WorldWideScience

Sample records for satellite thermal infrared

  1. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  2. A low cost thermal infrared hyperspectral imager for small satellites

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.; Wood, M.

    2012-06-01

    The growth of the small satellite market and launch opportunities for these satellites is creating a new niche for earth observations that contrasts with the long mission durations, high costs, and long development times associated with traditional space-based earth observations. Low-cost, short-lived missions made possible by this new approach provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off-the-shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCoR), to demonstrate ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power-efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable use of COTS electronics and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230 meter pixels with 20 wavenumber spectral resolution from a 400 km orbit. We are currently in the laboratory and airborne testing stage in order to demonstrate the spectro-radiometric quality of data that the instrument provides.

  3. TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications

    Science.gov (United States)

    Wright, Robert; Lucey, Paul; Crites, Sarah; Garbeil, Harold; Wood, Mark; Pilger, Eric; Gabrieli, Andrea; Honniball, Casey

    2016-10-01

    Measurements of reflectance or emittance in tens of narrow, contiguous wavebands, allow for the derivation of laboratory quality spectra remotely, from which the chemical composition and physical properties of targets can be determined. Although spaceborne (e.g. EO-1 Hyperion) hyperspectral data in the 0.4-2.5 micron (VSWIR) region are available, the provision of equivalent data in the log-wave infrared has lagged behind, there being no currently operational high spatial resolution LWIR imaging spectrometer on orbit. TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. The instrument has a mass of <15 kg and dimensions of 53 cm × 25 cm ♢ 22 cm, and has been designed to be compatible with integration into a micro-satellite platform. (A precursor to this instrument was launched onboard a 55 kg microsatellite in October 2015). The optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 50 spectral samples are possible. Measured signal-to-noise ratios range from peak values of 500:1 to 1500:1, for source temperature of 10 to 100°C.

  4. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  5. Probable satellite thermal infrared anomaly before the Zhangbei MS=6.2 earthquake on January 10, 1998

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper used the thermal infrared data of the satellite NOAA-AAVHRR of the north part of North China (113°~119° E, 38°~42° N), and processed the remote sensing data through radiation adjustment, geometric adjustment and so on by the software "The Monitoring and Fast Process System of Earthquake Precursor Thermal Infrared Anomaly", inversed the earth surface temperature. Some disturbances effect had been excluded, and thermal infrared temperature anomaly had been extracted by the picture difference method. The Zhangbei MS=6.2 earthquake is used as the example in the paper, so that in the paper thermal infrared characteristics on time-space before earthquake and the relationship between the anomaly and the earthquake prediction have been summarized.Within more than ten days before the Zhangbei earthquake, the thermal infrared anomaly had emerged widely along Zhangjiakou-Bohai seismic belt, and the anomalous region seemed like a belt and it is also consistent with the tectonic background there; the anomaly expanded from the outside toward the earthquake focus, but the focus lay at the edge of the thermal infrared region. So it is possible to explore a new anomaly observation method for earthquake prediction by observing and studying the satellite thermal infrared anomaly before big earthquakes happen.

  6. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea.

    Science.gov (United States)

    Ahn, Yu-Hwan; Shanmugam, Palanisamy; Lee, Jae-Hak; Kang, Yong Q

    2006-03-01

    The 5900 MW Younggwang nuclear power station on the west coast of Korea discharges warm water affecting coastal ecology [KORDI report (2003). Wide area observation of the impact of the operation of Younggwang nuclear power plant 5 and 6, No. BSPI 319-00-1426-3, KORDI, Seoul, Korea]. Here the spatial and temporal characteristics of the thermal plume signature of warm water are reported from a time series (1985-2003) of space-borne, thermal infrared data from Landsat and National Oceanic and Atmospheric Administration (NOAA) satellites. Sea surface temperature (SST) were characterized using advanced very high resolution radiometer data from the NOAA satellites. These data demonstrated the general pattern and extension of the thermal plume signature in the Younggwang coastal areas. In contrast, the analysis of SST from thematic mapper data using the Landsat-5 and 7 satellites provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. The thermal plume signature was detected from 70 to 100 km to the south of the discharge during the summer monsoon and 50 to 70 km to the northwest during the winter monsoon. The mean detected plume temperature was 28 degrees C in summer and 12 degrees C in winter. The DeltaT varied from 2 to 4 degrees C in winter and 2 degrees C in summer. These values are lower than the re-circulating water temperature (6-9 degrees C). In addition the temperature difference between tidal flats and offshore (SSTtidal flats - SSToffsore) was found to vary from 5.4 to 8.5 degrees C during the flood tides and 3.5 degrees C during the ebb tide. The data also suggest that water heated by direct solar radiation on the tidal flats during the flood tides might have been transported offshore during the ebb tide. Based on these results we suggest that there is an urgent need to protect the health of Younggwang coastal marine ecosystem from the severe thermal impact by the large quantity of warm water discharged from

  7. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    Directory of Open Access Journals (Sweden)

    Raquel Niclòs

    2015-11-01

    Full Text Available An autonomous system for field land surface temperature (LST measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivity data from system measurements. Ground-truth LSTs were used to validate satellite-retrieved LST products at two experimental sites (rice crop and shrubland areas. The relative-to-nadir emissivity values were used to analyze the anisotropy of surface emissive properties over thermally-homogeneous covers. The EOS-MODIS MOD11_L2/MYD11_L2 LST product was evaluated and shown to work within expected uncertainties (<2.0 K when tested against the system data. A slight underestimation of around −0.15 K was observed, which became greater for the off-nadir observation angles at the shrubland site. The system took angular measurements for the different seasonal homogeneous covers at the rice crop site. These measurements showed emissivity angular anisotropies, which were in good agreement with previously published data. The dual-view ENVISAT-AATSR data reproduced them, and revealed that the system data collected for thermally-homogeneous surfaces could be used to test future satellite TIR sensors with multi-angular or bi-angular capabilities, like the forthcoming SLSTR on board Copernicus Sentinel-3A.

  8. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    Science.gov (United States)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  9. The Critical Need for Future Mid-Resolution Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Vincent, R. K.

    2006-12-01

    Eight future applications of data from mid-resolution thermal infrared satellite sensors are suggested, from least to most significant as follows: 8. Map thin ice unsafe for ice-fishing in the Great Lakes as a warning to winter fishermen; 7. Map ammonia plumes to locate large ammonia stockpiles (Homeland Security) and to monitor concentrated animal feeding operations (CAFOs); 6. Map types of surface algae in ocean, lakes, and rivers, especially those containing surface diatoms; 5. Monitor urban heat islands to determine the cooling affects of painting visibly dark surfaces with bright paints or coatings; 4. Map rock-types and soil-types of non- vegetated regions world-wide, a task which ASTER cannot complete in its current lifetime; 3. Detect surface warming of rocks under increased stress and pressure as an earthquake precursor; 2. Map pollutant gases, especially sulfur dioxide, which is important both for smokestack monitoring and volcanic eruption precursors; 1. Map methane escape into the atmosphere from methane clathrate destabilization as a key warning of imminent and drastic temperature rises in the troposphere. Each of these applications will be briefly discussed and past examples will be given for most of them.

  10. USING OF THE MULTITEMPORAL THERMAL INFRARED SATELLITE IMAGERY FOR NATURAL AREAS MAPPING (CASE OF MENDELEEV VOLCANO

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2014-01-01

    Full Text Available In the paper authors examine the mountain group of Mendeleev volcano situated on the Kunashir island, Kuril archipelago, Russia. Ground observations were led to examine the vegetation cover of the area as well as its typical landscapes. The other type of used data is Landsat imagery. Images were combined into multitemporal thermal infrared and multispectral pictures, which were classified to reveal the heterogeneity of the study area. Ground observations and comparison of the classification results with landscape map derive that the multitemporal thermal infrared image classification result describes better the vegetation cover structure of the area and particularity of its typical landscapes distribution. It leads to the proposition that miltitemporal thermal infrared imagery can be used to refine landscape and vegetation cover contours. 

  11. Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo-dynamics

    Institute of Scientific and Technical Information of China (English)

    WEI Lejun; GUO Jianfeng; LIU Jianhua; LU Zhenquan; LI Haibing; CAI Hui

    2009-01-01

    Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.

  12. An Autonomous System to Take Angular Thermal-Infrared Measurements for Validating Satellite Products

    OpenAIRE

    Raquel Niclòs; José A. Valiente; Maria J. Barberà; César Coll

    2015-01-01

    An autonomous system for field land surface temperature (LST) measurements taken at different observation angles was developed to be deployed easily at any conventional meteorological tower station. The system permits ground-truth data to be acquired on a continuous basis, and angularly scans land and sky hemispheres with a single thermal-infrared (TIR) radiometer. This paper describes the autonomous angular system and the methodology to assess ground-truth LST and relative-to-nadir emissivit...

  13. TIRCIS: Hyperspectral Thermal Infrared Imaging Using a Small-Satellite Compliant Fourier-Transform Imaging Spectrometer, for Natural Hazard Applications

    Science.gov (United States)

    Wright, R.; Lucey, P. G.; Crites, S.; Garbeil, H.; Wood, M.

    2015-12-01

    Many natural hazards, including wildfires, volcanic eruptions, and, from the perspective of climate-related hazards, urban heat islands, could be better quantified via the routine availability of hyperspectral thermal infrared remote sensing data from orbit. However, no sensors are currently in operation that provide such data at high-to-moderate spatial resolution (e.g. Landsat-class resolution). In this presentation we will describe a prototype instrument, developed using funding provided by NASA's Instrument Incubator Program, that can make these important measurements. Significantly, the instrument has been designed such that its size, mass, power, and cost are consistent with its integration into small satellite platforms, or deployment as part of small satellite constellations. The instrument, TIRCIS (Thermal Infra-Red Compact Imaging Spectrometer), uses a Fabry-Perot interferometer, an uncooled microbolometer array, and push-broom scanning to acquire hyperspectral image data cubes. Radiometric calibration is provided by blackbody targets while spectral calibration is achieved using monochromatic light sources. Neither the focal plane nor the optics need to be cooled, and the instrument has a mass of <10 kg and dimensions of 53 cm × 25 cm × 22 cm. Although the prototype has four moving parts, this can easily be reduced to one. The current optical design yields a 120 m ground sample size given an orbit of 500 km. Over the wavelength interval of 7.5 to 14 microns up to 90 spectral samples are possible, by varying the physical design of the interferometer. Our performance model indicates signal-to-noise ratios of the order of about 200 to 300:1. In this presentation we will provide an overview of the instrument design, fabrication, results from our initial laboratory characterization, and some of the application areas in which small-satellite-ready instruments such as TIRCIS could make a valuable contribution to the study of natural hazards.

  14. A compact thermal infrared imaging radiometer with high spatial resolution and wide swath for a small satellite using a large format uncooled infrared focal plane array

    Science.gov (United States)

    Tatsumi, Kenji; Sakuma, Fumihiro; Kikuchi, Masakuni; Tanii, Jun; Kawanishi, Toneo; Ueno, Shinichi; Kuga, Hideki

    2014-10-01

    In this paper, we present a feasibility study for the potential of a high spatial resolution and wide swath thermal infrared (TIR) imaging radiometer for a small satellite using a large format uncooled infrared focal plane array (IR-FPA). The preliminary TIR imaging radiometer designs were performed. One is a panchromatic (mono-band) imaging radiometer (8-12μm) with a large format 2000 x 1000 pixels uncooled IR-FPA with a pixel pitch of 15 μm. The other is a multiband imaging radiometer (8.8μm, 10.8μm, 11.4μm). This radiometer is employed separate optics and detectors for each wave band. It is based on the use of a 640 x 480 pixels uncooled IR-FPA with a pixel pitch of 25 μm. The thermal time constant of an uncooled IR-FPA is approximately 10-16ms, and introduces a constraint to the satellite operation to achieve better signal-to-noise ratio, MTF and linearity performances. The study addressed both on-ground time-delayintegration binning and staring imaging solutions, although a staring imaging was preferred after trade-off. The staring imaging requires that the line of sight of the TIR imaging radiometer gazes at a target area during the acquisition time of the image, which can be obtained by rotating the satellite or a steering mirror around the pitch axis. The single band radiometer has been designed to yield a 30m ground sample distance over a 30km swath width from a satellite altitude of 500km. The radiometric performance, enhanced with staring imaging, is expected to yield a NETD less than 0.5K for a 300K ground scene. The multi-band radiometer has three spectral bands with spatial resolution of 50m and swath width of 24km. The radiometric performance is expected to yield a NETD less than 0.85K. We also showed some preliminary simulation results on volcano, desert/urban scenes, and wildfire.

  15. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  16. Lava discharge rate estimates from thermal infrared satellite data for Pacaya Volcano during 2004-2010

    Science.gov (United States)

    Morgan, Hilary A.; Harris, Andrew J. L.; Gurioli, Lucia

    2013-08-01

    Pacaya is one of the most active volcanoes in Central America and has produced lava flows frequently since 1961. All effusive activity between 1961 and 2009 was confined by an arcuate collapse scarp surrounding the northern and eastern flanks. However, the recent breaching of this topographic barrier, and the eruption of a large lava flow outside of the main center of activity, have allowed lava to extend into nearby populated areas, indicating the need for assessment and monitoring of lava flow hazards. We investigated whether a commonly used satellite-based model could produce accurate lava discharge rates for the purpose of near-real-time assessment of hazards during future eruptions and to assess the dynamics of this persistently degassing system. The model assumes a linear relationship between active lava flow area and time-averaged discharge rate (TADR) via a simple conversion factor. We calculated the conversion factor via two methods: (1) best-fitting of satellite-derived flow areas to ground-based estimates of lava flow volume, and (2) theoretically via a parameterized model that takes into account the physical properties of the lava. To apply the latter method, we sampled four lava flows and measured density, vesicularity, crystal content, and major element composition. We found the best agreement of conversion factors in the eruption with the most complete satellite coverage, and used data for these flows to define the linear relationship between area and discharge rate. The physical properties of the sampled flows were essentially identical, so that any discrepancy between the two methods of calculating conversion factors must be due to modeling errors or environmental factors unaccounted for by the parameterized model. However, our best-fitting method provides a new means to set the conversion appropriately, and to obtain self-consistent TADRs. We identified two distinct types of effusive activity at Pacaya: Type 1 activity characterized by initially

  17. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    Science.gov (United States)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  18. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  19. Characterization of the 3D distribution of ozone and coarse aerosols in the Troposphere using IASI thermal infrared satellite observations

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.

    2012-04-01

    Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al

  20. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    S. Corradini

    2009-05-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7 μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure

  1. Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2009-02-01

    Full Text Available The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 columnar abundance retrieval when multispectral Thermal InfraRed (TIR data are used. The ash particles within the plume with effective radii (from 1 to 10 μm reduce the Top Of Atmosphere (TOA radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computation speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7 μm SO2 absorption bands, and the split window bands centered around 11 and 12 μm required for ash retrieval. This allows the possibility of a simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS and the Spin Enhanced Visible and Infrared Imager (SEVIRI measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimations are carried out by using a least squares fit method and the Brightness Temperature Difference (BTD procedures, respectively. The simulated TOA radiance Look-Up Table (LUT needed for the SO2 columnar abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrieval at 8.7 μm – the SO2 columnar abundance corrected by the ash influence is less than one half of the values retrieved without the correction. The ash correction on SO2 retrieval at 7.3 μm is much less important and only significant for low SO2 columnar abundances. Results also show that the simplified and

  2. A Satellite Time Slots Climatology of the Urban Heat Island of Guadalajara Megacity in Mexico from NOAA ¡/AVHRR THERMAL Infrared Monitoring (TIR)

    Science.gov (United States)

    Galindo, I.

    2009-04-01

    The urban heat island (UHI) of the metropolitan area of the second megacity of Mexico, named Guadalajara in Mexico is studied using thermal infrared data (TIR) (10 £ l £ 12 mm) obtained from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbitters whose signals are received on real time at our ground station for the period 1996-2006. The TIR data are selected by means of a software, since they depend on natural causes (e.g., atmospheric transparency, surface temperature, spectral emissivity and topography) and observational (time and incidence angle of the satellite pass, season of the year, etc.). The above conditions have a variable contribution to the measurements which it can be so high that they simulate the temporal-space fluctuations considered as thermal anomalies. Using a Geographic Information System and spatial analysis techniques temperatures are obtained for diofferent times of the day (satellite slots) and dropped into a grid with a 2.5 km distance between points (latitude, longitude). The temperatures obtained for each satellite pass slot (four per day) are monthly averaged and the temperature anomalies are represented in thermal isolines for the study area. The temperature difference usually is larger at night than during the day, reaching a thermal gradient of 9 °C.

  3. Analysis of the sensitivity of thermal infrared nadir satellite observations to the chemical and micro-physical properties of upper tropospheric-lower stratospheric sulphate aerosols

    Science.gov (United States)

    Sellitto, Pasquale; Sèze, Geneviève; Legras, Bernard

    2015-04-01

    Secondary sulphate aerosols are the predominant typology of aerosols in the upper troposphere/lower stratosphere (UTLS), and can have an important impact on radiative transfer and climate, cirrus formation and chemistry in the UTLS. Despite their importance, the satellite observation at the regional scale of sulphate aerosols in the UTLS is limited. In this work, we address the sensitivity of the thermal infrared satellite observations to secondary sulphate aerosols in the UTLS. The absorption properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The absorption coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques : Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the absorption of idealized aerosol layers, at typical UTLS conditions, on the radiance spectra observed by these simulated satellite instruments. We found a marked spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with absorption peaks at 1170 and 905 cm-1. Micro-windows with a sensitivity to chemical and micro-physical properties of the sulphate aerosol layer are identified, and the role of interfering species, and temperature and water vapour profile is discussed.

  4. Satellite and lunar laser ranging in infrared

    Science.gov (United States)

    Courde, Clement; Torre, Jean-Marie; Samain, Etienne; Martinot-Lagarde, Gregoire; Aimar, Mourad; Albanese, Dominique; Maurice, Nicolas; Mariey, Hervé; Viot, Hervé; Exertier, Pierre; Fienga, Agnes; Viswanathan, Vishnu

    2017-05-01

    We report on the implementation of a new infrared detection at the Grasse lunar laser ranging station and describe how infrared telemetry improves the situation. We present our first results on the lunar reflectors and show that infrared detection permits us to densify the observations and allows measurements during the new and the full moon periods. We also present the benefit obtained on the ranging of Global Navigation Satellite System (GNSS) satellites and on RadioAstron which have a very elliptic orbit.

  5. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  6. ASTER Urgent Response to the 2006 Eruption of Augustine Volcano, Alaska: Science and Decision Support Gained From Frequent High-resolution, Satellite Thermal Infrared Imaging of Volcanic Events

    Science.gov (United States)

    Wessels, R. L.; Ramsey, M. S.; Schneider, D. S.; Coombs, M.; Dehn, J.; Realmuto, V. J.

    2006-12-01

    Augustine Volcano, Alaska explosively erupted on January 11, 2006 after nearly eight months of increasing seismicity, deformation, gas emission, and small phreatic explosions. The volcano produced a total of 13 explosive eruptions during the last three weeks of January 2006. A new summit lava dome and two short, blocky lava flows grew during February and March 2006. A series of 7 daytime and 15 nighttime Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes were acquired in response to this new activity. This response was facilitated by a new ASTER Urgent Request Protocol system. The ASTER data provided several significant observations as a part of a much larger suite of real-time or near-real-time data from other satellite (AVHRR, MODIS), airborne (FLIR, visual, gas), and ground-based (seismometers, radiometers) sensors used at the Alaska Volcano Observatory (AVO). ASTER is well-suited to volcanic observations because of its 15-m to 90-m spatial resolution, its ability to be scheduled and point off-nadir, and its ability to collect visible-near infrared (VNIR) to thermal infrared (TIR) data during both the day and night. Aided by the volcano's high latitude (59.4°N) ASTER was able to provide frequent repeat imaging as short as one day between scenes with an average 6-day repeat during the height of activity. These data provided a time series of high-resolution VNIR, shortwave infrared (SWIR - detects temperatures from about 200°C to > 600°C averaged over a 30-m pixel), and TIR (detects temperatures up to about 100°C averaged over a 90-m pixel) data of the volcano and its eruptive products. Frequent satellite imaging of volcanoes is necessary to record rapid changes in activity and to avoid recurring cloud cover. Of the 22 ASTER scenes acquired between October 30, 2005 and May 30, 2006, the volcano was clear to partly cloudy in 13 scenes. The most useful pre-eruption ASTER Urgent Request image was acquired on December 20. These data

  7. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  8. The Infrared Astronomical Satellite (IRAS) mission

    Science.gov (United States)

    Neugebauer, G.; Habing, H. J.; Van Duinen, R.; Aumann, H. H.; Beichman, C. A.; Baud, B.; Beintema, D. A.; Boggess, N.; Clegg, P. E.; De Jong, T.

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) consists of a spacecraft and a liquid helium cryostat that contains a cooled IR telescope. The telescope's focal plane assembly is cooled to less than 3 K, and contains 62 IR detectors in the survey array which are arranged so that every source crossing the field of view can be seen by at least two detectors in each of four wavelength bands. The satellite was launched into a 900 km-altitude near-polar orbit, and its cryogenic helium supply was exhausted on November 22, 1983. By mission's end, 72 percent of the sky had been observed with three or more hours-confirming scans, and 95 percent with two or more hours-confirming scans. About 2000 stars detected at 12 and 25 microns early in the mission, and identified in the SAO (1966) catalog, have a positional uncertainty ellipse whose axes are 45 x 9 arcsec for an hours-confirmed source.

  9. Mission design for the infrared astronomical satellite /IRAS/

    Science.gov (United States)

    Lundy, S. A.; Mclaughlin, W. I.; Pouw, A.

    1979-01-01

    IRAS, a joint United States, Netherlands, United Kingdom astronomical satellite, is scheduled to be launched early in 1981 with the purpose of completing an all-sky survey in the infrared wavelengths from 8 to 120 microns and to observe objects of special interest. The mission design is driven by thermal constraints primarily determined by the Sun and Earth; the orbit and survey strategy must be chosen so as to satisfy the mission requirements before the cryogenic system is depleted of its liquid helium. Computer graphics help the designer choose valid survey strategies and evaluate resulting sky coverage.

  10. 热控涂层红外发射率对GEO卫星蓄电池温度波动的影响%Effect of Thermal Control Battery Temperature Coatings Infrared Emittance on Variation in GEO Satellite

    Institute of Scientific and Technical Information of China (English)

    刘百麟; 周佐新

    2012-01-01

    Based on DFH-3 satellite platform, the simplified south satellite battery cabin is presen- ted as the thermal analysis model. According to the mechanism of battery temperature variation, five combination schemes, in which the thermal control coatings of white paint,aluminized kapton and graphite-epoxy facesheet are used for inner panel of service module board, are proposed and used to analyze the effect of thermal control coatings infrared emittance on battery temperature. The analysis results show that the range of battery temperature variation can be reduced effectively by decreasing the thermal control coatings infrared emittance of inner panel in battery cabin, especially decreasing the thermal control coatings infrared emittance of fixing panel in battery cabin. The range of battery temperature variation in optimization scheme is decreased by 50% than that in original design scheme.%在东方红一3卫星平台的基础上,将合理简化后的南蓄电池舱作为热分析模型。根据影响蓄电池温度波动的机理,提出服务舱舱板内表面常用热控涂层(白漆、镀铝膜、碳蒙皮)的5种组合方案,并量化分析了热控涂层红外发射率对蓄电池温度波动的影响。分析结果表明:降低蓄电池舱舱板内表面热控涂层红外发射率,尤其是降低蓄电池安装舱板表面的热控涂层红外发射率,可有效减小蓄电池温度波动幅度。与基准方案相比,最优组合方案能使蓄电池温度波动幅度降低50%。

  11. An ensemble Kalman filter dual assimilation of thermal infrared and microwave satellite observations of soil moisture into the Noah land surface model

    Science.gov (United States)

    Hain, Christopher R.; Crow, Wade T.; Anderson, Martha C.; Mecikalski, John R.

    2012-11-01

    Studies that have assimilated remotely sensed soil moisture (SM) into land surface models (LSMs) have generally focused on retrievals from microwave (MW) sensors. However, retrievals from thermal infrared (TIR) sensors have also been shown to add unique information, especially where MW sensors are not able to provide accurate retrievals (due to, e.g., dense vegetation). In this study, we examine the assimilation of a TIR product based on surface evaporative flux estimates from the Atmosphere Land Exchange Inverse (ALEXI) model and the MW-based VU Amsterdam NASA surface SM product generated with the Land Parameter Retrieval Model (LPRM). A set of data assimilation experiments using an ensemble Kalman filter are performed over the contiguous United States to assess the impact of assimilating ALEXI and LPRM SM retrievals in isolation and together in a dual-assimilation case. The relative skill of each assimilation case is assessed through a data denial approach where a LSM is forced with an inferior precipitation data set. The ability of each assimilation case to correct for precipitation errors is quantified by comparing with a simulation forced with a higher-quality precipitation data set. All three assimilation cases (ALEXI, LPRM, and Dual assimilation) show relative improvements versus the open loop (i.e., reduced RMSD) for surface and root zone SM. In the surface zone, the dual assimilation case provides the largest improvements, followed by the LPRM case. However, the ALEXI case performs best in the root zone. Results from the data denial experiment are supported by comparisons between assimilation results and ground-based SM observations from the Soil Climate Analysis Network.

  12. Insights into correlation between satellite infrared information and fault activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Tectonic activities are accompanied with material movement and energy transfer, which definitely change the state of thermal radiation on the ground. Thus it is possible to infer present-day tectonic activities based on variations of the thermal radiation state on the ground. The received satellite infrared information is, however, likely influenced by many kinds of factors. Therefore, the first problem that needs to be solved is to extract information on tectonic activities and eliminate effects of external (non-tectonic) factors. In this study, we firstly make a review of the current studies on this subject, and then present the technical approach and our research goal.Using the data of 20 years from the infrared band of the satellite of National Oceanic and Atmospheric Administration (NOAA) and the method we have developed, we investigate fault activities in western China. The results show that the areas with high residual values of land surface brightness temperature (LSBT), which is presumably related to faultings in space, accord usually with the locations of followed major earthquakes. The times of their value growing are also roughly consistent with the beginning of active periods of earthquakes.The low frequency component fields of the LSBT, acquired from wavelet analysis, exhibit well the spatial distributions of active faults.The "heat penetrability index" (HPI) related with enhancement of subsurface thermal information has been expressed well for the backgrounds of accelerated tectonic motions, and some correlations exist between HPI and the local faulting and seismicity. This study provides a new approach to study temporal-spatial evolution of recent activities of faults and their interactions.

  13. The use of thermal infrared images in geologic mapping

    Science.gov (United States)

    Kahle, A. B.

    1982-01-01

    Thermal infrared image data can be used as an aid to geologic mapping. Broadband thermal data between 8 and 13 microns is used to measure surface temperature, from which surface thermal properties can be inferred. Data from aircraft multispectral scanners at Pisgah, California which include a broadband thermal channel along with several visible and near-IR spectral channels permit better discrimination between rock type units than the same data set without the thermal data. Data from the HCMM satellite and from aircraft thermal scanners also make it possible to monitor moisture changes in Death Valley, California. Multispectral data in the same 8-13 micron wavelength range can be used to discriminate between surface materials with different spectral emission characteristics, as demonstrated with both aircraft scanner and ground spectrometer data.

  14. Thermal deformations of a glass spherical satellite

    Science.gov (United States)

    Vasiliev, V. P.; Nenadovich, V. D.; Murashkin, V. V.; Sokolov, A. L.

    2016-09-01

    The effect of the kind of the reflecting coating of a glass spherical satellite on thermal deformations caused by the solar irradiation is considered. Two types of coating deposited on one of the hemispheres are considered: aluminum with a protective layer of bakelite varnish and interference dielectric coating for two orientations of the satellite orbit. Structures of a multilayer dielectric coating and technologies of its deposition are described.

  15. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  16. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  17. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  18. Infrared thermal imaging in connective tissue diseases.

    Science.gov (United States)

    Chojnowski, Marek

    2017-01-01

    Infrared thermal imaging (IRT) is a non-invasive, non-contact technique which allows one to measure and visualize infrared radiation. In medicine, thermal imaging has been used for more than 50 years in various clinical settings, including Raynaud's phenomenon and systemic sclerosis. Imaging and quantification of surface body temperature provides an indirect measure of the microcirculation's overall performance. As such, IRT is capable of confirming the diagnosis of Raynaud's phenomenon, and, with additional cold or heat challenge, of differentiating between the primary and secondary condition. In systemic sclerosis IRT has a potential role in assessing disease activity and monitoring treatment response. Despite certain limitations, thermal imaging can find a place in clinical practice, and with the introduction of small, low-cost infrared cameras, possibly become a part of routine rheumatological evaluation.

  19. Thermal infrared sensors theory, optimisation and practice

    CERN Document Server

    Budzier, Helmut

    2010-01-01

    The problems involved in designing optimal infrared (IR) measuring systems under given conditions are commensurately complex. The optical set-up and radiation conditions, the interaction between sensor and irradiation and the sensor itself, determine the operation of the sensor system. Simple calculations for solving these problems without any understanding of the causal relationships are not possible. Thermal Infrared Sensors offers a concise explanation of the basic physical and photometric fundamentals needed for the consideration of these interactions. It depicts the basics of

  20. Multi-Decadal Variability of Polynya Characteristics and Ice Production in the North Water Polynya by Means of Passive Microwave and Thermal Infrared Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Andreas Preußer

    2015-11-01

    Full Text Available The North Water (NOW Polynya is a regularly-forming area of open-water and thin-ice, located between northwestern Greenland and Ellesmere Island (Canada at the northern tip of Baffin Bay. Due to its large spatial extent, it is of high importance for a variety of physical and biological processes, especially in wintertime. Here, we present a long-term remote sensing study for the winter seasons 1978/1979 to 2014/2015. Polynya characteristics are inferred from (1 sea ice concentrations and brightness temperatures from passive microwave satellite sensors (Advanced Microwave Scanning Radiometer (AMSR-E and AMSR2, Scanning Multichannel Microwave Radiometer (SMMR, Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS and (2 thin-ice thickness distributions, which are calculated using MODIS ice-surface temperatures and European Center for Medium-Range Weather Forecasts (ECMWF atmospheric reanalysis data in a 1D thermodynamic energy-balance model. Daily ice production rates are retrieved for each winter season from 2002/2003 to 2014/2015, assuming that all heat loss at the ice surface is balanced by ice growth. Two different cloud-cover correction schemes are applied on daily polynya area and ice production values to account for cloud gaps in the MODIS composites. Our results indicate that the NOW polynya experienced significant seasonal changes over the last three decades considering the overall frequency of polynya occurrences, as well as their spatial extent. In the 1980s, there were prolonged periods of a more or less closed ice cover in northern Baffin Bay in winter. This changed towards an average opening on more than 85% of the days between November and March during the last decade. Noticeably, the sea ice cover in the NOW polynya region shows signs of a later-appearing fall freeze-up, starting in the late 1990s. Different methods to obtain daily polynya area using passive microwave AMSR-E/AMSR2 data and SSM/I-SSMIS data were applied. A comparison

  1. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  2. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    Science.gov (United States)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  3. Measurement of directional thermal infrared emissivity of vegetation and soils

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.M. [Wisconsin Univ., Madison, WI (United States). Dept. of Soil Science; Balick, L.K. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1995-10-01

    A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.

  4. Thermal Analysis of Iodine Satellite (iSAT)

    Science.gov (United States)

    Mauro, Stephanie

    2015-01-01

    This paper presents the progress of the thermal analysis and design of the Iodine Satellite (iSAT). The purpose of the iSAT spacecraft (SC) is to demonstrate the ability of the iodine Hall Thruster propulsion system throughout a one year mission in an effort to mature the system for use on future satellites. The benefit of this propulsion system is that it uses a propellant, iodine, that is easy to store and provides a high thrust-to-mass ratio. The spacecraft will also act as a bus for an earth observation payload, the Long Wave Infrared (LWIR) Camera. Four phases of the mission, determined to either be critical to achieving requirements or phases of thermal concern, are modeled. The phases are the Right Ascension of the Ascending Node (RAAN) Change, Altitude Reduction, De-Orbit, and Science Phases. Each phase was modeled in a worst case hot environment and the coldest phase, the Science Phase, was also modeled in a worst case cold environment. The thermal environments of the spacecraft are especially important to model because iSAT has a very high power density. The satellite is the size of a 12 unit cubesat, and dissipates slightly more than 75 Watts of power as heat at times. The maximum temperatures for several components are above their maximum operational limit for one or more cases. The analysis done for the first Design and Analysis Cycle (DAC1) showed that many components were above or within 5 degrees Centigrade of their maximum operation limit. The battery is a component of concern because although it is not over its operational temperature limit, efficiency greatly decreases if it operates at the currently predicted temperatures. In the second Design and Analysis Cycle (DAC2), many steps were taken to mitigate the overheating of components, including isolating several high temperature components, removal of components, and rearrangement of systems. These changes have greatly increased the thermal margin available.

  5. Stream Temperature Estimation From Thermal Infrared Images

    Science.gov (United States)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  6. Comparison between IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Payan, S.; Camy-peyret, C.; Bureau, J.; Shiomi, K.

    2012-04-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (CAI: Cloud and Aerosols imager) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences between IASI and TANSO-FTS nadir spectra. Due to the respective orbits of MetOp-A and GOSAT, this is only achieved at high latitudes. We compared the surface temperature, CO2, CH4, N2O and O3 mixing ratios retrieved from TANSO-FTS and from IASI spectra. We used the [940;980] cm-1 window for CO2 (laser band), [1240;1320] cm-1 for CH4, [1140;1200] cm-1 for N2O, and [980;1100] cm-1 for O3. Since IASI is considered as a reference for radiometric calibrations, we compared the surface temperatures retrieved by GOSAT and IASI in these different windows to assess the GOSAT radiometric calibration. The GOSAT/IASI comparison is done on surface temperature rather than on raw radiances because the different instrumental noise and spectral resolution of these instruments make a direct comparison of the radiances more difficult. The use of different spectral windows enabled us to explore the spectral dependence of the TANSO-FTS radiometric calibration. Cloud-free and spatially homogenous fields of view (IFOVs) were selected using CAI images. Finally, we will show the potential to further improve the results using the

  7. Thermal analysis of a linear infrared lamp

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  8. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  9. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  10. A data mining approach for sharpening satellite thermal imagery over land

    Science.gov (United States)

    Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes which are at significant...

  11. Development of the first infrared satellite observatory

    Science.gov (United States)

    Smith, G. M.; Squibb, G. F.

    1984-01-01

    A development history is given for the Infrared Astronomical Satelite (IRAS), whose primary mission objective is an unbiased, all-sky survey in the 8-120 micron wavelength range. A point source catalog of more than 200,000 IR sources, to be published later this year, represents the accomplishment of this objective. IRAS has also conducted 10,000 pointed observations of specific objects. Attention is given to the cost increases and schedule slips which resulted from the substantial technical challenges of IRAS hardware and software development, and to the management techniques which had to be employed in this major international project.

  12. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  13. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    Science.gov (United States)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  14. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy]|[Oak Ridge National Lab., TN (United States); Rajic, S.; Datskou, I.; Egert, C.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  15. Thermal deformation analysis of the composite material satellite antenna

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna's thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.

  16. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano

    Science.gov (United States)

    Dehn, Jonathan; Dean, Kenneson; Engle, Kevin; Izbekov, Pavel

    2002-07-01

    Shishaldin Volcano, Unimak Island Alaska, began showing signs of thermal unrest in satellite images on 9 February 1999. A thermal anomaly and small steam plume were detected at the summit of the volcano in short-wave thermal infrared AVHRR (advanced very high resolution radiometer) satellite data. This was followed by over 2 months of changes in the observed thermal character of the volcano. Initially, the thermal anomaly was only visible when the satellite passed nearly directly over the volcano, suggesting a hot source deep in the central crater obscured from more oblique satellite passes. The "zenith angle" needed to see the anomaly increased with time, presumably as the thermal source rose within the conduit. Based on this change, an ascent rate of ca. 14 m per day for the thermal source was estimated, until it reached the summit on around 21 March. It is thought that Strombolian activity began around this time. The precursory activity culminated in a sub-Plinian eruption on 19 April, ejecting ash to over 45,000 ft. (13,700 m). The thermal energy output through the precursory period was calculated based on geometric constraints unique to Shishaldin. These calculations show fluctuations that can be tied to changes in the eruptive character inferred from seismic records and later geologic studies. The remote location of this volcano made satellite images a necessary observation tool for this eruption. To date, this is the longest thermal precursory activity preceding a sub-Plinian eruption recorded by satellite images in the region. This type of thermal monitoring of remote volcanoes is central in the efforts of the Alaska Volcano Observatory to provide timely warnings of volcanic eruption, and mitigate their associated hazards to air-traffic and local residents.

  17. On the joint use of IASI and GOSAT retrievals in the thermal infrared

    Science.gov (United States)

    Bureau, J.; Payan, S.; Camy-Peyret, C.; Clerbaux, C.; Coheur, P.; Hurtmans, D.; Hadji-Lazaro, J.; Bauduin, S.; George, M.

    2012-12-01

    GOSAT (Greenhouse Gases Observing SATellite) is a satellite dedicated to the study of greenhouses gases. It carries an infrared Fourier transform spectrometer (Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer or TANSO-FTS), which acquires spectra in 4 bands, located in the Near-Infrared (NIR), ShortWave Infrared (SWIR) and Thermal Infrared (TIR). An imager (Cloud and Aerosol Imager or TANSO-CAI) enables to gain information on clouds and aerosols, and this information is used to improve the quality of CO2 and CH4 retrievals. IASI (Infrared Atmospheric Sounding Interferometer) designed by CNES for Eumetsat is carried by the MetOp-A satellite. It is used for operational meteorology and is also interesting for greenhouse gases as well as for atmospheric chemistry and climate. We looked for close spatial and temporal coincidences with six TCCON sites where high resolution FTIR measurements are performed routinely. Cloud-free and spatially homogeneous fields of view (IFOVs) were selected using CAI images. The TCCON retrieved VMR profiles have been used as reference and compared with those we retrieved from coincident measurements of GOSAT and IASI. We used the [1240;1320] cm-1 window for CH4, and the [980;1100] cm-1 window for O3 retrieval. Finally, we will highlight the potential to further improve the results using the synergy between measurements in the TIR and the SWIR spectral domains.

  18. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Directory of Open Access Journals (Sweden)

    U. Amato

    2014-06-01

    Full Text Available We introduce a classification method (Cumulative Discriminant Analysis of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS planned for the geostationary METEOSAT (Meteorological Satellite Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer and SEVIRI (Spinning Enhanced Visible and Infrared Imager imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  19. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    Science.gov (United States)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  20. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    Science.gov (United States)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  1. The infrared astronomical satellite AKARI: overview, highlights of the mission

    Science.gov (United States)

    Murakami, Hiroshi; Matsuhara, Hideo

    2008-07-01

    The AKARI, Japanese infrared astronomical satellite, is a 68.5 cm cooled telescope with two focal-plane instruments providing continuous sky scan at six wavelength bands in mid- and far-infrared. The instruments also have capabilities of imaging and spectroscopy in the wavelength range 2-180 μm in the pointing observations occasionally inserted into the continuous survey. AKARI was launched on 21st Feb. 2006, and has performed the all-sky survey as well as 5380 pointing observations until the liquid helium exhaustion on 26th Aug. 2007. The all sky survey covers more than 90 percent of the entire sky with higher spatial resolutions and sensitivities than the IRAS. First version of the infrared source catalogue will be released in 2009. Here we report the overview of the mission, highlights on the scientific results as well as the performance of the focal-plane instruments. We also present the observation plan with the near infrared camera during the post-helium mission phase started in June 2008.

  2. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  3. Statistical Design Model (SDM) of satellite thermal control subsystem

    Science.gov (United States)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  4. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer

    Science.gov (United States)

    Flasar, F. M.; Kunde, V. g.; Abbas, M. M.; Achterberg, R. K.; Ade, P.; Barucci, A.; Bezard, B.; Bjoraker, G. L.; Brasunas, J. C.; Calcutt, S.

    2004-01-01

    The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.

  5. Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3)sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.

  6. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  7. Evaluation of a physically-based snow model with infrared and microwave satellite-derived estimates

    Science.gov (United States)

    Wang, L.

    2013-05-01

    Snow (with high albedo, as well as low roughness and thermal conductivity) has significant influence on the land-atmosphere interactions in the cold climate and regions of high elevation. The spatial and temporal variability of the snow distribution on a basin scale greatly determines the timing and magnitude of spring snowmelt runoff. For improved water resources management, a physically-based distributed snow model has been developed and applied to the upper Yellow River Basin to provide the outputs of snow variables as well as streamflows from 2001 to 2005. Remotely-sensed infrared information from MODIS satellites has been used to evaluate the model's outputs of spatially-distributed snow cover extent (SCE) and land surface temperature (LST); while the simulated snow depth (SD) and snow water equivalent (SWE) have been compared with the microwave information from SSM/I and AMSR-E satellites. In general, the simulated streamflows (including spring snowmelt) agree fairly well with the gauge-based observations; while the modeled snow variables show acceptable accuracies through comparing to various satellite-derived estimates from infrared or microwave information.;

  8. Development of practical thermal infrared hyperspectral imaging system

    Science.gov (United States)

    Wang, Jianyu; Li, Chunlai; Lv, Gang; Yuan, Liyin; Liu, Enguang; Jin, Jian; Ji, Hongzhen

    2014-11-01

    As an optical remote sensing equipment, the thermal infrared hyperspectral imager operates in the thermal infrared spectral band and acquires about 180 wavebands in range of 8.0~12.5μm. The field of view of this imager is 13° and the spatial resolution is better than 1mrad. Its noise equivalent temperature difference (NETD) is less than 0.2K@300K(average). 1 The influence of background radiation of the thermal infrared hyperspectral imager,and a simulation model of simplified background radiation is builded. 2 The design and implementationof the Cryogenic Optics. 3 Thermal infrared focal plane array (FPA) and special dewar component for the thermal infrared hyperspectral imager. 4 Parts of test results of the thermal infrared hyperspectral imager.The hyperspectral imaging system is China's first success in developing this type of instrument, whose flight validation experiments have already been embarked on. The thermal infrared hyperspectral data acquired will play an important role in fields such as geological exploration and air pollutant identification.

  9. Infrared landmine detection and thermal model analysis

    NARCIS (Netherlands)

    Schwering, P.B.W.; Kokonozi, A.; Carter, L.J.; Lensen, H.A.; Franken, E.M.

    2001-01-01

    Infrared imagers are capable of the detection of surface laid mines. Several sensor fused land mine detection systems make use of metal detectors, ground penetrating radar and infrared imagers. Infrared detection systems are sensitive to apparent temperature contrasts and their detection capabilitie

  10. Proposal of novel measurement method for thermal diffusivity from infrared thermal movie

    Science.gov (United States)

    Okamoto, Yoichi; Watanabe, Shin; Ogata, Kento; Hiramatsu, Koji; Miyazaki, Hisashi; Morimoto, Jun

    2017-05-01

    A brand new thermal diffusivity measurement method was developed. In this new noncontact and absolute measurement method, thermal diffusivity was measured from infrared movie data. The model of one-dimensional thermal conduction was constructed by taking into account the thermal flow other than one-dimensional thermal conduction in the sample. On the basis of this thermal conduction model, the analytical equation for calculating thermal diffusivity was derived. A single-crystal sapphire plate was used as a test specimen for the new method. The test specimen was arranged to cause one-dimensional heat conduction. Infrared movies were taken by using an infrared camera at room temperature. Then, thermal diffusivity was numerically calculated from the acquired movie data using the analytical equation. It was experimentally demonstrated that thermal diffusivity was measured with an accuracy of around 10% error, from an infrared movie of a single-crystal sapphire sample.

  11. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  12. Observed Asteroid Surface Area in the Thermal Infrared

    Science.gov (United States)

    Nugent, C. R.; Mainzer, A.; Masiero, J.; Wright, E. L.; Bauer, J.; Grav, T.; Kramer, E.; Sonnett, S.

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  13. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.

  14. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  15. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  16. Experimental design for the evaluation of high-T(sub c) superconductive thermal bridges in a sensor satellite

    Science.gov (United States)

    Scott, Elaine P.; Lee, Kasey M.

    1994-01-01

    Infrared sensor satellites, which consist of cryogenic infrared sensor detectors, electrical instrumentation, and data acquisition systems, are used to monitor the conditions of the earth's upper atmosphere in order to evaluate its present and future changes. Currently, the electrical connections (instrumentation), which act as thermal bridges between the cryogenic infrared sensor and the significantly warmer data acquisition unit of the sensor satellite system, constitute a significant portion of the heat load on the cryogen. As a part of extending the mission life of the sensor satellite system, the researchers at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) are evaluating the effectiveness of replacing the currently used manganin wires with high-temperature superconductive (HTS) materials as the electrical connections (thermal bridges). In conjunction with the study being conducted at NASA-LaRC, the proposed research is to design a space experiment to determine the thermal savings on a cryogenic subsystem when manganin leads are replaced by HTS leads printed onto a substrate with a low thermal conductivity, and to determine the thermal conductivities of HTS materials. The experiment is designed to compare manganin wires with two different types of superconductors on substrates by determining the heat loss by the thermal bridges and providing temperature measurements for the estimation of thermal conductivity. A conductive mathematical model has been developed and used as a key tool in the design process and subsequent analysis.

  17. Validating an infrared thermal switch as a novel access technology

    Directory of Open Access Journals (Sweden)

    Memarian Negar

    2010-08-01

    Full Text Available Abstract Background Recently, a novel single-switch access technology based on infrared thermography was proposed. The technology exploits the temperature differences between the inside and surrounding areas of the mouth as a switch trigger, thereby allowing voluntary switch activation upon mouth opening. However, for this technology to be clinically viable, it must be validated against a gold standard switch, such as a chin switch, that taps into the same voluntary motion. Methods In this study, we report an experiment designed to gauge the concurrent validity of the infrared thermal switch. Ten able-bodied adults participated in a series of 3 test sessions where they simultaneously used both an infrared thermal and conventional chin switch to perform multiple trials of a number identification task with visual, auditory and audiovisual stimuli. Participants also provided qualitative feedback about switch use. User performance with the two switches was quantified using an efficiency measure based on mutual information. Results User performance (p = 0.16 and response time (p = 0.25 with the infrared thermal switch were comparable to those of the gold standard. Users reported preference for the infrared thermal switch given its non-contact nature and robustness to changes in user posture. Conclusions Thermal infrared access technology appears to be a valid single switch alternative for individuals with disabilities who retain voluntary mouth opening and closing.

  18. Infrared Thermal Imaging as a Tool in University Physics Education

    Science.gov (United States)

    Mollmann, Klaus-Peter; Vollmer, Michael

    2007-01-01

    Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…

  19. Thermal infrared hyperspectral imaging from vehicle-carried instrumentation

    Science.gov (United States)

    Kirkland, Laurel E.; Herr, Kenneth C.; Adams, Paul M.; McAfee, John; Salisbury, John

    2002-09-01

    Stand-off identification in the field using thermal infrared spectrometers (hyperspectral) is a maturing technique for gases and aerosols. However, capabilities to identify solid-phase materials on the surface lag substantially, particularly for identification in the field without benefit of ground truth (e.g. for "denied areas"). Spectral signatures of solid phase materials vary in complex and non-intuitive ways, including non-linear variations with surface texture, particle size, and intimate mixing. Also, in contrast to airborne or satellite measurements, reflected downwelling radiance strongly affects the signature measured by field spectrometers. These complex issues can confound interpretations or cause a misidentification in the field. Problems that remain particularly obstinate are (1) low ambiguity identification when there is no accompanying ground truth (e.g. measurements of denied areas, or Mars surface by the 2003 Mars lander spectrometer); (2) real- or near real-time identification, especially when a low ambiguity answer is critical; (3) identification of intimate mixtures (e.g. two fine powders mixed together) and targets composed of very small particles (e.g. aerosol fallout dust, some tailings); and (4) identification of non-diffuse targets (e.g. smooth coatings such as paint and desert varnish), particularly when measured at a high emission angle. In most studies that focus on gas phase targets or specific manmade targets, the solid phase background signatures are called "clutter" and are thrown out. Here we discuss our field spectrometer images measured of test targets that were selected to include a range of particle sizes, diffuse, non-diffuse, high, and low reflectance materials. This study was designed to identify and improve understanding of the issues that complicate stand-off identification in the field, with a focus on developing identification capabilities to proceed without benefit of ground truth. This information allows both improved

  20. LARES Satellite Thermal Forces and a Test of General Relativity

    CERN Document Server

    Matzner, Richard; Brooks, Jason; Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We summarize a laser-ranged satellite test of General Relativity, the measurement of the Earth's dragging of inertial frames, and then describe the modeling of an important perturbing effect, thermally induced forces, on the satellite. The frame dragging result is obtained by using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. It produces a result in agreement with the prediction of General Relativity: $\\mu = (0.994 \\pm 0.002) \\pm 0.05$, where $\\mu$ is the Earth's dragging of inertial frames normalized to its General Relativity value, 0.002 is the 1-sigma formal error and 0.05 is the estimated systematic error. The thermal force model assumes heat flow from the sun (visual) and from Earth (IR) to the satellite core and to the fused silica reflectors on the satellite, and reradiation into space. For a roughly current epoch (days 1460 - 1580 after launch) we c...

  1. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band

    Science.gov (United States)

    Sun, K.

    2012-12-01

    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature

  2. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  3. High speed heterodyne infrared thermography applied to thermal diffusivity identification

    Science.gov (United States)

    Pradere, C.; Clerjaud, L.; Batsale, J. C.; Dilhaire, S.

    2011-05-01

    We have combined InfraRed thermography and thermal wave techniques to perform microscale, ultrafast (microsecond) temperature field measurements. The method is based on an IR camera coupled to a microscope and synchronized to the heat source by means of phase locked function generators. The principle is based on electronic stroboscopic sampling where the low IR camera acquisition frequency facq (25 Hz) undersamples a high frequency thermal wave. This technique permits the measurement of the emissive thermal response at a (microsecond) short time scale (microsecond) with the full frame mode of the IR camera with a spatial thermal resolution of 7 μm. Then it becomes possible to study 3D transient heat transfer in heterogeneous and high thermal conductive thin layers. Thus it is possible for the first time in our knowledge to achieve temperature field measurements in heterogeneous media within a wide range of time domains. The IR camera is now a suitable instrument for multiscale thermal analysis.

  4. Thermal migration of water on the Galilean satellites

    Energy Technology Data Exchange (ETDEWEB)

    Purves, N.G.; Pilcher, C.B.

    1980-01-01

    We have modeled the thermal migration of water on the Galilean satellites under the assumption of ballistic molecular trajectories. It is found that water migrating owing to solar radiation on an ice-covered satellite will build up in temperate latitudes, in general not reaching the poles. As much as 50 m of ice may have been lost by this process from the equatorial regions of Europa over the age of the solar system. The disappearance of patches of ice - for instance, the bright rays surrounding some impact craters - from the equatorial regions of Ganymede and Callisto may approach a value (the irreversible evaporation rate) three orders of magnitude larger than the net equatorial loss rate for ice-covered Europa. The presence of water ice pole caps on Ganymede extending to the latitudes at which thermal migration becomes important suggests that some process distributed an extensive, thin covering of water on the satellite, and that the equatorial regions were subsequently cleared by the thermal process.

  5. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pandya, R.M.; Mathur, K.M.; Charyulu, R.J.K.; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  6. Infrared thermal imaging for automated detection of diabetic foot complications

    NARCIS (Netherlands)

    Netten, van Jaap J.; Baal, van Jeff G.; Liu, Chanjuan; Heijden, van der Ferdi; Bus, Sicco A.

    2013-01-01

    Background: Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the ap

  7. Thermal Infrared Spectroscopy of Saturn and Titan from Cassini

    Science.gov (United States)

    Jennings, Donald E.; Brasunas, J. C.; Carlson, R. C.; Flasar, F. M.; Kunde, V. G.; Mamoutkine, A. A.; Nixon, A.; Pearl, J. C.; Romani, P. N.; Simon-Miller, A. A.; Bjoraker, G. L.

    2009-01-01

    The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.

  8. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    Science.gov (United States)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  9. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  10. Infrared thermal imaging fundamentals, research and applications

    CERN Document Server

    Vollmer, Michael

    2011-01-01

    This richly illustrated hands-on guide is designed for researchers, teachers and practitioners. The huge selection of examples taken from science, basic teaching of physics, practical applications in industry and a variety of other disciplines spanning the range from medicine to volcano research allows readers to pick those that come closest to their own individual task at hand. Following a look at the fundamentals of IR thermal imaging, properties of the imaging systems, as well as basic and advanced methods, the book goes on to discuss IR imaging applications in teaching, research and indust

  11. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  12. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  13. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  14. Infrared Thermal Imaging System on a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Fu-Feng Lee

    2015-04-01

    Full Text Available A novel concept towards pervasively available low-cost infrared thermal imaging system lunched on a mobile phone (MTIS was proposed and demonstrated in this article. Through digestion on the evolutional development of milestone technologies in the area, it can be found that the portable and low-cost design would become the main stream of thermal imager for civilian purposes. As a representative trial towards this important goal, a MTIS consisting of a thermal infrared module (TIM and mobile phone with embedded exclusive software (IRAPP was presented. The basic strategy for the TIM construction is illustrated, including sensor adoption and optical specification. The user-oriented software was developed in the Android environment by considering its popularity and expandability. Computational algorithms with non-uniformity correction and scene-change detection are established to optimize the imaging quality and efficiency of TIM. The performance experiments and analysis indicated that the currently available detective distance for the MTIS is about 29 m. Furthermore, some family-targeted utilization enabled by MTIS was also outlined, such as sudden infant death syndrome (SIDS prevention, etc. This work suggests a ubiquitous way of significantly extending thermal infrared image into rather wide areas especially health care in the coming time.

  15. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    Science.gov (United States)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  16. THERMAL INFRARED INSPECTION OF ROOF INSULATION USING UNMANNED AERIAL VEHICLES

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2015-08-01

    Full Text Available UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  17. Measuring thermal budgets of active volcanoes by satellite remote sensing

    Science.gov (United States)

    Glaze, L.; Francis, P. W.; Rothery, D. A.

    1989-01-01

    Thematic Mapper measurements of the total radiant energy flux Q at Lascar volcano in north Chile for December 1984 are reported. The results are consistent with the earlier suggestion that a lava lake is the source of a reported thermal budget anomaly, and with values for 1985-1986 that are much lower, suggesting that fumarolic activity was then a more likely heat source. The results show that satellite remote sensing may be used to monitor the activity of a volcano quantitatively, in a way not possible by conventional ground studies, and may provide a method for predicting eruptions.

  18. Retrieving Land Surface Temperature and Emissivity from Multispectral and Hyperspectral Thermal Infrared Instruments

    Science.gov (United States)

    Hook, Simon; Hulley, Glynn; Nicholson, Kerry

    2017-04-01

    Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying a variety of Earth surface processes and surface-atmosphere interactions such as evapotranspiration, surface energy balance and water vapor retrievals. LST&E have been identified as an important Earth System Data Record (ESDR) by NASA and many other international organizations Accurate knowledge of the LST&E is a key requirement for many energy balance models to estimate important surface biophysical variables such as evapotranspiration and plant-available soil moisture. LST&E products are currently generated from sensors in low earth orbit (LEO) such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites as well as from sensors in geostationary Earth orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES) and airborne sensors such as the Hyperspectral Thermal Emission Spectrometer (HyTES). LST&E products are generated with varying accuracies depending on the input data, including ancillary data such as atmospheric water vapor, as well as algorithmic approaches. NASA has identified the need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. We will discuss the different approaches that can be used to retrieve surface temperature and emissivity from multispectral and hyperspectral thermal infrared sensors using examples from a variety of different sensors such as those mentioned, and planned new sensors like the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and the Hyperspectral Infrared Imager (HyspIRI). We will also discuss a project underway at NASA to develop a single unified product from some the individual sensor products and assess the errors associated with the product.

  19. Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

    Directory of Open Access Journals (Sweden)

    Matthew Blackett

    2014-03-01

    Full Text Available The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

  20. Space-Based Thermal Infrared Studies of Asteroids

    CERN Document Server

    Mainzer, A; Trilling, D

    2015-01-01

    Large-area surveys operating at mid-infrared wavelengths have proven to be a valuable means of discovering and characterizing minor planets. Through the use of radiometric models, it is possible to derive physical properties such as diameters, albedos, and thermal inertia for large numbers of objects. Modern detector array technology has resulted in a significant improvement in spatial resolution and sensitivity compared with previous generations of space-based infrared telescopes, giving rise to a commensurate increase in the number of objects that have been observed at these wavelengths. Space-based infrared surveys of asteroids therefore offer an effective means of rapidly gathering information about small body populations' orbital and physical properties. The AKARI, WISE/NEOWISE, Spitzer, and Herschel missions have significantly increased the number of minor planets with well-determined diameters and albedos.

  1. Buildings Research using Infrared Imaging Radiometers with Laboratory Thermal Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Brent; Arasteh, Dariush

    1999-01-12

    Infrared thermal imagers are used at Lawrence Berkeley National Laboratory to study heat transfer through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow through test specimens under environmental conditions for winter heating design. Infrared thermography is used to map surface temperatures on the specimens' warm side. Features of the quantitative thermography process include use of external reference emitters, complex background corrections, and spatial location markers. Typical uncertainties in the data are {+-} 0.5 C and 3 mm. Temperature controlled and directly measured external reference emitters are used to correct data from each thermal image. Complex background corrections use arrays of values for background thermal radiation in calculating temperatures of self-viewing surfaces. Temperature results are used to validate computer programs that predict heat flow including Finite-Element Analysis (FEA) conduction simulations and conjugate Computational Fluid Dynamics (CFD) simulations. Results are also used to study natural convection surface heat transfer. Example data show the distribution of temperatures down the center line of an insulated window.

  2. Human suspicious activity recognition in thermal infrared video

    Science.gov (United States)

    Hossen, Jakir; Jacobs, Eddie; Chowdhury, Fahmida K.

    2014-10-01

    Detecting suspicious behaviors is important for surveillance and monitoring systems. In this paper, we investigate suspicious activity detection in thermal infrared imagery, where human motion can be easily detected from the background regardless of the lighting conditions and colors of the human clothing and surfaces. We use locally adaptive regression kernels (LARK) as patch descriptors, which capture the underlying local structure of the data exceedingly well, even in the presence of significant distortions. Patch descriptors are generated for each query patch and for each database patch. A statistical approach is used to match the query activity with the database to make the decision of suspicious activity. Human activity videos in different condition such as, walking, running, carrying a gun, crawling, and carrying backpack in different terrains were acquired using thermal infrared camera. These videos are used for training and performance evaluation of the algorithm. Experimental results show that the proposed approach achieves good performance in suspicious activity recognition.

  3. Thermal imaging method to visualize a hidden painting thermally excited by far infrared radiations

    Science.gov (United States)

    Davin, T.; Wang, X.; Chabane, A.; Pawelko, R.; Guida, G.; Serio, B.; Hervé, P.

    2015-06-01

    The diagnosis of hidden painting is a major issue for cultural heritage. In this paper, a non-destructive active infrared thermographic technique was considered to reveal paintings covered by a lime layer. An extended infrared spectral range radiation was used as the excitation source. The external long wave infrared energy source delivered to the surface is then propagated through the material until it encounters a painting zone. Due to several thermal effects, the sample surface then presents non-uniformity patterns. Using a high sensitive infrared camera, the presence of covered pigments can thus be highlighted by the analysis of the non-stationary phenomena. Reconstituted thermal contrast images of mural samples covered by a lime layer are shown.

  4. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  5. The Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy; Hale, Taylor; Jennings, Tom; Jhabvala, Murzy; Lunsford, Allen; Magnuson, Greg; Mills, Rick; Morse, Tony; Otero, Veronica; Rohrbach, Scott; Smith, Ramsey; Sullivan, Terry; Tesfaye, Zelalem; Thome, Kurtis; Unger, Glenn; Whitehouse, Paul

    2010-01-01

    The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.

  6. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  7. Systems Analysis for Thermal Infrared ` THz Torch' Applications

    Science.gov (United States)

    Hu, Fangjing; Sun, Jingye; Brindley, Helen E.; Liang, Xiaoxin; Lucyszyn, Stepan

    2015-05-01

    The ` THz Torch' concept was recently introduced by the authors for providing secure wireless communications over short distances within the thermal infrared (10-100 THz). Unlike conventional systems, thermal infrared can exploit front-end thermodynamics with engineered blackbody radiation. For the first time, a detailed power link budget analysis is given for this new form of wireless link. The mathematical modeling of a short end-to-end link is provided, which integrates thermodynamics into conventional signal and noise power analysis. As expected from the Friis formula for noise, it is found that the noise contribution from the pyroelectric detector dominates intrinsic noise. From output signal and noise voltage measurements, experimental values for signal-to-noise ratio (SNR) are obtained and compared with calculated predictions. As with conventional communications systems, it is shown for the first time that the measured SNR and measured bit error rate found with this thermodynamics-based system resembles classical empirical models. Our system analysis can serve as an invaluable tool for the development of thermal infrared systems, accurately characterizing each individual channel and, thus, enables the performance of multi-channel ` THz Torch' systems to be optimized.

  8. Thermal Performance of Building Roof with Infrared Reflective Coatings

    Institute of Scientific and Technical Information of China (English)

    SHEN Hui; TAN Hong-wei; KATSUO MIKI; LIU Xiao-yu

    2009-01-01

    This paper investigated the applicability and effects of infrared reflective coating on energy con-sumption of factory building in hot summer and warm winter zone. It first resorted to theoretical calculation, which demonstrated the beneficial effects of infrared reflective coating on reducing building energy consumption. Then it analyzed a field measurement done on two identical rooms respectively with ordinary coated roof and in-frared reflective coated roof from November 2006 to October 2007, on a 24h basis. The measured data include exterior and interior roof surface temperature, indoor air temperature, and indoor globe temperature. The relat-ed weather data is from a weather station near the measured area. The continuous measurement has been accom-plished in southern China, and the measured data indicate that roof surface temperature and heat gain are signifi-cantly decreased in summer while slight negative effects in winter are induced by adopting infrared reflective coating. Thus it is simple and applicable to reduce building energy consumption in this area by applying infrared reflective coating. Regress equation between reduced roof thermal property, such as surface temperature and heat gain, and reduction in absorbed solar radiation shows their highly linear relationship. Based on the mea-sured data, it is estimated that the reduced power consumption is 3.45 kWh/m2·month in June.

  9. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  10. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    Science.gov (United States)

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  11. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    Science.gov (United States)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  12. Human ear detection in the thermal infrared spectrum

    Science.gov (United States)

    Abaza, Ayman; Bourlai, Thirimachos

    2012-06-01

    In this paper the problem of human ear detection in the thermal infrared (IR) spectrum is studied in order to illustrate the advantages and limitations of the most important steps of ear-based biometrics that can operate in day and night time environments. The main contributions of this work are two-fold: First, a dual-band database is assembled that consists of visible and thermal profile face images. The thermal data was collected using a high definition middle-wave infrared (3-5 microns) camera that is capable of acquiring thermal imprints of human skin. Second, a fully automated, thermal imaging based ear detection method is developed for real-time segmentation of human ears in either day or night time environments. The proposed method is based on Haar features forming a cascaded AdaBoost classifier (our modified version of the original Viola-Jones approach1 that was designed to be applied mainly in visible band images). The main advantage of the proposed method, applied on our profile face image data set collected in the thermal-band, is that it is designed to reduce the learning time required by the original Viola-Jones method from several weeks to several hours. Unlike other approaches reported in the literature, which have been tested but not designed to operate in the thermal band, our method yields a high detection accuracy that reaches ~ 91.5%. Further analysis on our data set yielded that: (a) photometric normalization techniques do not directly improve ear detection performance. However, when using a certain photometric normalization technique (CLAHE) on falsely detected images, the detection rate improved by ~ 4%; (b) the high detection accuracy of our method did not degrade when we lowered down the original spatial resolution of thermal ear images. For example, even after using one third of the original spatial resolution (i.e. ~ 20% of the original computational time) of the thermal profile face images, the high ear detection accuracy of our method

  13. Design of a nano-satellite demonstrator of an infrared imaging space interferometer: the HyperCube

    Science.gov (United States)

    Dohlen, Kjetil; Vives, Sébastien; Rakotonimbahy, Eddy; Sarkar, Tanmoy; Tasnim Ava, Tanzila; Baccichet, Nicola; Savini, Giorgio; Swinyard, Bruce

    2014-07-01

    The construction of a kilometer-baseline far infrared imaging interferometer is one of the big instrumental challenges for astronomical instrumentation in the coming decades. Recent proposals such as FIRI, SPIRIT, and PFI illustrate both science cases, from exo-planetary science to study of interstellar media and cosmology, and ideas for construction of such instruments, both in space and on the ground. An interesting option for an imaging multi-aperture interferometer with km baseline is the space-based hyper telescope (HT) where a giant, sparsely populated primary mirror is constituted of several free-flying satellites each carrying a mirror segment. All the segments point the same object and direct their part of the pupil towards a common focus where another satellite, containing recombiner optics and a detector unit, is located. In Labeyrie's [1] original HT concept, perfect phasing of all the segments was assumed, allowing snap-shot imaging within a reduced field of view and coronagraphic extinction of the star. However, for a general purpose observatory, image reconstruction using closure phase a posteriori image reconstruction is possible as long as the pupil is fully non-redundant. Such reconstruction allows for much reduced alignment tolerances, since optical path length control is only required to within several tens of wavelengths, rather than within a fraction of a wavelength. In this paper we present preliminary studies for such an instrument and plans for building a miniature version to be flown on a nano satellite. A design for recombiner optics is proposed, including a scheme for exit pupil re-organization, is proposed, indicating the focal plane satellite in the case of a km-baseline interferometer could be contained within a 1m3 unit. Different options for realization of a miniature version are presented, including instruments for solar observations in the visible and the thermal infrared and giant planet observations in the visible, and an

  14. Estimation of Lake Water Temperature with ASTER and Landsat 8 OLI-TIRS Thermal Infrared Bands: A Case Study Beysehir Lake (Turkey)

    Science.gov (United States)

    Sener, Sehnaz; Sener, Erhan

    2016-08-01

    Beyşehir Lake is the largest fresh water lake in our country with the 653 km2 surface area. Lake water have used for drinking water of several settlements in the basin. Beyşehir Lake is a shallow lake and, especially in recent years its water level was dropped due to unplanned usage and effects of climate change.In this study, determination of the water temperature in Lake Beyşehir is aimed using 90m resolution thermal infrared bands of ASTER (Advance Spaceborne Thermal Emission and Reflection Radiometer) satellite and 30m resolution thermal infrared bands of Landsat 8 OLI-TIRS satellite. The Normalized Water Different Index (NWDI) has been applied to ASTER and Landsat 8 OLI-TIRS satellite images to determine lake surface area. Accordingly, the lake water temperature is generally proportional to the depth and it relatively higher in the shallow area.

  15. Roof heat loss detection using airborne thermal infrared imagery

    Science.gov (United States)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  16. Application of satellite infrared measurements to mapping sea ice

    Science.gov (United States)

    Barnes, J. C.

    1972-01-01

    The application of the ITOS-SR (scanning radiometer) infrared measurements for mapping sea ice was examined. The work included detailed mapping of ice features visible in the ITOS nighttime DRSR (direct readout scanning radiometer) pictorial data and in Nimbus summertime film strip data. Analyses of digital temperature values from computer printouts of ITOS stored data and from Nimbus data listings were also undertaken, and densitometric measurements of both ITOS and Nimbus data were initiated.

  17. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Belletoile, A.; Bellidol, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Mirarrionti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, T. J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Fernandez, G. Rodriguez; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Ruehle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F. G.; Schulz, J.; Schuster, D.; Sciutto, Si.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Machado, D. Torres; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Martin, L.

    2013-01-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger

  18. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  19. Thermal Infrared Observations and Thermophysical Modeling of Phobos

    Science.gov (United States)

    Smith, Nathan Michael; Edwards, Christopher Scott; Mommert, Michael; Trilling, David E.; Glotch, Timothy

    2016-10-01

    Mars-observing spacecraft have the opportunity to study Phobos from Mars orbit, and have produced a sizeable record of observations using the same instruments that study the surface of the planet below. However, these observations are generally infrequent, acquired only rarely over each mission.Using observations gathered by Mars Global Surveyor's (MGS) Thermal Emission Spectrometer (TES), we can investigate the fine layer of regolith that blankets Phobos' surface, and characterize its thermal properties. The mapping of TES observations to footprints on the Phobos surface has not previously been undertaken, and must consider the orientation and position of both MGS and Phobos, and TES's pointing mirror angle. Approximately 300 fully resolved observations are available covering a significant subset of Phobos' surface at a variety of scales.The properties of the surface regolith, such as grain size, density, and conductivity, determine how heat is absorbed, transferred, and reradiated to space. Thermophysical modeling allows us to simulate these processes and predict, for a given set of assumed parameters, how the observed thermal infrared spectra will appear. By comparing models to observations, we can constrain the properties of the regolith, and see how these properties vary with depth, as well as regionally across the Phobos surface. These constraints are key to understanding how Phobos formed and evolved over time, which in turn will help inform the environment and processes that shaped the solar system as a whole.We have developed a thermophysical model of Phobos adapted from a model used for unresolved observations of asteroids. The model has been modified to integrate thermal infrared flux across each observed portion of Phobos. It will include the effects of surface roughness, temperature-dependent conductivity, as well as radiation scattered, reflected, and thermally emitted from the Martian surface. Combining this model with the newly-mapped TES

  20. Investigation of anisotropic thermal transport in polymers using infrared thermography

    Science.gov (United States)

    Nieto Simavilla, David; Venerus, David; Schieber, Jay

    2014-03-01

    During manufacturing, the anisotropic nature of thermal transport in flowing polymers plays an important role in the final properties of materials. In our laboratory, we have investigated anisotropic thermal conductivity in polymers subjected to deformation using an optical technique based on Forced Rayleigh Scattering (FRS). For over a decade, our setup has been the only one capable of testing the linear relationship between anisotropy in thermal conductivity and stress, known as the stress-thermal rule. In order to overcome some of the limitations in the optical properties of materials inherent to FRS, we have recently developed a complementary technique based on infrared thermography (IRT). We validate IRT technique by comparing measurements of anisotropy in thermal conductivity on crosslinked networks against those obtained with FRS. The main advantage of IRT method is that, it allows us to study optically thick materials, including polymers that are prone to strain induced crystallization. Additionally, examination of IRT transient state experiments enables us to study the effect of deformation on other properties such as specific heat capacity.

  1. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  2. Optimum thermal infrared bands for mapping general rock type and temperature from space

    Science.gov (United States)

    Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.

    1980-01-01

    A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.

  3. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  4. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2012-10-01

    Full Text Available Thermal infrared (TIR imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions, which are often fine enough for field-scale applications. A classic thermal sharpening technique, TsHARP, uses a relationship between land surface temperature (LST and Normalized Difference Vegetation Index (NDVI developed empirically at the TIR pixel resolution and applied at the NDVI pixel resolution. However, recent studies show that unique relationships between temperature and NDVI may only exist for a limited class of landscapes, with mostly green vegetation and homogeneous air and soil conditions. To extend application of thermal sharpening to more complex conditions, a new data mining sharpener (DMS technique is developed. The DMS approach builds regression trees between TIR band brightness temperatures and shortwave spectral reflectances based on intrinsic sample characteristics. A comparison of sharpening techniques applied over a rainfed agricultural area in central Iowa, an irrigated agricultural region in the Texas High Plains, and a heterogeneous naturally vegetated landscape in Alaska indicates that the DMS outperformed TsHARP in all cases. The artificial box-like patterns in LST generated by the TsHARP approach are greatly reduced using the DMS scheme, especially for areas containing irrigated crops, water bodies, thin clouds or terrain. While the DMS technique can provide fine resolution TIR imagery, there are limits to the sharpening ratios that can be reasonably implemented. Consequently, sharpening techniques cannot replace actual thermal band imagery at fine resolutions or missions that

  5. Reliability Design and Electro-Thermal-Optical Simulation of Bridge-Style Infrared Thermal Emitters

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2016-09-01

    Full Text Available Designs and simulations of silicon-based micro-electromechanical systems (MEMS infrared (IR thermal emitters for gas sensing application are presented. The IR thermal emitter is designed as a bridge-style hotplate (BSH structure suspended on a silicon frame for realizing a good thermal isolation between hotplate and frame. For investigating the reliability of BSH structure, three kinds of fillet structures were designed in the contact corner between hotplate and frame. A 3-dimensional finite element method (3D-FEM is used to investigate the electro-thermal, thermal-mechanical, and thermal-optical properties of BSH IR emitter using software COMSOLTM (COMSOL 4.3b, COMSOL Inc., Stockholm, Sweden. The simulation results show that the BSH with oval fillet has the lowest stress distribution and smoothest flows of stress streamlines, while the BSH with square fillet has the highest temperature and stress distribution. The thermal-optical and thermal-response simulations further indicate that the BSH with oval fillet is the optimal design for a reliable IR thermal emitter in spite of having slight inadequacies in emission intensity and modulation bandwidth in comparison with other two structures.

  6. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  7. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  8. Landsat 8 thermal infrared sensor geometric characterization and calibration

    Science.gov (United States)

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  9. Plant species discrimination using emissive thermal infrared imaging spectroscopy

    Science.gov (United States)

    Rock, Gilles; Gerhards, Max; Schlerf, Martin; Hecker, Christoph; Udelhoven, Thomas

    2016-12-01

    Discrimination of plant species in the optical reflective domain is somewhat limited by the similarity of their reflectance spectra. Spectral characteristics in the visible to shortwave infrared (VSWIR) consist of combination bands and overtones of primary absorption bands, situated in the Thermal Infrared (TIR) region and therefore resulting in broad spectral features. TIR spectroscopy is assumed to have a large potential for providing complementary information to VSWIR spectroscopy. So far, in the TIR, plants were often considered featureless. Recently and following advances in sensor technology, plant species were discriminated based on specific emissivity signatures by Ullah et al. (2012) using directional-hemispherical reflectance (DHR) measurements in the laboratory. Here we examine if an accurate discrimination of plant species is equally possible using emissive thermal infrared imaging spectroscopy, an explicit spatial technique that is faster and more flexible than non-imaging measurements. Hyperspectral thermal infrared images were acquired in the 7.8⿿11.56 μm range at 40 nm spectral resolution (@10 μm) using a TIR imaging spectrometer (Telops HyperCam-LW) on seven plants each, of eight different species. The images were radiometrically calibrated and subjected to temperature and emissivity separation using a spectral smoothness approach. First, retrieved emissivity spectra were compared to laboratory reference spectra and then subjected to species discrimination using a random forest classifier. Second, classification results obtained with emissivity spectra were compared to those obtained with VSWIR reflectance spectra that had been acquired from the same leaf samples. In general, the mean emissivity spectra measured by the TIR imaging spectrometer showed very good agreement with the reference spectra (average Nash-Sutcliffe-Efficiency Index = 0.64). In species discrimination, the resulting accuracies for emissivity spectra are highly dependent on

  10. ISOCAM, the ISO's satellite infra-red camera

    Science.gov (United States)

    de Sa, L.; Taride, S.

    1990-09-01

    Upon launch in 1993, the IR Space Observatory's 'ISOCAM' IR camera experiment will collect 2.5-5.5 and 4-17 micron astronomical data over an 18-month lifetime. On the basis of an open loop of superfluid He, ISOCAM's detectors, stepping motors, wheels, mechanisms, filters, lenses and primary mirror will all be cooled. The primary system design difficulties were encountered in the securing of low temperature stability for the detectors, as well as in the thermal control of high-inertia elements, and the cryogenic testing of the camera under spacelike conditions. Additional challenges were met in the development of such cryomechanical elements as stepping motors, ball bearings, and gears.

  11. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  12. Satellite Map of Port-au-Prince, Haiti-2010-Infrared

    Science.gov (United States)

    Cole, Christopher J.; Sloan, Jeff

    2010-01-01

    The U.S. Geological Survey produced 1:24,000-scale post-earthquake image base maps incorporating high- and medium-resolution remotely sensed imagery following the 7.0 magnitude earthquake near the capital city of Port au Prince, Haiti, on January 12, 2010. Commercial 2.4-meter multispectral QuickBird imagery was acquired by DigitalGlobe on January 15, 2010, following the initial earthquake. Ten-meter multispectral ALOS AVNIR-2 imagery was collected by the Japanese Space Agency (JAXA) on January 12, 2010. These data were acquired under the Remote Sensing International Charter, a global team of space and satellite agencies that provide timely imagery in support of emergency response efforts worldwide. The images shown on this map were employed to support earthquake response efforts, specifically for use in determining ground deformation, damage assessment, and emergency management decisions. The raw, unprocessed imagery was geo-corrected, mosaicked, and reproduced onto a cartographic 1:24,000-scale base map. These maps are intended to provide a temporally current representation of post-earthquake ground conditions, which may be of use to decision makers and to the general public.

  13. Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission

    Science.gov (United States)

    Thome, K; Reuter, D.; Lunsford, D.; Montanaro, M.; Smith, J.; Tesfaye, Z.; Wenny, B.

    2011-01-01

    The Landsat series of satellites provides the longest running continuous data set of moderate-spatial-resolution imagery beginning with the launch of Landsat 1 in 1972 and continuing with the 1999 launch of Landsat 7 and current operation of Landsats 5 and 7. The Landsat Data Continuity Mission (LDCM) will continue this program into a fourth decade providing data that are keys to understanding changes in land-use changes and resource management. LDCM consists of a two-sensor platform comprised of the Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS). A description of the applications and design of the TIRS instrument is given as well as the plans for calibration and characterization. Included are early results from preflight calibration and a description of the inflight validation.

  14. The facial expression of schizophrenic patients applied with infrared thermal facial image sequence

    National Research Council Canada - National Science Library

    Bo-Lin Jian; Chieh-Li Chen; Wen-Lin Chu; Min-Wei Huang

    2017-01-01

    .... Thus, this study used non-contact infrared thermal facial images (ITFIs) to analyze facial temperature changes evoked by different emotions in moderately and markedly ill schizophrenia patients...

  15. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    Science.gov (United States)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  16. An airborne thematic thermal infrared and electro-optical imaging system

    Science.gov (United States)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  17. Thermal Infrared Imager on Hayabusa2: Science and Development

    Science.gov (United States)

    Okada, Tatsuaki

    2015-04-01

    Thermal Infrared Imager TIR was developed and calibrated for Haya-busa2 asteroid explorer, aiming at the investigation of thermo-physical properties of C-class near-Earth sub-km sized asteroid (162173) 1999JU3. TIR is based on the 2D micro-bolometer array with germani-um lens to image the surface of asteroid in 8 to 12 μm wavelength (1), measuring the thermal emission off the asteroid surface. Its field of view is 16° x 12° with 328 x 248 pixels. At least 40 (up to 100) images will be taken during asteroid rotation once a week, mainly from the Home Position which is about 20km sunward from asteroid surface. Therefore TIR will image the whole asteroid with spatial resolution of scien-tific objectives of TIR include the mapping of asteroid surface condi-tions (regional distribution of thermal inertia), since the surface physical conditions are strongly correlated with thermal inertia. It is so informa-tive on understanding the re-accretion or surface sedimentation process-es of the asteroid to be the current form. TIR data will be used for searching for those sites having the typical particle size of 1mm for best sample collection, and within the proper thermal condition for space-craft safe operation. After launch of Hayabusa2, TIR has been tested successfully, covering from -100 to 150 °C using a single parameter settings (2). This implies that TIR is actually able to map the surface other than the sunlit areas. Performance of TIR was found basically the same as those in the pre-launch test, when the temperature of TIR is well controlled. References: (1) Fukuhara T. et al., (2011) Earth Planet. Space 63, 1009-1018; (2) Okada T. et al., (2015) Lunar Planet. Sci. Conf. 46, #1331.

  18. Near-surface Thermal Infrared Imaging of a Mixed Forest

    Science.gov (United States)

    Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.

    2014-12-01

    Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will

  19. High resolution thermal infrared mapping of Martian channels

    Science.gov (United States)

    Craddock, R. A.; Greeley, R.; Christensen, P. R.

    1987-01-01

    Viking Infrared Thermal Mapper (IRTM) high resolution (2 to 5 km) data were compiled and compared to Viking Visual Imaging Subsystem (VIS) data and available 1:5M geologic maps for several Martian channels including Dao, Harmakhis, Mangala, Shalbatana, and Simud Valles in an effort to determine the surface characteristics and the processes active during and after the formation of these channels. Results show a dominance of aeolian processes active in and around the channels. These processes have left materials thick enough to mask any genuine channel deposits. Results also indicate that very comparable Martian channels and their surrounding terrain are blanketed by deposits which are homogeneous in their thermal inertia values. However, optimum IRTM data does not cover the entire Martian surface and because local deposits of high thermal inertia material may not be large enough in areal extent or may be in an unfavorable location on the planet, a high resolution data track may not always occur over these deposits. Therefore, aeolian processes may be even more active than the IRTM data tracts can always show.

  20. Use of thermal infrared pictures for retrieving intertidal DEM by the waterline method: advantages and limitations

    Science.gov (United States)

    Gaudin, D.; Delacourt, C.; Allemand, P.

    2010-12-01

    Digital Elevation Models (DEM) of the intertidal zones have a growing interest for ecological and land development purposes. They are also a fundamental tool for monitoring current sedimentary movements in those low energy environments. Such DEMs have to be constructed with a centimetric resolution as the topographic changes are not predictable and as sediment displacements are weak. Direct construction of DEM by GPS in these muddy environment is difficult: photogrammetric techniques are not efficient on uniform coloured surfaces and terrestrial laser scans are difficult to stabilize on the mud, due to humidity. In this study, we propose to improve and to apply the waterline method to retrieve DEMs in intertidal zones. This technique is based on monitoring accurately the boundary between sand and water during a whole tide rise with thermal infrared images. The DEM is made by stacking all these lines calibrated by an immersed pressure sensor. Using thermal infrared pictures, instead of optical ones, improves the detection of the waterline, since mud and water have very different responses to sun heating and a large emissivity contrast. However, temperature retrieving from thermal infrared data is not trivial, since the luminance of an object is the sum of a radiative part and a reflexive part, whose relative proportions are given by the emissivity. In the following equation, B accounts for the equivalent blackbody luminance, and Linc is the incident luminance : Ltot}=L{rad}+L_{refl=ɛ B+(1-ɛ )Linc The infrared waterline technique has been used for the monitoring of a beach located on the Aber Benoit, 8.5km away from the open sea. The site is mainly constituted of mud, and waves are very small (less than one centimeter high), which are the ideal conditions for using the waterline method. A few measurements have been made to make differential heigh maps of sediments. We reached a mean resolution of 2cm and a vertical accuracy better than one centimeter. The results

  1. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  2. Specification for an Infrared Satellite Surveillance System for the Detection of Aircraft

    Science.gov (United States)

    1987-11-01

    In the monolithic IRCCD, the infrared sensitive substrate is either e narrow bandgap semiconductor or an extrinsic semiconductor with appropriate...thermally generated to bring the potential well into thermal equilibrium. Clock Feedt.hrough This noise is due to capacitance coupling Noise from the...Noise This noise is associated with a MOSFET of a given transconductance. Detector This noise is variations across the video Uniformity Noise output

  3. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-05-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method, recently introduced by Kirchengast and Schweitzer (2011, that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal and one close by but outside of any absorption lines (reference signal. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species, aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this

  4. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  5. Particle contamination from Martin Optical Black. [in design of barrel baffle of Infrared Astronomical Satellite

    Science.gov (United States)

    Young, P. J.; Noll, R.; Andreozzi, L.; Hope, J.

    1981-01-01

    The design of the barrel baffle of the Infrared Astronomical Satellite (IRAS) Optical Subsystem to minimize production of particulate contamination is described. The configuration of the 50-inch long, 28.5-inch diameter baffle required pop-rivet assembly after coating with Martin Optical Black for stray light suppression. An experiment to determine the contamination produced at assembly led to the modification of the baffle construction to preclude such damage to the coated surfaces.

  6. Neural networks for identifying drunk persons using thermal infrared imagery.

    Science.gov (United States)

    Koukiou, Georgia; Anastassopoulos, Vassilis

    2015-07-01

    Neural networks were tested on infrared images of faces for discriminating intoxicated persons. The images were acquired during controlled alcohol consumption by forty-one persons. Two different experimental approaches were thoroughly investigated. In the first one, each face was examined, location by location, using each time a different neural network, in order to find out those regions that can be used for discriminating a drunk from a sober person. It was found that it was mainly the face forehead that changed thermal behaviour with alcohol consumption. In the second procedure, a single neural structure was trained on the whole face. The discrimination performance of this neural structure was tested on the same face, as well as on unknown faces. The neural networks presented high discrimination performance even on unknown persons, when trained on the forehead of the sober and the drunk person, respectively. Small neural structures presented better generalisation performance.

  7. Infrared Observations Of Saturn's Rings : Azimuthal Variations And Thermal Modeling

    Science.gov (United States)

    Leyrat, C.; Spilker, L. J.; Altobelli, N.; Pilorz, S.; Ferrari, C.; Edgington, S. G.; Wallis, B. D.; Nugent, C.; Flasar, M.

    2007-12-01

    Saturn's rings represent a collection of icy centimeter to meter size particles with their local dynamic dictated by self gravity, mutual collisions, surface roughness and thickness of the rings themselves. The infrared observations obtained by the CIRS infrared spectrometer on board Cassini over the last 3.5 year contain informations on the local dynamic, as the thermal signature of planetary rings is influenced both by the ring structure and the particle properties. The ring temperature is very dependent on the solar phase angle (Spilker et al., this issue), and on the local hour angle around Saturn, depending on whether or not particles' visible hemispheres are heated by the Sun. The geometric filling factor, which can be estimated from CIRS spectra, is less dependent on the local hour angle, suggesting that the non isothermal behavior of particles' surfaces have low impact, but it is very dependent on the spacecraft elevation for the A and C rings. The ring small scale structure can be explored using CIRS data. Variations of the filling factor with the local hour angle relative to the spacecraft azimuth reveals self-gravity wakes. We derive morphological parameters of such wakes in both A and B rings assuming that wakes can be modeled either by regularly spaced bars with infinite or finite optical depth. Our results indicates that wakes in the A ring are almost flat, with a ratio height/width ≈ 0.44 ± 0.16 and with a pitch angle relative to the orbital motion direction of ≍ 27deg. This is consistent with UVIS (Colwell et al., 2006) and VIMS data (Hedman et al., 2007). Such models are more difficult to constrain in the B ring, but small variations of the filling factor indicate that the pitch angle decreases drastically in this ring. We also present a new thermal bar model to explain azimuthal variations of temperatures in the A ring. We compare results with previous ring thermal models of spherical particles. The Cassini/CIRS azimuthal scans data set is

  8. Unmanned ground vehicle perception using thermal infrared cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-05-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5μm) or long-wave infrared (LWIR) radiation (7-14μm). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  9. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    Science.gov (United States)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellutta, Paolo; Sherwin, Gary W.

    2011-01-01

    The ability to perform off-road autonomous navigation at any time of day or night is a requirement for some unmanned ground vehicle (UGV) programs. Because there are times when it is desirable for military UGVs to operate without emitting strong, detectable electromagnetic signals, a passive only terrain perception mode of operation is also often a requirement. Thermal infrared (TIR) cameras can be used to provide day and night passive terrain perception. TIR cameras have a detector sensitive to either mid-wave infrared (MWIR) radiation (3-5?m) or long-wave infrared (LWIR) radiation (8-12?m). With the recent emergence of high-quality uncooled LWIR cameras, TIR cameras have become viable passive perception options for some UGV programs. The Jet Propulsion Laboratory (JPL) has used a stereo pair of TIR cameras under several UGV programs to perform stereo ranging, terrain mapping, tree-trunk detection, pedestrian detection, negative obstacle detection, and water detection based on object reflections. In addition, we have evaluated stereo range data at a variety of UGV speeds, evaluated dual-band TIR classification of soil, vegetation, and rock terrain types, analyzed 24 hour water and 12 hour mud TIR imagery, and analyzed TIR imagery for hazard detection through smoke. Since TIR cameras do not currently provide the resolution available from megapixel color cameras, a UGV's daytime safe speed is often reduced when using TIR instead of color cameras. In this paper, we summarize the UGV terrain perception work JPL has performed with TIR cameras over the last decade and describe a calibration target developed by General Dynamics Robotic Systems (GDRS) for TIR cameras and other sensors.

  10. Thermal interpretation of infrared dynamics in de Sitter

    Science.gov (United States)

    Rigopoulos, Gerasimos

    2016-07-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12H2, averaged over horizon sized regions of physical volume VH = (4π/3)(1/H)3, can be interpreted as Brownian motion in a medium with de Sitter temperature TDS = hbarH/2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature TDS which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂μphi and takes a well defined value per horizon volume ½langle(∇phi)2rangle = - ½TDS/VH. This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor langleTμνrangle for an arbitrary scalar potential.

  11. Thermal Interpretation of Infrared Dynamics in de Sitter

    CERN Document Server

    Rigopoulos, Gerasimos

    2016-01-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature $R=12H$, averaged over horizon sized regions of physical volume $V_H=\\frac{4\\pi}{3}\\left(\\frac{1}{H}\\right)^3$, can be interpreted as Brownian motion in a medium with de Sitter temperature $T_{DS}=\\frac{\\hbar H}{2\\pi}$. We demonstrate this by employing path integral techniques, deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature $T_{DS}$ which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of $\\partial_\\mu\\phi$ and takes a well ...

  12. Infrared thermal imaging of rat somatosensory cortex with whisker stimulation.

    Science.gov (United States)

    Suzuki, Takashi; Ooi, Yasuhiro; Seki, Junji

    2012-04-01

    The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.

  13. Ground-based analysis of volcanic ash plumes using a new multispectral thermal infrared camera approach

    Science.gov (United States)

    Williams, D.; Ramsey, M. S.

    2015-12-01

    Volcanic plumes are complex mixtures of mineral, lithic and glass fragments of varying size, together with multiple gas species. These plumes vary in size dependent on a number of factors, including vent diameter, magma composition and the quantity of volatiles within a melt. However, determining the chemical and mineralogical properties of a volcanic plume immediately after an eruption is a great challenge. Thermal infrared (TIR) satellite remote sensing of these plumes is routinely used to calculate the volcanic ash particle size variations and sulfur dioxide concentration. These analyses are commonly performed using high temporal, low spatial resolution satellites, which can only reveal large scale trends. What is lacking is a high spatial resolution study specifically of the properties of the proximal plumes. Using the emissive properties of volcanic ash, a new method has been developed to determine the plume's particle size and petrology in spaceborne and ground-based TIR data. A multispectral adaptation of a FLIR TIR camera has been developed that simulates the TIR channels found on several current orbital instruments. Using this instrument, data of volcanic plumes from Fuego and Santiaguito volcanoes in Guatemala were recently obtained Preliminary results indicate that the camera is capable of detecting silicate absorption features in the emissivity spectra over the TIR wavelength range, which can be linked to both mineral chemistry and particle size. It is hoped that this technique can be expanded to isolate different volcanic species within a plume, validate the orbital data, and ultimately to use the results to better inform eruption dynamics modelling.

  14. Upper atomosphere and Thermal control of the Super Low Altitude Test Satellite

    OpenAIRE

    2013-01-01

    The Super Low Altitude Test Satellite (SLATS) is an engineering test satellite currently under development in JAXA in an attempt to open a new frontier of space utilization on extremely low earth orbits. The altitude of SLATS orbit is around200km altitude. In this altitude, rarefied aerodynamics and high-density atomic oxygen effect on the thermal design of SLATS. The thermal control of SLATS was introduced in this paper. And, the equilibrium temperature on the bumper of SLATS was estimated w...

  15. Frequency based detection and monitoring of small scale explosive activity by comparing satellite and ground based infrared observations at Stromboli Volcano, Italy

    Science.gov (United States)

    Worden, Anna; Dehn, Jonathan; Ripepe, Maurizio; Donne, Dario Delle

    2014-08-01

    Thermal activity is a common precursor to explosive volcanic activity. The ability to use these thermal precursors to monitor the volcano and obtain early warning about upcoming activity is beneficial for both human safety and infrastructure security. By using a very reliably active volcano, Stromboli Volcano in Italy, a method has been developed and tested to look at changes in the frequency of small scale explosive activity and how this activity changes prior to larger, ash producing explosive events. Thermal camera footage was used to designate parameters for typical explosions at Stromboli (size of spatter field, cooling rate, frequency of explosions) and this information was applied to characterize explosions in satellite imagery. Satellite data from The National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) and US/Japan designed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for numerous periods in 2002 to 2009 were analyzed for thermal features which were used to calculate an estimate of the level of activity during the given time period. The results at Stromboli showed a high level of small scale explosions which stop completely prior to large paroxysmal eruptive episodes. This activity also corresponds well to seismic and infrasonic records at Stromboli, indicating that this thermal infrared monitoring method may be used in conjunction with other detection methods where available, and also indicates that it may be a useful method for volcano monitoring when other methods (e.g. seismic instrumentation, infrasound arrays, etc.) are not available.

  16. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    National Research Council Canada - National Science Library

    Hache, E; Attié, J.-L; Tourneur, C; Ricaud, P; Coret, L; Lahoz, W. A; El Amraoui, L; Josse, B; Hamer, P; Warner, J; Liu, X; Chance, K; Höpfner, M; Spurr, R; Natraj, V; Kulawik, S; Eldering, A; Orphal, J

    2014-01-01

    ...) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information...

  17. Global trends in lake surface temperatures observed using multi-sensor thermal infrared imagery

    Science.gov (United States)

    Schneider, Philipp; Hook, Simon J.; Radocinski, Robert G.; Corlett, Gary K.; Hulley, Glynn C.; Schladow, S. Geoffrey; Steissberg, Todd E.

    2010-05-01

    Recent research has shown that the temperature of lakes and other inland water bodies does not only act as a good indicator of climate variability but under certain conditions can even increase more rapidly than the regional air temperature. Further investigation of this phenomenon in particular and of the interaction between lake temperature and climate variability in general requires extensive observations of lake temperature on a global scale. Current in situ records are limited in their spatial and/or temporal coverage and are thus insufficient for this task. However, a nearly 30-year archive of satellite-derived thermal infrared imagery from multiple sensors is available at this point and can be used to fill this data gap. We describe research on utilizing the existing archive of spaceborne thermal infrared imagery to generate multi-decadal time series of lake surface temperature for 170 of the largest lakes worldwide. The data used for this purpose includes imagery from the Advanced Very High Resolution Radiometers (AVHRR), the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Used in combination, these data sets offer a gapless time series of daily to near-daily thermal infrared retrievals from 1981 through present. In this contribution we demonstrate using comprehensive in situ data at Lake Tahoe, California/Nevada, that lake water surface temperature can be estimated using these sensors with an accuracy of up to 0.2 K. We further show that accurate continuous time series of water surface temperature can be derived from the data and that these time series can be used to detect significant trends in the temporal thermal behavior of lakes and other inland water bodies worldwide. Complementing our recent case study for lakes in California and Nevada for which a rapid increase in mean nighttime summertime lake surface temperatures of 0.11 K per year on average was found, we present

  18. Search for astronomical sites suitable for infrared observations using GOES satellite images

    Science.gov (United States)

    Ducati, Jorge R.; Feijo, Eleandro S.

    2003-04-01

    Images from GOES satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. Forty-three images from the GOES meteorological satellite in channels 3, 4 and 5 were used. The GOES images, spanning an 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology can produce valid results and can be applied to studies covering larger periods. The general results of this study indicate that the method is valid and can effectively be used as an important resource in surveys for infrared astronomical sites.

  19. Search for astronomical sites suitable for infrared observations using goes satellite images release

    Science.gov (United States)

    Ducati, J. R.; Feijó, E.

    2003-08-01

    Astronomical sites are traditionally found after studies performed over many years, including preliminary selection of places based in general information on climate, clear skies and logistical adequacy. It follows extensive "in situ" monitoring of seeing and cloudiness. Theses procedures are long and expensive, and alternatives can be looked for. In this study, images from GOES meteorological satellite were used to develop a method to search for sites suitable to astronomical observations in the infrared. An area of study located in the Peruvian Andes was chosen, with altitudes above 2500 m. 43 images from the GOES meteorological satellite in chanels 3, 4 and 5 were used. The GOES images, spanning a 11-day period, in each channel, were combined to produced images expressing the surface visibility in each channel. Atmospheric turbulence could be estimated from the variation of visibility over six-hour periods, with one image per hour. As criteria to classify sites on the Andes, we combined information on altitude, visibility of the surface in the infrared, the amount of water vapor in the atmosphere, and atmospheric turbulence. Results of this new method showed that the region of Moquegua, in South Peru, is to be preferred in surveys for astronomical sites. Comparisons with results from other investigators, which used other approaches, indicated that this methodology produces valid results and can be used to studies spanning larger periods. The general results of this study indicate that the method can efectively be used as an important resource in surveys for infrared astronomical sites

  20. Experimental exploration to thermal infrared imaging for detecting the transient process of solid impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analysis and the comparison of stress pattern analysis by thermal emission (SPATE) and remote sensing rock mechanics (RSRM), the idea to detect the transient process of solid impact with thermal infrared (TIR) imaging technology is introduced. By means of TVS-8100MKII T IR imaging system, which has high recording speed, high space distinguishability and high temperature sensibility, TIR imaging experiments on free falling steel ball impacting on marble, granite, concrete, steel, organic-glass and wood plate are conducted. It was discovered that: (i) the target's TIR temperature increases remarkably after impact; (ii) when ball's size is not changed, the variation amplitude of target's TIR temperature proportionally increases with the ball's potential energy or falling height; (iii) the variation amplitude of target's TIR temperature is involved with the material type and the surface glabrous condition of the target, and the amplitudes are in order as concrete, unpolished marble, steel plate, wood plate, polished granite, polished marble and organic-glass plate; and (iv) the TIR radiation of fragile targets decreases gradually after impact, while there is delayed TIR radiation strengthening for plastic target. It is deduced that once the relational runctions and technical parameters, which are involved with certain impact body and target material, are set up through experimental study, the remote detection and back analysis based on TIR imaging for the transient process of solid impact will be no problem. Besides, there is also important scientific meaning for the omen mechanics study and satellite TIR detection and prediction for structural earthquake.

  1. A Temperature and Emissivity Separation Algorithm for Landsat-8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Songhan Wang

    2015-08-01

    Full Text Available On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS, which has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great benefit for the land surface temperature (LST retrieval. The single-channel algorithm (SC and split-window algorithm (SW have been applied to retrieve the LST from TIRS data, which need the land surface emissivity (LSE as prior knowledge. Due to the big challenge of determining the LSE, this study develops a temperature and emissivity separation algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory emissivity spectrum data, the minimum-maximum emissivity difference module (MMD module for TIRS data is developed. Then, an emissivity log difference method (ELD method is developed to maintain the emissivity spectrum shape in the iterative process, which is based on the modified Wien’s approximation. Simulation results show that the root-mean-square-errors (RMSEs are below 0.7 K for the LST and below 0.015 for the LSE. Based on the SURFRAD ground measurements, further evaluation demonstrates that the average absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of retrieving the LST and LSE simultaneously from TIRS data with fairly good results.

  2. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  3. Visir-Sat - a Prospective Micro-Satellite Based Multi-Spectral Thermal Mission for Land Applications

    Science.gov (United States)

    Ruecker, G.; Menz, G.; Heinemann, S.; Hartmann, M.; Oertel, D.

    2015-04-01

    Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11μm) and in the mid infrared (1 or 2 MIR bands, at 4μm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m2 possible. For high temperature phenomena such as vegetation- and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) "Active fire location" and "Fire Radiative Power" will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor's line-of-sight with the aim to provide global coverage of cloud free imagery every 5

  4. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  5. Estimating Clothing Thermal Insulation Using an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Lee

    2016-03-01

    Full Text Available In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively.

  6. Astrometry and Near-Infrared Photometry of Neptune's Inner Satellites and Ring Arcs

    Science.gov (United States)

    Dumas, Christophe; Terrile, Richard J.; Smith, Bradford A.; Schneider, Glenn

    2002-03-01

    We report 1.87 μm photometry and astrometry of the inner satellites (Proteus, Larissa, Galatea, and Despina) and ring arcs of Neptune, obtained with the Hubble Space Telescope and its near-infrared camera NICMOS. From comparison with the Voyager data obtained at visible wavelengths, the small bodies orbiting within the ring region of Neptune have a near-infrared albedo consistently low, but higher than at visible wavelengths for most of the satellites, ranging from p1.87μm=0.058 (Despina) to p1.87μm=0.094 (Proteus). The ring arcs display a reddish spectral response similar to the satellites' in the 0.5-1.9 μm wavelength range. If we consider an earlier photometric measurement of Proteus obtained at K band, the satellite's albedo shows a depression at 2.2 μm that could be the first spectral evidence for the presence of CH or CN bearing material on its surface. Although astrometry of the inner moons of Neptune yields positions consistent with the predictions derived from Voyager images, the long time base between the Voyager and NICMOS observations allows us to refine our knowledge of their mean motions and semimajor axes, and to decrease the errors associated with these measurements. In addition, we confirm a mismatch between the mean semimajor axis of the ring arcs and the location of the 42:43 corotation inclined resonance due to Galatea. This result calls into question the ability of this resonance to confine the arcs azimuthally.

  7. Infrared thermal wave non-destructive detection for the internal structure of metal Buddha head

    Science.gov (United States)

    Zhang, He-Nan; Zhang, Zhen-Wei; Lei, Yong; Qu, Liang; Gao, Fei; Feng, Li-Chun

    2016-01-01

    Objective This paper depicts a testing technology of nondestructive infrared imaging for acquiring internal structure information of metal Buddha head. Methods applying active infrared thermal imaging nondestructive testing technology Results Data which was collected by IR camera was processed, the typical time thermograph and the curve of logarithmic temperature-time can be. get information of relative thickness in metal Buddha face. Conclusion Infrared thermal imaging technology can be detect the inside information of metal Buddha head . It is feasible to conserve heritage in infrared imaging method.

  8. Digital Meteorological Radar Data Compared with Digital Infrared Data from a Geostationary Meteorological Satellite.

    Science.gov (United States)

    1979-05-01

    datai uwere tab~ulaited for compariso;cn with the infrared satellite data) j 20 CIIA1iLTR Ml GEOSTAT] ONAPY ME LW)L- C , TIL LF K Meteorolccj isa I sate...8217):U S f 3 ’ 1 t ’ Iv . e , :]~L ’ bI 1 T-4 THY:-, L,’AClvT!P 3 AND IMVIC]l C t101 KRV~;It Tb 3 ( ji~u>:2;cat L ii 2 ’GD ~Of the L~r [2 u : ~~ I~ rtu ~j

  9. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Science.gov (United States)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F. G.; Schulz, J.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ˜2.4 km by ˜5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  10. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  11. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  12. An Unmanned Airship Thermal Infrared Remote Sensing System for Low-Altitude and High Spatial Resolution Monitoring of Urban Thermal Environments: Integration and an Experiment

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2015-10-01

    Full Text Available Satellite remote sensing data that lacks spatial resolution and timeliness is of limited ability to access urban thermal environment on a micro scale. This paper presents an unmanned airship low-altitude thermal infrared remote sensing system (UALTIRSS, which is composed of an unmanned airship, an onboard control and navigation subsystem, a task subsystem, a communication subsystem, and a ground-base station. Furthermore, an experimental method and an airborne-field experiment for collecting land surface temperature (LST were designed and conducted. The LST pattern within 0.8-m spatial resolution and with root mean square error (RMSE value of 2.63 °C was achieved and analyzed in the study region. Finally, the effects of surface types on the surrounding thermal environment were analyzed by LST profiles. Results show that the high thermal resolution imagery obtained from UALTIRSS can provide more detailed thermal information, which are conducive to classify fine urban material and assess surface urban heat island (SUHI. There is a significant positive correlation between the average LST of profiles and the percent impervious surface area (ISA% with R2 around 0.917. Overall, UALTIRSS and the retrieval method were proved to be low-cost and feasible for studying micro urban thermal environments.

  13. Post eclipse thermal response of Uranian satellites with SINFONI: a status report .

    NARCIS (Netherlands)

    Maris, M.; Hestroffer, D.; Delbo, M.; Mueller, M.; Grundy, W.; Stansberry, J.; Tozzi, G. P.; Tanga, P.; Thuillot, W.

    2008-01-01

    We report on the status of a project to measure eclipse-induced changes in surface temperature on the major Uranian satellites. Such measurements enable a uniquely direct determination of the thermal inertia, a measure of the resistance to changes in surface temperature. Thermal inertia is a very se

  14. Post eclipse thermal response of Uranian satellites with SINFONI: a status report .

    NARCIS (Netherlands)

    Maris, M.; Hestroffer, D.; Delbo, M.; Mueller, M.; Grundy, W.; Stansberry, J.; Tozzi, G. P.; Tanga, P.; Thuillot, W.

    2008-01-01

    We report on the status of a project to measure eclipse-induced changes in surface temperature on the major Uranian satellites. Such measurements enable a uniquely direct determination of the thermal inertia, a measure of the resistance to changes in surface temperature. Thermal inertia is a very se

  15. A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Saitoh, Naoko; Ota, Yoshifumi; Shiomi, Kei

    2016-05-01

    An algorithm based on CO2 slicing, which has been used for cirrus cloud detection using thermal infrared data, was developed for high-resolution radiance spectra from satellites. The channels were reconstructed based on sensitivity height information of the original spectral channels to reduce the effects of measurement errors. Selection of the reconstructed channel pairs was optimized for several atmospheric profile patterns using simultaneous studies assuming a cloudy sky. That algorithm was applied to data by the Greenhouse gases Observing SATellite (GOSAT). Results were compared with those obtained from the space-borne lidar instrument on-board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Monthly mean cloud amounts from the slicing generally agreed with those from CALIPSO observations despite some differences caused by surface temperature biases, optically very thin cirrus, multilayer structures of clouds, extremely low cloud tops, and specific atmospheric conditions. Comparison of coincident data showed good agreement, except for some cases, and revealed that the improved slicing method is more accurate than the traditional slicing method. Results also imply that improved slicing can detect low-level clouds with cloud top heights as low as approximately 1.5 km.

  16. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  17. Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement

    Science.gov (United States)

    Karunasiri, R. P. G.; Xu, Gu; Chen, G. X.; Sridhar, U.

    1998-10-01

    The performance of microbolometer infrared sensors is typically characterized by its thermal time constant, heat capacitance, and thermal conductance. Therefore, the determination of these parameters accurately and efficiently is of considerable interest for the design and operation of microbolometer infrared sensors. Usually, the thermal time constant is obtained by measuring the frequency response of microbolometers under infrared excitation and the thermal conductance and capacity are extracted using electrical measurement. In this paper, a technique is described to extract all three parameters using a single electrical measurement. In the measurement, we have employed a Wheatstone Bridge consisting of a bolometer and three reference resistors. The resistance of the bolometer changes as a result of self-heating under an external bias which in turn generates an output voltage across the Bridge. The time dependence of the output voltage was used to extract thermal parameters of the bolometer. We believe this technique is useful in determining the thermal parameters of microbolometer based sensors.

  18. Satellite thermal monitoring of the 2010 - 2013 eruption of Kizimen volcano (Kamchatka) using MIROVA hot-spot detection system

    Science.gov (United States)

    Massimetti, Francesco; Coppola, Diego; Laiolo, Marco; Cigolini, Corrado

    2017-04-01

    After 81 years of rest, the Holocenic stratovolcano of Kizimen (Kamchatka, Russia) began a new eruptive phase on December 2010. The eruption was preceded by a year-long seismic unrest and fumarole activity, and persisted for 3 years showing a transition from explosive to effusive style. The initial explosive phase caused the partial disruption of the volcano summit and was followed by the effusion of andesitic lava flow along the eastern side of the edifice. Here we used an automatic hot-spot detection system named MIROVA (Middle InfraRed Observation of Volcanic Activity), in order to track the thermal evolution of the eruption and to understand the eruptive dynamic. MIROVA is based on the analysis IR images acquired by the MODIS sensor (Moderate Resolution Imaging Spectroradiometer) and is able to provide thermal maps (1 km resolution) and Volcanic Radiative Power (VRP, in Watt) time series in near real time (1-4 hours from satellite overpass). Each image with a thermal alert has been classified, distinguishing different quality level of the data based on cloud cover, viewing geometry and coherence with the VRP trend. The analysis of VRP variation show different thermal phases that have been correlated with independent observations of KVERT (Kamchatka Volcanic Eruption Response Team). Finally, we show that the relation between total thermal energy radiated (VRE, in Joule) and erupted lava volume is consistent with the typical radiant density of an intermediate-silicic lava flow (Coppola et al., 2013).

  19. Lossless image compression technique for infrared thermal images

    Science.gov (United States)

    Allred, Lloyd G.; Kelly, Gary E.

    1992-07-01

    The authors have achieved a 6.5-to-one image compression technique for thermal images (640 X 480, 1024 colors deep). Using a combination of new and more traditional techniques, the combined algorithm is computationally simple, enabling `on-the-fly' compression and storage of an image in less time than it takes to transcribe the original image to or from a magnetic medium. Similar compression has been achieved on visual images by virtue of the feature that all optical devices possess a modulation transfer function. As a consequence of this property, the difference in color between adjacent pixels is a usually small number, often between -1 and +1 graduations for a meaningful color scheme. By differentiating adjacent rows and columns, the original image can be expressed in terms of these small numbers. A simple compression algorithm for these small numbers achieves a four to one image compression. By piggy-backing this technique with a LZW compression or a fixed Huffman coding, an additional 35% image compression is obtained, resulting in a 6.5-to-one lossless image compression. Because traditional noise-removal operators tend to minimize the color graduations between adjacent pixels, an additional 20% reduction can be obtained by preprocessing the image with a noise-removal operator. Although noise removal operators are not lossless, their application may prove crucial in applications requiring high compression, such as the storage or transmission of a large number or images. The authors are working with the Air Force Photonics Technology Application Program Management office to apply this technique to transmission of optical images from satellites.

  20. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn; Liu, Jing, E-mail: jliubme@tsinghua.edu.cn, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Jia [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-07-15

    Hyperthermia (42-46°C), treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR) based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl) than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  1. Thermal infrared images to quantify thermal ablation effects of acid and base on target tissues

    Directory of Open Access Journals (Sweden)

    Ran Liu

    2015-07-01

    Full Text Available Hyperthermia (42-46°C, treatment of tumor tissue through elevated temperature, offers several advantages including high cost-effectiveness, highly targeted ablation and fewer side effects and hence higher safety level over traditional therapies such as chemotherapy and radiotherapy. Recently, hyperthermia using heat release through exothermic acid-base neutralization comes into view owing to its relatively safe products of salt and water and highly confined ablation. However, lack of quantitative understanding of the spatial and temporal temperature profiles that are produced by simultaneous diffusion of liquid chemical and its chemical reaction within tumor tissue impedes the application of this method. This article is dedicated to quantify thermal ablation effects of acid and base both individually and as in neutralization via infrared captured thermal images. A theoretical model is used to approximate specific heat absorption rate (SAR based on experimental measurements that contrast two types of tissue, normal pork and pig liver. According to the computation, both pork and liver tissue has a higher ability in absorbing hydrochloric acid (HCl than sodium hydroxide, hence suggesting that a reduced dosage for HCl is appropriate in a surgery. The heating effect depends heavily on the properties of tissue types and amount of chemical reagents administered. Given thermal parameters such as SAR for different tissues, a computational model can be made in predicting temperature transitions which will be helpful in planning and optimizing surgical hyperthermia procedures.

  2. Near-Infrared Photometry of Irregular Satellites of Jupiter and Saturn

    CERN Document Server

    Grav, T; Grav, Tommy; Holman, Matthew J.

    2003-01-01

    We present JHKs photometry of 10 Jovian and 4 Saturnian irregular satellites, taken with the Near-InfraRed Imager (NIRI) at the 8-m Gemini North Observatory on Mauna Kea, Hawaii. The observed objects have near-infrared colors consistent with C, P and D-type asteroids, although J XII Ananke and S IX Phoebe show weak indications of possible water features in the H filter. The four members of the Himalia-family have similar near-infrared colors, as do the two members of the Gallic family, S XX Paaliaq and S XXIX Siarnaq. From low resolution normalized reflectance spectra based on the broadband colors and covering 0.4 to 2.2 microns, the irregular satellites are identified as C-type (J VII Pasiphae, J VI Himalia and S IX Phoebe), P-type (J XII Ananke and J XVIII Themisto) and D-type (J IX Carme and J X Sinope), showing a diversity of origins of these objects.

  3. Mako airborne thermal infrared imaging spectrometer: performance update

    Science.gov (United States)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  4. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  5. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  6. An experiment using mid and thermal infrared in quantum remote sensing

    Institute of Scientific and Technical Information of China (English)

    BI; Siwen; HAN; Jixia

    2006-01-01

    The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.

  7. Infrared Thermal Analysis and Individual Differences in Skin Temperature Asymmetry in Rett Syndrome.

    Science.gov (United States)

    Symons, Frank J; Byiers, Breanne; Hoch, John; Dimian, Adele; Barney, Chantel; Feyma, Timothy; Beisang, Arthur

    2015-08-01

    We evaluated the feasibility of using a portable infrared thermal camera to quantify the degree of thermal dysregulation (cold hands/feet) and test for naturally occurring within-patient skin temperature asymmetry in Rett syndrome. Infrared thermal images were acquired passively from 15 patients (mean age = 13.7 years, range 4-47) with clinical diagnoses of Rett. Images were acquired using a FLIR T400 infrared thermal camera (still images recorded at 5 Hz, resolution of 320 × 240 pixels, thermal sensitivity = 0.05 °C; capture session lasted approximately 3 minutes). The infrared thermal camera was orthogonal to the body part (hands, feet) and positioned approximately 1 meter from the skin's surface. There were large intraindividual left/right differences in temperature. Seven (47%) and eight (53%) patients had statistically significant (P thermal asymmetry may reflect prolonged activity of the sympathetic nervous system and individual differences in sympathetic regulation. As clinical trials emerge and endpoints are considered, portable infrared thermal camera may provide one noninvasive means of evaluating changes in sympathetic regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Near-infrared photometry and astrometry of Neptune's inner satellites and ring-arcs

    Science.gov (United States)

    Dumas, C.; Terrile, R. J.; Smith, B. A.; Schneider, G.; Becklin, E. E.

    2000-10-01

    Until recently, the system of Neptune's inner satellites and ring-arcs had only been observed in direct imaging from the Voyager 2 spacecraft, limiting our knowledge of this system to visible wavelengths data. Nearly ten years after the Voyager fly-by, HST/NICMOS observed the close vicinity of Neptune at 1.87μ m, a wavelength that corresponds to a strong methane absorption in the atmosphere of Neptune and allows the attenuation of the scattered light produced by the planet. We derived the near-infrared geometric albedo of the ring-arcs and small moons Proteus, Larissa, Galatea and Despina, and compared their orbital positions with the predictions from the 1989 Voyager observations. The surfaces of the inner satellites of Neptune appear to be coated with dark, neutral material, with albedoes ranging from 0.077 (Proteus) to 0.033 (Despina) and their orbital position was found to be within the prediction errors of the Voyager measurements. The material located inside the ring-arcs of Neptune also displays a low-neutral reflectance (p{1.87 μm } ~ 0.055) and the HST/NICMOS measurement of the mean orbital motion of the ring-arcs shows that their confinement cannot be entirely explained by resonances produced by the nearby satellite Galatea (Nature, 400, 733-735). This work was performed at the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration, and is supported by NASA grant NAG5-3042.

  9. Jupiter's auroral-related thermal infrared emission from IRTF-TEXES

    Science.gov (United States)

    Sinclair, James; Orton, Glenn; Greathouse, Thomas; Fletcher, Leigh; Irwin, Patrick

    2015-11-01

    Auroral processes on Jupiter can be observed at a large range of wavelengths. Charged particles of the solar wind are deflected by Jupiter’s magnetic field and penetrate the atmosphere at high latitudes. This results in ion and/or electron precipitation, which produces emission at X-ray, UV, visible, near-infrared and even radio wavelengths. These observations indicate three distinct features of the aurora: 1) filament-like oval structures fixed at the magnetic poles (~80°W (System III) in the south, ~180°W in the north), 2) spatially-continuous but transient aurora that fill these oval regions and 3) discrete spots associated with the magnetic footprints of Io and other Galilean satellites. However, observations in the thermal infrared indicate the aurora also modify the neutral atmosphere. Enhanced emission of CH4 is observed coincident with the auroral ovals and indicates heightened stratospheric temperatures possibly as a result of joule heating by the influx of charged particles. Stronger emission is also observed of C2H2, C2H4, C2H6 and even C6H6 though previous work has struggled to determine whether this is a temperature or compositional effect. In order to quantify the auroral effects on the neutral atmosphere and to support the 2016 Juno mission (which has no thermal infrared instrument) we have performed a retrieval analysis of IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph, 5- to 25-μm) spectra obtained on Dec 11th 2014 near solar maximum. The instrument slit was scanned east-west across high latitudes in each hemisphere and Jupiter’s rotation was used to obtain ~360° longitudinal coverage. Spectra of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission were measured at a resolving power of R = 85000, allowing a large vertical range in the atmosphere (100 - 0.001 mbar) to be sounded. Preliminary retrievals of the vertical temperature profile from H2 S(1) and CH4 measurements at 60°N, 180°W (on aurora), in comparison to 60°N, 60°W (quiescent

  10. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  11. Rapid Manufacturing of Reconfigurable Satellite Panels with Embedded Electronics, Embedded Thermal Devices, and Novel Structural Features

    OpenAIRE

    Young, Quinn; Stucker, Brent

    2006-01-01

    The Center for Advanced Satellite Manufacturing (CASM) at Utah State University has been investigating the use of new, advanced manufacturing technologies for the rapid manufacture of highly capable satellite panels. Using Ultrasonic Consolidation it is now possible to additively manufacture (a.k.a. rapid prototype) aluminum structures with embedded electronics, thermal devices, internal structural features, and fibers. CASM has built and tested embedded USB networks, electronic devices, ther...

  12. Modeling on thermally induced coupled micro-motions of satellite with complex flexible appendages

    Directory of Open Access Journals (Sweden)

    Zhicheng Zhou

    2015-06-01

    Full Text Available To describe the characteristics of thermally induced coupled micro-motions more exactly, a numerical model is proposed for a satellite system consisting of a rigid body and the complex appendages. The coupled governing equations including the effects of transient temperature differences are formulated within the framework of the Lagrangian Method based on the finite element models of flexible structures. Meanwhile, the problem of coupling between attitude motions of rigid body and vibrations of flexible attachments are addressed with explicit expressions. Thermally induced micro-motions are examined in detail for a simple satellite with a large solar panel under the disturbance of thermal environment from earth shadow to sunlight area in the earth orbit. The results show that the thermal–mechanical performances of an on-orbit satellite can be well predicted by the proposed finite element model.

  13. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2009-08-01

    Full Text Available Atmospheric remote sounding from satellites is an essential component of the observational strategy deployed to monitor atmospheric pollution and changing composition. The IASI nadir looking thermal infrared sounder onboard MetOp will provide 15 years of global scale observations for a series of key atmospheric species, with unprecedented spatial sampling and coverage. This paper gives an overview of the instrument's capability for measuring atmospheric composition in the perspective of chemistry and air quality. The assessment is made in terms of species, accuracy and vertical information. Global distributions are presented for CO, CH4, O3 (total and tropospheric, HNO3, NH3, and volcanic SO2. Local distributions of organic species measured during fire events, such as C2H4, CH3OH, HCOOH, and PAN are also shown. For each species or process, the link is made to specialized papers in this issue.

  14. INFRARED THERMAL IMAGE STUDY ON THE FOREWARNING OF COAL AND SANDSTONE FAILURE UNDER LOAD

    Institute of Scientific and Technical Information of China (English)

    吴立新; 王金庄

    1997-01-01

    In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.

  15. Identifying varnished rocks on Mars using thermal infrared spectroscopy

    Science.gov (United States)

    Hibbitts, C. A.; Gillespie, A.; Hansen, G. B.

    2004-12-01

    Thermal infrared (TIR) spectroscopy is widely implemented in attempts to determine the composition of the Mars's surface. Discoveries include basaltic rocks, possible andesites, and hematite-rich terrains associated with areas of probable hydrothermal alteration [Bandfield et al., 2000; Christensen et al., 2001; Glotch et al., 2004]. Some of the basaltic rocks appear to be covered by either a weathering rind or a varnish. The presence of a varnish would be interesting because it is believed to form through multiple wetting and drying events [reference]. The presence of these coatings can potentially be identified through unique nonlinear effects where both the substrate and varnish have strong spectral features. For example, varnished terrestrial quartz-rich rocks have a low-emissivity ~8.4-micron reststrahlan band diagnostic of a silicate-rich substrate which remains present while the longer wavelength reststrahlen band is obscured by the clay-rich varnish. In general, this non-linearity will conform to the Beer-Lambert Law, with additional reflection and scattering terms, so that the light emitted from the varnished stone will be similar to I=Io e-ax, where `Io' is the light emitted from a bare substrate, `a' is the absorption constant for the varnish coating, and `x' is the thickness of the coating. If the effect were linear, as expected for dusty surfaces [Johnson et al., 2002] or discrete patches of rock and clay, the emissivity of the emitted light would, at all wavelengths, possess equal contributions from the varnish and substrate; thus the clay feature would not completely dominate the longwave reststrahlan band without also erasing the shortwave reststrahlan band. After having theoretically determined a nonlinear at some wavelengths is probable, we have focused on laboratory spectral analyses of terrestrial varnished rocks. We have collected over 100 varnished stones from various pavements and unvarnished stones from other surfaces and have acquired over

  16. Evaluation of Infrared Images by Using a Human Thermal Model

    Science.gov (United States)

    2001-10-25

    thermal environmental history have been recorded. In this case, the thermal environmental history could be estimated from the behavior of a subject... environmental history and physiological condition history. An advantage of the evaluation of IR images using the thermal model is to provide

  17. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences.

    Science.gov (United States)

    Cardone, Daniela; Merla, Arcangelo

    2017-05-05

    Thermal infrared imaging has been proposed, and is now used, as a tool for the non-contact and non-invasive computational assessment of human autonomic nervous activity and psychophysiological states. Thanks to a new generation of high sensitivity infrared thermal detectors and the development of computational models of the autonomic control of the facial cutaneous temperature, several autonomic variables can be computed through thermal infrared imaging, including localized blood perfusion rate, cardiac pulse rate, breath rate, sudomotor and stress responses. In fact, all of these parameters impact on the control of the cutaneous temperature. The physiological information obtained through this approach, could then be used to infer about a variety of psychophysiological or emotional states, as proved by the increasing number of psychophysiology or neurosciences studies that use thermal infrared imaging. This paper presents a review of the principal achievements of thermal infrared imaging in computational psychophysiology, focusing on the capability of the technique for providing ubiquitous and unwired monitoring of psychophysiological activity and affective states. It also presents a summary on the modern, up-to-date infrared sensors technology.

  18. Optimization Design of Thermal Conduction Enhanced PCM Plates for Simulating the Infrared Signature of Steel Plate

    Institute of Scientific and Technical Information of China (English)

    YE Hong; JIANG Li-feng

    2008-01-01

    Phase change material (PCM) can be used to prepare the infrared false targets for realizing all-weather passive infrared decoy, but its low thermal conductivity is a great blockage to the simulation of the infrared signature of thick metal plates. For that reason, a method of simulating the infrared signature of thick steel plates by thermal conduction enhanced PCM, including the aluminum fins, is proposed. A physical and mathematic model is set up, and the infrared signature simulation of thick steel plate is investigated numerically. The effects of the distribution density and thickness of fins and the thickness of PCM plate on the simulation results are discussed, and the reasonable construction parameters of PCM plates used to simulate the steel plates of different thickness are obtained.

  19. Producing Mosaiced Infrared Data on Natural Hazards for Real-time Emergency Management using UAS and Thermal Infrared Cameras

    Science.gov (United States)

    Hatfield, M. C.; Webley, P. W.; Saiet, E., II

    2015-12-01

    Unmanned aerial systems (UAS) provide a unique capability for emergency management and real-time hazard assessment with access to hazardous environments that maybe off limits for manned aircraft while reducing the risk to personnel and loss of ground assets. When dealing with hazards, such as forest fires and volcanic eruptions, there is a need to assess the location of the fire/flow front and where best to assign ground personnel to reduce the risk to local populations and infrastructure. Thermal infrared cameras provide the ideal tool to detect subtle changes in the developing fire/flow front while providing data 24/7. There are limits to the detecting capabilities of these cameras given the wavelengths used and image resolution available. Given the large thermal contrast between the hot flow front and surrounding landscape then the data can be used to map out the location and changes seen as the front of the flow/fire advances. To map the complete hazard then either the UAS has to be flown at an altitude to capture the event in one image or the data has to be mosaiced together. Higher altitudes lead to coarser resolution imagery and therefore we will show how thermal infrared data can be mosaiced to provide the highest spatial resolution map of the hazard. We will present results using different UAS and thermal cameras including adding neutral density filters to detect hotter thermal targets. Timely generation of these mosaiced maps in a real-time environment is critical for those assessing the ongoing event and we will show how these maps can be generated quickly with the necessary spatial and thermal accuracy while discussing the requirements needed to generate thermal infrared maps of the hazardous events that are both useful for quick real-time assessment and also for further investigation in research projects.

  20. On diagnosis measurement under dynamic loading of ball bearing using numerical thermal analysis and infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Pyo; Kim, Ho Jong [School of Mechanical System Engineering, Chonbuk Nationa University, Jeonju (Korea, Republic of); Kim, Won Tae [School of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2013-08-15

    With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology with valuable suggestions for the future bearing fault detection.

  1. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  2. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    Science.gov (United States)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  3. Study on thermal properties of Cd-Ni batteries for satellites

    Science.gov (United States)

    Jingang, Hu

    1995-06-01

    Empirical research was carried out on thermal properties associated with the use of Cd-Ni storage cells in satellite engineering. Introduction is made of measured cell thermal capacities as well as amounts of heat put out by systems. The systems in question possess the advantages of being simple and reliable. Measured results are given, and, in conjunction with that, comparisons are carried out with data from abroad.

  4. Thermal Evaluation of Scorched Graphite-Epoxy Panels by Infrared Scanning

    OpenAIRE

    Slifka, A. J.; Hall, T.; Boltz, E. S.

    2003-01-01

    A simple measurement system is described for evaluating damage to graphite-epoxy panels, such as those used in high-performance aircraft. The system uses a heating laser and infrared imaging system to measure thermal performance. Thermal conductivity or diffusivity is a sensitive indicator of damage in materials, allowing this thermal measurement to show various degrees of damage in graphite-epoxy composites. Our measurements track well with heat-flux damage to graphite epoxy panels. This mea...

  5. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals

    OpenAIRE

    Didierjean, Julien; Hérault, Emilie; Balembois, François; Georges, Patrick

    2008-01-01

    International audience; We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measuremen...

  6. Robust pedestrian detection by combining visible and thermal infrared cameras.

    Science.gov (United States)

    Lee, Ji Hoon; Choi, Jong-Suk; Jeon, Eun Som; Kim, Yeong Gon; Le, Toan Thanh; Shin, Kwang Yong; Lee, Hyeon Chang; Park, Kang Ryoung

    2015-05-05

    With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days. Our research is novel, compared to previous works, in the following four ways: First, we implement the dual camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction. We obtain a geometric transform matrix that represents the relationship between these two camera axes. Second, two background images for visible light and thermal cameras are adaptively updated based on the pixel difference between an input thermal and pre-stored thermal background images. Third, by background subtraction of thermal image considering the temperature characteristics of background and size filtering with morphological operation, the candidates from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained by background subtraction and the procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height to width) in the visible light image are projected on those in the thermal image by using the geometric transform matrix, and the searching regions for pedestrians are defined in the thermal image. Fourth, within these searching regions, the candidates from the searching image region (CSI) of pedestrians in the thermal image are detected. The final areas of pedestrians are located by combining the detected positions of the CWI and CSI of the thermal

  7. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    Science.gov (United States)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  8. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  9. Non-thermal DNA damage of cancer cells using near-infrared irradiation.

    Science.gov (United States)

    Tanaka, Yohei; Tatewaki, Naoto; Nishida, Hiroshi; Eitsuka, Takahiro; Ikekawa, Nobuo; Nakayama, Jun

    2012-08-01

    Previously, we reported that near-infrared irradiation that simulates solar near-infrared irradiation with pre- and parallel-irradiational cooling can non-thermally induce cytocidal effects in cancer cells. To explore these effects, we assessed cell viability, DNA damage response pathways, and the percentage of mitotic cancer cells after near-infrared treatment. Further, we evaluated the anti-cancer effects of near-infrared irradiation compared with doxorubicin in xenografts in nude mice by measuring tumor volume and assessing protein phosphorylation by immunoblot analysis. The cell viability of A549 lung adenocarcinoma cells was significantly decreased after three rounds of near-infrared irradiation at 20 J/cm(2). Apoptotic cells were observed in near-infrared treated cells. Moreover, near-infrared treatment increased the phosphorylation of ataxia-telangiectasia mutated (ATM) at Ser(1981), H2AX at Ser(139), Chk1 at Ser(317), structural maintenance of chromosome (SMC) 1 at Ser(966), and p53 at Ser(15) in A549 cells compared with control. Notably, near-infrared treatment induced the formation of nucleic foci of γH2AX. The percentage of mitotic A549 cells, as measured by histone H3 phosphorylation, decreased significantly after three rounds of near-infrared irradiation at 20 J/cm(2). Both near-infrared and doxorubicin inhibited the tumor growth of MDA-MB435 melanoma cell xenografts in nude mice and increased the phosphorylation of p53 at Ser(15), Chk1 at Ser(317), SMC1 at Ser(966), and H2AX at Ser(139) compared with control mice. These results indicate that near-infrared irradiation can non-thermally induce cytocidal effects in cancer cells as a result of activation of the DNA damage response pathway. The near-infrared irradiation schedule used here reduces discomfort and side effects. Therefore, this strategy may have potential application in the treatment of cancer.

  10. Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques.

    Science.gov (United States)

    Sankaran, Sindhuja; Maja, Joe Mari; Buchanon, Sherrie; Ehsani, Reza

    2013-02-06

    This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB) disease in citrus trees. Visible-near infrared (440-900 nm) and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI), Vogelmann red-edge index (VOG) and modified red-edge simple ratio (mSR) demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features) as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  11. Huanglongbing (Citrus Greening Detection Using Visible, Near Infrared and Thermal Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-02-01

    Full Text Available This study demonstrates the applicability of visible-near infrared and thermal imaging for detection of Huanglongbing (HLB disease in citrus trees. Visible-near infrared (440–900 nm and thermal infrared spectral reflectance data were collected from individual healthy and HLB-infected trees. Data analysis revealed that the average reflectance values of the healthy trees in the visible region were lower than those in the near infrared region, while the opposite was the case for HLB-infected trees. Moreover, 560 nm, 710 nm, and thermal band showed maximum class separability between healthy and HLB-infected groups among the evaluated visible-infrared bands. Similarly, analysis of several vegetation indices indicated that the normalized difference vegetation index (NDVI, Vogelmann red-edge index (VOG and modified red-edge simple ratio (mSR demonstrated good class separability between the two groups. Classification studies using average spectral reflectance values from the visible, near infrared, and thermal bands (13 spectral features as input features indicated that an average overall classification accuracy of about 87%, with 89% specificity and 85% sensitivity could be achieved with classification models such as support vector machine for trees with symptomatic leaves.

  12. Static and dynamic thermal infrared signatures measured during the FESTER experiment: first results

    Science.gov (United States)

    Gunter, W. H.; February, F.; Seiffer, D. P.; Eisele, C.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the principal goals was recording of static and dynamic thermal infrared signatures under different environmental conditions for both validations of existing thermal equilibrium signature prediction codes, but also to aid development of dynamic thermal signature models. A small scientific work boat (called Sea Lab) was used as the principal target and sensor platform. Painted metal plates of different thicknesses were also used as infrared targets on-board Sea Lab to study static/dynamic thermal signatures and were also fitted with pyrgeometers, pyrometers and iButton temperature sensors/loggers. First results focused on the variable of thermal signatures as function of environmental conditions and the accuracy of calculated source temperatures (from measured radiometric temperatures) compared to the physical temperature measurements of the plates.

  13. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    Directory of Open Access Journals (Sweden)

    Klemen Zakšek

    2015-12-01

    Full Text Available As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014 at high spatial resolution (160 m and relatively high temporal resolution (~3 days. These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1, which was developed and built by the German Aerospace Center (DLR. The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3.

  14. Thermal Infrared Signatures and Heat Fluxes of Sea Foam

    Science.gov (United States)

    2015-01-13

    Santa Barbara Infrared model 11104). A visible band camera (Point Grey Flea 3, resolution and fov) provided reference images of the foam layer from...theoretical modeling and experimental results from the frog 2003 field experiment, IEEE Transactions on Geoscience and Remote Sensing, 43, 5. Jeong

  15. A Comparative Analysis of the Far Infrared Spectra of Saturn's Rings and Icy Satellites with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, Linda; Edgington, Scott G.

    2016-10-01

    We will report on a campaign to observe Saturn's main rings and major icy satellites with the Composite Infrared Spectrometer onboard Cassini. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004).The spectral behavior of Saturn's main rings and icy satellites in the far infrared has been the subject of previous studies with CIRS FP1 data (Spilker at al. 2005, Carvano et al. 2007, Morishima et al. 2012). These studies have shown that the infrared spectra of these icy rings and bodies are remarkably flat between about 40 to 200 microns. Longward of this, CIRS observations, as well as older spacecraft data, show a gradual decrease in ring emissivity. This roll-off in emissivity may be due to varying optical constants of water ice, which dominates the rings' composition, as one moves towards microwave wavelengths. Carvano et al. (2007), who analyzed spectra of the icy satellites Phoebe, Iapetus, Enceladus, Tethys and Hyperion, investigated the absence of emissivity features in spectra of those satellites. This absence is intriguing, as water ice, which dominates their surface composition, contains absorption features in the FP1 spectral range. They conclude that high porosity in these satellites' regoliths may explain this lack of spectral variability.To better characterize the far infrared spectra of the rings and satellites, we have implemented a series of dedicated observations. The goal is to obtain thousands of infrared spectra at 3 cm-1 resolution of each individual ring region and as many satellites as possible. We will have more spectra than Spilker et al. had for their work at a higher spectral resolution than in the analyses of Carvano et al. and Morishima et al. A preliminary analysis of these

  16. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2015-08-01

    Full Text Available Monitoring upper tropospheric-lower stratospheric (UTLS secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm−1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm−1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and

  17. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    Science.gov (United States)

    Sellitto, P.; Legras, B.

    2015-08-01

    Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile

  18. Robust pedestrian detection by combining visible and thermal infrared cameras

    National Research Council Canada - National Science Library

    Lee, Ji Hoon; Choi, Jong-Suk; Jeon, Eun Som; Kim, Yeong Gon; Le, Toan Thanh; Shin, Kwang Yong; Lee, Hyeon Chang; Park, Kang Ryoung

    2015-01-01

    .... However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change...

  19. High Temperature and High QE Broadband Longwave Infrared SLS FPA for LANDSAT Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high-performance broadband infrared focal plane array (FPA) for the Thermal Infrared Sensor (TIRS) on NASA's LANDSAT satellite. The FPA will feature a...

  20. Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup

    Directory of Open Access Journals (Sweden)

    Francesco Bianchi

    2014-10-01

    Full Text Available Thermal infrared imaging is a valuable tool to perform non-destructive qualitative tests and to investigate buildings envelope thermal-energy behavior. The assessment of envelope thermal insulation, ventilation, air leakages, and HVAC performance can be implemented through the analysis of each thermogram corresponding to an object surface temperature. Thermography also allows the identification of thermal bridges in buildings’ envelope that, together with windows and doors, constitute one of the weakest component increasing thermal losses. A quantitative methodology was proposed in previous researches by the authors in order to evaluate the effect of such weak point on the energy balance of the whole building. In the present work, in-field experimental measurements were carried out with the purpose of evaluating the energy losses through the envelope of a test room experimental field. In-situ thermal transmittance of walls, ceiling and roof were continuously monitored and each element was characterized by its own thermal insulation capability. Infrared thermography and the proposed quantitative methodology were applied to assess the energy losses due to thermal bridges. The main results show that the procedure confirms to be a reliable tool to quantify the incidence of thermal bridges in the envelope thermal losses.

  1. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  2. Improved methods for measuring thermal parameters of liquid samples using photothermal infrared radiometry

    Science.gov (United States)

    Kuriakose, Maju; Depriester, Michael; Dadarlat, Dorin; Sahraoui, Abdelhak Hadj

    2013-02-01

    High accuracy, non-contact measuring methods for finding thermal properties of liquid samples using photothermal infrared radiometry (PTR) are presented. The use of transparent windows to confine micro volume liquid samples and the implementation of front and/or back signal detection procedures helped the successful implementation of the PTR technique for measuring liquids with high proficiency. We present two configurations, the so-called back-front photothermal infrared radiometry and back photothermal infrared radiometry to find thermal diffusivity and thermal effusivity of liquid samples. Sensitivity studies and error analyses included prove the robustness of each method. As an illustration of the temperature and electric field varying studies, we have included the experimental results on a 5CB (4-cyano-4‧-pentylbiphenyl) liquid crystal.

  3. Infrared Radiant Temperatures in the Alpine/Periglacial Environment as Related to Thermal Remote Sensing,

    Science.gov (United States)

    remote sensing in the alpine/periglacial environment. Techniques of ground truth observations were tested by which a researcher might determine the usefulness of infrared scanning to his study without the financial investment of airborne remote sensing on a trial-and-error basis. Also, an attempt was made to determine the environmental controls upon radiant temperature by monitoring changing patterns of radiant temperature relative to changing meteorologic conditions. Observations of both actual and thermal infrared radiant temperatures were made

  4. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Directory of Open Access Journals (Sweden)

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  5. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.

    Science.gov (United States)

    Xiong, Pan; Gu, Xing-Fai; Yu, Taol; Meng, Qing-Yan; Li, Jia-Guoi; Shi, Ji-xiang; Cheng, Yang; Wang, Liang; Liu, Wen-Song; Liu, Qi-Yuei; Zhao, Li-Min

    2014-11-01

    Detecting oil slick covered seawater surface using the thermal infrared remote sensing technology exists the advantages such as: oil spill detection with thermal infrared spectrum can be performed in the nighttime which is superior to visible spectrum, the thermal infrared spectrum is superior to detect the radiation characteristics of both the oil slick and the seawater compared to the mid-wavelength infrared spectrum and which have great potential to detect the oil slick thickness. And the emissivity is the ratio of the radiation of an object at a given temperature in normal range of the temperature (260-320 K) and the blackbody radiation under the same temperature , the emissivity of an object is unrelated to the temperature, but only is dependent with the wavelength and material properties. Using the seawater taken from Bohai Bay and crude oil taken from Gudao oil production plant of Shengli Oilfield in Dongying city of Shandong Province, an experiment was designed to study the characteristics and mechanism of thermal infrared emissivity spectrum of artificial crude oil slick covered seawater surface with its thickness. During the experiment, crude oil was continuously dropped into the seawater to generate artificial oil slick with different thicknesses. By adding each drop of crude oil, we measured the reflectivity of the oil slick in the thermal infrared spectrum with the Fourier transform infrared spectrometer (102F) and then calculated its thermal infrared emissivity. The results show that the thermal infrared emissivity of oil slick changes significantly with its thickness when oil slick is relatively thin (20-120 μm), which provides an effective means for detecting the existence of offshore thin oil slick In the spectrum ranges from 8 to 10 μm and from 13. 2 to 14 μm, there is a steady emissivity difference between the seawater and thin oil slick with thickness of 20 μm. The emissivity of oil slick changes marginally with oil slick thickness and

  6. The TUBIN nanosatellite mission for wildfire detection in thermal infrared

    Science.gov (United States)

    Barschke, Merlin F.; Bartholomäus, Julian; Gordon, Karsten; Lehmann, Marc; Brieß, Klaus

    2017-06-01

    The increasing number of wildfires has significant impact on the Earth's climate system. Furthermore, they cause severe economic damage in many parts of the world. While different land and airborne wildfire detection and observation systems are in use in some areas of the world already, spaceborne systems offer great potential regarding global and continuous observation. TUBIN is a proof-of-concept mission to demonstrate the capabilities of a nanosatellite carrying lightweight infrared microbolometer arrays for spaceborne detection of wildfires and other high-temperature events. To this end, TUBIN carries two infrared microbolometers complemented by a CMOS imager. The TUBIN space segment is based on the TUBiX20 nanosatellite platform of Technische Universität Berlin and is the first mission that implements the full-scale attitude determination and control system of TUBiX20. Thereby, the TUBIN mission will demonstrate the platform's ability to support a challenging Earth observation mission.

  7. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    Science.gov (United States)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  8. Infrared Real-time Thermal System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared real-time imaging system using DSP(digital signal processor) as the kernel of digital signal processing board is presented. In this system, the imaging difference and nonuniformity correction method is developed on the chip taking advantage of DSP with high speed. The method combines hardware and software together, so that the difficulty for realizing such a method with other hardware can be overcome.

  9. Determination of Thermal Diffusivity of Austenitic Steel Using Pulsed Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Kochanowski K.

    2014-10-01

    Full Text Available The simple method of determining thermal diffusivity of solid materials at room temperature using the pulsed infrared thermography (IRT is proposed. The theoretical basis of the method and experimental results are presented. The study was conducted on austenitic steel 316L. Theobtained results show that the thermal diffusivity value of the tested steel determined by means of pulsed infrared thermography is very approximate to the values given in the literature, obtained by using more complicated methods. The differences between these values are 0.5%.

  10. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces

    Science.gov (United States)

    Yang, Yue; Taylor, Sydney; Alshehri, Hassan; Wang, Liping

    2017-07-01

    In the present study, we experimentally demonstrate the spectrally coherent and diffuse thermal emission by exciting magnetic polaritons in SiC metasurfaces fabricated by the focused ion beam technique. Spectral emittance characterized by using an infrared microscope coupled to a Fourier transform spectrometer clearly shows a wavelength-selective emission peak as high as 0.8. Numerical simulations including emittance spectra and contour plot of electromagnetic field distribution were carried out to verify and understand the underlying mechanism of magnetic polaritons. The metasurfaces were further shown to be direction and polarization independent. The results would facilitate metasurfaces for applications like radiative thermal management and infrared sensing.

  11. Detection of leaks in buried rural water pipelines using thermal infrared images

    Science.gov (United States)

    Eidenshink, Jeffery C.

    1985-01-01

    Leakage is a major problem in many pipelines. Minor leaks called 'seeper leaks', which generally range from 2 to 10 m3 per day, are common and are difficult to detect using conventional ground surveys. The objective of this research was to determine whether airborne thermal-infrared remote sensing could be used in detecting leaks and monitoring rural water pipelines. This study indicates that such leaks can be detected using low-altitude 8.7- to 11.5. micrometer wavelength, thermal infrared images collected under proper conditions.

  12. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    Science.gov (United States)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  13. Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data

    Science.gov (United States)

    Coppola, D.; Cigolini, C.

    2013-08-01

    Nyamuragira volcano is one of the most active African volcanoes. Eruptions have been occurring every 3-4 years throughout the last century. Here, we analyse satellite infrared data, collected by MODIS sensor to estimate the volcanic radiative power (VRP, in W) and energy (VRE; in J) released during the 2001, 2002, 2004, 2006-2007, 2010 and 2011-2012 eruptions. Based on the statistical distribution of VRP measurements, we found that thermal emissions at Nyamuragira fall into three distinct radiating regimes. The high-radiating regime occurs during the emplacement of poorly insulated lava flows and characterise most of the effusive activity. The moderate-radiating regime is associated with open-vent activity (Strombolian explosions and/or lava lake activity) eventually accompanied by the emplacement of short-lived and well-insulated flows. A third radiating regime (low-radiating regime) occurs during periods, which may last weeks to months, that follow each eruption and are associated with the cooling of the effused lava flows. By applying the radiant density approach to MODIS-derived VRP we also estimated the time-averaged lava discharge rates (TADR; in m3 s-1) and we analysed the effusive trends of the above eruptions. We found that the transition between the effusive and open-vent activity typically takes place when TADR reduces to low values (<5 m3 s-1) and marks a change in the eruptive style of the volcano. Finally, we observed a clear correlation between the volume of erupted lava and its cooling time. This suggests that the average thickness of the analysed lava flows is more variable than previously thought and sheds light on the uncertainty in calculating erupted volumes assuming that lava flow areas have uniform thickness.

  14. The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

    CERN Document Server

    Rozitis, Ben

    2016-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (i.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (i.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an "almost pole-on" illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterised by an RMS slope of 38 $\\pm$ 8{\\deg} at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the RMS slope of 25 $\\pm$ 5{\\deg} implied by the NEAR Shoemaker laser ran...

  15. Warping-based co-registration of thermal infrared images: Study of factors influencing its applicability

    Science.gov (United States)

    Cardone, D.; Pinti, P.; Di Donato, L.; Merla, A.

    2017-06-01

    A relevant issue for processing biomedical thermal imaging data is the availability of tools for objective and quantitative comparison of images across different conditions or subjects. To this goal, a solution can be offered by projecting the thermal distribution data onto a fictitious template to obtain a common reference for comparison across cases or subjects. In this preliminary study, we tested the feasibility of applying a warping procedure on infrared thermal images. Fifteen thermal images of checkerboard were recorded at three different distances and five different angles in order to evaluate which factor mostly influences the warping accuracy. The accuracy of three different warping transformation models (local weighted mean (LWM), polynomial, affine) was tested by comparing the positioning error between users' selected fiduciary points on each thermal image and their corresponding reference position assigned on the template image. Fifteen users, divided into three groups upon on their experience in thermal imaging processing, participated in this study in order to evaluate the effect of experience in applying a warping procedure to the analysis of thermal infrared images. The most relevant factor influencing the positioning and thermal errors is the acquisition distance, while the users' level of experience and the inclination angle do not seem to play the same importance. Comparing the three transformations, the LWM seems to be the best in terms of minimizing the two categories of errors. This preliminary work helps to understand the limits and the possibilities of applying warping techniques for objective, quantitative and automatic thermal image comparisons.

  16. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  17. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    柳钦火; 顾行法; 李小文; 田国良; 余涛; F.Jacob; J.F.Hanocq; M.Friedl; A.H.Strahler

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies, a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80?FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces. Accordingly, multi-angle directional brightness temperatures were acquired at different view angles for individual pixel. The flight experiment was carried out from January 1997 to October 1997 over a 5 kmx5 km flat agricultural area, located near Avignon, southeastern France.This paper presents results from analyses performed using these data including instrument calibration, radiometric correction, atmospheric correction, temperature temporal adjustment, geometric matching and registration of images. Results are presented for different thermal infrared emission patterns of different surface types including bare soil, wheat, maize and sunflower at different growth stages.

  18. Study on thermal infrared emission directionality over crop canopies with TIR camera imagery

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to investigate directionality of thermal infrared emission from crop canopies,a wide-angle thermal video camera (INFRAMETRICS) equipped with an 80o FOV lens was mounted on a small aircraft and used to acquire thermal imagery along several different flight traces.Accordingly,multi-angle directional brightness temperatures were acquired at different view angles for individual pixel.The flight experiment was carried out from January 1997 to October 1997 over a 5 km×5 km flat agricultural area,located near Avignon,southeastern France.This paper presents results from analyses performed using these data including instrument calibration,radiometric correction,atmospheric correction,temperature temporal adjustment,geometric matching and registration of images.Results are presented for different thermal infrared emission patterns of different surface types including bare soil,wheat,maize and sunflower at different growth stages.

  19. Variability of Thermal Infrared Emission from Near-Earth Asteroids

    NARCIS (Netherlands)

    Taylor, Patrick A.; Howell, E. S.; Magri, C.; Vervack, R. J.; Nolan, M. C.; Fernandez, Y. R.; Rivkin, A. S.; Mueller, M.

    2009-01-01

    We have measured thermal emission between 2 and 4 microns for several near-Earth asteroids (NEAs) of different taxonomic types with SpeX on the NASA IRTF. Initial results for individual P-, V-, and E-type NEAs were presented at last year's meeting (Howell et al., 2008). Here we present results for t

  20. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing

    OpenAIRE

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-01-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in...

  1. Compensating the Degradation of Near-Infrared Absorption of Black Silicon Caused by Thermal Annealing.

    Science.gov (United States)

    Wang, Yanchao; Gao, Jinsong; Yang, Haigui; Wang, Xiaoyi; Shen, Zhenfeng

    2016-12-01

    We propose the use of thin Ag film deposition to remedy the degradation of near-infrared (NIR) absorption of black Si caused by high-temperature thermal annealing. A large amount of random and irregular Ag nanoparticles are formed on the microstructural surface of black Si after Ag film deposition, which compensates the degradation of NIR absorption of black Si caused by thermal annealing. The formation of Ag nanoparticles and their contributions to NIR absorption of black Si are discussed in detail.

  2. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    OpenAIRE

    Bai Lu; Liang Zongcun; Shen Hui

    2014-01-01

    During solar cell firing, volatile organic compounds (VOC) and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by ra...

  3. Thermal Emission Variability of Zamama, Culann and Tupan on Io Using Galileo Near-Infrared Mapping Spectrometer (NIMS) Data

    Science.gov (United States)

    Ennis, M. E.; Davies, A. G.

    2005-01-01

    The Jovian satellite Io is the most volcanically active body in the Solar System. Previous analyses [e.g., 1-4] indicate the presence of high-temperature silicate volcanism on Io, similar to silicate volcanism occurring on Earth. Instruments onboard the Galileo spacecraft, especially the Near Infrared Mapping Spectrometer (NIMS) and the Solid State Imager (SSI), provided much data of Io s active volcanoes throughout the duration of the Galileo mission (June 1996-September 2003). NIMS data is particularly sensitive to thermal emission from active and cooling lava over cooling times of seconds to a few years. The objective of this ongoing study of Io s volcanism is to determine the variability of thermal emission from volcanoes on Io s surface, in order to better understand the styles of eruption, and to constrain the volumes of material erupted. Ultimately, this will help to constrain the contribution of active volcanism to Io s thermal budget. Data have been analyzed for the volcano Zamama, located at 173 W, 21 N, and the power output of Zamama, the volumes of lava being erupted, and the eruption rate determined. Culann and Tupan have also been analysed in this way. This abstract primarily concentrates on Zamama.

  4. Infrared, X-ray and thermal analysis of praseodym soaps

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, K.N.; Sharma, M.; Gahlaut, A.S. (Agra Univ., Dept. of Chemistry (India))

    Infrared spectra tests have shown that fatty acids exist with a dimeric structure through hydrogen bonding between two molecules of fatty acids whereas metal-to-oxygen bonds in metal soaps have an ionic character but the bonds are not purely ionic. X-ray diffraction tests confirm that praseodymium soaps have a double layer structure with molecular axes slightly inclined to the basal plane. It is concluded that the decomposition reaction of praseodymium soaps is kinetically of zero order and the activation energy for the process lies in the range of 1 to 10 kcal mole[sup -1]. (orig.).

  5. Inspection of calandria front area of Wolsung NPP using technique of mapping thermal infrared image into CCD image

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Kim, Chang Hoi; Seo, Yong Chil; Choi, Young Soo; Kim, Seung Ho [Advance Robotics Teams, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2002-11-15

    This paper describes the enhanced inspection performance of a thermal infrared camera for monitoring abnormal conditions of calandria reactor area of Wolsung nuclear power plant. Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and resolution. To compensate the poor image quality problems associated with the thermal infrared camera, the technique of mapping thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and ccd camera in parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  6. Ozone Profile Retrieval from Satellite Observation Using High Spectral Resolution Infrared Sounding Instrument

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a preliminary result on the retrieval of atmospheric ozone profiles using an im proved regression technique and utilizing the data from the Atmospheric InfraRed Sounder (AIRS), a hyper-spectral instrument expected to be flown on the EOS-AQUA platform in 2002. Simulated AIRS spectra were used to study the sensitivity of AIRS radiance on the tropospheric and stratospheric ozone changes, and to study the impact of various channel combinations on the ozone profile retrieval. Sensitivity study results indicate that the AIRS high resolution spectral channels between the wavenumber 650- 800 cm-1 provide very useful information to accurately retrieve tropospheric and stratospheric ozone pro files. Eigenvector decomposition of AIRS spectra indicate that no more than 100 eigenvectors are needed to retrieve very accurate ozone profiles. The accuracy of the retrieved atmospheric ozone profile from the pres ent technique and utilizing the AIRS data was compared with the accuracy obtained from current Advanced TIROS Operational Vertical Sounder (ATOVS) data aboard National Oceanic and Atmospheric Admini stration (NOAA) satellites. As expected, a comparison of retrieval results confirms that the ozone profile re trieved with the AIRS data is superior to that of ATOVS.

  7. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  8. A method for retrieving clouds with satellite infrared radiances using the particle filter

    Science.gov (United States)

    Xu, Dongmei; Auligné, Thomas; Descombes, Gaël; Snyder, Chris

    2016-11-01

    Ensemble-based techniques have been widely utilized in estimating uncertainties in various problems of interest in geophysical applications. A new cloud retrieval method is proposed based on the particle filter (PF) by using ensembles of cloud information in the framework of Gridpoint Statistical Interpolation (GSI) system. The PF cloud retrieval method is compared with the Multivariate Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of infrared radiances on multi-sensors onboard both geostationary and polar satellites, respectively. It is found that the retrieved cloud masks with both methods are consistent with other independent cloud products. MMR is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud signals, yielding closer heights of cloud top and cloud base to other references. More collections of small-fraction particles are able to effectively estimate the semi-transparent high clouds. It is found that radiances with high spectral resolutions contribute to quantitative cloud top and cloud base retrievals. In addition, a different way of resolving the filtering problem over each model grid is tested to better aggregate the weights with all available sensors considered, which is proven to be less constrained by the ordering of sensors. Compared to the MMR method, the PF method is overall more computationally efficient, and the cost of the model grid-based PF method scales more directly with the number of computing nodes.

  9. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    Science.gov (United States)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  10. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    Science.gov (United States)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  11. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  12. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  13. Mapping Acid Sulfate Alteration of Basaltic Andesite with Thermal Infrared Data

    Science.gov (United States)

    Vaughan, R. G.; Calvin, W. M.; Hook, S. J.; Taranik, J. V.

    2002-01-01

    Airborne thermal infrared multi- and hyperspectral data sets are used to map sulfate alteration of basaltic andesites near Reno, NV. Alteration includes quartz-alunite, jarosite and a number of clay minerals such as kaolinite and montmorillonite. Additional information is contained in the original extended abstract.

  14. A Novel Measuring Method of Emissivity in the Thermal Infrared Region

    OpenAIRE

    松井, 松長; 宮武, 将浩; マツイ, マツナガ; ミヤタケ, マサヒロ; Matsunaga, MATSUI; Masahiro, MIYATAKE

    1981-01-01

    The purpose of this note is to propose a new method for measuring emissivity in the thermal infrared region of opaque or partially transparent bodies at or near room temperature. This method differs from Buettner-Kern method in the point that it makes no use of two different lids of a very high and very low emissivity.

  15. Rapid microplate, green method for high-throughput evaluation of vinegar acidity using thermal infrared enthalpimetry.

    Science.gov (United States)

    Tischer, Bruna; Oliveira, Alessandra Stangherlin; Ferreira, Daniele de Freitas; Menezes, Cristiano Ragagnin; Duarte, Fábio Andrei; Wagner, Roger; Barin, Juliano Smanioto

    2017-01-15

    Infrared thermal imaging was combined with disposable microplates to perform enthalpimetric analysis using an infrared camera to monitor temperature without contact. The proposed thermal infrared enthalpimetry (TIE) method was used to determine the total, fixed and volatile acidities of vinegars. Sample preparation and analysis were performed in the same vessel, avoiding excessive sample handling and reducing energy expenditure by more than ten times. The results agreed with those of the conventional method for different kinds of vinegars, with values of 1.7%, and 2.3% for repeatability and intermediate precision, respectively. A linear calibration curve was obtained from 0.040 to 1.30molL(-1). The proposed method provided rapid results (within 10s) for four samples simultaneously, a sample throughput of up to 480 samples per hour. In addition, the method complies with at least eight of twelve recommendations for green analytical chemistry, making TIE a promising tool for routine vinegar analysis.

  16. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  17. Relic density computations at NLO: infrared finiteness and thermal correction

    CERN Document Server

    Beneke, Martin; Hryczuk, Andrzej

    2014-01-01

    There is an increasing interest in accurate dark matter relic density predictions, which requires next-to-leading order (NLO) calculations. The method applied up to now uses zero-temperature NLO calculations of annihilation cross sections in the standard Boltzmann equation for freeze-out, and is conceptually problematic, since it ignores the finite-temperature infrared (IR) divergences from soft and collinear radiation and virtual effects. We address this problem systematically by starting from non-equilibrium quantum field theory, and demonstrate on a realistic model that soft and collinear temperature-dependent divergences cancel in the collision term. Our analysis provides justification for the use of the freeze-out equation in its conventional form and determines the leading finite-temperature correction to the annihilation cross section. This turns out to have a remarkably simple structure.

  18. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-05-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm. Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ=0.623. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well covered by the

  19. Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI

    Directory of Open Access Journals (Sweden)

    L. Klüser

    2011-01-01

    Full Text Available From the high spectral resolution thermal infrared observations of the Infrared Atmospheric Sounding Interferometer (IASI mineral dust AOD (transferred from thermal infrared to 0.5 μm is retrieved using a Singular Vector Decomposition of brightness temperature spectra. As infrared retrieval based on 8–12 μm observations, dust observation with IASI is independent from solar illumination. Through the linear combinations of suitable independent singular vectors weighted by their contribution to the observed signal, and a projection of different a-priori dust spectra on the resulting signal the dust can be well distinguished from the influence of surface emissivity and gas absorption. In contrast to lookup-table based single-channel retrievals this method takes advantage of the spectral shape of dust extinction and surface and atmosphere influence over the total 8–12 μm window band. Using different a-priori spectra for dust extinction allows also for an estimation of dust particle size in terms of effective radius based on the respective dust model size distributions. These dust models are also used for the transfer of infrared AOD to 0.5 μm.

    Four months of IASI observations covering Northern Africa and Arabia are used for evaluation. Two large scale dust events, one covering the Arabian Peninsula and adjacent parts of the Indian Ocean, the other over the Atlantic Ocean off the coast of West-Africa, are analysed and compared with other satellite images. They also show the good suitability of IASI data for dust observation at day and night. Monthly means derived from IASI observations represent well the known seasonal cycles of dust activity over Northern Africa and Arabia. IASI Dust AOD0.5 μm and AERONET coarse mode AOD0.5 μm are reasonably well (linearly correlated with ρ = 0.655. Moreover, comparison of time series of AERONET and IASI observations shows that the evolution of dust events is very well

  20. Analyzing the thermal regime of power supply units in portable betatrons by using infrared thermography

    Directory of Open Access Journals (Sweden)

    Simonova O.S.

    2017-01-01

    Full Text Available Potentials of infrared thermography in analyzing a thermal regime of the 7.5 MeV betatron power supply are discussed. Both the heating rate and thermal inertia of particular electronic components have been evaluated by processing pixel-based temperature histories. The data treatment has been performed by using the original ThermoFit Pro software to illustrate that some advanced processing algorithms, such as the Fourier transform and principle component analysis, are valuable in identifying thermal dynamics of particular power supply parts.

  1. Determination of the optical and the thermal properties of an absorbing medium by using infrared thermometry

    Science.gov (United States)

    Yang, Seung-Jin; Baek, Jun-Hyeok; Kim, Seung-Eun; Kwon, Min-Ki; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Baek, Jin-Young; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-12-01

    Spatiotemporal changes in the surface temperature of an absorbing medium irradiated by using 532-nm laser pulses were measured using an infrared camera. Relevant numerical simulations of the heat transfer equation were performed. The simulations showed that the maximum temperature increase was linearly proportional to the absorption coefficient with no dependence on the thermal conductivity and that the decay time constant depended on both the absorption coefficient and the thermal conductivity. The absorption coefficient and the thermal conductivity of the medium were determined by fitting the simulated results for the maximum temperature increase and decay time constant to the measured results.

  2. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals.

    Science.gov (United States)

    Didierjean, Julien; Herault, Emilie; Balembois, François; Georges, Patrick

    2008-06-09

    We present a thermal conductivity measurement method for laser crystals based on thermal mapping of the crystal face by an infrared camera. Those measurements are performed under end-pumping of the laser crystal and during laser operation. The calculation of the fraction of pump power converted into heat is therefore simplified, and it is possible to link easily the temperature in the crystal to the thermal conductivity. We demonstrate the efficiency of this measurement method with a Nd:YAG crystal, before using it to compare Nd:YVO(4) and Nd:GdVO(4) crystals.

  3. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  4. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Xinke Zhong

    2015-06-01

    Full Text Available The surface temperature (ST of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  5. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L' Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

    2014-06-23

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  6. Detection of global tropospheric clouds and polar stratospheric clouds over Antarctica using thermal infrared spectral data observed by TANSO-FTS/GOSAT

    Science.gov (United States)

    Someya, Yu; Imasu, Ryoichi; Ota, Yoshifumi; Saitoh, Naoko

    2014-05-01

    Global tropospheric cloud distribution was derived from thermal infrared band data observed by Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse gases Observation SATellite (GOSAT). It is expected that this band has ability to detect optically thin clouds compared with Cloud and Aerosol Imager (CAI) which is the other sensor on GOSAT. In addition, polar stratospheric clouds (PSCs) which can be harder to detect than the tropospheric clouds because of high reflectivity or low temperature of the surface and their low optical thickness were also detected. We have modified CO2 slicing method which was developed as one of the cirrus cloud detection techniques using thermal infrared band data to detect thin clouds more stably. The pseudo spectral channels were defined as sets of several actual spectral channels between 700cm-1 and 750cm-1 which have weighting function peak height in a same height range for each 0.5km. These pseudo channels were optimized with simulation studies using a multi-scattering radiative transfer code, Polarized radiance System for Transfer of Atmospheric Radiation (Pstar) 3 for several temperature profile patterns prepared based on latitudes and temperature at 500hPa. GOSAT data was analyzed with the combination of these pseudo channels determined for each of observation points from these simulations and the results were compared with the observational results from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) / Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The comparisons about global cloud are based on the coincident observations in 2010. Monthly occurrences of Antarctic PSCs were compared for each grid area from June to September in 2010. As a result, the correlation coefficients in each month are 0.76, 0.71, 0.75, and 0.61 relatively. Though that is low value in September, it can be explained by decrease of occurrences.

  7. Identifying plant species using mid-wave infrared (2.5-6µm) and thermal infrared (8-14µm) emissivity spectra

    NARCIS (Netherlands)

    Ullah, S.; Schlerf, M.; Skidmore, A.K.; Hecker, C.

    2012-01-01

    Plant species discrimination using remote sensing is generally limited by the similarity of their reflectance spectra in the visible, NIR and SWIR domains. Laboratory measured emissivity spectra in the mid infrared (MIR; 2.5µm-6µm) and the thermal infrared (TIR; 8µm-14µm) domain of different plant s

  8. Physiology-based face recognition in the thermal infrared spectrum.

    Science.gov (United States)

    Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike

    2007-04-01

    The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of

  9. Thermal Imaging with Novel Infrared Focal Plane Arrays and Quantitative Analysis of Thermal Imagery

    Science.gov (United States)

    Gunapala, S. D.; Rafol, S. B.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Soibel, A.; Ting, D. Z.; Tidrow, Meimei

    2012-01-01

    We have developed a single long-wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) camera for thermography. This camera has been used to measure the temperature profile of patients. A pixel coregistered simultaneously reading mid-wavelength infrared (MWIR)/LWIR dual-band QWIP camera was developed to improve the accuracy of temperature measurements especially with objects with unknown emissivity. Even the dualband measurement can provide inaccurate results due to the fact that emissivity is a function of wavelength. Thus we have been developing a four-band QWIP camera for accurate temperature measurement of remote object.

  10. Demonstration of dual-band infrared thermal imaging for bridge inspection. Phase II, final report

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, P.F.; Del Grande, N.K.; Schaich, P.C.

    1996-03-01

    Developing and implementing methods of effective bridge rehabilitation is a major issue for the Federal Highway Administration (FHWA). The nation spends $5 billion annually to replace, rehabilitate or construct new bridges. According to the National Bridge Inventory, over 100,000 U.S. bridges are structurally deficient. About 40,000 of these bridges have advanced deck deterioration. The most common causes of serious deck deterioration is delamination. Delaminations result when steel reinforcements within the bridge deck corrode, creating gaps that separate the concrete into layers. A reliable inspection technology, capable of identifying delaminations, would represent a power new tool in bridge maintenance. To date, most bridge inspections rely on human interpretation of surface visual features of chain dragging. These methods are slow, disruptive, unreliable and raise serious safety concerns. Infrared thermal imaging detects subsurface delaminations and surface clutter, which is introduced by foreign material on the roadway. Typically, foreign material which is not always evident on a video tape image, produces a unique IR reflectance background unlike the thermal response of a subsurface delamination. Lawrence Livermore National Laboratory (LLNL) uses dual-band infrared (DBIR) thermal imaging to identify and remove nonthermal IR reflectance backgrounds from foreign material on the roadway. DBIR methods improve the performance of IR thermal imaging by a factor of ten, compared to single-band infrared (SBIR) methods. DBIR thermal imaging allows precise temperature measurement to reliably locate bridge deck delaminations and remove wavelength-dependent emissivity variations due to foreign material on the roadway.

  11. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.

    Science.gov (United States)

    Asano, Takashi; Suemitsu, Masahiro; Hashimoto, Kohei; De Zoysa, Menaka; Shibahara, Tatsuya; Tsutsumi, Tatsunori; Noda, Susumu

    2016-12-01

    Control of the thermal emission spectra of emitters will result in improved energy utilization efficiency in a broad range of fields, including lighting, energy harvesting, and sensing. In particular, it is challenging to realize a highly selective thermal emitter in the near-infrared-to-visible range, in which unwanted thermal emission spectral components at longer wavelengths are significantly suppressed, whereas strong emission in the near-infrared-to-visible range is retained. To achieve this, we propose an emitter based on interband transitions in a nanostructured intrinsic semiconductor. The electron thermal fluctuations are first limited to the higher-frequency side of the spectrum, above the semiconductor bandgap, and are then enhanced by the photonic resonance of the structure. Theoretical calculations indicate that optimized intrinsic Si rod-array emitters with a rod radius of 105 nm can convert 59% of the input power into emission of wavelengths shorter than 1100 nm at 1400 K. It is also theoretically indicated that emitters with a rod radius of 190 nm can convert 84% of the input power into emission of emissivity of 0.77 at a wavelength of 790 nm and a very low background emissivity of <0.02 to 0.05 at 1100 to 7000 nm, under operation at 1273 K. Use of a nanostructured intrinsic semiconductor that can withstand high temperatures is promising for the development of highly efficient thermal emitters operating in the near-infrared-to-visible range.

  12. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-07-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  13. Method for measuring weld temperature using an infrared thermal imaging camera

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Chan Seung [Chosun University of Science and Technology, Gwangju (Korea, Republic of); Kim, Kyeong Suk; Chang, Ho Seob [Chosun University, Gwangju (Korea, Republic of)

    2014-08-15

    In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

  14. Physical characterisation of near-Earth asteroid (1620) Geographos. Reconciling radar and thermal-infrared observations

    CERN Document Server

    Rozitis, Ben

    2014-01-01

    The Yarkovsky (orbital drift) and YORP (spin state change) effects play important roles in the dynamical and physical evolution of asteroids. Thermophysical modelling of these observed effects, and of thermal-infrared observations, allows a detailed physical characterisation of an individual asteroid to be performed. We perform a detailed physical characterisation of near-Earth asteroid (1620) Geographos, a potential meteor stream source and former spacecraft target, using the same techniques as previously used in Rozitis et al. (2013) for (1862) Apollo. We use the advanced thermophysical model (ATPM) on published light-curve, radar, and thermal-infrared observations to constrain the thermophysical properties of Geographos. The derived properties are used to make detailed predictions of the Yarkovsky orbital drift and YORP rotational acceleration, which are then compared against published measurements to determine Geographos's bulk density. We find that Geographos has a thermal inertia of 340 +140/-100 J m-2 ...

  15. Time calibration of thermal rolling shutter infrared cameras

    Science.gov (United States)

    Peeters, J.; Louarroudi, E.; De Greef, D.; Vanlanduit, S.; Dirckx, J. J. J.; Steenackers, G.

    2017-01-01

    The working principle of nearly all uncooled microbolometer thermal imaging systems is based on the rolling shutter principle. This results in time delays between rows giving rise to distorted and blurred images which are difficult to correlate with, for example instantaneous numerical simulation results for nondestructive evaluation. Until today high-end and high-cost thermal cameras need to be used for instantaneous measurements. Furthermore, quantitative defect evaluation on average conductive materials is difficult to perform as a result of the rolling shutter blur of the uncooled cameras. In this contribution, a time delay compensation method is designed. The developed algorithm is described and a measurement routine is elaborated to measure the inter- and intra-frame delays between two pixels. Finally, an artificial global shutter image sequence is developed using linear interpolation between the original fluctuating frames. We will show that by applying our proposed method, the intra-frame delay can be predicted and compensated with an accuracy of 16 μs . Besides, there is only made use of low-cost equipment to provide a straight-forward methodology which makes it applicable for the further integration of low-cost microbolometers in industry. This means that we have made the application of low-cost microbolometers feasible for instantaneous measurements.

  16. Validation of Reef-Scale Thermal Stress Satellite Products for Coral Bleaching Monitoring

    Directory of Open Access Journals (Sweden)

    Scott F. Heron

    2016-01-01

    Full Text Available Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration’s Coral Reef Watch (NOAA CRW program provides daily global monitoring at 5 km resolution—at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a regional synthesis of thermal stress conditions, and Seven-day Sea Surface Temperature (SST Trend, describing recent changes in temperature at each location. We describe how these products provided information in support of management activities prior to, during and after the 2014 thermal stress event in the Commonwealth of the Northern Mariana Islands (CNMI. Using in situ survey data from this event, we undertake the first quantitative comparison between 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This resulted in a model based on thermal stress and generic richness that explained 97% of the variance in observed bleaching. These findings illustrate the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for stakeholders to direct resources to the most effective management actions to conserve coral reefs.

  17. Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory

    Science.gov (United States)

    Johnson, William R.; Hook, Simon J.

    2016-05-01

    The mid and thermal infrared (MTIR) for the Earth surface is defined between 3 and 14µm. In the outer solar system, objects are colder and their Planck response shifts towards longer wavelengths. Hence for these objects (e.g. icy moons, polar caps, comets, Europa), the thermal IR definition usually stretches out to 50µm and beyond. Spectroscopy has been a key part of this scientific exploration because of its ability to remotely determine elemental and mineralogical composition. Many key gas species such as methane, ammonia, sulfur, etc. also have vibrational bands which show up in the thermal infrared spectrum above the background response. Over the past few decades, the Jet Propulsion Laboratory has been building up a portfolio of technology to capture the MTIR for various scientific applications. Three recent sensors are briefly reviewed: The airborne Hyperspectral thermal emission spectrometer (HyTES), the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Mars Climate Sounder (MCS)/DIVINER. Each of these sensors utilize a different technology to provide a remote sensing product based on MTIR science. For example, HyTES is a push-brooming hyperspectral imager which utilizes a large format quantum well infrared photodetector (QWIP). The goal is to transition this to a new complementary barrier infrared photodetector (CBIRD) with a similar long wave cut-off and increased sensitivity. ECOSTRESS is a push-whisk Mercury Cadmium Telluride (MCT) based high speed, multi-band, imager which will eventually observe and characterize plant/vegetation functionality and stress index from the International Space Station (ISS) across the contiguous United States (CONUS). MCS/DIVINER utilizes thermopile technology to capture the thermal emission from the polar caps and shadow regions of the moon. Each sensor utilizes specific JPL technology to capture unique science.

  18. Spatial extrapolation of lysimeter results using thermal infrared imaging

    Science.gov (United States)

    Voortman, B. R.; Bosveld, F. C.; Bartholomeus, R. P.; Witte, J. P. M.

    2016-12-01

    Measuring evaporation (E) with lysimeters is costly and prone to numerous errors. By comparing the energy balance and the remotely sensed surface temperature of lysimeters with those of the undisturbed surroundings, we were able to assess the representativeness of lysimeter measurements and to quantify differences in evaporation caused by spatial variations in soil moisture content. We used an algorithm (the so called 3T model) to spatially extrapolate the measured E of a reference lysimeter based on differences in surface temperature, net radiation and soil heat flux. We tested the performance of the 3T model on measurements with multiple lysimeters (47.5 cm inner diameter) and micro lysimeters (19.2 cm inner diameter) installed in bare sand, moss and natural dry grass. We developed different scaling procedures using in situ measurements and remotely sensed surface temperatures to derive spatially distributed estimates of Rn and G and explored the physical soundness of the 3T model. Scaling of Rn and G considerably improved the performance of the 3T model for the bare sand and moss experiments (Nash-Sutcliffe efficiency (NSE) increasing from 0.45 to 0.89 and from 0.81 to 0.94, respectively). For the grass surface, the scaling procedures resulted in a poorer performance of the 3T model (NSE decreasing from 0.74 to 0.70), which was attributed to effects of shading and the difficulty to correct for differences in emissivity between dead and living biomass. The 3T model is physically unsound if the field scale average air temperature, measured at an arbitrarily chosen reference height, is used as input to the model. The proposed measurement system is relatively cheap, since it uses a zero tension (freely draining) lysimeter which results are extrapolated by the 3T model to the unaffected surroundings. The system is promising for bridging the gap between ground observations and satellite based estimates of E.

  19. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    Science.gov (United States)

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  20. Method for measuring thermal properties using a long-wavelength infrared thermal image

    Science.gov (United States)

    Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  1. Quantification of the Beauce's Groundwater contribution to the Loire River discharge using satellite infrared imagery

    Directory of Open Access Journals (Sweden)

    E. Lalot

    2015-02-01

    Full Text Available Seven Landsat Thermal InfraRed (TIR images, taken over the period 2000–2010, were used to establish longitudinal temperature profiles of the middle Loire River, where it flows above the Beauce aquifer. Results showed that 75% of the temperature differences, between in situ observations and TIR image based estimations, remained within the ±1 °C interval. The groundwater discharge along the River course was quantified for each identified groundwater catchment areas using a heat budget based on the Loire River temperature variations, estimated from the TIR images. The main discharge area of the Beauce aquifer into the Loire River was located between river kilometers 630 and 650. This result confirms what was obtained using a groundwater budget and spatially locates groundwater input within the Middle sector of the Loire River. According to the heat budgets, groundwater discharge is higher during winter period (13.5 m3 s−1 than during summer (5.3 m3 s−1. Groundwater input is also higher during the flow recession periods of the Loire River.

  2. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  3. Thermal removal from near-infrared imaging spectroscopy data of the Moon

    Science.gov (United States)

    Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.

    2011-01-01

    In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.

  4. [Study on estimation of deserts soil total phosphorus content from thermal-infrared emissivity].

    Science.gov (United States)

    Hou, Yan-jun; Tiyip, Tashpolat; Zhang, Fei; Sawut, Mamat; Nurmemet, Ilyas

    2015-02-01

    Soil phosphorus provides nutrient elements for plants, is one of important parameters for evaluating soil quality. The traditional method for soil total phosphorus content (STPC) measurement is not effective and time-consuming. However, remote sensing (RS) enables us to determine STPC in a fast and efficient way. Studies on the estimation of STPC in near-infrared spectroscopy have been developed by scholars, but model accuracy is still poor due to the low absorption coefficient and unclear absorption peak of soil phosphorus in near-infrared. In order to solve the deficiency which thermal-infrared emissivity estimate desert soil total phosphorus content, and could improve precision of estimation deserts soil total phosphorus. In this paper, characteristics of soil thermal-infrared emissivity are analyzed on the basis of laboratory processing and spectral measurement of deserts soil samples from the eastern Junggar Basin. Furthermore, thermal-infrared emissivity based RS models for STPC estimation are established and accuracy assessed. Results show that: when STPC is higher than 0.200 g x kg(-1), the thermal-infrared emissivity increases with the increase of STPC on the wavelength between 8.00 microm and 13 microm, and the emissivity is more sensitive to STPC on the wavelength between 9.00 and 9.6 microm; the estimate mode based on multiple stepwise regression was could not to estimate deserts soil total phosphorus content from thermal-infrared emissivity because the estimation effects of them were poor. The estimation accuracy of model based on partial least squares regression is higher than the model based on multiple stepwise regression. However, the accuracy of second-order differential estimation model based on partial least square regression is higher than based on multiple stepwise regression; The first differential of continuous remove estimation model based on partial least squares regression is the best model with R2 of correction and verification are up to

  5. Validation strategy for satellite observations of tropospheric reactive gases

    Directory of Open Access Journals (Sweden)

    Andreas Richter

    2014-01-01

    Full Text Available Over the last twodecades, satellite observations of tropospheric composition have becomepossible using nadir viewing spectrometers operating in the UV, visible, nearinfrared, and thermal infrared spectral range. [...

  6. Thermal infrared mapping of the Leidenfrost drop evaporation

    Science.gov (United States)

    Wciślik, Sylwia

    2016-09-01

    The paper presents an author complementary study on the Leidenfrost drop evaporation. The research was conducted under ambient conditions and in the film boiling regime. Large water drops were placed on the copper substrate of the constant temperature Tw ranging from 297.6 to 404oC. The initial single drop diameter and its mass was D0 ≈ 1cm and m0 ≈ 1g respectively. One of the obtained results, for each Tw are the drop thermal images versus time. They were used to calculate an average temperature over the drop upper surface (Td). For an exemplary heating surface temperature of Tw = 297.6oC the average drop temperature is approximately 11oC lower than the saturation one and equals Td = 88,95oC. This value is estimated for the first 200s of evaporation and with time step size Δt = 0,5s. The drop upper surface temperature is highly variable and indicates strong convection inside it. This is due to the complex nature of heat and mass transfer. The maximum standard deviation from Td = 88,95oC is SD = 1.21.

  7. New dust opacity mapping from Viking Infrared Thermal Mapper data

    Science.gov (United States)

    Martin, Terry Z.; Richardson, Mark I.

    1993-01-01

    Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.

  8. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation

    CERN Document Server

    Ade, P A R; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Calabrese, E; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Churazov, E; Clements, D L; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Flores-Cacho, I; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maggio, G; Maino, D; Mak, D S Y; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Melchiorri, A; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Nati, F; Natoli, P; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Stompor, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Welikala, N; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spe...

  9. Key technologies of thermal test for DFH-4 platform satellite%东四平台卫星热试验中的关键技术

    Institute of Scientific and Technical Information of China (English)

    袁伟峰; 郄殿福; 许忠旭

    2014-01-01

    东四平台系列卫星对真空热试验期间的星上转发器在轨工作状态模拟、星表高/低热流模拟、星体吊装与水平支撑和污染控制等提出了较高要求。文章对微波负载能量耗散试验技术、红外灯阵设计、液氮冷板设计、卫星吊装与支撑技术、污染控制及星内真空度监测技术等在该系列卫星热试验中的成功应用与完善进行了分析、总结。%In the thermal test for the DFH-4 platform satellite, high technical requirements have to be met for the on-orbit operating state simulation of the transponder, the high or low heat flux simulation for satellite’s surfaces, the satellite lifting and horizontal bracing, and the pollution control. This paper analyses the technologies for the energy dissipation of the microwave load, the design of the infrared lamp array, the design of the cold plate with liquid nitrogen, the satellite lifting and horizontal bracing, the vacuum degree monitoring inside the satellite and the contamination control, as well as the applications of above-mentioned technologies in test.

  10. Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals

    Science.gov (United States)

    Hain, Christopher Ryan

    Soil moisture plays a vital role in the partitioning of sensible and latent heat fluxes in the surface energy budget and the lack of a dense spatial and temporal network of ground-based observations provides a challenge to the initialization of the true soil moisture state in numerical weather prediction simulations. The retrieval of soil moisture using observations from both satellite-based thermal-infrared (TIR) and passive microwave (PM) sensors has been developed (Anderson et al., 2007; Hain et al., 2009; Jackson, 1993; Njoku et al., 2003). The ability of the TIR and microwave observations to diagnose soil moisture conditions within different layers of the soil profile provides an opportunity to use each in a synergistic data assimilation approach towards the goal of diagnosing the true soil moisture state from surface to root-zone. TIR and PM retrievals of soil moisture are compared to soil moisture estimates provided by a retrospective Land Information System (LIS) simulation using the NOAH LSM during the time period of 2003--2008. The TIR-based soil moisture product is provided by a retrieval of soil moisture associated with surface flux estimates from the Atmosphere-Land-Exchange-Inversion (ALEXI) model (Anderson et al., 1997; Mecikalski et al., 1999; Hain et al., 2009). The PM soil moisture retrieval is provided by the Vrijie Universiteit Amsterdam (VUA)-NASA surface soil moisture product. The VUA retrieval is based on the findings of Owe et al. (2001; 2008) using the Land Surface Parameter model (LPRM), which uses one dual polarized channel (6.925 or 10.65 GHz) for a dual-retrieval of surface soil moisture and vegetation water content. In addition, retrievals of ALEXI (TIR) and AMSR-E (PM) soil moisture are assimilated within the Land Information System using the NOAH LSM. A series of data assimilation experiments is completed with the following configuration: (a) no assimilation, (b) only ALEXI soil moisture, (c) only AMSR-E soil moisture, and (d) ALEXI

  11. Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy.

    Science.gov (United States)

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-12-02

    We propose a route to examine the thermal degradation of organic light-emitting diodes (OLEDs) with infrared (IR) imaging and impedance spectroscopy. Four different OLEDs with tris (8-hydroxyquinolinato) aluminum are prepared in this study for the analysis of thermal degradation. Our comparison of the thermal and electrical characteristics of these OLEDs reveals that the real-time temperatures of these OLEDs obtained from the IR images clearly correlate with the electrical properties and lifetimes. The OLED with poor electrical properties shows a fairly high temperature during the operation and a considerably short lifetime. Based on the correlation of the real-time temperature and the performance of the OLEDs, the impedance results suggest different thermal degradation mechanisms for each of the OLEDs. The analysis method suggested in this study will be helpful in developing OLEDs with higher efficiency and longer lifetime.

  12. Directional Characteristics of Thermal-Infrared Beaming from Atmosphereless Planetary Surfaces - A New Thermophysical Model

    CERN Document Server

    Rozitis, Ben

    2012-01-01

    We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, selfheating and thermal-infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterised by an RMS slope of ~32 degrees. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alter...

  13. Infrared thermal mapping of the martian surface and atmosphere: first results.

    Science.gov (United States)

    Kieffer, H H; Chase, S C; Miner, E D; Palluconi, F D; Münch, G; Neugebauer, G; Martin, T Z

    1976-08-27

    The Viking infrared thermal mapper measures the thermal emission of the martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO(2) condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO(2) clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  14. Infrared thermal mapping of the Martian surface and atmosphere - First results

    Science.gov (United States)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.; Muench, G.; Neugebauer, G.

    1976-01-01

    The Viking infrared thermal mapper measures the thermal emission of the Martian surface and atmosphere and the total reflected sunlight. With the high resolution and dense coverage being achieved, planetwide thermal structure is apparent at large and small scales. The thermal behavior of the best-observed areas, the landing sites, cannot be explained by simple homogeneous models. The data contain clear indications for the relevance of additional factors such as detailed surface texture and the occurrence of clouds. Areas in the polar night have temperatures distinctly lower than the CO2 condensation point at the surface pressure. This observation implies that the annual atmospheric condensation is less than previously assumed and that either thick CO2 clouds exist at the 20-kilometer level or that the polar atmosphere is locally enriched by noncondensable gases.

  15. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    Science.gov (United States)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  16. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from the instrumental noise. The interferences by auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and the temporal variation patterns of the retrieved column abundances agree well with the current state of knowledge.

  17. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite

    Directory of Open Access Journals (Sweden)

    I. Morino

    2011-04-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT was launched on 23 January 2009 to monitor the global distributions of carbon dioxide and methane from space. It has operated continuously since then. Here, we describe a retrieval algorithm for column abundances of these gases from the short-wavelength infrared spectra obtained by the Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS. The algorithm consists of three steps. First, cloud-free observational scenes are selected by several cloud-detection methods. Then, column abundances of carbon dioxide and methane are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. Most of the retrieval random errors come from instrumental noise. The interferences due to auxiliary parameters retrieved simultaneously with gas abundances are small. The evaluated precisions of the retrieved column abundances for single observations are less than 1% in most cases. The interhemispherical differences and temporal variation patterns of the retrieved column abundances show features similar to those of an atmospheric transport model.

  18. Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared...... data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross...

  19. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

    Science.gov (United States)

    Toropova, Marina M.; Steeves, Craig A.

    2015-08-01

    Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design.

  20. Infrared Thermography as Applied to Thermal Testing of Power Systems Circuit Boards.

    Science.gov (United States)

    Miles, Jonathan James

    All operational electronic equipment dissipates some amount of energy in the form of infrared radiation. Faulty electronic components on a printed circuit board can be categorized as hard (functional) or soft (latent functional). Hard faults are those which are detected during a conventional manufacturing electronic test process. Soft failures, in contrast, are those which are undetectable through conventional testing, but which manifest themselves after a product has been placed into service. Such field defective modules ultimately result in operational failure and subsequently enter a manufacturer's costly repair process. While thermal imaging systems are being used increasingly in the electronic equipment industry as a product-testing tool, applications have primarily been limited to product design or repair processes, with minimal use in a volume manufacturing environment. Use of thermal imaging systems in such an environment has mostly been limited to low-volume products or random screening of high-volume products. Thermal measurements taken in a manufacturing environment are often taken manually, thus defeating their capability of rapid data acquisition and constraining their full potential in a high-volume manufacturing process. Integration of a thermal measurement system with automated testing equipment is essential for optimal use of expensive infrared measurement tools in a high-volume manufacturing environment. However, such a marriage presents problems with respect to both existing manufacturing test processes and infrared measurement techniques. Methods are presented in this dissertation to test automatically for latent faults, those which elude detection during conventional electronic testing, on printed circuit boards. These methods are intended for implementation in a volume manufacturing environment and involve the application of infrared imaging tools. Successful incorporation of infrared testing into existing test processes requires that: PASS

  1. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies

    Science.gov (United States)

    Hook, Simon J.; Gabell, A. R.; Green, A. A.; Kealy, P. S.

    1992-01-01

    This article evaluates three techniques developed to extract emissivity information from multispectral thermal infrared data. The techniques are the assumed Channel 6 emittance model, thermal log residuals, and alpha residuals. These techniques were applied to calibrated, atmospherically corrected thermal infrared multispectral scanner (TIMS) data acquired over Cuprite, Nevada in September 1990. Results indicate that the two new techniques (thermal log residuals and alpha residuals) provide two distinct advantages over the assumed Channel 6 emittance model. First, they permit emissivity information to be derived from all six TIMS channels. The assumed Channel 6 emittance model only permits emissivity values to be derived from five of the six TIMS channels. Second, both techniques are less susceptible to noise than the assumed Channel 6 emittance model. The disadvantage of both techniques is that laboratory data must be converted to thermal log residuals or alpha residuals to facilitate comparison with similarly processed image data. An additional advantage of the alpha residual technique is that the processed data are scene-independent unlike those obtained with the other techniques.

  2. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    Science.gov (United States)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  3. Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management

    CERN Document Server

    Tong, Jonathan K; Boriskina, Svetlana V; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    Personal cooling technologies locally control the temperature of an individual rather than a large space, thus providing personal thermal comfort while supplementing cooling loads in thermally regulated environments. This can lead to significant energy and cost savings. In this study, a new approach to personal cooling was developed using an infrared-transparent visible-opaque fabric (ITVOF), which provides passive cooling via the transmission of thermal radiation emitted by the human body directly to the environment. Here, we present a conceptual framework to thermally and optically design an ITVOF. Using a heat transfer model, the fabric was found to require a minimum infrared (IR) transmittance of 0.644 and a maximum IR reflectance of 0.2 to ensure thermal comfort at ambient temperatures as high as 26.1oC (79oF). To meet these requirements, an ITVOF design was developed using synthetic polymer fibers with an intrinsically low IR absorptance. These fibers were then structured to minimize IR reflection via w...

  4. The correlation of multi-angle thermal infrared data and the choice of optimal view angles

    Institute of Scientific and Technical Information of China (English)

    FAN; Wenjie; XU; Xiru

    2004-01-01

    Based on the matrix formula of thermal infrared radiant system, the components temperature can be retrieved by the inversive matrix. Around the stability problem of retrieved result, the research work we did was focused on (i) the correlation of (wk,j) which is the key to affect the retrieval accuracy, (ii) a general method which can help us find the number of retrievable parameters and evaluate the retrieval error before its performance, (iii) the choice of "optimal viewing angle group" based on the formula of absolute error propagation. The row winter wheat field was chosen as an example. The results can provide a theoretical basis for multi-angle thermal infrared remote sensing and components temperature retrieval.

  5. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii

    Science.gov (United States)

    Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.

    1992-01-01

    Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.

  6. Use of infrared thermography in detection, remediation, and commissioning of thermal comfort problems in office buildings

    Science.gov (United States)

    Colantonio, Antonio

    2001-03-01

    Thermal comfort complaints within work places are one of the leading causes of workforce productivity loss within office environments. Generally, mechanical systems are relied on to provide adequate indoor environments. In many situations, these systems cannot provide suitable work environments due to unacceptable asymmetrical radiant temperature conditions found in exterior zones of building interiors. Public Works and Government Services Canada (PWGSC) has developed methodologies using infrared technology to assist building and office managers in reducing thermal comfort complaints and improve workforce productivity. Detection, verification, remediation and commissioning of solutions are easily and effectively carried out with the assistance of infrared radiometers and proper inspection and analysis procedures. This paper will outline two case studies and detail methodologies used in each case.

  7. The Thermal Infrared Sensor (TIRS on Landsat 8: Design Overview and Pre-Launch Characterization

    Directory of Open Access Journals (Sweden)

    Dennis C. Reuter

    2015-01-01

    Full Text Available The Thermal Infrared Sensor (TIRS on Landsat 8 is the latest thermal sensor in that series of missions. Unlike the previous single-channel sensors, TIRS uses two channels to cover the 10–12.5 micron band. It is also a pushbroom imager; a departure from the previous whiskbroom approach. Nevertheless, the instrument requirements are defined such that data continuity is maintained. This paper describes the design of the TIRS instrument, the results of pre-launch calibration measurements and shows an example of initial on-orbit science performance compared to Landsat 7.

  8. Determination of thermal contact conductance in vacuum-bagged thermoplastic prepreg stacks using infrared thermography

    Science.gov (United States)

    Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme

    2016-10-01

    The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.

  9. SPATIOTEMPORAL EVALUATION OF NOCTURNAL COLD AIR DRAINAGE OVER A SIMPLE SLOPE USING THERMAL INFRARED IMAGERY

    Directory of Open Access Journals (Sweden)

    V. Ikani

    2016-06-01

    The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  10. Influence of urbanization on the thermal environment of meteorological station:Satellite-observed evidence

    Institute of Scientific and Technical Information of China (English)

    SHI Tao; HUANG Yong; WANG Hong; SHI Chun-E; YANG Yuan-Jian

    2015-01-01

    In this paper, five national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010. Satellite-based land use/land cover (LULC), land surface temperature (LST), normalized difference vegetation index (NDVI) are used to investigate the effects. The study shows that LULC around meteorological stations changed significantly due to urban expansion. Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations. Moreover, the normalized LST and NDVI exhibit strong inverse correlations around meteorological stations, so the variability of LST can be monitored through evaluating the variability of NDVI. In addition, station-relocation plays an important role in improving representativeness of thermal environment. Notably, the environment representativeness was improved, but when using the data from the station to study climate change, the relocation-induced inhomogeneous data should be considered and adjusted. Consequently, controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation. The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.

  11. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  12. a Diagnostic Approach to Obtaining Planetary Boundary Layer Winds Using Satellite-Derived Thermal Data

    Science.gov (United States)

    Belt, Carol Lynn

    The feasibility of using satellite-derived thermal data to generate realistic synoptic-scale winds within the planetary boundary layer (PBL) is examined. Diagnostic "modified Ekman" wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite-derived winds based on 62 predawn (0921 GMT 19 April 1979) TIROS-N soundings are compared to similarly-derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface. Horizontal moisture divergence, moisture advection, velocity divergence and relative vorticity are computed at 300 m AGL using satellite-derived winds and moisture data. Results show excellent agreement with corresponding RAOB-derived values. Areas of horizontal moisture convergence, velocity convergence, and positive vorticity are nearly coincident and align in regions which later develop intense convection. Vertical motion at 1600 m AGL is computed using stepwise integration of the satellite winds through the PBL. Values and patterns are similar to those obtained using the RAOB-derived winds. Regions of maximum upward motion correspond with areas of greatest moisture convergence and the convection that later develops.

  13. Near-infrared emission from ZnO nanorods grown by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tu [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Tuan, N.T. [College of Science, Cantho University, 3/2, Ninh Kieu, Cantho (Viet Nam); Nguyen, Van Dung; Cuong, N.D.; Kien, N.D.T.; Huy, P.T. [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Nguyen, Van Hieu [International Training Institute for Material Sciences, Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Nguyen, D.H., E-mail: hung.nguyenduy@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam)

    2014-12-15

    We report the growth of ZnO nanorods on Si/SiO{sub 2} subtrates by the thermal evaporation method at different distances (substrate temperatures) from vapor source to substrates. SEM images showed that morphologies of nanorods were significantly affected by distance from the substrate to vapor source. Energy dispersive X-ray spectroscopy (EDS) spectra present change of the ratio of zinc to oxygen in ZnO nanostructures as the substrate temperature varied. X-ray diffraction patterns revealed that the prepared ZnO nanorods are preferentially oriented in the c-axis at lower substrate temperature. The shift towards small angle of the XRD pattern peaks is consistent with the presence of the redundant zinc and the lack oxygen in the ZnO lattice. The photoluminescence (PL) spectra of the ZnO nanorods show beside the near band edge UV emission, a very broad emission ranges from green to near-infrared (NIR). The NIR emission is interpreted as due to the transition of carriers between radiative recombination centers related to Zn interstitials and oxygen interstitials. - Highlights: • ZnO nanorods were grown by thermal evaporation method at different temperatures. • Morphologies of ZnO nanorods were strongly affected by substrate temperature. • The depth level emission presents broad bands from green to infrared region simultaneously. • The depth level emitting at long wavelength region enhances as reducing growth temperature. • Near-infrared emission from ZnO nanorods grown by thermal evaporation method.

  14. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  15. M-type asteroids in the mid-infrared: thermal inertias and emissivity spectra

    Science.gov (United States)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto

    2016-10-01

    The M-type asteroid taxon has been inferred to contain metallic asteroids. This inference comes mainly from spectral analogy to iron meteorites and from the observation of high radar albedos among M-types. There is, nevertheless, evidence for significant compositional diversity within the M-type population. Spectral signatures of both high-temperature silicates (λ~0.9 μm) and hydrated minerals (λ~3 μm) are common in this group. The nature of the M-types is, therefore, still not well understood. In order to further test the hypothesis that many M-types are metallic, we have undertaken an observational study at mid-infrared wavelengths (5.2 – 38 μm). Our aim is to characterize the silicate composition and the thermal properties of a sample of M-type asteroids. If metallic, we expect relatively high thermal inertia and an absence of silicate emissivity features. The spectra we analyze were measured with the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. We present emissivity spectra and the initial results of thermophysical modeling, including derived thermal inertias. We chose our sample because these asteroids have also been observed at complementary wavelengths, such as visible, near-infrared and radar, which places further constraints on the interpretation of our results.

  16. Assimilation of microwave, infrared, and radio occultation satellite observations with a weather research and forecasting model for heavy rainfall forecasting

    Science.gov (United States)

    Boonyuen, Pakornpop; Wu, Falin; Phunthirawuth, Parwapath; Zhao, Yan

    2016-10-01

    In this research, satellite observation data were assimilated into Weather Research and Forecasting Model (WRF) by using Three-dimensional Variational Data Assimilation System (3DVAR) to analyze its impacts on heavy rainfall forecasts. The weather case for this research was during 13-18 September 2015. Tropical cyclone VAMCO, forming in South China Sea near with Vietnam, moved on west direction to the Northeast of Thailand. After passed through Vietnam, the tropical cyclone was become to depression and there was heavy rainfall throughout the area of Thailand. Observation data, used in this research, included microwave radiance observations from the Advanced Microwave Sounding Unit-A (AMSU-A), infrared radiance observations from Infrared Atmospheric Sounding Interferometer (IASI), and GPS radio occultation (RO) from the COSMIC and CHAMP missions. The experiments were designed in five cases, namely, 1) without data assimilation (CTRL); 2) with only RO data (RO); 3) with only AMSU-A data (AMSUA); 4) with only IASI data (IASI); and 5) with all of RO, AMSU-A and IASI data assimilation (ALL). Then all experiment results would be compared with both NCEP FNL (Final) Operational Global Analysis and the observation data from Thai Meteorological Department weather stations. The experiments result demonstrated that with microwave (AMSU-A), infrared (IASI) and GPS radio occultation (RO) data assimilation can produce the positive impact on analyses and forecast. All of satellite data assimilations have corresponding positive effects in term of temperature and humidity forecasting, and the GPS-RO assimilation produces the best of temperature and humidity forecast biases. The satellite data assimilation has a good impact on temperature and humidity in lower troposphere and vertical distribution that very helpful for heavy rainfall forecast improvement.

  17. Near-infrared thermal emission from near-Earth asteroids: Aspect-dependent variability

    CERN Document Server

    Moskovitz, Nicholas A; DeMeo, Francesca E; Binzel, Richard P; Endicott, Thomas; Yang, Bin; Howell, Ellen S; Vervack, Ronald J; Fernandez, Yanga R

    2016-01-01

    Here we explore a technique for constraining physical properties of near-Earth asteroids (NEAs) based on variability in thermal emission as a function of viewing aspect. We present case studies of the low albedo, near-Earth asteroids (285263) 1998 QE2 and (175706) 1996 FG3. The Near-Earth Asteroid Thermal Model (NEATM) is used to fit signatures of thermal emission in near-infrared (0.8 - 2.5 micron) spectral data. This analysis represents a systematic study of thermal variability in the near-IR as a function of phase angle. The observations of QE2 imply that carefully timed observations from multiple viewing geometries can be used to constrain physical properties like retrograde versus prograde pole orientation and thermal inertia. The FG3 results are more ambiguous with detected thermal variability possibly due to systematic issues with NEATM, an unexpected prograde rotation state, or a surface that is spectrally and thermally heterogenous. This study highlights the potential diagnostic importance of high ph...

  18. Near-infrared thermal emission from near-Earth asteroids: Aspect-dependent variability

    Science.gov (United States)

    Moskovitz, Nicholas A.; Polishook, David; DeMeo, Francesca E.; Binzel, Richard P.; Endicott, Thomas; Yang, Bin; Howell, Ellen S.; Vervack, , Ronald J.; Fernández, Yanga R.

    2017-03-01

    Here we explore a technique for constraining physical properties of near-Earth asteroids (NEAs) based on variability in thermal emission as a function of viewing aspect. We present case studies of the low albedo, near-Earth asteroids (285263) 1998 QE2 and (175706) 1996 FG3. The Near-Earth Asteroid Thermal Model (NEATM) is used to fit signatures of thermal emission in near-infrared (0.8 - 2.5 μm) spectral data. This analysis represents a systematic study of thermal variability in the near-IR as a function of phase angle. The observations of QE2 imply that carefully timed observations from multiple viewing geometries can be used to constrain physical properties like retrograde versus prograde pole orientation and thermal inertia. The FG3 results are more ambiguous with detected thermal variability possibly due to systematic issues with NEATM, an unexpected prograde rotation state, or a surface that is spectrally and thermally heterogenous. This study highlights the potential diagnostic importance of high phase angle thermal measurements on both sides of opposition. We find that the NEATM thermal beaming parameters derived from our near-IR data tend to be of order10's of percent higher than parameters from ensemble analyses of longer wavelength data sets. However, a systematic comparison of NEATM applied to data in different wavelength regimes is needed to understand whether this offset is simply a reflection of small number statistics or an intrinsic limitation of NEATM when applied to near-IR data. With the small sample presented here, it remains unclear whether NEATM modeling at near-IR wavelengths can robustly determine physical properties like pole orientation and thermal inertia.

  19. Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.

    Science.gov (United States)

    Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian

    2015-09-21

    For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring.

  20. Adjusted normalized emissivity method for surface temperature and emissivity retrieval from optical and thermal infrared remote sensing data

    OpenAIRE

    Coll Company, César; Valor i Micó, Enric; Caselles Miralles, Vicente; Niclòs Corts, Raquel

    2003-01-01

    A methodology for the retrieval of surface temperatures and emissivities combining visible, near infrared and thermal infrared remote sensing data was applied to Digital Airborne Imaging Spectrometer (DAIS) data and validated with coincident ground measurements acquired in a multiyear experiment held in an agricultural site in Barrax, Spain. The Adjusted Normalized Emissivity Method (ANEM) is based on the use of visible and near infrared data to estimate the vegetation cover and model the max...

  1. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  2. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS.

    Science.gov (United States)

    Mahmood, Khalid; Batool, Syeda Adila; Chaudhry, Muhammad Nawaz

    2016-09-01

    Estimating negative impacts of MSW dumps on its surrounding environment is the key requirement for any remedial measures. This study has been undertaken to map bio-thermal effects of MSW dumping at and around dumping facilities (non-engineered) using satellite imagery for Faisalabad, Pakistan. Thirty images of Landsat 8 have been selected after validation for the accuracy of their observational details from April 2013 to October 2015. Land Surface Temperature (LST), NDVI, SAVI and MSAVI have been derived from these images through Digital Image Processing (DIP) and have been subjected to spatio-temporal analysis in GIS environment. MSW dump has been found with average temperature elevation of 4.3K and 2.78K from nearby agriculture land and urban settlement respectively. Vegetation health has been used as the bio-indicator of MSW effects and is implemented through NDVI, SAVI, MSAVI. Spatial analyses have been used to mark boundary of bio-thermally affected zone around dumped MSW and measure 700m. Seasonal fluctuations of elevated temperatures and boundary of the bio-thermally affected zones have also been discussed. Based on the direct relation found between vegetation vigor and the level of deterioration within the bio-thermally affected region, use of crops with heavy vigor is recommended to study MSW hazard influence using bio-indicators of vegetation health.

  3. Investigation on reduced thermal models for simulating infrared images in fusion devices

    Science.gov (United States)

    Gerardin, J.; Aumeunier, M.-H.; Firdaouss, M.; Gardarein, J.-L.; Rigollet, F.

    2016-09-01

    In fusion facilities, the in-vessel wall receives high heat flux density up to 20 MW/m2. The monitoring of in-vessel components is usually ensured by infra-red (IR) thermography but with all-metallic walls, disturbance phenomenon as reflections may lead to inaccurate temperature estimates, potentially endangering machine safety. A full predictive photonic simulation is then used to assess accurately the IR measurements. This paper investigates some reduced thermal models (semi-infinite wall, thermal quadrupole) to predict the surface temperature from the particle loads on components for a given plasma scenario. The results are compared with a reference 3D Finite Element Method (Ansys Mechanical) and used as input for simulating IR images. The performances of reduced thermal models are analysed by comparing the resulting IR images.

  4. Thermal study of the Missouri River in North Dakota using infrared imagery

    Science.gov (United States)

    Crosby, Orlo A.

    1971-01-01

    Studies of infrared imagery obtained from aircraft at 305- to 1,524- meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal-electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground-water seeps, in large rivers. No identifiable sources of ground-water inflow below t he surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tri butary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Though the patterns are generally discernible in the imagery from 1,067-meter and 1,524-meter altitudes, there is not sufficient ground resolution to make any but the most general qualitative analyses. The quality of the imagery varied with land-water temperature relations as well as with instrument properties.

  5. Design of mct1024×1 short wave infrared thermal camera

    Science.gov (United States)

    Jian, Xian Zhong; Zhang, Su Ying

    2005-10-01

    A thermal camera consists of 1024-element MCT line wavelength IRFPA with reading electrocircuit made in china. It is presented the composing of this infrared thermal camera and some key question of this thermal camera: 1) nonuniformity correction; 2) Correction of lines and rows. With same axial transmission optics and a 1-D equality angle scanner and 1024X1600 pixels per frame.the scan efficiency of the sensor is over 88% and the half periods of scanner is 5 seconds. we developed a IR instrument. the main technic target is followed: optics calibre: 90 mm, focus: 270.6 mm, identifiaction ratio:170 urad, wave band: 2-2.5um, the half period: 5 second, NEΔρ: 0.8%.

  6. Assessing Consistency in Radiated Thermal Output of Beef Steers by Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-07-01

    Full Text Available Measurements of radiated thermal output are claimed to reflect the metabolic efficiency of mammals. This is important in food-producing animals because a measure of metabolic efficiency may translate to desirable characteristics, such as growth efficiency or residual feed intake, and permit the grouping of animals by metabolic characteristics that can be more precisely managed. This study addresses the question of whether radiated thermal parameters are characteristic of individual animals under normal and metabolically-challenging conditions. Consistency in radiated thermal output was demonstrated over a period of four weeks on condition that a sufficiently representative sample of measurements could be made on individual animals. The study provided evidence that infrared thermography could be used as an automated, rapid, and reliable tool for assessing thermoregulatory processes.

  7. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  8. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  9. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  10. Evaluation of the cellulite using a thermal infra-red camera.

    Science.gov (United States)

    Nkengne, A; Papillon, A; Bertin, C

    2013-02-01

    Cellulite is usually related to alterations of the microcirculation. Measuring the skin temperature is a mean to assess the skin microvascular plexus. A three-step clinical study was performed in order to develop and to validate the use of an infrared thermal camera for measuring cellulite severity. Thermal images of the thigh were recorded and processed to quantify the thermal homogeneity. The proposed protocol was then validated in three steps. Firstly, the parameters which could influence the skin temperature were identified throw a design of experiment. Secondly, the repeatability and reproducibility of the method was estimated (five subjects, four investigators and five experiments). Finally, thermal images and clinical grading of cellulite was performed on 39 women (21-68 years old), and the correlation between these methods was assessed. All parameters describing the thermal homogeneity were found repeatable and reproducible. The strongest correlation between thermal results and the clinical assessment were observed for Sa (R = 0.53, P cellulite. © 2012 John Wiley & Sons A/S.

  11. Steady-state sinusoidal thermal characterization at chip level by internal infrared-laser deflection

    Energy Technology Data Exchange (ETDEWEB)

    Perpina, Xavier; Jorda, Xavier; Vellvehi, Miquel [Centre Nacional de Microelectronica (IMB-CNM-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Altet, Josep [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Barcelona 08034 (Spain); Mestres, NarcIs [Institut de Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2008-08-07

    A new approach is reported for thermally characterizing microelectronic devices and integrated circuits under a steady-state sinusoidal regime by internal infrared-laser deflection (IIR-LD). It consists of extracting the amplitude and phase Bode plots of the temperature profile inside the chip (depth-resolved measurements in the frequency domain). As a consequence, not only are the IIR-LD performances significantly improved (accuracy, robustness to noise, control of boundary conditions and heat flux confinement) but also the direct temperature measurement is feasible when thin regions are inspected and thermal parameters can be easily extracted (thermal diffusivity). In order to show the efficiency of this technique, a thermal test chip (TTC) is used. The TTC is thermally excited by imposing a cosine-like voltage waveform. As a result, a vertical temperature profile inside the die is obtained depending on the heating frequency. Repeating this procedure at several frequencies, the frequency response of the chip internal temperature profile is derived. By comparing the experimental results with the model predictions, good agreement is achieved. This technique allows evaluation of the thermal behaviour at the chip level; also it could be useful for failure analysis.

  12. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    Science.gov (United States)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  13. THE APPLICATION OF HOMEMADE FY-2 SATELLITE INFRARED DATA TO MM5

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; SHEN Tong-li

    2006-01-01

    @@ 1 INTRODUCTION In the end of 1980's, an operational system for 3-D variation and assimilation of meteorological data was set up in the U.S.A that supplemented data assimilation,retrieval of satellite data and numerical prediction each other. NWP was thus improved. Towards the end of 1990's, satellite observations were extensively used in NWP at ECMWF to upgrade the quality of analysis and forecasting.

  14. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  15. Thermal imaging during infrared final cooking of semi-processed cylindrical meat product

    Science.gov (United States)

    Kor, Gamze; Icier, Filiz

    2016-11-01

    The temperature measurements during the infrared cooking of the semi-cooked cylindrical minced beef product (koefte) were taken by both contact (thermocouples) and non-contact (thermal imaging) techniques. The meat product was semi-cooked till its core temperature reached up to 75 °C by ohmic heating applied at 15.26 V/cm voltage gradient. Then, infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.7, 5.7 and 8.5 kW/m2), applied distances (10.5, 13.5 and 16.5 cm) and applied durations (4, 8 and 12 min). The average surface temperature increased as the heat flux and the applied duration increased but the applied distance decreased. The temperature distribution of the surface during infrared cooking was determined successfully by non-contact measurements. The temperature homogeneity varied between 0.77 and 0.86. The process condition of 8.5 kW/m2 for 8 min resulted in core temperature greater than 75 °C, which was essential for safe production of ready-to-eat (RTE) meat products. Thermal imaging was much more convenient method for minimizing the point measurement mistakes and determining temperature distribution images more clear and visual.

  16. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    Science.gov (United States)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and

  17. Optical assembly of a visible through thermal infrared multispectral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

    1998-06-01

    The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

  18. Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST)

    Science.gov (United States)

    Sannazzaro, Filomena; Filizzola, Carolina; Marchese, Francesco; Corrado, Rosita; Paciello, Rossana; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio

    2014-01-01

    Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used. In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.

  19. Investigating the error budget of tropical rainfall accumulations derived from combined passive microwave and infrared satellite measurements

    Science.gov (United States)

    Roca, R.; Chambon, P.; jobard, I.; Viltard, N.

    2012-04-01

    Measuring rainfall requires a high density of observations, which, over the whole tropical elt, can only be provided from space. For several decades, the availability of satellite observations has greatly increased; thanks to newly implemented missions like the Megha-Tropiques mission and the forthcoming GPM constellation, measurements from space become available from a set of observing systems. In this work, we focus on rainfall error estimations at the 1 °/1-day accumulated scale, key scale of meteorological and hydrological studies. A novel methodology for quantitative precipitation estimation is introduced; its name is TAPEER (Tropical Amount of Precipitation with an Estimate of ERrors) and it aims to provide 1 °/1-day rain accumulations and associated errors over the whole Tropical belt. This approach is based on a combination of infrared imagery from a fleet of geostationary satellites and passive microwave derived rain rates from a constellation of low earth orbiting satellites. A three-stage disaggregation of error into sampling, algorithmic and calibration errors is performed; the magnitudes of the three terms are then estimated separately. A dedicated error model is used to evaluate sampling errors and a forward error propagation approach is used for an estimation of algorithmic and calibration errors. One of the main findings in this study is the large contribution of the sampling errors and the algorithmic errors of BRAIN on medium rain rates (2 mm h-1 to 10 mm h-1) in the total error budget.

  20. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  1. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  2. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy

    Science.gov (United States)

    Yamasaki, Hideki; Morita, Shigeaki

    2014-07-01

    A curing reaction of bisphenol A diglycidyl ether epoxy resin with 4,4‧-diaminodicyclohexyl methane hardener was investigated by means of modulated differential scanning calorimetry (MDSC), thermal scanning rheometer (TSR), near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The relation between change in the physical properties and molecular structures during the isothermal curing reaction were studied. MDSC and NIR results corroborated vitrification with the secondary to tertiary amine conversion; the process afforded a three-dimensional cross-linking structure. TSR estimation of the gelation point was corroborated with the NIR-determined maximum concentration of the generated secondary amine. Two-dimensional correlation spectroscopy confirmed that reaction between the primary amine and epoxy occurred more rapidly than any other functional group reaction. The ether groups were generated at the early stage of the curing reaction, and their formation occurred immediately with the generation of hydroxyl groups.

  3. Application of Infrared Thermal Imaging in a Violinist with Temporomandibular Disorder.

    Science.gov (United States)

    Clemente, M; Coimbra, D; Silva, A; Aguiar Branco, C; Pinho, J C

    2015-12-01

    Temporomandibular disorders (TMD) consist of a group of pathologies that affect the masticatory muscles, temporomandibular joints (TMJ), and/or related structures. String instrumentalists, like many orchestra musicians, can spend hours with head postures that may influence the biomechanical behavior of the TMJ and the muscles of the craniocervicomandibular complex (CCMC). The adoption of abnormal postures acquired during performance by musicians can lead to muscular hyperactivity of the head and cervical muscles, with the possible appearance of TMD. Medical infrared thermography is a non-invasive procedure that can monitor the changes in the superficial tissue related to blood circulation and may serve as a complement to the clinical examination. The objective of this study was to use infrared thermography to evaluate, in one subject, the cutaneous thermal changes adjacent to the CCMC that occur before, during, and after playing a string instrument.

  4. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement

    Science.gov (United States)

    Huang, Wei-Lun; Hsiao, Hui-Hsin; Tang, Ming-Ru; Lee, Si-Chen

    2016-08-01

    This paper presents a triple-wavelength infrared plasmonic thermal emitter using a periodic arrangement of hybrid dielectric materials within a tri-layer metal/dielectric/metal structure. The proposed arrangement makes it possible to sustain multiple resonance of localized surface plasmons (LSP), thereby providing an additional degree of freedom by which to vary the resonant wavelengths in the medium infrared region. Variations in the effective refractive index due to the different modal distribution within dielectric gratings results in multiple LSP resonances, and the resonant wavelengths can be easily tuned by altering the compositions of hybrid dielectric materials. The measured dispersion relation diagram and the finite difference time domain simulation indicated that the resonances were localized. They also indicate that the magnetic fields generated by the multiple LSP modes exhibit distribution patterns similar to that of a standing wave in the periodic arrangement of the hybrid dielectric layer, each of which presents an emission peak corresponding to a different modal order.

  5. Relationship among eye temperature measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle

    Science.gov (United States)

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of...

  6. Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data

    Science.gov (United States)

    Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong

    2017-01-01

    In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.

  7. Measurement of thermal properties of magnetic nanoparticles using infrared thermal microscopy

    DEFF Research Database (Denmark)

    Kim, Jae Young; Chang, Ki Soo; Kook, Myung Ho

    2013-01-01

    Magnetic nanoparticles (MNPs) are considered promising for biomedical applications such as hyperthermia treatment and disease diagnosis owing to their distinctive thermal properties. For these applications, it is essential to screen the temperature distribution in the targeted disease site. This ...... temperature was observed using lock-in thermography for a small amount of MNPs distributed around the lesion. This suggests that the proposed microthermography technique can be used for diagnosis and screening in the early stage of a disease. © 2013 Elsevier B.V. All rights reserved....

  8. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  9. Proximity and Gaze Influences Facial Temperature: A Thermal Infrared Imaging Study.

    Directory of Open Access Journals (Sweden)

    Stephanos eIoannou

    2014-08-01

    Full Text Available Direct gaze and interpersonal proximity are known to lead to changes in psycho-physiology, behaviour and brain function. We know little, however, about subtler facial reactions such as rise and fall in temperature, which may be sensitive to contextual effects and functional in social interactions. Using thermal infrared imaging cameras 18 female adult participants were filmed at two interpersonal distances (intimate and social and two gaze conditions (averted and direct. The order of variation in distance was counterbalanced: half the participants experienced a female experimenter’s gaze at the social distance first before the intimate distance (a socially ‘normal’ order and half experienced the intimate distance first and then the social distance (an odd social order. At both distances averted gaze always preceded direct gaze. We found strong correlations in thermal changes between six areas of the face (forehead, chin, cheeks, nose, maxilliary and periorbital regions for all experimental conditions and developed a composite measure of thermal shifts for all analyses. Interpersonal proximity led to a thermal rise, but only in the ‘normal’ social order. Direct gaze, compared to averted gaze, led to a thermal increase at both distances with a stronger effect at intimate distance, in both orders of distance variation. Participants reported direct gaze as more intrusive than averted gaze, especially at the intimate distance. These results demonstrate the powerful effects of another person’s gaze on psycho-physiological responses, even at a distance and independent of context.

  10. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2016-09-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  11. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Science.gov (United States)

    Okada, Tatsuaki; Fukuhara, Tetsuya; Tanaka, Satoshi; Taguchi, Makoto; Imamura, Takeshi; Arai, Takehiko; Senshu, Hiroki; Ogawa, Yoshiko; Demura, Hirohide; Kitazato, Kohei; Nakamura, Ryosuke; Kouyama, Toru; Sekiguchi, Tomohiko; Hasegawa, Sunao; Matsunaga, Tsuneo; Wada, Takehiko; Takita, Jun; Sakatani, Naoya; Horikawa, Yamato; Endo, Ken; Helbert, Jörn; Müller, Thomas G.; Hagermann, Axel

    2017-07-01

    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16 × 12° and a spatial resolution of 0.05° per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.

  12. Near-infrared spectrophotometry of the satellites and rings of Uranus

    Science.gov (United States)

    Soifer, B. T.; Neugebauer, G.; Matthews, K.

    1981-01-01

    New spectrophotometry from 1.5 to 2.5 microns is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 microns is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.

  13. A study on correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data and underground temperature

    Institute of Scientific and Technical Information of China (English)

    HAN; Liqun; BI; Siwen; SONG; Shixin

    2006-01-01

    Based on an analysis of the correlativity between Qinghai-Tibet Plateau thermal infrared remote sensing data (QPTIRSD) and underground temperature field distribution, the main factors which obviously influence underground-layer temperatures were derived. Using neural network technology, a model was built to compute underground temperatures via parameters out of the inversion of thermal infrared remote sensing (TIRS) and then analyze the correlativity between above-ground parameters and underground temperatures. This method offers a new way to apply TIRS in monitoring the suture zone of a large-area massif as well as to research structural thermal anomalies.

  14. Aerial visible-thermal infrared hyperspectral feature extraction technology and its application to object identification

    Science.gov (United States)

    Jie-lin, Zhang; Jun-hu, Wang; Mi, Zhou; Yan-ju, Huang; Ding, Wu

    2014-03-01

    Based on aerial visible-thermal infrared hyperspectral imaging system (CASI/SASI/TASI) data, field spectrometer data and multi-source geological information, this paper utilizes the hyperspectral data processing and feature extraction technology to identify uranium mineralization factors, the spectral features of typical tetravalent, hexavalent uranium minerals and mineralization factors are established, and hyperspectral logging technology for drill cores and trench also are developed, the relationships between radioactive intensity and spectral characteristics are built. Above methods have been applied to characterize uranium mineralization setting of granite-type and sandstone-type uranium deposits in south and northwest China, the successful outcomes of uranium prospecting have been achieved.

  15. Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass

    Institute of Scientific and Technical Information of China (English)

    DU Wen-yong; HE Xiong-kui; ZHANG Lu-da; HU Zhen-fang; Shamaila Z; ZENG Ai-jun; SONG Jian-li; LIU Ya-jia; Wolfram S; Joachim M

    2011-01-01

    The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation (drip irrigation, sprinkler irrigation, flood irrigation). It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass. The temperature of crop and background was measured by thermal infrared image. It is necessary to get the crop background separation index (CBSILL ,CBSIH ), which can be used for distinguishing the crop value from the image. CBSIL. and CBSIH (the temperature when the leaves are wet adequately; the temperature when the stomata of leaf is closed completely) are the threshold values. The temperature of crop ranged from CBSI1. to CBSIH. Then the ICWSI was calculated based on relevant theoretical method. The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI. In order to construct the high accuracy simulation model, the samples were divided into two parts. One was used for constructing the simulation model, the other for checking the accuracy of the model. Such result of the model was concluded as: (1) As for the simulation model of soil moisture, the correlation coefficient (R2) is larger than 0. 887 6, the average of relative error (Er) ranges from 13.33% to 16. 88%; (2) As for the simulation model of winter wheat yield, drip irrigation (0.887 6,16.89%, -0. 12), sprinkler irrigation (0. 970 0, 14.85%, -0. 12), flood irrigation (0. 969 0, 18. 87%,-0. 18), with the values ofR2, Er and CRM listed in the parentheses followed by the individual term. (3) As for winter wheat biomass, drip irrigation (0. 980 0, 13.70%, -0.13), sprinkler irrigation (0. 95, 13.15%,-0.14), flood irrigation (0. 970 0, 14.48%, -0.13), and the values in the parentheses are demonstrated the same as above. Both the CRM and Er are shown to be very low values, which points to the accuracy and reliability of the model investigated. The

  16. Three years of harvest with the vector vortex coronagraph in the thermal infrared

    CERN Document Server

    Absil, Olivier; Karlsson, Mikael; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Castella, Bruno Femenia; Forsberg, Pontus; Girard, Julien; Gonzalez, Carlos A Gomez; Habraken, Serge; Hinz, Philip M; Huby, Elsa; Jolivet, Aïssa; Matthews, Keith; Milli, Julien; de Xivry, Gilles Orban; Pantin, Eric; Piron, Pierre; Reggiani, Maddalena; Ruane, Garreth J; Serabyn, Eugene; Surdej, Jean; Tristram, Konrad R W; Catalan, Ernesto Vargas; Wertz, Olivier; Wizinowich, Peter

    2016-01-01

    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.

  17. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images

    Science.gov (United States)

    Gillespie, A. R.; Kahle, A. B.; Pallluconi, F. D.

    1984-01-01

    Alluvial fans have been mapped in Death Valley, California using NASA's 8-12 micron six-channel airborne Thermal Infrared Multispectral Scanner (TIMS). Both composition and relative age differences were recognized. Age unit boundries are generally consistent with those obtained by conventional mapping. Composition was verified by field investigation and comparison with existing geologic maps. Bedrock and its young derived fan gravels have similar emissivities. The original composition of the fans is modified by differential erosion and weathering, permitting relative age mapping with TIMS.

  18. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.

    Science.gov (United States)

    Siebke, Georg; Holik, Peter; Schmitz, Sam; Schmitz, Helmut; Lacher, Manfred; Steltenkamp, Siegfried

    2014-09-01

    Beetles of the genus Melanophila acuminata detect forest fires from distances as far as 130 km with infrared-sensing organs. Inspired by this extremely sensitive biological device, we are developing an IR sensor that operates at ambient temperature using MEMS technology. The sensor consists of two liquid-filled chambers that are connected by a micro-fluidic system. Absorption of IR radiation by one of these chambers leads to heating and expansion of a liquid. The increasing pressure deflects a membrane covered by one electrode of a plate capacitor. The micro-fluidic system and the second chamber represent a fluidic low-pass filter, preventing slow, but large pressure changes. However, the strong frequency dependence of the filter demands a precise characterization of its properties. Here, we present a theoretical model that describes the frequency-dependent response of the sensor based on material properties and geometrical dimensions. Our model is divided into four distinct parts that address different aspects of the sensor. The model describes the frequency-dependent behaviour of the fluidic filter and a thermal low-pass filter as well as saturation effects at low frequencies. This model allows the calculation of optimal design parameters, and thereby provides the foundation for the development of such a sensor.

  19. A statistical approach to the thermal analysis at fumarole fields using infrared images

    Science.gov (United States)

    Pisciotta, Antonino; Diliberto, Iole Serena

    2016-04-01

    In the last decades, volcanology has evolved significantly, allowing for an improved understanding of volcanic processes preceding, accompanying and following eruptive events. Thermal imaging data, especially when used together with other monitoring techniques (such as seismicity, GPS measurements, and gas emissions), help to determine the nature of volcanic hazards. Between 2013 and 2015, four thermal surveys of the Vulcano Fossa fumarole field have been carried out. The fluid geochemistry of the target area and the time variation of the maximum temperature of the fluids released by the steaming vents have been well defined during the last decades and a great amount of scientific papers discussing interpretative models of the hydrothermal and magmatic systems feeding the fumaroles are available. The sequences of thermal images were recorded from a fixed view point 400 m (38°24.111' N 14°57.721' E), using a handheld infrared camera. The field surveys aimed to define the areal extension of thermal anomalies. The probability plots revealed different populations of data in each survey. The temperature space variability can be inferred to variable components of heat transport (radiative, convective, conductive) participating in the heat exchange occurring at the ground surface. The variation of shallow permeability of the ground and of the thermal capacity of the exposed surfaces are the main causes of space variability of exposed surfaces. The enlargement of the exhaling area and/or an increase of thermal anomaly surrounding the main fumarole vents (due to steam heating from the bottom source) can highlight significant increases of thermal release even when the maximum temperature of fumarole fluids falls. It has occurred in the last years in the fumarole in the inner slope, like FA fumarole where t dropped from 700°C in 1993 to the actual 250 °C but at the same time the area of steam emission abruptly changed. Responding to thermodynamic basic principles the

  20. Anomalous subsurface thermal behavior in tissue mimics upon near infrared irradiation mediated photothermal therapy.

    Science.gov (United States)

    Ghosh, Soham; Sahoo, Nilamani; Sajanlal, P R; Sarangi, Nirod Kumar; Ramesh, Nivarthi; Panda, Tapobrata; Pradeep, T; Das, Sarit Kumar

    2014-03-01

    Photothermal therapy using (Near Infrared) NIR region of EM spectrum is a fast emerging technology for cancer therapy. Different types of nanoparticles may be used for enhancing the treatment. Though the treatment protocols are developed based on experience driven estimated temperature increase in the tissue, it is not really known what spatiotemporal thermal behavior in the tissue is. In this work, this thermal behavior of tissue models is investigated with and without using nanoparticles. An increased temperature inside tissue compared to surface is observed which is counter intuitive from the present state of knowledge. It is shown from fiber level microstructure that this increased temperature leads to enhanced damage at the deeper parts of biomaterials. Nanoparticles can be utilized to control this temperature increase spatially. A multiple scattering based physical model is proposed to explain this counterintuitive temperature rise inside tissue. The results show promising future for better understanding and standardizing the protocols for photothermal therapy.

  1. Measurement of the in-plane thermal conductivity by steady-state infrared thermography

    CERN Document Server

    Greppmair, Anton; Saxena, Nitin; Gerstberger, Caroline; Müller-Buschbaum, Peter; Stutzmann, Martin; Brandt, Martin S

    2016-01-01

    We demonstrate a simple and quick method for the measurement of the in-plane thermal conductance of thin films via steady-state IR thermography. The films are suspended above a hole in an opaque substrate and heated by a homogeneous visible light source. The temperature distribution of the thin films is captured via infrared microscopy and fitted to the analytical expression obtained for the specific hole geometry in order to obtain the in-plane thermal conductivity. For thin films of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate post-treated with ethylene glycol and of polyimide we find conductivities of 1.0 W/mK and 0.4 W/mK at room temperature, respectively. These results are in very good agreement with literature values, validating the method developed.

  2. Thermal runaway in polyimide at high electric field probed by infrared thermography

    Science.gov (United States)

    Diaham, Sombel; Belijar, Guillaume; Locatelli, Marie-Laure; Lebey, Thierry

    2015-03-01

    An original way for characterizing dielectrics under high electric field and high temperature based on the coupling between electric current measurements and real-time fast infrared (IR) thermography is demonstrated. Particularly, the Joule heating phenomenon at high field is quantified by 2D-temperature cartography in a polyimide (PI) film set at an initial temperature of 300 °C through IR observations of the polarized electrode. 2D-temperature cartography highlights the temperature increase with increasing the electric field. The thermal runway occurs prior to the dielectric breakdown from an electric field threshold of 140-150 V/μm. This corresponds to a dissipated volume power density between 2 and 5 mW/μm3. Such values report the limit of the electro-thermal equilibrium in PI film.

  3. Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

    Directory of Open Access Journals (Sweden)

    Jiyeon Kim

    2016-12-01

    Full Text Available The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were 26.98°C and 28.44°C, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.

  4. Photothermal and infrared thermography characterizations of thermal diffusion in hydroxyapatite materials

    Science.gov (United States)

    Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.

    2009-02-01

    Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.

  5. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    Science.gov (United States)

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra.

  6. Prospective for graphene based thermal mid-infrared light emitting devices

    Directory of Open Access Journals (Sweden)

    L. M. Lawton

    2014-08-01

    Full Text Available We have investigated the spatial and spectral characteristics of mid-infrared thermal emission from large area Chemical Vapor Deposition (CVD graphene, transferred onto SiO2/Si, and show that the emission is broadly that of a grey-body emitter, with emissivity values of approximately 2% and 6% for mono- and multilayer graphene. For the currents used, which could be sustained for over one hundred hours, the emission peaked at a wavelength of around 4 μm and covered the characteristic absorption of many important gases. A measurable modulation of thermal emission was obtained even when the drive current was modulated at frequencies up to 100 kHz.

  7. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  8. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  9. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  10. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  11. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  12. Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy

    Science.gov (United States)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-01

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  13. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study

    Directory of Open Access Journals (Sweden)

    Sathyadevi Venkataramani

    2013-01-01

    Full Text Available Aim: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL at high concentration (200 mg/mL. Materials and Methods: Fourier Transform Infrared (FTIR Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. Results: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated T m values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. Conclusions: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.

  14. Infrared thermographic SAR measurements of interstitial hyperthermia applicators: errors due to thermal conduction and convection.

    Science.gov (United States)

    Sherar, M D; Gladman, A S; Davidson, S R H; Easty, A C; Joy, M L

    2004-08-01

    Thermal conduction and convection were examined as sources of error in thermographically measured SAR patterns of an interstitial microwave hyperthermia applicator. Measurements were performed in a layered block of muscle-equivalent phantom material using an infrared thermographic technique with varying heating duration. There was a 52.7% reduction in maximum SAR and 75.5% increase in 50% iso-SAR contour area for a 60-s heating duration relative to a 10-s heating duration. A finite element model of heat transfer in an homogeneous medium was used to model conductive and convective heat transfer during the thermographic measurement. Thermal conduction artefacts were found to significantly distort thermographically measured SAR patterns. Convective cooling, which occurs when phantom layers are exposed for thermal image acquisition, was found to significantly affect the magnitude, but not the spatial distribution, of thermographically measured SAR patterns. Results from this investigation suggest that the thermal diffusion artefacts can be minimized if the duration of the applied power pulse is restricted to 10 s or less.

  15. Frequency and Spatial Domains Adaptive-based Enhancement Technique for Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Debasis Chaudhuri

    2014-09-01

    Full Text Available Low contrast and noisy image limits the amount of information conveyed to the user. With the proliferation of digital imagery and computer interface between man-and-machine, it is now viable to consider digital enhancement in the image before presenting it to the user, thus increasing the information throughput. With better contrast, target detection and discrimination can be improved. The paper presents a sequence of filtering operations in frequency and spatial domains to improve the quality of the thermal infrared (IR images. Basically, two filters – homomorphic filter followed by adaptive Gaussian filter are applied to improve the quality of the thermal IR images. We have systematically evaluated the algorithm on a variety of images and carefully compared it with the techniques presented in the literature. We performed an evaluation of three filter banks such as homomorphic, Gaussian 5×5 and the proposed method, and we have seen that the proposed method yields optimal PSNR for all the thermal images. The results demonstrate that the proposed algorithm is efficient for enhancement of thermal IR images.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.451-457, DOI:http://dx.doi.org/10.14429/dsj.64.6873

  16. 65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis

    CERN Document Server

    Blommaert, J

    2004-01-01

    We investigated the physical and thermal properties of 65 Cybele}, one of the largest main-belt asteroids. Based on published and recently obtained thermal infrared observations, including ISO measurements, we derived through thermophysical modelling (TPM) a size of 302x290x232 km (+/- 4 %) and an geometric visible albedo of 0.050+/-0.005. Our model of a regolith covered surface with low thermal inertia and "default" roughness describes the wavelengths and phase angle dependent thermal aspects very well. Before/after opposition effect and beaming behaviour can be explained in that way. We found a constant emissivity of 0.9 at wavelengths up to about 100 micron and lower values towards the submillimetre range, indicating a grain size distribution dominated by 200 micron particle sizes. The spectroscopic analysis revealed an emissivity increase between 8.0 and 9.5 micron. We compared this emissivity behaviour with the Christiansen features of carbonaceous chondrite meteorites, but a conclusive identification wa...

  17. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

    Science.gov (United States)

    Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia

    2017-06-01

    Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an

  18. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  19. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  20. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    Science.gov (United States)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  1. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    Science.gov (United States)

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility.

  2. Evaluation of Radiometric Performance for the Thermal Infrared Sensor Onboard Landsat 8

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2014-12-01

    Full Text Available The radiometric performance of remotely-sensed images is important for the applications of such data in monitoring land surface, ocean and atmospheric status. One requirement placed on the Thermal Infrared Sensor (TIRS onboard Landsat 8 was that the noise-equivalent change in temperature (NEΔT should be ≤0.4 K at 300 K for its two thermal infrared bands. In order to optimize the use of TIRS data, this study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over uniform ground surfaces, including lake, deep ocean, snow, desert and Gobi, as well as dense vegetation. Results showed that the NEΔTs of the two bands were 0.051 and 0.06 K at 300 K, which exceeded the design specification by an order of magnitude. The effect of NEΔT on the land surface temperature (LST retrieval using a split window algorithm was discussed, and the estimated NEΔT could contribute only 3.5% to the final LST error in theory, whereas the required NEΔT could contribute up to 26.4%. Low NEΔT could improve the application of TIRS images. However, efforts are needed in the future to remove the effects of unwanted stray light that appears in the current TIRS images.

  3. Dark and background response stability for the Landsat 8 Thermal Infrared Sensor

    Science.gov (United States)

    Vanderwerff, Kelly; Montanaro, Matthew

    2012-01-01

    The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.

  4. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  5. Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking

    Institute of Scientific and Technical Information of China (English)

    Jonathon C. Ralston; Andrew D.Strange

    2013-01-01

    Longwall mining continues to remain the most efficient method for underground coal recovery.A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam.At present,this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam.This is a labour intensive task which has negative impacts on the consistency and quality of coal production.As a solution to this problem,this paper presents a sensing method to automatically track geological coal seam features on the longwall face,known as marker bands,using thermal infrared imaging.These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams.Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction.Details on the theory of thermal infrared imaging are given,as well as practical aspects associated with machine-based implementation underground.The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach.The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.

  6. Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China

    Institute of Scientific and Technical Information of China (English)

    Weijie Yuan; Yi Yu; Yongde Yue; Ji Wang; Fengchun Zhang; Xiaohong Dang

    2015-01-01

    Population of the rare and endangered species Ammopiptanthus mongolicus (Maxim.) Cheng f. declined rapidly in China’s arid region and Central Asia. There is an urgent need to protect this species, which is particularly important in maintaining biodiversity throughout the arid region of northwestern China. By analyzing the infrared thermal images based on plant-transpiration transfer coef-ficient (hat) and photosynthetic parameters, we made quantitative and accurate diagnoses of the plant growth and health status of A. mongolicus. Using an LI-COR6400 photosynthesis system, we measured the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr). Infrared thermal images obtained in the field were processed by ENVI4.8 software to calculate surface tem-peratures of the plant subjects. We found that the plant transpiration transfer coefficient of A. mongolicus was in the order of old plants [young plants [intermediate-aged plants. Declining health levels of young, intermediate, and old plants were divided into three categories:\\0.4, 0.4–0.7, and [0.7. The coefficient showed a significant negative correlation with Tr, Gs, and Pn, indicating that they can simultaneously reflect the state of plant growth. By estab-lishing hat and photosynthetic parameters in regression model Y=a-blnx, we can accurately diagnose plant growth and decline of plant health conditions.

  7. Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared

    CERN Document Server

    Matter, Alexis; Ligori, Sebastiano; Crouzet, Nicolas; Tanga, Paolo

    2011-01-01

    We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface thermal properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid a...

  8. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    Science.gov (United States)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  9. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    Science.gov (United States)

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.

    2011-12-01

    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a 0.95) including vegetation, water and asphalt, and low emissivity surfaces (types, beach sands and senesced grass. Residential and commercial areas showed a

  10. Infrared Studies of Molecular Shocks in the Supernova Remnant HB21: I. Thermal Admixture of Shocked H_2 Gas in the North

    CERN Document Server

    Shinn, Jong-Ho; Burton, Michael G; Lee, Ho-Gyu; Moon, Dae-Sik

    2008-01-01

    We present near- and mid-infrared observations on the shock-cloud interaction region in the northern part of the supernova remnant HB21, performed with the InfraRed Camera (IRC) aboard AKARI satellite and the Wide InfraRed Camera (WIRC) at the Palomar 5 m telescope. The IRC 7 um (S7), 11 um (S11), and 15 um (L15) band images and the WIRC H2 v = 1 -> 0 S(1) 2.12 um image show similar shock-cloud interaction features. We chose three representative regions, and analyzed their IRC emissions through comparison with H2 line emissions of several shock models. The IRC colors are well explained by the thermal admixture model of H2 gas--whose infinitesimal H2 column density has a power-law relation with the temperature T, dN ~ T^-b dT--with n(H2) ~ 10^3 cm^-3, b ~ 3, and N(H2 ;T > 100K) ~ 3x10^20 cm^-2. The derived b value may be understood by a bow shock picture, whose shape is cycloidal (cuspy) rather than paraboloidal. However, this picture raises another issue that the bow shocks must reside within ~0.01 pc size-sc...

  11. Atmospheric transmission and thermal background emission in the mid-infrared at Mauna Kea

    Science.gov (United States)

    Otárola, A.; Richter, M.; Packham, C.; Chun, M.

    2015-04-01

    We present results of a preliminary study intended to quantitatively estimate the atmospheric transmission and thermal background emission in the mid-infrared (MIR), 7 μm - 26 μm, at the 13N TMT site in Mauna Kea. This is in the interest of supporting the planning of MIR instrumentation for the posible second-generation of astronomical instruments for the Thirty Meter Telescope (TMT) project. Mauna Kea, located at high altitude (4,050 m above sea level), enjoys natural conditions that make it an outstanding location for astronomical observations in the mid-infrared. The goal of this work is to produce a dataset and model that shows the atmospheric transmission and thermal emission for two cases of precipitable water vapor (PWV), a low value of 0.3 mm, and at 1.5 mm which represent near median conditions at the site. Besides, and driven by the interest of the MIR community to exploit the daily twilight times, we look at the specific atmospheric conditions around twilight as a function of season. The best conditions are found for cold and dry winter days, and in particular the morning twilight offers the best conditions. The analysis of PWV data, shows the median value for the site (all year conditions between 6:00 PM and 7:30AM) is 1.8 mm and that periods of water vapor lower than 1.0 mm are common, these supports the opportunity and discovery potential of the TMT project in the mid-infrared bands.

  12. Application of high-resolution thermal infrared sensors for geothermal exploration at the Salton Sea, California

    Science.gov (United States)

    Reath, K. A.; Ramsey, M.; Tratt, D. M.

    2010-12-01

    The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered detection of the surface mineralogy, radiant heat, and emitted gases using air and spaceborne thermal infrared (TIR) sensors. On March 26, 2009, the airborne Spatially Enhanced Broadband Array Spectrograph System (SEBASS) sensor was flown over the Salton Sea-Mullet Island area. SEBASS has a spectral resolution of 128 bands in the 7.5-14.5 micron spectral region and a spatial resolution of 1m/pixel from the 3000-ft altitude flown for this study. A large portion of the Calipatria Fault, a NW/SE-trending geothermally active fault that bisects the Mullet Island thermal anomaly, was imaged during this flight and several thermal/mineralogical anomalies were noted. The orbital Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) has only 5 spectral bands at 90m/pixel resolution, but has acquired dozens of visible and TIR datasets over the geothermal field in the 10-year history of the instrument. The thermal-temporal trend of this dataset has been analyzed, and the November 2008 image studied in detail for comparison to SEBASS. The land-leaving TIR radiance data were separated into brightness temperature and surface emissivity. TIR emissivity data are unique to each mineral and a TIR mineral spectral library was used to determine their presence on the ground. Various mineral maps were created showing the distribution surrounding the most active geothermal features. The higher spectral/spatial resolution SEBASS data were used to validate the lower spectral/spatial resolution ASTER data (as well as the higher resolution laboratory TIR

  13. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    Science.gov (United States)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  14. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    Science.gov (United States)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  15. Evaluation of SEVIRI Thermal Infra-Red data for airborne dust detection in an arid regions: the UAE case study

    Science.gov (United States)

    Gherboudj, I.; Parajuli, S. P.; Ghedira, H.

    2011-12-01

    Our interest in the study of the dust emission cycle over arid area results from the impacts that they have on the climate and atmospheric processes. Large dust concentration emitted even naturally or anthropogenic may reduce surface insolation by extinction of solar radiation. In addition, the knowledge of its spatio-temporal distribution is essential for monitoring several applications such as solar energy potential and health effect. Satellite-based remote sensing is an efficient tool to improve our understanding of the interaction of the desert dust and surrounding climate over regional and global scales with high frequency measurements. Thermal infrared (TIR) channels (3μm -15μm) of different satellites (MVIRI, AVHRR, MODIS, ADEOS-2/POLDER, TOMS, and MSG/SERIVI) were widely used for dust detection. Several dust detection and forecasting algorithms have been proposed based on these satellite data. However, the spatial and temporal variability of the physical characteristics of dust (concentrations, particle size distribution, location in the atmosphere, and chemical composition) has limited their estimations particularly with the dependence of the dust emission on the wind, soil water content, vegetation, and sediment availability. This study focuses on the analysis of the sensitivity of the MSG/SEVIRI TIR observation to dust generation, surface wind, soil moisture, and surface emissivity over the United Arab Emirates (UAE). SEVIRI observations were acquired in 2009 with temporal and spatial resolutions of 30 minutes and about 3km respectively. While the soil moisture is extracted from the AMSR-E data (1:30 AM and 1:30 PM) at spatial resolution of 25 km, the surface emissivity and Aerosol Optical Thickness were extracted from the MODIS products at spatial resolutions of 1 km and 100 km respectively. In coincidence with the satellites acquisitions, meteorological measurements were collected from seven met stations distributed over the selected study area (wind

  16. Satellite-based forest monitoring: spatial and temporal forecast of growing index and short-wave infrared band.

    Science.gov (United States)

    Bayr, Caroline; Gallaun, Heinz; Kleb, Ulrike; Kornberger, Birgit; Steinegger, Martin; Winter, Martin

    2016-04-18

    For detecting anomalies or interventions in the field of forest monitoring we propose an approach based on the spatial and temporal forecast of satellite time series data. For each pixel of the satellite image three different types of forecasts are provided, namely spatial, temporal and combined spatio-temporal forecast. Spatial forecast means that a clustering algorithm is used to group the time series data based on the features normalised difference vegetation index (NDVI) and the short-wave infrared band (SWIR). For estimation of the typical temporal trajectory of the NDVI and SWIR during the vegetation period of each spatial cluster, we apply several methods of functional data analysis including functional principal component analysis, and a novel form of random regression forests with online learning (streaming) capability. The temporal forecast is carried out by means of functional time series analysis and an autoregressive integrated moving average model. The combination of the temporal forecasts, which is based on the past of the considered pixel, and spatial forecasts, which is based on highly correlated pixels within one cluster and their past, is performed by functional data analysis, and a variant of random regression forests adapted to online learning capabilities. For evaluation of the methods, the approaches are applied to a study area in Germany for monitoring forest damages caused by wind-storm, and to a study area in Spain for monitoring forest fires.

  17. Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor

    Directory of Open Access Journals (Sweden)

    Brian N. Wenny

    2015-02-01

    Full Text Available The Thermal Infrared Sensor (TIRS for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF/modulation transfer function (MTF estimates towards poorer performance using this approach, it does have the ability to track relative changes for monitoring long-term instrument status. The results for both pre- and post-launch response analysis show general good agreement and consistency with edge slope along-track values of 0.53 and 0.58 pre- and post-launch and across-track values 0f 0.59 and 0.55 pre- and post-launch.

  18. Genetic inverse algorithm for retrieval of component temperature of mixed pixel by multi-angle thermal infrared remote sensing data

    Institute of Scientific and Technical Information of China (English)

    XU; Xiru; (徐希孺); CHEN; Liangfu; (陈良富); ZHUANG; Jiali; (庄家礼)

    2001-01-01

    After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.

  19. Thermal territories of the abdomen after caesarean section birth: infrared thermography and analysis.

    Science.gov (United States)

    Childs, C; Siraj, M R; Fair, F J; Selvan, A N; Soltani, H; Wilmott, J; Farrell, T

    2016-09-01

    To develop and refine qualitative mapping and quantitative analysis techniques to define 'thermal territories' of the post-partum abdomen, the caesarean section site and the infected surgical wound. In addition, to explore women's perspectives on thermal imaging and acceptability as a method for infection screening. Prospective feasibility study undertaken at a large University teaching hospital, Sheffield UK. Infrared thermal imaging of the abdomen was undertaken at the bedside on the first two days after elective caesarean section. Target recruitment: six women in each of three body mass index (BMI) categories (normal, 18.5-24.9 kg/m²; overweight 25-29.9 kg/m²; obese ≥30 kg/m²). Additionally, women presenting to the ward with wound infection were eligible for inclusion in the study. Perspectives on the use of thermal imaging and its practicality were also explored via semi-structured interviews and analysed using thematic content analysis. We recruited 20 women who had all undergone caesarean section. From the booking BMI, eight women were obese (including two women with infected wounds), seven women were overweight and five women had a normal BMI. Temperature (ºC) profiling and pixel clustering segmentation (hierarchical clustering-based segmentation, HCS) revealed characteristic features of thermal territories between scar and adjacent regions. Differences in scar thermal intensity profiles exist between healthy scars and infected wounds; features that have potential for wound surveillance. The maximum temperature differences (∆T) between healthy skin and the wound site exceed 2º C in women with established wound infection. At day two, two women had a scar thermogram with features observed in the 'infected' wound thermogram. Thermal imaging at early and later times after caesarean birth is feasible and acceptable. Women reported potential benefits of the technique for future wound infection screening. Thermal intensity profiling and HCS for pixel

  20. Shape memory nanocomposite of poly(L-lactic acid/graphene nanoplatelets triggered by infrared light and thermal heating

    Directory of Open Access Journals (Sweden)

    S. Lashgari

    2016-04-01

    Full Text Available In this study, the effect of graphene nanoplatelets (GNPs on the shape memory properties of poly(L-lactic acid (PLLA was studied. In addition to thermal activation, the possibility of infrared actuating of thermo-responsive shape memory PLLA/GNPs nanocomposite was investigated. The incorporated GNPs were expected to absorb infrared wave’s energy and activate shape memory PLLA/GNPs. Different techniques such as differential scanning calorimetry (DSC, wide-angle X-ray diffraction (WAXD, field emission gun scanning electron microscope (FEG-SEM and dynamic mechanical thermal analysis (DMTA were used to characterize samples. DSC and WAXD results indicated that GNPs augmented crystallinity due to nucleating effect of graphene particles. GNPs improved both thermal and infrared activating shape memory properties along with faster response. Pure shape memory PLLA was slightly responsive to infrared light and its infrared actuated shape recovery ratio was 86% which increased to more than 95% with loading of GNPs. Drastic improvement in the crystallinity was obtained in nanocomposites with lower GNPs contents (0.5 and 1 wt% due to finer dispersion of graphene which resulted in more prominent mechanical and shape memory properties enhancement. Infrared activated shape memory PLLA/GNPs nanocomposites can be developed for wireless remote shape control of smart medical and bio-systems.

  1. Study on infrared differential thermal non-destructive testing technology of the permeability of hot mix asphalt pavements

    Science.gov (United States)

    Wang, Duanyi; Shi, Jicun

    2017-06-01

    In order to non-destructive test (NDT) the permeability coefficient of hot mix asphalt (HMA) pavements fast, A methodology for assessing the permeability coefficient was proposed by infrared differential thermal testing of pavement after rain. The relationship between permeability coefficient and air voids of HMA specimen deter-mined. Finite element method (FEM) models were built to calculate the surface temperature difference with different exposure time after precipitation. Simulated solar radiation source and fully saturated plate specimens were set in laboratory, tests verify that the different exposure time the specimen surface temperature difference. Infrared differential thermal detection permeable pavement hardware and corresponding software developed. Based on many test results, the evaluation index and criteria of permeability coefficient of HMA pavements tested by infrared differential thermal were developed. The results showed that: There is correlation between air voids and permeability coefficient of HMA specimen. Permeability coefficient of HMA pavements can be determined by different surface temperature at different exposure time. 9:00 am - 14:00 pm is the best time to detect permeability coefficient by infrared differential thermal NDT. Permeable asphalt pavement permeability can be achieved by infrared detector quickly and continuously, a lane testing; Per the permeable assessment criteria, in-place pavements permeability coefficients can be accurately evaluated.

  2. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  3. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador

    Science.gov (United States)

    Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J. E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; Montalvo, F.; Olmos, R.; Ripepe, M.; Finizola, A.

    2017-06-01

    On October 1st, 2005, Santa Ana volcano (El Salvador) underwent a VEI 3 phreatomagmatic eruption after approximately one century of rest. Casualties and damages to some of the local infrastructures and surrounding plantations were followed by the evacuation of the nearby communities. The analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) infrared data reveals that the main explosion was preceded by a one-year-long thermal unrest, associated to the development of a fumaroles field, located at the western rim of the summit crater lake. By combining space-based thermal flux and ground-based measurements (seismicity, sulfur emissions and lake temperatures), we suggest that the activity observed at Santa Ana between 2004 and 2005 was driven by the gradual intrusion of an undegassed magma body at a very shallow depth. Magma injection induced thermal anomalies associated with sustained degassing from the fumaroles field and promoted the interaction between the magmatic-hydrothermal system and the overlying water table. This process culminated into the VEI 3 phreatomagmatic eruption of October 2005 that strongly modified the shallow structure of the crater area. The subsequent three-years-long activity resulted from self-sealing of the fracture system and by the opening of a new fracture network directly connecting the deeper hydrothermal system with the crater lake. Our results show that satellite-based thermal data allow us to detect the expansion of the high-temperature fumarolic field. This may precede an explosive eruption and/or a lava dome extrusion. In particular, we show that thermal records can be analyzed with other geochemical (i.e. SO2 emissions) and geophysical (seismicity) data to track a shallow magmatic intrusion interacting with the surrounding hydrothermal system. This provides a remarkable support for volcano monitoring and eruption forecasting, particularly in remote areas where permanent ground data acquisition is hazardous, expensive

  4. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  5. Time-resolved visible/near-infrared spectrometric observations of the Galaxy 11 geostationary satellite

    Science.gov (United States)

    Bédard, Donald; Wade, Gregg A.

    2017-01-01

    Time-resolved spectrometric measurements of the Galaxy 11 geostationary satellite were collected on three consecutive nights in July 2014 with the 1.6-m telescope at the Observatoire du Mont-Mégantic in Québec, Canada. Approximately 300 low-resolution spectra (R ≈ 700 , where R = λ / Δλ) of the satellite were collected each night, covering a spectral range between 425 and 850 nm. The two objectives of the experiment were to conduct material-type identification from the spectra and to study how the spectral energy distribution inferred from these measurements varied as the illumination and observation geometry changed on nightly timescales. We present results that indicate the presence of a highly reflective aluminized surface corresponding to the solar concentrator arrays of the Galaxy 11 spacecraft. Although other material types could not be identified using the spectra, the results showed that the spectral energy distribution of the reflected sunlight from the Galaxy 11 spacecraft varied significantly, in a systematic manner, over each night of observation. The variations were quantified using colour indices calculated from the time-resolved spectrometric measurements.

  6. Infrared studies of molecular shocks in the supernova remnant HB 21: II. Thermal admixture of shocked H2 gas in the south

    Science.gov (United States)

    Shinn, Jong-Ho; Koo, Bon-Chul; Burton, Michael; Lee, Ho-Gyu; Moon, Dae-Sik

    2010-02-01

    We present near- and mid-infrared observations on the shock-cloud interaction region in the southern part of the supernova remnant HB 21, performed with the InfraRed Camera (IRC) aboard AKARI satellite and the Wide InfraRed Camera (WIRC) at the Palomar 5 m telescope. The IRC 4 μm (N4), 7 μm (S7), and 11 μm (S11) band images and the WIRC Hυ=1→0S(1) 2.12 μm image show similar diffuse features, around a shocked CO cloud. We analyzed the emission through comparison with the H2 line emission of several shock models. The IRC colors are well explained by the thermal admixture model of H2 gas - whose infinitesimal H2 column density has a power-law relation with the temperature T, dN˜T-dT - with n(H)˜3.9×104cm-3,b˜4.2, and N(H;T>100K)˜2.8×1021cm-2. We interpreted these parameters with several different pictures of the shock-cloud interactions - multiple planar C-shocks, bow shocks, and shocked clumps - and discussed their weaknesses and strengths. The observed Hυ=1→0S(1) intensity is four times greater than the prediction from the power-law admixture model, the same tendency as found in the northern part of HB 21 (Paper I). We also explored the limitation of the thermal admixture model with respect to the derived model parameters.

  7. Mineralogy of S-complex Asteroids using Reflectance and Thermal Infrared Spectroscopy

    Science.gov (United States)

    Lindsay, S. S.; Emery, J. P.; Marchis, F.; Enriquez, E.; Assafin, M.

    2013-12-01

    The S-type asteroids display an astounding diversity in mineralogy. They range from monomineralic olivine to complex olivine/pyroxene assemblages to basaltic assemblages. These materials are thought to be representative of an entire range of bodies that span essentially unmelted to bodies that experienced complete melting and igneous differentiation. Hence, the diverse silicate mineralogy for the S-type asteroids traces the thermal history of the asteroids a few Myr after formation. As such, determining the composition of S-type asteroids is a powerful investigative tool for understanding the post-accretionary thermal evolution, partial melting, and differentiation of the asteroids in the early Solar System. Moreover, the Sq and S(IV) are thought to be the parent bodies of ordinary chondrites (OCs), and therefore represent essentially unmelted or un-thermally processed materials. The mineralogy of these relatively unprocessed asteroids thus provide a window into investigating primitive Solar System materials, which were the building blocks of the terrestrial planets. The mineralogy of S-complex asteroids is typically determined using the 1- and 2-μm absorption bands related to olivine and pyroxene. Comparing the band centers, depths, and areas of these two features (i.e., band analysis) to calibrated laboratory data yields the general silicate mineralogy. Based on the near-infrared (NIR) band analysis, the S-type asteroids can be divided into seven subtypes, S(I - VII), with S(I)s being monomineralic olivine (mantle matieral), S(IV)s being analogous to OCs (primitive silicate material), and S(VII)s being basaltic material (igneously processed crustal material). The mid-infrared (MIR) thermal emission from asteroid surfaces exhibits a suite of silicate features due to Si-O stretching and O-Si-O bending vibrations near 10 and 18 μm, respectively. Marchis et al. (2012) demonstrated that the S-type asteroids exhibit diversity in their MIR emission. We seek to examine

  8. NMR and Infrared Study of Thermal Oxidation of cis-1, 4-Polybutadiene

    Science.gov (United States)

    Gemmer, Robert V.; Golub, Morton A.

    1978-01-01

    A study of the microstructural changes occuring in CB during thermal, uncatalyzed oxidation was carried out. Although the oxidation of CB is accompanied by extensive crosslinking with attendant insolubilization, it was found possible to follow the oxidation of solid CB directly with C-13 NMR spectroscopy. The predominant products appearing in the C-13 NMR spectra of oxidized CB are epoxides. The presence of lesser amounts of alcohols, peroxides, and carbonyl structures was adduced from complementary infrared and NMR spectra of soluble extracts obtained from the oxidized, crosslinked CB. This distribution of functional groups contrasts with that previously reported for the autooxidation of 1,4-polyisoprene. The difference was rationalized in terms of the relative stabilities of intermediate radical species involved in the autoxidation of CB and 1,4-polyisoprene.

  9. Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagry

    Science.gov (United States)

    Geraci, Alberto L.; La Rosa, Guido; Risitano, Antonino; Grech, Maurice

    1995-12-01

    Previous work by the authors showed that the endurance limit of specimens, or mechanical components, can be predicted using thermal infrared imagery. The new technique enables the determination of the fatigue strength limit in a comparatively short period of time (few thousands cycles), and using very few specimens (theoretically only 1). The present work applies this technique to rotating-bending test specimens of austempered ductile iron, an alloy whose fatigue limit is, due to the high scatter dispersion of the data points and the long testing period required, generally difficult to determine by the traditional technique. This material exhibited higher fatigue strength than the familiar nodular cast iron. This was confirmed by the results derived from the traditional Wohler test and the new technique, and supported by the data gathered from literature.

  10. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    Science.gov (United States)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  11. Mapping the Piute Mountains, CA with Thermal Infrared Multispectral Scanner (TIMS)

    Science.gov (United States)

    Hook, S. J.; Karlstrom, K. E.; Miller, C. F.; McCaffrey, K. J. W.

    1993-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired in 1990 over the PiuteMountains, California to evaluate their usefulness for lithologic mapping in an area ofmetamorphosed, structurally complex, igneous and sedimentary rocks. The data were calibrated,atmospherically corrected, and emissivity variations extracted from them. There was an excellentvisual correlation between the units revealed in the TIMS data and the recent mapping in the easternside of the area. It was also possible to correct, improve and extend the recent map. For example,several areas of amphibolite were identified in the TIMS data that had been incorrectly mapped asgranodioritic gneiss, and the presence of a swarm of mafic dikes, of which only a few had previouslybeen identified, was revealed...

  12. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  13. Thermal Structure of Jupiter's Infrared Hotspots and Plumes in the Northern Equatorial Region

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, Glenn S.; Rogers, John H.; Greathouse, Thomas K.; Momary, Thomas W.; Giles, Rohini Sara; Melin, Henrik; Sinclair, James; Irwin, Patrick Gerard Joseph; Vedovato, Marco

    2016-10-01

    The most prominent features of Jupiter's northern equatorial region are the visibly dark, 5-µm-bright 'hotspots' that move rapidly eastward on the southern edge of the North Equatorial Belt (NEB, Allison 1990, doi:10.1016/0019-1035(90)90069-L). We combine high-resolution thermal-infrared (5-20 µm) imaging from VLT/VISIR and IRTF/SpeX with spatially resolved spectroscopy from IRTF/TEXES to examine the thermal and chemical conditions in the equatorial region during the 2015-2016 apparition. The high spatial resolution permits the first detailed cross-comparison of thermal and visible-albedo conditions within the hotspots. We find that: (i) cloud-clearing within the hotspots creates 8.6-µm bright patches that are broader and more diffuse than their 5-µm counterparts; (ii) cloudy, cool cells ("plumes") in the northern Equatorial Zone are ammonia-rich and dark in the 5- and 8-12 µm range; (iii) the hotspots sometimes demonstrate a westward tilt with altitude in the 0.1-0.8 bar region (Fletcher et al., 2016, doi:10.1016/j.icarus.2016.06.008); and (iv) blue-grey streaks on the southeastern edges of these ammonia-rich cells are also cloud free and bright at 5-12 µm. This regular longitudinal pattern of cloudy cells and cloud-free hotspots is consistent with condensation of NH3-rich air as it ascends in cells, and subsidence of dry, volatile-depleted air in the hotspots. The westward tilt of the NEB hotspots with height that was detected in 2014 (but not in 2016) supports the equatorial Rossby-wave hypothesis for the NEB pattern. This equatorial wave is distinct from those in the upper troposphere during the 2015-16 NEB expansion event (Orton et al., DPS/EPSC 2016). The cells and hotspots observed in the thermal-IR are the same type as those detected at near-IR wavelengths by Galileo/NIMS (Baines et al. 2002, doi:10.1006/icar.2002.6901) and in the radio, probing the deep atmosphere (de Pater et al., 2016, doi:10.1126/science.aaf2210), suggesting a coherent structure

  14. Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    CERN Document Server

    Müller, T G; Nielbock, M; Moreno, R; Klaas, U; Moór, A; Linz, H; Feuchtgruber, H

    2016-01-01

    We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observation...

  15. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    Science.gov (United States)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  16. Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Sufriadin Sufriadin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i2.137Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordination mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination. The strong absorption bands appeared at 511 cm-1, 505 cm-1, 499 cm-1, and 496 cm-1 in respective samples are attributed to divalent cation bonds (e.g. Mg, Ni-O. Both TG/DTA and FTIR seem to be the powerful tool in diagnosing the crystal chemistry of garnierite which is mainly composed of phyllosilicate minerals.

  17. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    Science.gov (United States)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  18. In situ, simultaneous thermal imaging and infrared molecular emission studies of solid oxide fuel cell electrodes

    Science.gov (United States)

    Kirtley, J. D.; Qadri, S. N.; Steinhurst, D. A.; Owrutsky, J. C.

    2016-12-01

    Various in situ probes of solid oxide fuel cells (SOFCs) have advanced recently to provide detailed, real time data regarding materials and chemical processes that relate to device performance and degradation. These techniques offer insights into complex fuel chemistry at the anode in particular, especially in the context of model predictions. However, cell-to-cell variations can hinder mechanistic interpretations of measurements from separate, independent techniques. The present study describes an in situ technique that for the first time simultaneously measures surface temperature changes using near infrared thermal imaging and gas species using Fourier-transform infrared emission spectra at the anodes of operating SOFCs. Electrolyte-supported SOFCs with Ni-based anodes are operated at 700 °C with internal, dry-reformed methane at 75% maximum current and at open circuit voltage (OCV) while electrochemical and optical measurements are collected. At OCV, more cooling is observed coincident with more CO reforming products. Under load, CO decreases while the anode cools less, especially near the current collectors. The extent of cooling is more sensitive to polarization for electrolyte-supported cells because their anodes are thinner relative to anode-supported cells. This study exemplifies how this duplex technique can be a useful probe of electrochemical processes in SOFCs.

  19. New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2014-12-01

    Full Text Available As hyperspectral instruments can provide the detailed spectral information, a new spectral similarity method for detecting and differentiating dust from non-dust scenes using the Atmospheric Infrared Sounder (AIRS observations has been developed. The detection is based on a pre-defined Dust Spectral Similarity Index (DSSI, which was calculated from the accumulated brightness temperature differences between selected 16 AIRS observation channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that DSSI can effectively separate the dust from non-dust by elevating dust signals. For underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, the values of DSSI for clear sky surfaces or clouds (ice and water are basically lower than those of dust, as their spectrums have significant differences with dust. To evaluate this new simple DSSI dust detection algorithm, several Asia dust events observed in northern China were analyzed, and the results agree favorably with those from the Moderate resolution Imaging Spectro radiometer (MODIS and Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP observations.

  20. Near real-time routine for volcano monitoring using infrared satellite data

    Directory of Open Access Journals (Sweden)

    Claudia Spinetti

    2011-12-01

    Full Text Available An Advanced Very-High-Resolution Radiometer (AVHRR routine for hot-spot detection and effusion rate estimation (AVHotRR using AVHRR infrared space-borne images is presented here for the monitoring of active lava flow. AVHotRR uses directly broadcast National Oceanic and Atmospheric Administration (NOAA-AVHRR remotely sensed data. The 2006 summit eruption of Mount Etna provided the opportunity to test the products generated by AVHotRR for monitoring purposes. Low spatial and high temporal resolution products can also be used as inputs of flow models to drive numerical simulations of lava-flow paths and thus to provide quantitative hazard assessment and volcanic risk mitigation.

  1. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  2. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  3. Estimation of soil and vegetation temperatures with multiangular thermal infrared observations: IMGRASS, HEIFE, and SGP 1997 experiments

    NARCIS (Netherlands)

    Menenti, M.; Jia, L.; Li, Z.L.; Djepa, V.; Wang, J.; Stoll, M.P.; Su, Z.; Rast, M.

    2001-01-01

    The potential of directional observations in the thermal infrared region for land surface studies is a largely uncharted area of research. The availability of the dual-view Along Track Scanning Radiometer (ATSR) observations led to explore new opportunities in this direction. In the context of studi

  4. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  5. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  6. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-12-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product, also known as, the NCEP/CPC 4-km Global (60°N - 60°S) IR Dataset, is one of TRMM ancillary datasets. They are globally-merged (60°N-60°S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 & GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60°N-60°S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection system, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of ~73,000 files (~4.5 TB) for the past 8 years. Because there is a lack of data subsetting service, one has to download the entire file, which could be time consuming and require a lot of disk space. In order to facilitate data access, we have developed a web prototype, the Global Image ViewER (GIVER), to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users

  7. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  8. Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography

    Science.gov (United States)

    Huda, A. S. N.; Taib, S.

    2013-11-01

    Monitoring the thermal condition of electrical equipment is necessary for maintaining the reliability of electrical system. The degradation of electrical equipment can cause excessive overheating, which can lead to the eventual failure of the equipment. Additionally, failure of equipment requires a lot of maintenance cost, manpower and can also be catastrophic- causing injuries or even deaths. Therefore, the recognition processof equipment conditions as normal and defective is an essential step towards maintaining reliability and stability of the system. The study introduces infrared thermography based condition monitoring of electrical equipment. Manual analysis of thermal image for detecting defects and classifying the status of equipment take a lot of time, efforts and can also lead to incorrect diagnosis results. An intelligent system that can separate the equipment automatically could help to overcome these problems. This paper discusses an intelligent classification system for the conditions of equipment using neural networks. Three sets of features namely first order histogram based statistical, grey level co-occurrence matrix and component based intensity features are extracted by image analysis, which are used as input data for the neural networks. The multilayered perceptron networks are trained using four different training algorithms namely Resilient back propagation, Bayesian Regulazation, Levenberg-Marquardt and Scale conjugate gradient. The experimental results show that the component based intensity features perform better compared to other two sets of features. Finally, after selecting the best features, multilayered perceptron network trained using Levenberg-Marquardt algorithm achieved the best results to classify the conditions of electrical equipment.

  9. Thermal Infrared Emission Spectra of Terrestrial Exoplanets Influenced by Multi-layer Clouds

    Science.gov (United States)

    Schreier, Franz; Vasquez, Mayte; Gimeno Garcia, Sebastian; Kitzmann, Daniel

    2016-04-01

    Clouds play an important role in the radiative transfer of planetary atmospheres: they are key elements of the climate system and influence the planet's spectral appearance. Given the thousands of exoplanets discovered so far, including some dozens of Earth-sized exoplanets, the feasibility of remote sensing of exoplanet atmospheres is attracting increasing attention. Here we present a study of the thermal emission of cloud-covered Earth-like exoplanets orbiting in the habitable zone of F, G, K, and M-type stars. A line-by-line model for molecular absorption has been coupled to a discrete ordinate multiple scattering radiative transfer solver. Pressure, temperature, and molecular concentration profiles were taken from a consistent radiative-convective climate model including a parameterized cloud description (Kitzmann et al., A&A, 2010). The main focus of the current work is the impact of multi-layer clouds on emission spectra in the thermal infrared. The effects of low-level water clouds and high level ice clouds simultaneously on signatures of H2O, CO2, O3, etc will be studied for various resolutions. Furthermore, comparisons with spectra resulting from a low-resolution code will be shown.

  10. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    Science.gov (United States)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  11. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  12. Comparison of broadband and hyperspectral thermal infrared imaging of buried threat objects

    Science.gov (United States)

    McFee, John E.; Achal, Steve B.; Diaz, Alejandra U.; Faust, Anthony A.

    2013-06-01

    Previous research by many groups has shown that broad-band thermal infrared (TIR) imagers can detect buried explosive threat devices, such as unexploded ordnance (UXO), landmines and improvised explosive devices (IEDs). Broad-band detection measures the apparent temperature - an average over the wave band of the product of the true soil surface temperature and the emissivity. Broad-band detection suffers from inconsistent performance (low signal, high clutter rates), due in part to diurnal variations, environmental and meteorological conditions, and soil surface effects. It has been suggested that hyperspectral TIR imaging might have improved performance since it can, in principle, allow extraction of the wavelength-dependent emissivity and the true soil surface temperature. This would allow the surface disturbance effects to be separated from the soil column (bulk) effects. A significant, and as yet unanswered, question is whether hyperspectral TIR images provide better detection capability (higher probability of detection and/or lower false alarm rate) than do broad-band thermal images. TIR hyperspectral image data of threat objects, buried and surface-laid in bare soil, were obtained in arid, desert-like conditions over full diurnal cycles for several days. Regions of interest containing threat objects and backgrounds were extracted throughout the time period. Simulated broad-band images were derived from the hyperspectral images. The diurnal variation of the images was studied. Hyperspectral was found to provide some advantage over broad-band imaging in detection of buried threat objects for the limited data set studied.

  13. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  14. Global Cloud Detection and Distribution with Night Time using Satellite Infrared Data

    Science.gov (United States)

    Kadosaki, G.; Yamanouchi, T.; Hirasawa, N.

    2007-12-01

    Knowledge of the current climate system is necessary to clearly estimate large-scale global warming and abnormal weather in the future. Net radiation is one of the main factors that influence a climate system. The earth, which is covered by cloud of dozens of surface giving it a high albedo, reflects a large part of solar radiation. In addition, during nights, when the earth's radiation increases, the earth acts as a radiator. There is no doubt that clouds are closely related to the radiation balance. Satellite data analysis is the most useful method to understand cloud climatology. The targets are to establish an algorithm to detect clouds for night term of the earth, and to get to know more about global cloud distribution with night term. Brightness temperature difference of split window channels is used in this method. We decided three thresholds which have some slopes are used in the case of over land, open sea, and snow or ice surface including sea ice, respectively. We examined on some sensors which has difference response function in itself plat home, GLI/ADEOS2, AVHRR/NOAA, MODIS/Terra and Aqua.

  15. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saleem, E-mail: ullah19488@itc.nl [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Skidmore, Andrew K. [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Naeem, Mohammad [Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK (Pakistan); Schlerf, Martin [Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux (Luxembourg)

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 {mu}m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R{sup 2} = 0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R{sup 2} = 0.88, RMSE = 8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. -- Highlights: Black-Right-Pointing-Pointer The mid and thermal infrared spectra are sensitive to variation in leaf water content. Black-Right-Pointing-Pointer Continuous wavelet analysis detected the variation caused by leaf water content. Black-Right-Pointing-Pointer The selected wavelet features are highly correlated with leaf water content. Black-Right-Pointing-Pointer Mid wave and thermal infrared spectra have the potential to estimate leaf water content.

  16. Can we detect water stressed areas in forest thanks thermal infrared remote sensing?

    Science.gov (United States)

    Nourtier, Marie; Chanzy, André; Bes, Bernard; Mariotte, Nicolas

    2010-05-01

    In Mediterranean and mountainous areas, an increase of mortality in forest is observed after important drought events. In the context of climate changes, a study of the impact of drought stress on forest is necessary. In order to detect water stress over the whole forest at different periods of the year, we propose the use of a spatialisable indicator, easily measurable: crown surface temperature. As previous works were not conclusive concerning the potentiality of this indicator in forest (Duchemin, 1998a, 1998b, Pierce et al., 1990), we set up an experimentation to study the surface temperature evolution linked to the transpiration at tree scale, during the spring and summer periods on silver fir (Abies alba) forest of Mont Ventoux (south of France). At the same time, several thermal infrared images of the mountainside were acquired corresponding to different levels of transpiration. The signal of surface temperature is studying via the evolution of the difference between measured surface temperature and calculated surface temperature for a tree at maximum transpiration rate. At tree scale, there is a difference of 4 °C of amplitude in the signal of surface temperature between maximum and zero transpiration conditions. The difficulty resides in taking into account the influence of climatic conditions, source of variability in the signal uncorrelated with transpiration evolution. Indices of surface temperature, built to include this influence of climatic conditions, permit to reduce this variability. Another source of variability lies in the percentage of branches present in the area of measurement. Indeed branches have a thermal dynamic differing from the needles one and, considering comparison between trees, the percentage of branches varies. At the mountainside scale, contrasted areas in terms of surface temperature indices are observable. By comparing different dates, corresponding to different levels of drought, it is possible to locate areas with precocious

  17. Evaluation of aerial thermal infrared remote sensing to identify groundwater-discharge zones in the Meduxnekeag River, Houlton, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been well understood. To provide information about possible groundwater inflows to the river, airborne thermal infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of data from the December 2003 flight and 17 from the November 2004 flight, which covered the same reaches of stream. Following image analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies were compared to features on topographic maps of the study area. The mapped anomalies were used to direct observations on the ground to confirm discharge locations and types of inflow. The variations in grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces.

  18. Air quality monitoring with current (IASI) and future (IASI-NG/MetOp-SG, IRS/MTG) space-borne thermal infrared sounders

    Science.gov (United States)

    Boynard, Anne; Clerbaux, Cathy; Bauduin, Sophie; Prunet, Pascal; Tournier, Bernard; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2017-04-01

    Current nadir-looking thermal infrared (TIR) sounders, such as the Infrared Atmospheric Sounding Interferometer (IASI) launched onboard the MetOp polar-orbiting platforms, are now playing an important role for probing pollutants in the troposphere and in the boundary layer (e.g., carbon monoxide - CO, ozone - O3, ammonia, sulfur dioxide). Vertical profiles can be obtained for the main absorbers, with varying vertical resolution and accuracy, depending on geophysical parameters and instrumental specifications. Two future missions using TIR instruments (IRS on Sentinel 4/MTG geostationary-orbiting platform and IASI-NG on Sentinel 5/MetOp-SG polar-orbiting platform) are planned to be launched by EUMETSAT within 5 years. Both instruments are nadir looking Fourier transform spectrometers like IASI but with different radiometric and spectral characteristics. In this study, we illustrate the ability of IASI to monitor CO and O3 in the lowermost troposphere. We assess more specifically the performances of the different satellite instrument concepts in terms of vertical resolution and sensitivity at the surface for CO and O3, using representative cases at local, continental and global scales.

  19. Global Transients in ultraviolet and red-infrared ranges from data of the "Universitetsky-Tatiana-2" satellite

    CERN Document Server

    Garipov, G K; Klimov, P A; Klimenko, V V; Mareev, E A; Martines, O; Morozenko, V S; Panasyuk, M I; Park, I H; Ponce, E; Salazar, H; Tulupov, V I; Vedenkin, N N; Yashin, I V

    2011-01-01

    Detectors of fast flashes (duration of 1-128 ms) in near ultraviolet (240-400 nm) and red-infrared (>610 nm) ranges on board the "Universitetsky-Tatiana-2" satellite have measured transient luminous events global distribution. Events with number of photons 10^20-5{\\cdot}10^21 radiated in the atmosphere are uniformly distributed over latitudes and longitudes. Events with number of photons more than 5{\\cdot}10^21 are concentrated near the equator above continents. Measured ratio of photons number radiated in red-IR range to photons number radiated in UV related to excitation of nitrogen molecular indicates a high altitude (>50 km) of the atmospheric electric discharges responsible for the observed transients. Series of every minute transients (from 3 to 16 transients in the series) were observed. The detection of transients out of thunderstorm area, in cloudless region- sometimes thousands km away of thunderstorms is remarkable. The obtained data allow us to assume that transient events are not only consequence...

  20. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    Science.gov (United States)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  1. Characterization of Lunar Soils Using a Thermal Infrared Microscopic Spectral Imaging System

    Science.gov (United States)

    Crites, S. T.; Lucey, P. G.

    2010-12-01

    Lunar Reconnaissance Orbiter's Diviner radiometer has provided the planetary science community with a large amount of thermal infrared spectral data. This data set offers rich opportunities for lunar science, but interpretation of the data is complicated by the limited data on lunar materials. While spectra of pure terrestrial minerals have been used effectively for Mars applications, lunar minerals and glasses have been affected by space weathering processes that may alter their spectral properties in important ways. For example, mineral grains acquire vapor deposited coatings, and agglutinate glass contains abundant nanophase iron as a result of exposure to the space environment. Producing mineral separates in sufficient quantities (at least tens of mg) for spectral characterization is painstaking, time consuming and labor intensive; as an alternative we have altered an infrared hyperspectral imaging system developed for remote sensing under funding from the Planetary Instrument Definition and Development program (PIDDP) to enable resolved microscopic spectral imaging. The concept is to characterize the spectral properties of individual grains in lunar soils, enabling a wide range of spectral behaviors of components to be measured rapidly. The instrument, sensitive from 8 to 15 microns at 15 wavenumber resolution, images a field of view of 8 millimeters at 30 micron resolution and scans at a rate of about 1 mm/second enabling relatively large areas to be scanned rapidly. Our experiments thus far use a wet-sieved 90-150 um size fraction with the samples arrayed on a heated substrate in a single layer in order to prevent spectral interactions between grains. We have begun with pure mineral separates, and unsurprisingly we find that the individual mineral grain emission spectra of a wide range of silicates are very similar to spectra of coarse grained powders. We have begun to obtain preliminary data on lunar soils as well. We plan to continue imaging of lunar soils

  2. A new paradigm of oral cancer detection using digital infrared thermal imaging

    Science.gov (United States)

    Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.

    2016-03-01

    Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.

  3. Potential of the future thermal infrared space-borne sensor IASI-NG to monitor lower tropospheric ozone

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2012-09-01

    Full Text Available The lower tropospheric (LT ozone concentration is a key factor for air quality (AQ. Observing efficiently LT ozone from space is crucial to monitor and better understand pollution phenomena occurring from inter-continental to local scales, and that have a proven noxious effect on the human health and the biosphere. The Infrared Atmospheric Sounder Interferometer (IASI flies on MetOp-A spacecraft and is planned to be launched in the next future as part of the other MetOp modules, i.e. MetOp-B and C. IASI has demonstrated to have the capability to single out the LT ozone signal only at favourable conditions, i.e. in presence of high thermal contrast scenarios. New generation satellite instruments are being designed to address several pressing geophysical issues, including a better observation capability of LT ozone. IASI-NG (New Generation, now having reached the accomplishment of design phase-A for launch in the 2020 timeframe as part of the EPS-SG (EUMETSAT Polar System-Second Generation, formerly post-EPS mission, may render feasible a better observation of AQ in terms of LT ozone. To evaluate the added-value brought by IASI-NG in this context, we developed a pseudo-observation simulator, including a direct simulator of thermal infrared spectra and a full inversion scheme to retrieve ozone concentration profiles. We produced one month (August 2009 of tropospheric ozone pseudo-observations based on both IASI and IASI-NG instrumental configurations. We compared the pseudo-observations and we found a clear improvement of LT ozone (up to 6 km altitude pseudo-observations quality for IASI-NG. The estimated total error is expected to be more than 35% smaller at 5 km, and 20% smaller for the LT ozone column. The total error on the LT ozone column is, on average, lower than 10% for IASI-NG. IASI-NG is expected to have a significantly better vertical sensitivity (monthly average degrees of freedom surface-6 km of 0.70 and to be sensitive at lower

  4. Improving spatio-temporal resolution of infrared images to detect thermal activity of defect at the surface of inorganic glass

    Science.gov (United States)

    Corvec, Guillaume; Robin, Eric; Le Cam, Jean-Benoît; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2016-07-01

    This paper proposes a noise suppression methodology to improve the spatio-temporal resolution of infrared images. The methodology is divided in two steps. The first one consists in removing the noise from the temporal signal at each pixel. Three basic temporal filters are considered for this purpose: average filter, cost function minimization (FIT) and short time Fast Fourier Transform approach (STFFT). But while this step effectively reduces the temporal signal noise at each pixel, the infrared images may still appear noisy. This is due to a random distribution of a residual offset value of pixels signal. Hence in the second step, the residual offset is identified by considering thermal images for which no mechanical loading is applied. In this case, the temperature variation field is homogeneous and the value of temperature variation at each pixel is theoretically equal to zero. The method is first tested on synthetic images built from infrared computer-generated images combined with experimental noise. The results demonstrate that this approach permits to keep the spatial resolution of infrared images equal to 1 pixel. The methodology is then applied to characterize thermal activity of a defect at the surface of inorganic glass submitted to cyclic mechanical loading. The three basic temporal filters are quantitatively compared and contrasted. Results obtained demonstrate that, contrarily to a basic spatio-temporal approach, the denoising method proposed is suitable to characterize low thermal activity combined to strong spatial gradients induced by cyclic heterogeneous deformations.

  5. [Application study of the thermal infrared emissivity spectra in the estimation of salt content of saline soil].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Mamat, Sawut; Zhang, Fei; Han, Gui-Hong

    2012-11-01

    Studying of soil salinization is of great significance for agricultural production in arid area oasis, thermal infrared remote sensing technology provides a new technology and method in this field. Authors used Fourier transform infrared spectrometer to measure the oasis saline soil in field, employed iterative spectrally smooth temperature/emissivity separation algorithm (ISSTES) to separate temperature and emissivity, and acquired the thermal infrared emissivity data of the saline soil. Through researching the emissivity spectral feature of saline soil, and concluded that soil emissivity will reduce with the increasing of salt content from 8 to 13 microm, so emissivity spectra is more sensitive to salt factor from 8 to 9.5 microm. Then, analyzed the correlation between original emissivity spectra and its first derivative, second derivative and normalized ratio with salt content, the result showed that they have a negative correlation relationship between soil emissivity and salt content, and the correlation between emissivity first derivative and salt content is highest, reach to 0.724 2, the corresponding bands are from 8.370 745-8.390 880 microm. Finally, established the quadratic function regression model, its determination coefficient is 0.741 4, and root mean square error is 0.235 5, the result explained that the approach of using thermal infrared emissivity to retrieve the salt content of saline soil is feasible.

  6. Thermal Analysis of Iodine Satellite (iSAT) from Preliminary Design Review (PDR) to Critical Design Review (CDR)

    Science.gov (United States)

    Mauro, Stephanie

    2016-01-01

    The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.

  7. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  8. Evapotranspiration Estimation Using Multispectral Thermal Infrared Data from ASTER and MODIS

    Science.gov (United States)

    French, A. N.; Schmugge, T. J.; Kustas, W. P.; Prueger, J. H.

    2009-12-01

    Estimating evapotranspiration (ET) from space is important for monitoring water use at local and regional scales. Terra platform sensors ASTER and MODIS have been valuable for this goal because of their multispectral capabilities and high (90 m with ASTER) to moderate ( 1 km with MODIS) spatial resolutions. These capabilities have allowed discrimination of land cover conditions unobtainable from more conventional satellite imagery. In particular the multiple thermal channels provided by ASTER and MODIS have helped collect accurate observations of land surface temperature and emissivity which can be used to detect water stress and to distinguish between living and senescent vegetation. Each of these characteristics is important for modeling water fluxes. The frequent coverage by MODIS is also very important for this endeavor. To demonstrate how this can be accomplished, ASTER and Terra/MODIS data were modeled using images collected over the Jornada Experimental Range, a semi-arid research site in southern New Mexico. By combining 27 ASTER clear sky scenes with several hundred 1-km scale MODIS scenes between 2001 and 2003, it was feasible to estimate ET at weekly time steps and to also assess longer-term changes in vegetation distributions.

  9. W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability

    Science.gov (United States)

    Zhang, J.; Chen, T. P.; Liu, Y. C.; Liu, Z.; Yang, H. Y.

    2017-05-01

    The W/Cu thin film structure is deposited by magnetron sputtering to form the infrared reflector for the TiNxOy based selective solar absorber (SSA) that can be used in the low- and middle-temperature applications. The structural, chemical, and optical properties of the SSA layers that experienced thermal annealing at different temperatures for various durations have been investigated with the characterization techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, spectroscopic ellipsometry, and spectrophotometry. Without a W layer, the reflectance in both visible and infrared ranges of the SSA increases as a result of the crystallization of the Cu layer at elevated temperatures. With a W layer with appropriate film thickness, the increase of the reflectance in the visible range can be suppressed to maintain a high solar absorptance, whereas a high infrared reflectance can be maintained to achieve a low thermal emittance. It is shown that for the SiO2-TiNxOy-W-Cu-Glass SSA with a 15 nm W thin film, thermal annealing can significantly reduce the thermal emittance to a low value (e.g., 4.4% at the temperature of 400 °C for annealing at 400 °C for 6 h), whereas the solar absorptance can be maintained at a high value (e.g., 92.2% for the annealing at 400 °C for 6 h).

  10. Hyperspectral Thermal Infrared Analysis of the Salton Sea, CA Geothermal Field

    Science.gov (United States)

    Reath, K. A.; Ramsey, M. S.

    2011-12-01

    The Salton Sea Geothermal Field is an active 20 km2 region in southern California, which lies along the Calipatria Fault; an offshoot of the San Andreas Fault. Several geothermal fields (including the Davis-Schrimpf and Sandbar fields) and ten power plants generating 340 MW lie within this region. In order to better understand the mineral and thermal distribution of the surface, hyperspectral thermal infrared (TIR) data were acquired by Aerospace Corporation using the Spatially Enhanced Broadband Array Spectrograph System (SEABSS) airborne sensor on March 26, 2009 and April 6, 2010. SEBASS collects 128 wavelength channels at 1 meter spatial resolution, from which a new and more accurate interpretation was produced of the surface mineralogy of the geothermal fields and surrounding areas. Such data are rarely available for this type of scientific analysis and enabled the identification of mineral assemblages associated with geothermally-active areas. These minerals include anhydrite, gypsum, as well as an unknown mineral with a unique TIR wavelength feature at 8.2 μm. Comparing the 2009 and 2010 data, this unknown mineral varies in abundance and spatial distribution likely due to changes in rainfall. Samples rich in this mineral were collected from an area identified in the SEBASS data and analyzed in the laboratory using high resolution TIR emission spectroscopy. The same spectral absorption feature was found confirming the mineral's presence. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were performed on one of the samples in order to positively identify this mineral and further constrain the TIR analysis. By using the combination of airborne and laboratory spectroscopy, detailed and temporally-variable patterns of the surface mineralogy were ultimately produced. This work has the potential to be used at other geothermal sites to better characterize transient mineralogy, understand the influence of surface and ground water in these systems, and

  11. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  12. Identification of thermal properties distribution in building wall using infrared thermography

    Science.gov (United States)

    Brouns, Jordan; Dumoulin, Jean

    2016-04-01

    [1] L. Ibos, J-P. Monchau, V. Feuillet, Y. Candau, A comparative study of in-situ measurement methods of a building wall thermal resistance using infrared thermography, in Proc. SPIE 9534, Twelfth International Conference on Quality Control by Artificial Vision 2015, 95341I (April 30, 2015); doi:10.1117/12.2185126 [2] Nassiopoulos, A., Bourquin, F., On-site building walls characterization, Numerical Heat Transfer, Part A : Applications, 63(3) :179 :200, 2013 [3] J. Brouns, Développement d'outils numériques pour l'audit énergétique des bâtiments, PhD thesis, Université Paris-Est, SIE, 2014 [4] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Book, Dunod editor, 1968.

  13. Remote sensing monitoring of thermal discharge in Daya Bay Nuclear Power Station based on HJ-1 infrared camera

    Science.gov (United States)

    Zhu, Li; Yin, Shoujing; Wu, Chuanqing; Ma, Wandong; Hou, Haiqian; Xu, Jing

    2014-11-01

    In this paper, the method of monitoring coastal areas affected by thermal discharge of nuclear plant by using remote sensing techniques was introduced. The proposed approach was demonstrated in Daya Bay nuclear plant based on HJ-B IRS data. A single channel water temperature inversion algorithm was detailed, considering the satellite zenith angle and water vapor. Moreover the reference background temperature was obtained using the average environmental temperature method. In the case study of Daya Bay nuclear plant, the spatial distribution of thermal pollution was analyzed by taking into account the influence of tidal, wind and so on. According to the findings of this study, the speed and direction of the ebb tide, is not conducive to the diffusion of thermal discharge of DNNP. The vertically thermal diffusion was limited by the shallow water depth near the outlet.

  14. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery

    Institute of Scientific and Technical Information of China (English)

    ZENG Tao; SHI Lijian; MARKO Makynen; CHENG Bin; ZOU Juhong; ZHANG Zhiping

    2016-01-01

    Level ice thickness distribution pattern in the Bohai Sea in the winter of 2009–2010 was investigated in this paper using MODIS night-time thermal infrared imagery. The cloud cover in the imagery was masked out manually. Level ice thickness was calculated using MODIS ice surface temperature and an ice surface heat balance equation. Weather forcing data was from the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. The retrieved ice thickness agreed reasonable well within situ observations from two off-shore oil platforms. The overall bias and the root mean square error of the MODIS ice thickness are –1.4 cm and 3.9 cm, respectively. The MODIS results under cold conditions (air temperature < –10°C) also agree with the estimated ice growth from Lebedev and Zubov models. The MODIS ice thickness is sensitive to the changes of the sea ice and air temperature, in particular when the sea ice is relatively thin. It is less sensitive to the wind speed. Our method is feasible for the Bohai Sea operational ice thickness analyses during cold freezing seasons.

  15. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    CERN Document Server

    Steinbring, Eric

    2016-01-01

    Nighttime zenith sky spectral brightness in the 3.3 to 20 micron wavelength region is reported for an observatory site nearby Eureka, on Ellesmere Island in the Canadian High Arctic. Measurements derive from an automated Fourier-transform spectrograph which operated continuously there over three consecutive winters. During that time the median through the most transparent portion of the Q window was 460 Jy/square-arcsec, falling below 32 Jy/square-arcsec in N band, and to sub-Jansky levels by M and shortwards; reaching only 36 mJy/square-arcsec within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model allows characterization of background stability and extrapolation into K band. This suggests the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 micro-Jy/square-arcsec at 2.4 microns. That background is comparable to South Pole, and more than an order of magnitude less than estim...

  16. Toward quantitative aerial thermal infrared thermography for energy conservation in the built environment

    Science.gov (United States)

    Allinson, David; Medjdoub, Benachir; Wilson, Robin

    2005-03-01

    The UK Home Energy Conservation Act puts a duty on local authorities to develop strategies to improve energy efficiency in all public and private sector housing in order to tackle fuel poverty and reduce carbon dioxide emissions. The City of Nottingham, UK turned to aerial Thermal InfraRed Thermography (TIRT) to try and identify households where energy savings can be made. In this paper, existing literature is reviewed to explain the limitations of aerial TIRT for energy conservation in the built environment and define the techniques required to overcome them. This includes the range of suitable meteorological conditions at the time of the survey, the use of ground truth data, the need to account for all radiation paths and losses when calculating roof surface temperature and the assumptions that must be made when calculating insulation levels. Atmospheric calibration, roof surface emissivity and sky view factor must also be determined by some means and approaches to these problems are reviewed from the wider literature. Error analysis and benchmarking are important if the technique is to be validated and these are discussed with reference to the literature. A methodology for determining the thickness of loft insulation for residential buildings in the city of Nottingham, UK using aerial TIRT data within a GIS software environment is proposed.

  17. Infrared matrix isolation study of the thermal and photochemical reactions of ozone with trimethylgallium.

    Science.gov (United States)

    Sriyarathne, H Dushanee M; Gudmundsdottir, Anna D; Ault, Bruce S

    2015-03-26

    The thermal and photochemical reactions of (CH3)3Ga and O3 have been explored using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental data using twin jet deposition and theoretical calculations demonstrate the formation of multiple product species after deposition, annealing to 35 K, and UV irradiation of the matrices. The products were identified as (CH3)2GaOCH3, (CH3)2GaCH2OH, (CH3)(CH3O)Ga(OCH3), (CH3)2GaCHO, and (CH3)Ga(OCH3)(CH2OH). Product identifications were confirmed by annealing and irradiation behavior, (18)O substitution experiments, and high level theoretical calculations. Merged jet deposition led to a number of stable late reaction products, including C2H6, CH3OH, and H2CO. A white solid film was also noted on the walls of the merged (flow reactor) region of the deposition system, likely due to the formation of Ga2O3.

  18. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    Science.gov (United States)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  19. Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background

    CERN Document Server

    Addison, Graeme E; Spergel, David N

    2012-01-01

    We show how the correlation between the thermal Sunyaev Zel'dovich effect (tSZ) from galaxy clusters and dust emission from cosmic infrared background (CIB) sources can be calculated in a halo model framework. Using recent tSZ and CIB models, we find that the size of the tSZ x CIB cross-correlation is approximately 10 per cent at 150 GHz. The contribution to the total angular power spectrum is of order -1 \\mu K^2 at ell=3000, however, this value is uncertain by a factor of two to three, primarily because of CIB source modelling uncertainties. We expect the large uncertainty in this component to degrade upper limits on the kinematic Sunyaev Zel'dovich effect (kSZ), due to similarity in the frequency dependence of the tSZ x CIB and kSZ across the frequency range probed by current Cosmic Microwave Background missions. We also find that the degree of tSZ x CIB correlation is higher for mm x sub-mm spectra than mm x mm, because more of the sub-mm CIB originates at lower redshifts (z<2), where most tSZ clusters ...

  20. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging.

    Science.gov (United States)

    Nourhashemi, Mina; Mahmoudzadeh, Mahdi; Wallois, Fabrice

    2016-01-01

    The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and [Formula: see text] (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage.

  1. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality

    Institute of Scientific and Technical Information of China (English)

    LU Guo-quan; HUANG Hua-hong; ZHANG Da-peng

    2006-01-01

    Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=1.371 ℃,RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528,RSQ=0.89). Gelatinization completion temperature (Tc), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.

  2. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.