close to the beginning, it was a most productive summer.

  18. Satellite Remote Sensing in Seismology. A Review

    Directory of Open Access Journals (Sweden)

    Andrew A. Tronin


    Full Text Available A wide range of satellite methods is applied now in seismology. The first applications of satellite data for earthquake exploration were initiated in the ‘70s, when active faults were mapped on satellite images. It was a pure and simple extrapolation of airphoto geological interpretation methods into space. The modern embodiment of this method is alignment analysis. Time series of alignments on the Earth's surface are investigated before and after the earthquake. A further application of satellite data in seismology is related with geophysical methods. Electromagnetic methods have about the same long history of application for seismology. Stable statistical estimations of ionosphere-lithosphere relation were obtained based on satellite ionozonds. The most successful current project "DEMETER" shows impressive results. Satellite thermal infra-red data were applied for earthquake research in the next step. Numerous results have confirmed previous observations of thermal anomalies on the Earth's surface prior to earthquakes. A modern trend is the application of the outgoing long-wave radiation for earthquake research. In ‘80s a new technology—satellite radar interferometry—opened a new page. Spectacular pictures of co-seismic deformations were presented. Current researches are moving in the direction of pre-earthquake deformation detection. GPS technology is also widely used in seismology both for ionosphere sounding and for ground movement detection. Satellite gravimetry has demonstrated its first very impressive results on the example of the catastrophic Indonesian earthquake in 2004. Relatively new applications of remote sensing for seismology as atmospheric sounding, gas observations, and cloud analysis are considered as possible candidates for applications.

  19. Using IR Imaging of Water Surfaces for Estimating Piston Velocities (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.


    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  20. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model (United States)

    Wang, C.; Hong, Y.


    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  1. The Calipso Thermal Control Subsystem (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel


    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  2. Innovations in IR projector arrays (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.


    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.



    Kontrimas, Robertas


    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  4. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin


    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  5. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung


    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  6. Hermann agreement updates IRS guidelines for incentives. (United States)

    Broccolo, B M; Peregrine, M W


    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  7. About Nano-JASMINE Satellite System and Project Status (United States)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  8. Collage of Saturn's smaller satellites (United States)


    This family portrait shows the smaller satellites of Saturn as viewed by Voyager 2 during its swing through the Saturnian system. The following chart corresponds to this composite photograph (distance from the planet increases from left to right) and lists names, standard numerical designations and approximate dimensions (radii where indicated) in kilometers: 1980S26Outer F-ringshepherd120 X 100 1980S1Leadingco-orbital220 X 160 1980S25TrailingTethys trojanradii: 25 1980S28Outer Ashepherdradii: 20 1980S27Inner F-ringco-orbital145 X 70 1980S3TrailingTethys trojan140 X 100 1980S13LeadingTethys trojanradii: 30 1980S6LeadingDione trojanradii: 30 These images have been scaled to show the satellites in true relative sizes. This set of small objects ranges in size from small asteroidal scales to nearly the size of Saturn's moon Mimas. They are probably fragments of somewhat larger bodies broken up during the bombardment period that followed accretion of the Saturnian system. Scientists believe they may be mostly icy bodies with a mixture of meteorite rock. They are somewhat less reflective than the larger satellites, suggesting that thermal evolution of the larger moons 'cleaned up' their icy surfaces. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.


    International Nuclear Information System (INIS)

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F.


    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  10. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.


    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  11. Studies of Neutron Stars at Optical/IR Wavelengths


    Mignani, R. P.; Bagnulo, S.; De Luca, A.; Israel, G. L.; Curto, G. Lo; Motch, C.; Perna, R.; Rea, N.; Turolla, R.; Zane, S.


    In the last years, optical studies of Isolated Neutron Stars (INSs) have expanded from the more classical rotation-powered ones to other categories, like the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), which make up the class of the magnetars, the radio-quiet INSs with X-ray thermal emission and, more recently, the enigmatic Compact Central Objects (CCOs) in supernova remnants. Apart from 10 rotation-powered pulsars, so far optical/IR counterparts have been found f...

  12. Accuracy and impact of spatial aids based upon satellite enumeration to improve indoor residual spraying spatial coverage. (United States)

    Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A


    Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from

  13. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing


    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  14. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.


    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  15. Teaching IR to Medical Students: A Call to Action. (United States)

    Lee, Aoife M; Lee, Michael J


    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  16. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis


    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  17. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector (United States)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong


    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  18. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991 (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  19. Formation of the satellites of the outer solar system - Sources of their atmospheres

    International Nuclear Information System (INIS)

    Coradini, A.; Cerroni, P.; Magni, G.; Federico, C.


    The present account of the current understanding of regular satellite systems' origins gives attention to the essential processes leading to current satellite configurations, proceeding on the concept that the presence of atmospheres is connected with the final phases of satellite formation. Four major formation stages are envisioned: (1) the disk phase, linking the formation of the primary body to that of the satellites; (2) the formation phase of intermediate-sized bodies; (3) the collisional evolution of planatesimals; and (4) a series of evolutionary phases linking the primordial phases to currently observed states, in which the internal composition and thermal history of the satellites are key factors in satellite atmosphere formation

  20. Premier's imaging IR limb sounder (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi


    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  1. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.


    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  2. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar


    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  3. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.


    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  4. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.


    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  5. Communication satellite applications (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  6. Diamagnetism in spinel compound CuIr2S4

    International Nuclear Information System (INIS)

    Yagasaki, K.; Nakama, T.


    The diamagnetic susceptibility in CuIr 2 S 4 is independent of temperature up to just below metal-insulator transition temperature. If activation of electrons to higher levels occurs with breaking dimer pairs, the residual electrons at the dimer position and the activated electrons to the anti-bonding orbital make localized free spins giving a Langevin paramagnetism. Assuming no magnetic interaction between the localized free spins, the susceptibility is calculated using the energy gap obtained from the conductivity assumed to be a conventional semiconductor. The calculated results cannot explain the temperature-independent diamagnetism. The real energy gap is too large for thermal electron activation, however, conduction is induced thermally over several orders of magnitude within insulating phase. From the above results, we claimed new conduction mechanism named traveling dimer conduction: dimer shifts its position by electron hopping to neighbor position without electron activation over the energy gap

  7. Magnetocaloric effect in Sr2CrIrO6 double perovskite: Monte Carlo simulation (United States)

    El Rhazouani, O.; Slassi, A.; Ziat, Y.; Benyoussef, A.


    Monte Carlo simulation (MCS) combined with the Metropolis algorithm has been performed to study the magnetocaloric effect (MCE) in the promising double perovskite (DP) Sr2CrIrO6 that has not so far been synthetized. This paper presents the global magneto-thermodynamic behavior of Sr2CrIrO6 compound in term of MCE and discusses the behavior in comparison to other DPs. Thermal dependence of the magnetization has been investigated for different values of reduced external magnetic field. Thermal magnetic entropy and its change have been obtained. The adiabatic temperature change and the relative cooling power have been established. Through the obtained results, Sr2CrIrO6 DP could have some potential applications for magnetic refrigeration over a wide temperature range above room temperature and at large magnetic fields.

  8. Detecting infrared luminescence and non-chemical signaling of living cells: single cell mid-IR spectroscopy in cryogenic environments (United States)

    Pereverzev, Sergey


    Many life-relevant interaction energies are in IR range, and it is reasonable to believe that some biochemical reactions inside cells can results in emission of IR photons. Cells can use this emission for non-chemical and non-electrical signaling. Detecting weak infrared radiation from live cells is complicated because of strong thermal radiation background and absorption of radiation by tissues. A microfluidic device with live cells inside a vacuum cryogenic environment should suppress this background, and thereby permit observation of live cell auto-luminescence or signaling in the IR regime. One can make IR-transparent windows not emitting in this range, so only the cell and a small amount of liquid around it will emit infrared radiation. Currently mid-IR spectroscopy of single cells requires the use of a synchrotron source to measure absorption or reflection spectra. Decreasing of thermal radiation background will allow absorption and reflection spectroscopy of cells without using synchrotron light. Moreover, cell auto-luminescence can be directly measured. The complete absence of thermal background radiation for cryogenically cooled samples allows the use IR photon-sensitive detectors and obtaining single molecule sensitivity in IR photo-luminescence measurements. Due to low photon energies, photo-luminescence measurements will be non-distractive for pressures samples. The technique described here is based upon US patent 9366574.

  9. Satellite services system overview (United States)

    Rysavy, G.


    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  10. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje


    Vijeikis, Juozas; Makštutis, Antanas


    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  11. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.


    A thermopile-based detector array for use in a miniaturized Infrared (IR) spectrometer has been designed and fabricated using CMOS compatible MEMS technology. The emphasis is on the optimal of the detector array at the system level, while considering the thermal design, the dimensional constraints

  12. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages

    NARCIS (Netherlands)

    Kars, R.H.; Busschers, F.S.; Wallinga, J.


    Recent developments have opened up the possibilities of using potassium feldspar for dating Pleistocene sediments; a stable (less-fading) part of the infrared stimulated luminescence (IRSL) signal can be selected by largely depleting the unstable part of the IR signal, using a combination of thermal

  13. Assessment of COTS IR image simulation tools for ATR development (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal


    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  14. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude


    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  15. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  16. MTF measurement of IR optics in different temperature ranges (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen


    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  17. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje


    Veličkaitė, Dalia


    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  18. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.


    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  19. Simulation of solar array slewing of Indian remote sensing satellite (United States)

    Maharana, P. K.; Goel, P. S.

    The effect of flexible arrays on sun tracking for the IRS satellite is studied. Equations of motion of satellites carrying a rotating flexible appendage are developed following the Newton-Euler approach and utilizing the constrained modes of the appendage. The drive torque, detent torque and friction torque in the SADA are included in the model. Extensive simulations of the slewing motion are carried out. The phenomena of back-stepping, step-missing, step-slipping and the influences of array flexibility in the acquisition mode are observed for certain combinations of parameters.

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation (United States)

    Abrams, Charles B.; Fine, Leonard W.


    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim


    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  2. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun


    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  3. Satellite Communications Industry (United States)


    Ariane $loom SAJAC 1 Hughes Satellite Japan 06/94 $150m SAJAC 2 Hughes Satellite Japan -- (spare) $150m SatcomHl GE GE Americom /95 $50m SOLIDARIDAD ...1 Hughes SCT (Mexico) 11/93 Ariane $loom SOLIDARIDAD 2 Hughes SCT (Mexico) /94 $loom Superbird Al Loral Space Com Gp (Jap) 11/92 Ariane $175m

  4. Partnership via Satellite. (United States)

    Powell, Marie Clare


    Segments of the 1980 National Catholic Educational Association (NCEA) conference were to be telecast nationally by satellite. The author briefly explains the satellite transmission process and advises Catholic educators on how to pick up the broadcast through their local cable television system. (SJL)

  5. Vartotojų lojalumas : formavimas ir valdymas


    Zikienė, Kristina


    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  6. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)


    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  7. The satellite situation center

    International Nuclear Information System (INIS)

    Teague, M.J.; Sawyer, D.M.; Vette, J.I.


    Considerations related to the early planning for the International Magnetospheric Study (IMS) took into account the desirability of an establishment of specific entities for generating and disseminating coordination information for both retrospective and predictive periods. The organizations established include the IMS/Satellite Situation Center (IMS/SSC) operated by NASA. The activities of the SSC are related to the preparation of reports on predicted and actually achieved satellite positions, the response to inquiries, the compilation of information on satellite experiments, and the issue of periodic status summaries. Attention is given to high-altitude satellite services, other correlative satellite services, non-IMS activities of the SSC, a summary of the SSC request activity, and post-IMS and future activities

  8. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.


    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  9. Atomic-layer deposited IrO2 nanodots for charge-trap flash-memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Cha, Young-Kwan; Seo, Bum-Seok; Park, Sangjin; Park, Ju-Hee; Shin, Sangmin; Seol, Kwang Soo; Park, Jong-Bong; Jung, Young-Soo; Park, Youngsoo; Park, Yoondong; Yoo, In-Kyeong; Choi, Suk-Ho


    Charge-trap flash- (CTF) memory structures have been fabricated by employing IrO 2 nanodots (NDs) grown by atomic-layer deposition. A band of isolated IrO 2 NDs of about 3 nm lying almost parallel to Si/SiO 2 interface is confirmed by transmission electron microscopy and x-ray photoelectron spectroscopy. The memory device with IrO 2 NDs shows much larger capacitance-voltage (C-V) hysteresis and memory window compared with the control sample without IrO 2 NDs. After annealing at 800 deg. C for 20 min, the ND device shows almost no change in the width of C-V hysteresis and the ND distribution. These results indicate that the IrO 2 NDs embedded in SiO 2 can be utilized as thermally stable, discrete charge traps, promising for metal oxide-ND-based CTF memory devices

  10. Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia (United States)

    Gershenzon, O.


    ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been

  11. On the Search for Mid-IR and Pure Rotational H3+ Emission in Jupiter's Northern Aurora (United States)

    Trafton, Laurence M.; Miller, Steve; Lacy, John H.; Greathouse, Thomas K.


    The first identification of astronomical spectral emission from the H3+ ion was made in Jupiter’s southern auroral region in the first overtone band near 2 μm (Drossart et al. 1989; Nature 340, 539). Trafton et al. (1989; ApJ 343, L73) also detected H3+ emission from this band near each of Jupiter’s auroral poles, but without identifying it. Shortly thereafter, Maillard et al (1990; ApJ 363, L37) detected the fundamental band emission near 4 μm. In order to determine the non-LTE column abundance of H3+, which is Jupiter’s primary ionospheric coolant, we searched in 2001-2002, initially above 10 μm, for emission lines from the H3+ pure rotational and ν1 -> ν2 difference band. This was done near the northern auroral “hot spot” at System III longitude 180 deg based on predicted theoretical frequencies. The results were reported by Trafton et al. (2009; Icarus 203, 189). No pure rotational lines were detected but there were marginal detections of two metastable difference band lines. The IR-inactive ν1 levels are populated in thermal equilibrium so these difference band lines are proxies for the pure rotational lines in establishing the total H3+ column. These marginal results are consistent with a vibrational relaxation of the ν2 level by a factor of ~6, consistent with the non-LTE calculation of Melin et al. (2005; Icarus 178, 97).We report here results from subsequent observations of Jupiter’s H3+ hot spot spectrum below 10 μm, where better detectivity was expected from the lower thermal background. However, this was offset by the reduced availability of emission from known hydrocarbons, leading to acquisition and guiding difficulty, which was resolved by offsetting from a Galilean satellite. The observations were made with the TEXES high-resolution mid-IR spectrograph at the IRTF telescope on Oct 1, 6, and 8 of 2012. Of the 18 lines predicted for this wavelength regime, half avoided blending with lines apparent in Jupiter’s auroral spectrum or

  12. Prediction of the lifetime of nitrile-butadiene rubber by FT-IR. (United States)

    Kawashima, Tetsuya; Ogawa, Toshio


    A quantitative measurement method with FT-IR was proposed for a thermal degradation analysis of nitrile-butadiene rubber (NBR). An NBR film was prepared as a model sample on a barium fluoride (BaF2) crystal plate, which was subjected to a heat treatment. The absorbances of various functional groups were measured directly by FT-IR after thermal degradation at high temperatures. By measuring the absorbances, it was possible to readily determine quantitatively each of the functional groups after the degradation of NBR. By assuming that the NBR lifetime was the point at which the absorbance of a carbon-carbon double bond reaches 45% of that prior to thermal treatment, a method for predicting the lifetime of NBR heated below 150 degrees C was proposed, by using an Arrhenius plot of the heating time versus heating temperature.

  13. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers (United States)

    Fan, Wendy


    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  14. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.


    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  15. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)


    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  16. Satellite imagery in safeguards: progress and prospects

    International Nuclear Information System (INIS)

    Niemeyer, I.; Listner, C.


    The use of satellite imagery has become very important for the verification of the safeguards implementation under the Nuclear Non-Proliferation Treaty (NPT). The main applications of satellite imagery are to verify the correctness and completeness of the member states' declarations, and to provide preparatory information for inspections, complimentary access and other technical visits. If the area of interest is not accessible, remote sensing sensors provide one of the few opportunities of gathering data for nuclear monitoring, as for example in Iraq between 1998 and 2002 or currently in North Korea. Satellite data of all available sensor types contains a considerable amount of safeguard-relevant information. Very high-resolution optical satellite imagery provides the most detailed spatial information on nuclear sites and activities up to 0.41 m resolution, together with up to 8 spectral bands from the visible light and near infrared. Thermal infrared (TIR) images can indicate the operational status of nuclear facilities and help to identify undeclared activities. Hyper-spectral imagery allows a quantitative estimation of geophysical, geochemical and biochemical characteristics of the earth's surface and is therefore useful for assessing, for example, surface cover changes due to drilling, mining and milling activities. Synthetic Aperture Radar (SAR) image data up to 1 m spatial resolution provides an all-weather, day and night monitoring capability. However, the absence (or existence) of nuclear activities can never be confirmed completely based on satellite imagery. (A.C.)

  17. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    and studied the validity of these observations against ship-reported and buoy data. Many studies have been undertaken on how best to use the data available from satellite observation systems in wave models (Mastenbroek, 1994; Young and Glowacki, 1996... Sea wave model. Journal of Geophysical Research 10, 5829–5849. Young, I.R., 1994. Global ocean wave statistics obtained from satellite observations. Applied Ocean Research 16, 235-248. Young, I.R., Glowacki, T.J., 1996. Assimilation of altimeter...

  18. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A


    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  19. Probability of satellite collision (United States)

    Mccarter, J. W.


    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  20. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie


    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  1. Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning

    Directory of Open Access Journals (Sweden)

    Tania Kleynhans


    Full Text Available Image data from space-borne thermal infrared (IR sensors are used for a variety of applications, however they are often limited by their temporal resolution (i.e., repeat coverage. To potentially increase the temporal availability of thermal image data, a study was performed to determine the extent to which thermal image data can be simulated from available atmospheric and surface data. The work conducted here explored the use of Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 developed by The National Aeronautics and Space Administration (NASA to predict top-of-atmosphere (TOA thermal IR radiance globally at time scales finer than available satellite data. For this case study, TOA radiance data was derived for band 31 (10.97 μ m of the Moderate-Resolution Imaging Spectroradiometer (MODIS sensor. Two approaches have been followed, namely an atmospheric radiative transfer forward modeling approach and a supervised learning approach. The first approach uses forward modeling to predict TOA radiance from the available surface and atmospheric data. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR model, a multi-layer perceptron (MLP, and a convolutional neural network (CNN. This research found that the multi-layer perceptron model produced the lowest overall error rates with an root mean square error (RMSE of 1.36 W/m 2 ·sr· μ m when compared to actual Terra/MODIS band 31 image data. These studies found that for radiances above 6 W/m 2 ·sr· μ m, the forward modeling approach could predict TOA radiance to within 12 percent, and the best supervised learning approach can predict TOA to within 11 percent.

  2. General review of multispectral cooled IR development at CEA-Leti, France (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.


    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  3. Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems (United States)

    Chandrasekhar, Prasanna; Dooley, T. J.


    Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.

  4. Domestic Communication Satellites (United States)

    Horowitz, Andrew


    A discussion of the Federal Communications Commission's new policy on domestic satellites in light of our 1) military and economic history; 2) corporate interests; 3) citizen surveillance; and 4) media control. (HB)


    Indian Academy of Sciences (India)


  6. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data (United States)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is

  7. The mid-IR silicon photonics sensor platform (Conference Presentation) (United States)

    Kimerling, Lionel; Hu, Juejun; Agarwal, Anuradha M.


    Advances in integrated silicon photonics are enabling highly connected sensor networks that offer sensitivity, selectivity and pattern recognition. Cost, performance and the evolution path of the so-called `Internet of Things' will gate the proliferation of these networks. The wavelength spectral range of 3-8um, commonly known as the mid-IR, is critical to specificity for sensors that identify materials by detection of local vibrational modes, reflectivity and thermal emission. For ubiquitous sensing applications in this regime, the sensors must move from premium to commodity level manufacturing volumes and cost. Scaling performance/cost is critically dependent on establishing a minimum set of platform attributes for point, wearable, and physical sensing. Optical sensors are ideal for non-invasive applications. Optical sensor device physics involves evanescent or intra-cavity structures for applied to concentration, interrogation and photo-catalysis functions. The ultimate utility of a platform is dependent on sample delivery/presentation modalities; system reset, recalibration and maintenance capabilities; and sensitivity and selectivity performance. The attributes and performance of a unified Glass-on-Silicon platform has shown good prospects for heterogeneous integration on materials and devices using a low cost process flow. Integrated, single mode, silicon photonic platforms offer significant performance and cost advantages, but they require discovery and qualification of new materials and process integration schemes for the mid-IR. Waveguide integrated light sources based on rare earth dopants and Ge-pumped frequency combs have promise. Optical resonators and waveguide spirals can enhance sensitivity. PbTe materials are among the best choices for a standard, waveguide integrated photodetector. Chalcogenide glasses are capable of transmitting mid-IR signals with high transparency. Integrated sensor case studies of i) high sensitivity analyte detection in

  8. Iridium Interfacial Stack - IrIS (United States)

    Spry, David


    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  9. Satellite Communications for ATM (United States)

    Shamma, Mohammed A.


    This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new

  10. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.


    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  11. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)


    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  12. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing


    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Study on an x-ray microcalorimeter using Ir superconductor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Zen, Nobuyuki; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka


    We fabricated a ten-pixel Ir/Au-transition edge sensor (TES) microcalorimeter, and investigated its signal and noise-property. The device was successfully operated in electro-thermal feedback (ETF) mode. More than six position groups could be discrete by using pulse height and rise time parameters of observed x-ray signals. It seems that the separation groups reflect the pixel position of the TES. The best energy resolution was 18.8 eV (FWHM) for 5.9 keV. The noise spectrum showed that noise level of ten-pixel was larger than that of single pixel. A unexplained peak was observed in the plot of current noise for each bias point. (author)

  14. Kas netilpo tarp politikos ir diplomatijos?


    Streikus, Arūnas


    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  15. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña


    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  16. Moving the Plasmon of LaB₆ from IR to Near-IR via Eu-Doping. (United States)

    Mattox, Tracy M; Coffman, D Keith; Roh, Inwhan; Sims, Christopher; Urban, Jeffrey J


    Lanthanum hexaboride (LaB₆) has become a material of intense interest in recent years due to its low work function, thermal stability and intriguing optical properties. LaB₆ is also a semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is of great interest to the window industry. It is well known that the plasmon of LaB₆ can be tuned by controlling particle size and shape. In this work, we explore the options available to further tune the optical properties by describing how metal vacancies and Eu doping concentrations are additional knobs for tuning the absorbance from the near-IR to far-IR in La 1-x Eu x B₆ (x = 0, 0.2, 0.5, 0.8, and 1.0). We also report that there is a direct correlation between Eu concentration and metal vacancies within the Eu 1-x La x B₆.

  17. Moving the Plasmon of LaB6 from IR to Near-IR via Eu-Doping

    Directory of Open Access Journals (Sweden)

    Tracy M. Mattox


    Full Text Available Lanthanum hexaboride (LaB6 has become a material of intense interest in recent years due to its low work function, thermal stability and intriguing optical properties. LaB6 is also a semiconductor plasmonic material with the ability to support strong plasmon modes. Some of these modes uniquely stretch into the infrared, allowing the material to absorb around 1000 nm, which is of great interest to the window industry. It is well known that the plasmon of LaB6 can be tuned by controlling particle size and shape. In this work, we explore the options available to further tune the optical properties by describing how metal vacancies and Eu doping concentrations are additional knobs for tuning the absorbance from the near-IR to far-IR in La1−xEuxB6 (x = 0, 0.2, 0.5, 0.8, and 1.0. We also report that there is a direct correlation between Eu concentration and metal vacancies within the Eu1−xLaxB6.

  18. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong


    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  19. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna Ecosystem Using a Thermal Based Two Source Energy Balance Model (TSEB II—Integration of Remote Sensing Medium and Low Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Ana Andreu


    Full Text Available Dehesas are highly valuable agro-forestry ecosystems, widely distributed over Mediterranean-type climate areas, which play a key role in rural development, basing their productivity on a sustainable use of multiple resources (crops, livestock, wildlife, etc.. The information derived from remote sensing based models addressing ecosystem water consumption, at different scales, can be used by institutions and private landowners to support management decisions. In this study, the Two-Source Energy Balance (TSEB model is analyzed over two Spanish dehesa areas integrating multiple satellites (MODIS and Landsat for estimating water use (ET, vegetation ground cover, leaf area and phenology. Instantaneous latent heat (LE values are derived on a regional scale and compared with eddy covariance tower (ECT measurements, yielding accurate results (RMSDMODIS Las Majadas 44 Wm−2, Santa Clotilde RMSDMODIS 47 Wm−2 and RMSDLandsat 64 Wm−2. Daily ET(mm is estimated using daily return interval of MODIS for both study sites and compared with the flux measurements of the ECTs, with RMSD of 1 mm day−1 over Las Majadas and 0.99 mm day−1 over Santa Clotilde. Distributed ET over Andalusian dehesa (15% of the region is successfully mapped using MODIS images, as an approach to monitor the ecosystem status and the vegetation water stress on a regular basis.

  20. Will the aerosol derived from the OCM satellite sensor be representative of the aerosol over Goa?

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Rodrigues, A.; Desa, E.; Chauhan, P.

    Most of the ocean color satellite sensors such as IRS-P4 OCM, SeaWiFS and MODIS are sun synchronous and have pass over the regions during noon. From our measurements of aerosol optical properties using five-channel sunphotometer over the coastal...

  1. The CALIPSO Integrated Thermal Control Subsystem (United States)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel


    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  2. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj


    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  3. Satellite failures revisited (United States)

    Balcerak, Ernie


    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  4. ESA's satellite communications programme (United States)

    Bartholome, P.


    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  5. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M


    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  6. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian


    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  7. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)


    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  8. IR reflectance spectroscopy of carbon dioxide clathrate hydrates. Implications for Saturn's icy moons. (United States)

    Oancea, A.; Grasset, O.; Le Menn, E.; Bezacier, L.; Bollengier, O.; Le Mouélic, S.; Tobie, G.


    A CO2 spectral band was discovered by VIMS on the Saturn's satellites Dione, Hyperion, Iapetus and Phoebe [1]. The band position on the three first satellites corresponds to CO2 trapped in a complex material, but no indication exists whether this latter is water ice or some mineral or complex organic compound [1]. On Phoebe, the CO2 spectral band is consistent with solid CO2 or CO2 molecules trapped in the small cages of a clathrate hydrate structure [2]. It is thought that clathrate hydrates could play a significant role in the chemistry of the solar nebula [3] and in the physical evolution of astrophysical objects [4]. But so far, no clathrate hydrate structure has been observed in astrophysical environments. Moreover, identification of molecules trapped in a clathrate hydrate structure is extremely difficult because of the strong IR vibration modes of the water ice matrix. In this work, experimental IR reflectance spectra for CO2 clathrate hydrates are studied on grains and films. Clathrates are synthesized in a high pressure autoclave at low temperatures. IR spectral analysis is made with a low pressure and low temperature cryostat. These experimental conditions - 80 spectrum will be presented. A comparison between the absorption bands of CO2 clathrate hydrates obtained in our lab and CO2 absorption bands as detected by VIMS on the icy satellites of Saturn will be shown. This experimental work confirms that VIMS data are not consistent with the presence of structure I CO2 clathrate hydrates on the surface of the icy moons. Possibility of having metastable structure II still remains unsolved and will be discussed. [1] Dalton et al., Space Sci. Rev. 2010, 153 : 113-154. [2] Cruikshank D.P. et al, Icarus, 2010, 206: 561-572. [3] Mousis O. et al , Ap. J. 2009, 691: 1780-1786. [4] Choukroun M. et al, in Solar System Ices, edited by Castillo-Rogez, J. et al., 2011.

  9. Exobiology of icy satellites (United States)

    Simakov, M. B.

    At the beginning of 2004 the total number of discovered planets near other stars was 119 All of them are massive giants and met practically in all orbits In a habitable zone from 0 8 up to 1 1 AU at less 11 planets has been found starting with HD 134987 and up to HD 4203 It would be naive to suppose existence of life in unique known to us amino-nucleic acid form on the gas-liquid giant planets Nevertheless conditions for onset and evolutions of life can be realized on hypothetical satellites extrasolar planets All giant planets of the Solar system have a big number of satellites 61 of Jupiter 52 of Saturn known in 2003 A small part of them consist very large bodies quite comparable to planets of terrestrial type but including very significant share of water ice Some from them have an atmosphere E g the mass of a column of the Titan s atmosphere exceeds 15 times the mass of the Earth atmosphere column Formation or capture of satellites is a natural phenomenon and satellite systems definitely should exist at extrasolar planets A hypothetical satellite of the planet HD 28185 with a dense enough atmosphere and hydrosphere could have biosphere of terrestrial type within the limits of our notion about an origin of terrestrial biosphere As an example we can see on Titan the largest satellite of Saturn which has a dense nitrogen atmosphere and a large quantity of liquid water under ice cover and so has a great exobiological significance The most recent models of the Titan s interior lead to the conclusion that a substantial liquid layer

  10. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter (United States)

    Kurt, H. Hilal


    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  11. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling


    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  12. The Qualification of a large electron irradiation facility for telecommunication satellite differential charging simulation (United States)

    Serene, B. E. H.; Reddy, J.


    The definition and procurement program is presented for the set up of a test simulating an electron environment on a model of a communication satellite to study the degradation of the thermal insulation materials during electron bombardment.

  13. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.


    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  14. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.


    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  15. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael


    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  16. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.


    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  17. Airborne pipeline leak detection: UV or IR? (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin


    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  18. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.


    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  19. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.


    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  20. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)


    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  1. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry


    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  2. Determination of Au, Ir, Os, Pd, Pt, Ru in high-purity metals by neutron activation

    International Nuclear Information System (INIS)

    Samadi, A.A.; Fedoroff, M.


    This determination was achieved by thermal neutron activation, chemical separations and radioactivity measurements by γ spectrometry. In order to develop chemical separations, some studies on the distillation and ion exchange of platinum group elements were perfomed. The fixation of these elements on an anion exchange resin in a nitrite medium was studied more particularly. This method enables a fully quantitative fixation. The detection limits in these irradiation conditions ranges from 10 -12 g for Ir to 10 -8 g for Pd [fr

  3. Spacecraft Thermal Management (United States)

    Hurlbert, Kathryn Miller


    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  4. The American Satellite Company (ASC) satellite deployed from payload bay (United States)


    The American Satellite Company (ASC) communications satellite is deployed from the payload bay of the Shuttle Discovery. A portion of the cloudy surface of the earth can be seen to the left of the frame.

  5. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers (United States)

    Kruzelecky, Roman

    Our planetary atmosphere helps to regulate the Earth's thermal budget and the resulting global climate by controlling the energy balance between the incident solar radiation and the thermal emission to space from the Earth's atmosphere and surface. Certain atmospheric gases, most importantly H2 O vapour and CO2 , can absorb some of the Earth's emitted IR radiation and trap it in the atmosphere to provide an atmospheric greenhouse effect that currently adds about 38 K to the Earth's mean surface temperature. The associated greenhouse gas (GHG) and water cycles are a complex balance of interactions among surface ecosystems and atmospheric processes. The natural water and carbon cycles are being measurably disrupted by anthropogenic activities. Since the industrial revolution, significant anthropogenic sources of greenhouse gases and aerosols have evolved, while natural sinks, such as forests and wetlands, are being destroyed. Changes in the land cover affect the balance of GHG sources and sinks, as well as the Albedo and resultant surface temperature. Water vapour, the most abundant GHG, is affected indirectly though the influence of aerosols on cloud formation and precipitation patterns, and directly through the influence of surface temperatures on the water evaporation rates. There is also positive feedback between the water and carbon cycles. For example, drought can result in desertification with subsequent release of stored carbon. It is clear that the common thread in all of these climate-related effects is the interaction between the surface ecosystems and the carbonand nitrogen-containing gases in the lower troposphere. Uptake of CO2 by growing vegetation, release of CH4 and N2 O by soil processes, and the effects of carbon and water cycle chemistry all interact strongly in a system that is both ex-tremely complex and poorly understood at the present time. In order to quantify these processes and provide a clearer prediction of their likely effects in the

  6. Deep Space Thermal Cycle Testing of Advanced X-Ray Astrophysics Facility - Imaging (AXAF-I) Solar Array Panels Test

    National Research Council Canada - National Science Library

    Sisco, Jimmy


    The NASA Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) satellite will be exposed to thermal conditions beyond normal experience flight temperatures due to the satellite's high elliptical orbital flight...

  7. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations

    DEFF Research Database (Denmark)

    Wu, Rui; Wang, Huai; Ma, Ke


    Thermal impedance of IGBT modules may vary with operating conditions due to that the thermal conductivity and heat capacity of materials are temperature dependent. This paper proposes a Cauer thermal model for a 1700 V/1000 A IGBT module with temperature-dependent thermal resistances and thermal ...... relevant reliability aspect performance. A test bench is built up with an ultra-fast infrared (IR) camera to validate the proposed thermal impedance model....


    Energy Technology Data Exchange (ETDEWEB)

    Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Bauer, J. M.; Mainzer, A. K.; Masiero, J. R.; Sonnett, S.; Kramer, E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Nugent, C. R.; Cutri, R. M., E-mail: [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)


    We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular satellites. The best-fit thermal model beaming parameters are comparable to what is observed for other small bodies in the outer solar system, while the visible, W1, and W2 albedos trace the taxonomic classifications previously established in the literature. Reflectance properties for the irregular satellites measured are similar to the Jovian Trojan and Hilda Populations, implying common origins.

  9. Study on high-silicon boron-containing zeolite by thermogravimetric and IR-spectroscopy techniques

    International Nuclear Information System (INIS)

    Chukin, G.D.; Nefedov, B.K.; Surin, S.A.; Polinina, E.V.; Khusid, B.L.; Sidel'kovskaya, V.G.


    The structure identity of initial Na-forms of boron-containing and aluminosilicate high-silicon zeolites is established by thermogravimetric and IR-spectroscopy methods. The presence of boron in Na-forms of high-silicon zeolites is shown to lead to reduction of structure thermal stability. It is noted that thermal stability of the H-form of both high-silicon boron-containing and boron-free zeolites is practically equal and considerably higher than that of Na-forms

  10. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks (United States)


    programmed for eventual integration with the Iridium Network , which is then tested. C. THESIS ORGANIZATION The thesis addresses these questions...NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS by Faisal S. Alshaya September 2017 Co-Advisors: Steven J. Iatrou...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE LEVERAGING THE NPS FEMTO SATELLITE FOR ALTERNATIVE SATELLITE COMMUNICATION NETWORKS 5

  11. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations (United States)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.


    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of archived MIPS observations of Phoebe reproduces Cassini results very accurately, thereby validating our method. For all targets, the geometric albedo is found to be low, probably below 10% and clearly below 15%. Irregular satellites are much darker than the large regular satellites. Their albedo is, however, quite similar to that of small bodies in the outer Solar System (such as cometary nuclei, Jupiter Trojans, or TNOs). This is consistent with color measurements as well as dynamical considerations which suggest a common origin of the said populations. There appear to be significant object-to-object albedo differences. Similar albedos found for some members of dynamical clusters support the idea that they may have originated in the breakup of a parent body. For three satellites, thermal data at two wavelengths are available, enabling us to constrain their thermal properties. Sub-solar temperatures are similar to that found from Cassini's Phoebe fly-by. This suggests a rather low thermal inertia, as expected for regolith-covered objects. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL under a contract with NASA. Support for this work was provided by NASA.

  12. Size and Albedo of Irregular Saturnian Satellites from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Grav, T.; Trilling, D.; Stansberry, J.; Sykes, M.


    Using MIPS onboard the Spitzer Space Telescope, we observed the thermal emission (24 and, for some targets, 70 um) of eight irregular satellites of Saturn: Albiorix, Siarnaq, Paaliaq, Kiviuq, Ijiraq, Tarvos, Erriapus, and Ymir. We determined the size and albedo of all targets. An analysis of

  13. Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, S.R.; Dwivedi, R.M.; Nayak, S.R.

    monotis, Prorocentrum lima on the macroalgae of artificial and natural reefs in the Northern Tyrrhenian Sea • Italy Ostreopsis ovata, Coolia monotis, Prorocentrum lima, Prorocentrum sp., Amphidinium sp. have been detected on the Tuscany coast, Tyrrhenian... Sea, on macroalgae on the artificial reefs of Marina di Massa and Versilia, and on the natural reefs of Livorno. The same dinoflagellates have been found on the islands of the Tuscany archipelago: Elba, Giannutri, Giglio [1, 2]. During these blooms...

  14. Motorcycle detection and counting using stereo camera, IR camera, and microphone array (United States)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan


    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  15. DEPRON dosimeter for ``Lomonosov'' satellite (United States)

    Brilkov, Ivan; Vedenkin, Nikolay; Panasyuk, Mikhail; Amelyushkin, Aleksandr; Petrov, Vasily; Nechayev, Oleg; Benghin, Victor

    It is commonly known, that cosmic radiation generates negative impact on the human body during space flight. The structure of the radiation fields in the near-Earth space was studied during intensive research of recent decades. Huge number of dosimetry studies was conducted on manned and unmanned space vehicles in order to solve the problem of radiation safety humans during space flights. It should be noted that most of the measurements was made onboard the spacecrafts, flying along the orbits with inclination of up to 51.6 degrees. Due to the prospect of manned missions at the orbits with larger inclination it seems advisable to conduct preliminary detailed dosimetry measurements at high-altitude orbit, for which the "Lomonosov" satellite provides good opportunities. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. Proposed in the late 70's this method is widely used onboard spacecraft, including full-time radiation monitoring onboard the ISS. Recently it has been improved, providing an opportunity to register not only the absorbed dose of charged particles radiation, but also range of their ionization losses. It allowed assessment of equivalent dose. Appropriate procedure based on using of a telescope consisting of two semiconductor detectors provided a basis of the developed unit. It should be noted that not only the charged particles contribute significantly in the equivalent dose, but also neutrons do. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. It was therefore decided to add thermal neutrons counter to the developed device in order to provide an opportunity of estimation of neutron flux variations along the satellite trajectory. A gas-discharge counter SI-13N, operated in a mode of corona discharge was chosen as a neutron detector. This method of neutron detection is well-proven and used many times in SINP MSU experiments. Thus, the

  16. Satellite Surveillance: Domestic Issues

    National Research Council Canada - National Science Library

    Best, Jr., Richard A; Elsea, Jennifer K


    ... and law enforcement purposes, in addition to the civil applications that have been supported for years. In 2007, it moved to transfer responsibility for coordinating civilian use of satellites to the Department of Homeland Security. The transfer occurred, however, apparently without notification of key congressional oversight committees.

  17. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude


    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  18. Cibola flight experiment satellite (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart


    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  19. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas


    Many satellite are influences by the Earthøs albedo, though very few model schemes order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  20. Commercial TV distribution and broadcast by satellite in the USA (United States)

    Debastos, R.

    The evolution of DBS satellite systems and their market in the U.S. is described. Anik A, launched in 1972, has been followed by 40 other launches. By 1986 there were 30 functional DBS systems in orbit operating in either C- or K- or hybrid modes of the two bands and providing over 450 channels to subscribers. The television capabilities are being augmented, with FCC approval for 31 new satellites, with Ku-band video, telephony and data transmission systems for small businesses. Features of the RCA Series 4000 and 5000 third generation satellites which will provide the services and lower operating costs passed on to the consumer are summarized, noting the use of TWTAs and high efficiency thermal dissipation systems on the new satellite designs.

  1. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko


    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  2. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  3. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne


    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  4. IR Spectropolarimeter Measurements of Planetary Materials (United States)

    Brown, A. J.; Chenault, D. B.; Goldstein, D. H.


    The surfaces of rocky planetary bodies are chiefly ices and silicates. These materials have primary vibrational absorption bands at around 8-12 micons due to Si-O bending (silicates) and at around 3 microns due to H2O bending vibrations (water ices). These vibrations lie in the Thermal Infrared (TIR) region of the spectrum. This region is challenging for passive remote sensing methods due to the relatively low numbers of photons of this energy being reflected or emitted by cold planetary surfaces. We have tested an active reflectance and polarization sensor in the TIR region of the spectrum to determine the utility of an active sensing system for future rover missions to the Moon, asteroids, comets and airless satellites of the outer planets. Mars is also a possible target. A variety of samples were chosen in order to get an appreciation for the breadth of reseach required to characterize materials of different albedo, specularity and roughness. Two sulfate samples, gypsum and anhydrite, were chosen due to the strong possibility sulfates are present on Europa (Dalton, 2003) and the fact that gypsum and other sulfates have been detected on Mars (eg. Langevin, et. al 2005). The two other samples - labradorite and ilmenite, are known to be present on the Moon (Crown and Pieters, 1987, Raymond and Wenk, 1971). No ices were prepared for this study since the instrument was only able to operate in ambient conditions. The instrumental apparatus we used is capable of obtaining transmission or reflectance measurements and fully describing the complete polarization state of light reflected from a target surface (Goldstein and Chenault, 2002). We used the instrument to measure the reflectance of the samples, and obtained the polarization state in the form of a Mueller matrix as a function of wavelength. The results will be reported at this workshop and we will outline the direction of future investigations. We would like to acknowledge the assistance of Dr. Christian Grund at

  5. Multispectral thermal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Sciences Group; Garrett, A.; Pendergast, M.M. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; Kay, R.R. [Sandia National Lab., Albuquerque, NM (United States). Monitoring Systems and Technology Center


    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  6. Conceptual design study of Nb3Sn low-beta quadrupoles for 2nd generation LHC IRs

    International Nuclear Information System (INIS)

    Alexander V Zlobin et al.


    Conceptual designs of 90-mm aperture high-gradient quadrupoles based on the Nb 3 Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed

  7. Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs (United States)

    Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.


    Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.

  8. Hurricane Satellite (HURSAT) Microwave (MW) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hurricane Satellite (HURSAT) from Microwave (MW) observations of tropical cyclones worldwide data consist of raw satellite observations. The data derive from the...

  9. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  10. Satellite Ocean Heat Content Suite (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  11. Monitoring Cyanobacteria with Satellites Webinar (United States)

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  12. Defense Meteorological Satellite Program (DMSP) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  13. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.


    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  14. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao


    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  15. Photometric and Spectral Study of the Saturnian Satellites (United States)

    Newman, Sarah F.


    Photometric and spectra analysis of data from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) has yielded intriguing findings regarding the surface properties of several of the icy Saturnian satellites. Spectral cubes were obtained of these satellites with a wavelength distribution in the IR far more extensive than from any previous observations. Disk-integrated solar phase curves were constructed in several key IR wavelengths that are indicative of key properties of the surface of the body, such as macroscopic roughness, fluffiness (or the porosity of the surface), global albedo and scattering properties of surface particles. Polynomial fits to these phase curves indicate a linear albedo trend of the curvature of the phase functions. Rotational phase functions from Enceladus were found to exhibit a double-peaked sinusoidal curve, which shows larger amplitudes for bands corresponding to water ice and a linear amplitude-albedo trend. These functions indicate regions on the surface of the satellite of more recent geologic activity. In addition, recent images of Enceladus show tectonic features and an absence of impact craters on Southern latitudes which could be indicative of a younger surface. Investigations into the properties of these features using VIMS are underway.

  16. Spectral and thermal investigation of tetrabenzoylacetonatobenzoylacetonediuranyl

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Klavsut', G.N.; Umrejko, D.S.


    Uranium(6) compound with benzoylacetone (NBA) of [(UO 2 ) 2 (NBA)(BA) 4 ] composition was prepared by the method of electrochemical synthesis in oxidizing medium. Spectral and thermal investigation (data of IR, Raman spectra, TG, DTA) was conducted to show that four NBA molecules entered the compound as acidoligands and one NBA molecule (being a bridge) - as neutral ligand in keto-form. Mechanism of thermal decomposition was suggested and kinetic parameters of thermolysis of examined substance were calculated

  17. Satellite precipitation estimation over the Tibetan Plateau (United States)

    Porcu, F.; Gjoka, U.


    Precipitation characteristics over the Tibetan Plateau are very little known, given the scarcity of reliable and widely distributed ground observation, thus the satellite approach is a valuable choice for large scale precipitation analysis and hydrological cycle studies. However,the satellite perspective undergoes various shortcomings at the different wavelengths used in atmospheric remote sensing. In the microwave spectrum often the high soil emissivity masks or hides the atmospheric signal upwelling from light-moderate precipitation layers, while low and relatively thin precipitating clouds are not well detected in the visible-infrared, because of their low contrast with cold and bright (if snow covered) background. In this work an IR-based, statistical rainfall estimation technique is trained and applied over the Tibetan Plateau hydrological basin to retrive precipitation intensity at different spatial and temporal scales. The technique is based on a simple artificial neural network scheme trained with two supervised training sets assembled for monsoon season and for the rest of the year. For the monsoon season (estimated from June to September), the ground radar precipitation data for few case studies are used to build the training set: four days in summer 2009 are considered. For the rest of the year, CloudSat-CPR derived snowfall rate has been used as reference precipitation data, following the Kulie and Bennartz (2009) algorithm. METEOSAT-7 infrared channels radiance (at 6.7 and 11 micometers) and derived local variability features (such as local standard deviation and local average) are used as input and the actual rainrate is obtained as output for each satellite slot, every 30 minutes on the satellite grid. The satellite rainrate maps for three years (2008-2010) are computed and compared with available global precipitation products (such as C-MORPH and TMPA products) and with other techniques applied to the Plateau area: similarities and differences are

  18. Telelibrary: Library Services via Satellite. (United States)

    Liu, Rosa


    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  19. Development of pixellated Ir-TESs (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka


    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  20. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka


    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  1. Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Martha, T.R.; Guha, A.; Kumar, K.V.; Kamaraju, M.V.V.; Raju, E.V.R. [NRSC, Hyderabad (India). Geoscience Division


    The Jharia Coalfield (JCF) in India is known for its high grade coal and associated coal fires. Before it can be exploited, valuable coal reserves are destroyed in the sub-surface due to fire. The combined act of fire and subsidence has endangered the environmental safety of the JCF, although several methods have been adopted to control the coal fires. Coal fire is a dynamic phenomenon, hence, its location and extent changes with time. To control the coal fires effectively, the status of the fires and the landscape must be assessed periodically. In this study, the thermal band in Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data (daytime) of 29 March 2003 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data (night-time) of 9 October 2006 are used to delineate the coal-fire areas. The kinetic temperature of the coal fire-affected areas is calculated from Landsat-7 ETM+ data using a Normalized Difference Vegetation Index (NDVI)-derived emissivity model, and from band 13 of ASTER data with a fixed emissivity value. The study showed that the eastern part of the JCF is more affected by coal fires than the western part. The affected collieries in the eastern part are Kusunda, Lodna, Bararee, Gonudih and Ena. Among all collieries, Kusunda is the most affected by coal fires (29% of the area) and showed a 0.56 km2 increase in fire area from the year 2003 to 2006. During this period, a total increase in coal-fire area of 0.51 km{sup 2} occurs in the JCF. The land-use map prepared from Indian Remote Sensing (IRS) Satellite-P6 Linear Imaging Self-scanning Sensor (LISS)-III data showed that 6.9% of the area in the JCF is occupied by mining-related activities, which indicates its vulnerability to environmental degradation.

  2. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.


    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  3. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099 (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  4. Variable Emissive Smart Radiator for Dynamic Thermal Control (United States)

    National Aeronautics and Space Administration — Trending towards reduced power and mass budget on satellites with a longer mission life, there is a need for a reliable thermal control system that is more efficient...

  5. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas


    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  6. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J


    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  7. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo


    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  8. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida


    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  9. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao


    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  10. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography (United States)

    Pracht, Monika; Swiderski, Waldemar


    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  11. Satellite Photometric Error Determination (United States)


    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  12. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L


    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...

  13. The Products of the Thermal Decomposition of CH3CHO

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney


    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  14. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)


    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  15. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy (United States)

    Bennett, Jacqueline; Forster, Tabetha


    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  16. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.


    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  17. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer (United States)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.


    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  18. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou


    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  19. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  20. Science operations management. [with Infrared Astronomy Satellite project (United States)

    Squibb, G. F.


    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  1. The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+ (United States)

    Li, Feng-Xia; Zhang, Xiao-Guang; Armentrout, P. B.


    The potential energy surface for activation of methane by the third-row transition metal cation, Ir+, is studied experimentally by examining the kinetic energy dependence of reactions of Ir+ with methane, IrCH2+ with H2 and D2, and collision-induced dissociation of IrCH2+ with Xe using guided ion beam tandem mass spectrometry. A flow tube ion source produces Ir+ in its electronic ground state term and primarily in the ground spin-orbit level. We find that dehydrogenation to form IrCH2+ + H2 is exothermic, efficient, and the only process observed at low energies for reaction of Ir+ with methane, whereas IrH+ dominates the product spectrum at higher energies. We also observe the IrH2+ product, which provides evidence that methane activation proceeds via a dihydride (H)2IrCH2+ intermediate. The kinetic energy dependences of the cross sections for several endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Ir+-2H) > 5.09 +/- 0.07, D0(Ir+-C) = 6.59 +/- 0.05, D0(Ir+-CH) = 6.91 +/- 0.23, and D0(Ir+-CH3) = 3.25 +/- 0.18. D0(Ir+-CH2) = 4.92 +/- 0.03 eV is determined by measuring the forward and reverse reaction rates for Ir++CH4[right harpoon over left]IrCH2++H2 at thermal energy. Ab initio calculations at the B3LYP/HW+/6-311++G(3df,3p) level performed here show reasonable agreement with the experimental bond energies and with the few previous experimental and theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surfaces. We also compare this third-row transition metal system with the first-row and second-row congeners, Co+ and Rh+. Differences in reactivity and mechanisms can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals.

  2. Applications of FBG sensors on telecom satellites (United States)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.


    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  3. IV-VI mid-IR tunable lasers and detectors with external resonant cavities (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.


    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  4. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development (United States)

    Luvall, Jeffrey C.; Rickman, Doug.; Fraser, Roydon F.


    irradiance) and within a given biome type, the more developed the ecosystem, the cooler it's surface temperature and the more degraded the quality of it's reradiated energy. HyspIRI is a hyperspectral visible/Near IR and multispectral thermal future global satellite mission that will collect data to study the world's ecosystems and will provide a benchmark on the state of the worlds ecosystems against which future changes can be assessed. HyspIRI will provide global data sets that will provide a means for measuring ecosystem development and integrity.

  5. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)


    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  6. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke


    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...... pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene...

  7. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A


    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  8. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.


    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  9. Pixelated coatings and advanced IR coatings (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé


    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  10. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)


    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  11. Atsiskaitymai e. versle: ypatumai ir naujos tendencijos


    Vyšniauskas, Jonas


    Alternatyvių atsiskaitymų e. versle sistemos pradeda kelti rimtą grėsmę tradiciniams atsiskaitymams elektronine bankininkyste, mokėjimo kortelėmis ar grynaisiais pinigais. Todėl būtina detaliau išsiaiškinti kokie yra alternatyvių atsiskaitymų ypatumai, kurie veiksniai vartotojams yra svarbiausi ir kokie yra alternatyvūs atsiskaitymo būdai. Tai siekiama padaryti išanalizuojant mokslinę literatūrą, pateikiant pagrindines alternatyvių atsiskaitymų sistemas, atliekant alternatyvių atsiskaitymų pa...

  12. Fast IR diodes thermometer for tokamak

    International Nuclear Information System (INIS)

    Chen Xiangbo


    A 30 channel fast IR pyrometry array has been constructed for tokamak, which has 0.5 μs time response, 10 mm diameter spatial resolution and 5 degree C temperature resolution. The temperature measuring range is from 250 degree C to 1200 degree C. The two dimensional temperature profiles of the first wall during both major and minor disruptions can be measured with an accuracy of about 1% measuring temperature, which is adequate for tokamak experiments. This gives a very useful tool for the disruption study, especially for the divertor physics and edge heat flux research on tokamak and other magnetic confinement devices

  13. Mobile satellite service communications tests using a NASA satellite (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.


    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  14. Vibrational and Thermal Properties of Oxyanionic Crystals (United States)

    Korabel'nikov, D. V.


    The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.

  15. Rainfall estimation and monitoring in Senegal by cumulation of the thermal infra-red images of the Meteosat satellite; Estimation et suivi de la pluviométrie au Sénégal par satellite Météosat

    Energy Technology Data Exchange (ETDEWEB)

    Nègre, T. [Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement, Montpellier (France); Imbernon, J.; Guinot, J. P.; Seguin, B.; Bergès, J. C.; Guillot, B.


    An experimental study on the relationship between rainfall and surface temperature measured by the thermal infra-red channel of Meteosat is described for the 1984, 1985 and 1986 rainy seasons in Senegal. The mean surface temperature starting June l{sup st}, corrected by air temperature, is a good indicator of cumulative rainfall during the same period. A critical approach of theoretical foundations for this relationship made it possible to support these experimental results on the basis of simplified expressions of surface energy balance and water balance at the point level (or ''pixel''). Finally the first cumulative rainfall maps produced in 1987 and the procedure developed to draw them up are described and discussed [French] Une étude expérimentale de la relation liant la pluviométrie et la température de surface mesurée avec le canal infrarouge thermique de Météosat est présentée pour les saisons des pluies 1984,1985 et 1986 au Sénégal. La température de surface moyenne à partir du ler juin, corrigée de la température de l’air, s’avère être un bon indicateur de la pluviométrie cumulée sur la même période. Une approche critique des fondements théoriques de cette relation permet d’étayer ces résultats expérimentaux, sur la base d’expressions simplifiées du bilan énergétique de surface et du bilan hydrique à l’échelle du pixel. Enfin, les premières cartes de pluviométrie cumulée obtenues en 1987 sont présentées et commentées, ainsi que la chaîne de traitement mise au point pour leur élaboration [Spanish] Se presenta un estudio experimental de la relación que une la pluviometría y la temperatura de superficie tras medirla con el canal infrarrojo térmico de Meteosat durante la estaciones de lluvias de 1984, 1985 y 1986 en Senegal. EI promedio de temperatura de superficie a partir del 1° de junio, corregido de la temperatura del aire, resulta ser un buen indicador de la pluviometria acumulada durante el mismo per

  16. Satellite disintegration dynamics (United States)

    Dasenbrock, R. R.; Kaufman, B.; Heard, W. B.


    The subject of satellite disintegration is examined in detail. Elements of the orbits of individual fragments, determined by DOD space surveillance systems, are used to accurately predict the time and place of fragmentation. Dual time independent and time dependent analyses are performed for simulated and real breakups. Methods of statistical mechanics are used to study the evolution of the fragment clouds. The fragments are treated as an ensemble of non-interacting particles. A solution of Liouville's equation is obtained which enables the spatial density to be calculated as a function of position, time and initial velocity distribution.

  17. Do asteroids have satellites

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Paolicchi, P.; Zappala, V.


    A substantial body of indirect evidence suggests that some asteroids have satelities, although none has been detected unambiguously. Collisions between asteroids provide physically plausible mechanisms for the production of binaries, but these operate with low probability; only a small minority of asteroids are likely to have satellites. The abundance of binary asteroids can constrain the collisional history of the entire belt population. The allowed angular momentum of binaries and their rate of tidal evolution limit separations to no more than a few tens of the primary's radii. Their expected properties are consistent with failure to detect them by current imaging techniques

  18. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue


    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  19. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian


    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  20. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat


    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  1. Evolution of the vertebrate insulin receptor substrate (Irs) gene family. (United States)

    Al-Salam, Ahmad; Irwin, David M


    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  2. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses. (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan


    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  3. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin


    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  4. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    International Nuclear Information System (INIS)

    Sari, Ahmet


    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period

  5. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael


    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  6. Agent control of cooperating satellites


    Lincoln, N.K.; Veres, S.M.; Dennis, Louise; Fisher, Michael; Lisitsa, Alexei


    A novel, hybrid, agent architecture for (small)swarms of satellites has been developed. The software architecture for each satellite comprises ahigh-level rational agent linked to a low-level control system. The rational agent forms dynamicgoals, decides how to tackle them and passes theactual implementation of these plans to the control layer. The rational agent also has access to aMatLabmodel of the satellite dynamics, thus allowing it to carry out selective hypothetical reasoningabout pote...

  7. Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type

    International Nuclear Information System (INIS)

    Kimura, Yoshisato; Tanoguchi, Toshiyasu; Kita, Takuji


    The n-type thermoelectric properties of the half-Heusler compound ZrNiSn can be converted to p-type by the addition of Co and Ir. We found that Co and Ir atoms preferably occupy the vacancy sites instead of substituting at Ni sites. This implies that the phase stability of the compound gradually changes towards that of the Heusler compound Zr(Ni,M) 2 Sn, where M is Co and/or Ir. The occupation of vacancy sites by Co and Ir atoms leads to a drastic reduction in lattice thermal conductivity owing to the enhancement of phonon scattering by the solid solution effect.

  8. Superluminal travel, UV/IR mixing, and turbulence in a (1+1)-dimensional world

    International Nuclear Information System (INIS)

    Dubovsky, Sergei; Gorbenko, Victor


    We study renormalizable Lorentz invariant stable quantum field theories in two space-time dimensions with instantaneous causal structure (causal ordering induced by the light 'cone' time ordering). These models provide a candidate UV completion of the two-dimensional ghost condensate. They exhibit a peculiar UV/IR mixing - energies of all excitations become arbitrarily small at high spatial momenta. We discuss several phenomena associated with this mixing. These include the impossibility to reach a thermal equilibrium and metastability of all excitations towards decay into short-wavelength modes resulting in an indefinite turbulent cascade. In spite of the UV/IR mixing in many cases the UV physics can still be decoupled from low-energy phenomena. However, a patient observer in the Lineland is able to produce arbitrarily heavy particles simply by waiting for a long enough time.

  9. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides. (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W


    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio


    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  11. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to the full first-principles theory and the Fröhlich polaron (United States)

    Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier


    The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.

  12. Trends in mobile satellite communication (United States)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.


    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  13. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros


    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  14. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob


    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  15. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.


    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  16. Improvenments in environmental trace analysis by GC-IR and LC-IR.

    NARCIS (Netherlands)

    Visser, T.; Vredenbregt, M.J.; Jong, A.P.J.M.; Somsen, G.W.; Hankemeier, T.; Velthorst, N.H.; Gooijer, C.; Brinkman, U.A.T.


    Research has been carried out to enlarge the potential of infrared (IR) spectrometry as a detector in gas and liquid chromatography (GC and LC). The study has been directed to applications in environmental analysis. Examples of recently obtained results are presented. The analyte detectability of

  17. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.


    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  18. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.


    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  19. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity (United States)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  20. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.


    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  1. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail:; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)


    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  2. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)


    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  3. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    International Nuclear Information System (INIS)

    Moeen, M.; Kolahdouz, M.; Salemi, A.; Abedin, A.; Östling, M.; Radamson, H.H.


    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10 20 cm −3 and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K 1/f parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K 1/f = 4.7 × 10 −14 was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  4. Thermal Characteristics of Urban Landscapes (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.


    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  5. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS) (United States)

    Hoder, Douglas; Bergamo, Marcos


    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  6. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)


    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  7. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.


    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  8. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines. (United States)

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik


    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  9. Interface adjustment and exchange coupling in the IrMn/NiFe system

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L., E-mail:


    The exchange bias effect was investigated, in the 5–300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (t{sub Cu}) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and t{sub Cu} results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component. - Highlights: • Exchange bias effect in IrMn/NiFe samples with interfacial Cu spacer. • A variation of exchange bias with time is observed in as-deposited samples. • Magnetic modification of the interface by varying the stack sequence and Cu thickness. • Interface adjustment affects the dynamics of interfacial IrMn spins. • The exchange bias properties can be tuned by interface adjustment.

  10. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015)


    Honda, Takumi; Miyoshi, Takemasa; Lien, Guo-Yuan; Nishizawa, Seiya; Yoshida, Ryuji; Adachi, Sachiho A.; Terasaki, Koji; Okamoto, Kozo; Tomita, Hirofumi; Bessho, Kotaro


    Japan’s new geostationary satellite Himawari-8, the first of a series of the third-generation geostationary meteorological satellites includingGOES-16, has been operational since July 2015. Himawari-8 produces highresolution observations with 16 frequency bands every 10 min for full disk, and every 2.5 min for local regions. This study aims to assimilate all-sky every-10-min infrared (IR) radiances from Himawari-8 with a regional numerical weather prediction model and to investigate its impac...

  11. International Satellite Law (United States)

    von der Dunk, Frans


    there are the major categories of space applications—as these have started to impact everyday life on earth: the involvement of satellites in communications infrastructures and services, the most commercialized area of space applications yet; the special issue of space serving to mitigate disasters and their consequences on earth; the use of satellites for remote sensing purposes ranging from weather and climate monitoring to spying; and the use of satellites for positioning, navigation, and timing.

  12. The Future of Satellite Communications Technology. (United States)

    Nowland, Wayne


    Discusses technical advances in satellite technology since the 1960s, and the International Telecommunications Satellite Organization's role in these developments; describes how AUSSAT, Australia's domestic satellite system, exemplifies the latest developments in satellite technology; and reviews satellite system features, possible future…

  13. Reading handprinted addresses on IRS tax forms (United States)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.


    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  14. Multichannel Dynamic Fourier-Transform IR Spectrometer (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.


    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  15. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas


    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  16. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.


    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  17. Synthesis, Characterization and Thermal Studies of Co(II), Ni(II), Cu ...

    African Journals Online (AJOL)



    Jun 15, 2010 ... metal complexes was confirmed by thermal and IR data of the complexes. KEY WORDS. Synthesis ..... signals deshielded in the spectra of metal complexes, suggests coordination of .... micro analysis data of the complexes.

  18. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System. (United States)

    Toriyama, Kinya; Kazama, Tomohiko


    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  19. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino


    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  20. Launching the First Indian Satellite

    Indian Academy of Sciences (India)

    materials and chemicals, rocket propulsion, satellite technology, control and guidance system, etc. ... entire country, especially the rural areas, and in the survey and management of natural resources. Listeners are no .... satellite will store the information over a longer period and then on command from the ground station at ...

  1. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo


    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  2. Newspaper Uses of Satellite Technology. (United States)

    Johns, David

    Replacing slower mail service, satellite transmission now gives the newspaper industry a practical and almost spontaneous method for sending all kinds of information to any newspaper across the country. Unlike other communication industries, newspapers did not begin to make widespread use of satellite technology until 1979, when government…

  3. Satellite Demonstration: The Videodisc Technology. (United States)

    Propp, George; And Others


    Originally part of a symposium on educational media for the deaf, the paper describes a satellite demonstration of video disc materials. It is explained that a panel of deaf individuals in Washington, D.C. and another in Nebraska came into direct two-way communication for the first time, and video disc materials were broadcast via the satellite.…

  4. A Primer on Satellite Equipment. (United States)

    Doan, Michael


    Information provided for school districts desiring to offer distance education courses to their students describes the kind of satellite dish needed; its size, sturdiness, placement, and number of dishes needed; satellite receivers; the function of a descrambler; copyright restrictions; features of an Integrated Receiver/Descrambler; selecting a…

  5. The Skeletal Muscle Satellite Cell (United States)


    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  6. Mobility management in satellite networks (United States)

    Johanson, Gary A.


    This paper addresses the methods used or proposed for use in multi-beam and/or multi-satellite networks designed to provide Mobile Satellite Services (MSS). Specific topics include beam crossover in the North American Mobile Satellite (MSAT) system as well as registration and live call hand-off for a multi-regional geosynchronous (GEO) satellite based system and a global coverage Low Earth Orbiting (LEO) system. In the MSAT system, the individual satellite beams cover very large geographic areas so the need for live call hand-off was not anticipated. This paper discusses the methods used to keep track of the beam location of the users so that incoming call announcements or other messages may be directed to them. Proposed new GEO systems with large numbers of beams will provide much smaller geographic coverage in individual beams and thus the need arises to keep track of the user's location as well as to provide live call hand-off as the user traverses from beam to beam. This situation also occurs in proposed LEO systems where the problems are worsened by the need for satellite to satellite hand-off as well as beam to beam hand-off within a single satellite. The paper discusses methods to accomplish these handoffs and proposes system architectures to address the various hand-off scenarios.

  7. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.


    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  8. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.


    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  9. Study on IR Properties of Reduced Graphene Oxide (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun


    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  10. Endurance test on IR rig for RI production

    International Nuclear Information System (INIS)

    Chung, Heung June; Youn, Y. J.; Han, H. S.; Hong, S. B.; Cho, Y. G.; Ryu, J. S.


    This report presents the pressure drop, vibration and endurance test results for IR rig for RI production which were desigened and fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate through the IR rig corresponding to the pressure drop of 200 kPa is measured to be about 3.12 kg/sec. Vibration frequency for the IR rig ranges from 13 to 17 Hz. RMS(Root Mean Square) displacement for the IR rig is less than 30 μm, and the maximum displacement is less than 110μm. These experimental results show that the design criteria of IR rig meet the HANARO limit conditions. Endurance test results show that the appreciable fretting wear for the IR rig does not occur, however tiny trace of wear between contact points is observed

  11. Accumulation of satellites

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.


    Formation and evolution of circumplanetary satellite swarms are investigated. Characteristic times of various processes are estimated. The characteristic time for the accumulation of the bodies in the swarm was several orders of magnitude shorter than that of the planet, i.e. than the time of the replenishment of the material by the swarm (10 8 yr). The model of the accumulation of the swarm is constructed taking into account the increase of its mass due to trapping of heliocentrically moving particles and its decrease due to outfall of the inner part of the swarm onto the growing planet. The accumulation of circumplanetary bodies is also considered. The main features of the evolution of the swarm essentially depend on the size distribution of bodies in the swarm and in the zone of the planet and also on the degree of the concentration of the swarm mass toward the planet. If the sum of the exponents of the inverse power laws of these distributions is less than 7, the model of the transparent swarm developed in this paper should be preferred. When this sum is greater than 7, the model of opaque swarm suggested by A. Harris and W.M. Kaula is better. There is predominant trapping of small particles into the swarm due to their more frequent collisions. Optical thickness of the protoplanetary cloud in radial direction is estimated. It is shown that at the final stage of the planetary accumulation, the cloud was semitransparent in the region of terrestrial planets and volatile substances evaporated at collisions could be swept out from the outer parts of the satellite swarm by the solar wind

  12. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas


    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  13. Regional thermal patterns in Portugal using satellite images (NOAA AVHRR

    Directory of Open Access Journals (Sweden)

    António Lopes


    Full Text Available In this paper two NOAA AVHRR diurnal images (channel 4 are used to determine the required procedures aiming at a future operational analysis system in Portugal. Preprocessing and classification operations are described. Strong correlation between air and surface temperature is verified and rather detailed air temperature patterns can be inferred.

  14. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean


    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  15. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les


    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  16. Encryption protection for communication satellites (United States)

    Sood, D. R.; Hoernig, O. W., Jr.

    In connection with the growing importance of the commercial communication satellite systems and the introduction of new technological developments, users and operators of these systems become increasingly concerned with aspects of security. The user community is concerned with maintaining confidentiality and integrity of the information being transmitted over the satellite links, while the satellite operators are concerned about the safety of their assets in space. In response to these concerns, the commercial satellite operators are now taking steps to protect the communication information and the satellites. Thus, communication information is being protected by end-to-end encryption of the customer communication traffic. Attention is given to the selection of the NBS DES algorithm, the command protection systems, and the communication protection systems.

  17. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225


    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  18. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian


    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  19. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method. (United States)

    Prakash Parthiban, S; Elayaraja, K; Girija, E K; Yokogawa, Y; Kesavamoorthy, R; Palanichamy, M; Asokan, K; Narayana Kalkura, S


    Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400 degrees C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.

  20. Įvairialyčiai lantano ir mangano oksido ir multiferoinio bismuto ferito heterodariniai

    Directory of Open Access Journals (Sweden)

    Bonifacas VENGALIS


    Full Text Available Pastaruoju metu naujų elektronikos prietaisų gamyboje buvo pasiekta didelė pažanga auginant, tyrinėjant ir pritaikant plonasluoksnes struktūras, sudarytas iš įvairių daugiakomponenčių funkcinių oksidų. Šiai oksidų grupei priklauso superlaidieji kupratai, mangano oksidai (manganitai, pasižymintys magnetovaržos reiškiniu, taip pat kiti feromagnetiniai, feroelektriniai, multiferoiniai oksidai. Manganitams (jų bendra formulė Ln1-xAxMnO3, kur Ln = La, Nd,..., o A - dvivalentis katijonas, toks kaip Ba, Sr ar Ca skiriama daug dėmesio dėl jų įdomių elektrinių savybių bei tinkamumo įvairiems spintronikos prietaisams kurti. Multiferoikai  (feroelektriniai feromagnetai pasižymi magnetoelektriniu efektu, duodančiu unikalią galimybę elektrinėms ir magnetinėms medžiagos savybėms valdyti panaudoti elektrinius ir magnetinius laukus. Bismuto feritas BiFeO3 (BFO, turintis romboedriškai deformuotą perovskito struktūrą, šiuo metu yra vienas labiausiai tyrinėjamų šios klasės junginių. Organiniai puslaidininkiai (OP taip pat atveria daug naujų galimybių elektronikai. Jų pranašumas yra didelė organinių junginių įvairovė ir palyginti paprasta ir pigi plonų sluoksnių gamybos technologija. Be to, OP pasižymi neįprastai didelėmis sukinių relaksacijos laiko vertėmis, todėl ateityje jie gali būti naudojami naujiems spintronikos prietaisams gaminti. Šiame straipsnyje apžvelgiami pastarųjų metų darbo autorių ir jų kolegų atlikti anksčiau minėtų medžiagų tyrimai. Daugiausia dėmesio skiriama magnetovaržinėmis savybėmis pasižyminčių lantano ir mangano oksidų (manganitų bei multiferoinio  BiFeO3 (BFO junginio plonųjų sluoksnių ir heterodarinių auginimui, tarpfazinių ribų tarp minėtų oksidų, laidžiojo SrTiO3 ir organinio puslaidininkio (Alq3 sudarymui, taip pat elektrinėms heterodarinių savybėms. Plonieji La2/3A1/3MnO3 (A = Ca, Sr, Ba, Ce sluoksniai, kurių storis d