WorldWideScience

Sample records for satellite system engineers

  1. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  2. The MUSES Satellite Team and Multidisciplinary System Engineering

    Science.gov (United States)

    Chen, John C.; Paiz, Alfred R.; Young, Donald L.

    1997-01-01

    In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.

  3. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  4. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  5. Engineering Tools and Validation Test Beds for New Telecommunication Satellite Multimedia Systems

    Science.gov (United States)

    Foix, V.; Taisant, J.-Ph.; Piau, P.; Thomasson, L.

    2002-01-01

    Satellite telecommunication and broadcasting systems have to adapt to the major evolutions introduced by the emergence of new multimedia services distributed by terrestrial networks. This major adaptation of satellite telecommunication systems implies the use of new technologies and standards, on-board satellites and within the telecommunication ground segment. The deeper interaction between space and ground infrastructures induced by these evolutions also leads to additional system complexity. The definition, design and end-to-end validation of these satellite networks require dedicated engineering tools and validation test beds running the major elements of the telecommunication mission, e.g. on-board and ground equipment implementing the various protocols and algorithms used in the system. Through two programmes called respectively "Atelier Télécom du Futur" and "Multimedia System Validation Test Beds", CNES has been developing since early 2000 an advanced simulation tool and complementary test beds to support engineering activities and cover most of the end-to-end validation needs of these new satellite telecommunication multimedia systems. This communication aims to present the technical objectives, the logic which has led to propose several complementary means, their main characteristics and development status. To end up, the first results provided by these tools and test beds are presented.

  6. Theoretical Engineering and Satellite Comlink of a PTVD-SHAM System

    CERN Document Server

    Alipour, Philip B

    2007-01-01

    This paper focuses on super helical memory system's design, 'Engineering, Architectural and Satellite Communications' as a theoretical approach of an invention-model to 'store time-data'. The current release entails three concepts: 1- an in-depth theoretical physics engineering of the chip including its, 2- architectural concept based on VLSI methods, and 3- the time-data versus data-time algorithm. The 'Parallel Time Varying & Data Super-helical Access Memory' (PTVD-SHAM), possesses a waterfall effect in its architecture dealing with the process of voltage output-switch into diverse logic and quantum states described as 'Boolean logic & image-logic', respectively. Quantum dot computational methods are explained by utilizing coiled carbon nanotubes (CCNTs) and CNT field effect transistors (CNFETs) in the chip's architecture. Quantum confinement, categorized quantum well substrate, and B-field flux involvements are discussed in theory. Multi-access of coherent sequences of 'qubit addressing' in any mag...

  7. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  8. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1980-09-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  9. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  10. An MDO augmented value-based systems engineering approach to holistic design decision-making: A satellite system case study

    Science.gov (United States)

    Kannan, Hanumanthrao

    decision-making under uncertainties. A holistic framework for system optimization called the Value-Based Systems Engineering (VBSE) framework is proposed in this research. This framework acts as the first step towards enabling overall system consistency in decision-making in the design of LSCES. A commercial communication geo-stationary satellite model is created and used as a testbed throughout to demonstrate the different aspects of this research.

  11. Engineering Test Satellite VI (ETS-VI)

    Science.gov (United States)

    Horii, M.; Funakawa, K.

    1991-01-01

    The Engineering Test Satellite-VI (ETS-VI) is being developed as the third Japanese three-axis stabilized engineering test satellite to establish the 2-ton geostationary operational satellite bus system and to demonstrate the high performance satellite communication technology for future operational satellites. The satellite is expected to be stationed at 154 deg east latitude. It will be launched from the Tanegashima Space Center in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the prelaunch compatibility test, data interface verification testing, and launch rehersals. The DSN primary support period is from launch through the final AEF plus 1 hour. Contingency support is from final AEF plus 1 hour until launch plus 1 month. The coverage will consist of all the 26-m antennas as prime and the 34-m antennas at Madrid and Canberra as backup. Maximum support will consist of two 8-hour tracks per station for a 7-day period, plus the contingency support, if required. Information is given in tabular form for DSN support, telemetry, command, and tracking support responsibility.

  12. Global navigation satellite systems: report of a joint workshop of the National Academy of Engineering and the Chinese Academy of Engineering

    National Research Council Canada - National Science Library

    Davis, Lance A; Enge, Per; Gao, Grace X

    2012-01-01

    ...: improved safety of life, increased productivity, and wide-spread convenience. Global navigation satellite systems summarizes the joint workshop on Global Navigation Satellite Systems held jointly by the U.S...

  13. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  14. The Archimedes satellite system

    Science.gov (United States)

    Taylor, Stuart C.; Shurvinton, William D.

    1992-03-01

    Archimedes is a satellite system conceived by the European Space Agency (ESA) to effectively serve the European market for Mobile Radio Services (MRS). This paper describes the requirements and technical design of the Archimedes satellite system. The underlying assumptions and trade-offs behind the design are detailed and the design is compared and contrasted against alternative design solutions, both technically and economically. A path forward for the development of the system is indicated.

  15. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  16. Systems Engineering

    Science.gov (United States)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  17. The telecommunications handbook engineering guidelines for fixed, mobile and satellite systems

    CERN Document Server

    Penttinen, Jyrki T J

    2015-01-01

    This practical handbook and reference provides a complete understanding of the telecommunications field supported by descriptions and case examples throughout Taking a practical approach, The Telecommunications Handbook examines the principles and details of all of the major and modern telecommunications systems currently available to industry and to end-users. It gives essential information about usage, architectures, functioning, planning, construction, measurements and optimisation. The structure of the book is modular, giving both overall descriptions of the architectures and functionali

  18. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  19. Experimental millimeter-wave satellite communications system

    Science.gov (United States)

    Suzuki, Yoshiaki; Shimada, Masaaki; Arimoto, Yoshinori; Shiomi, Tadashi; Kitazume, Susumu

    This paper describes an experimental system of millimeter-wave satellite communications via Japan's Engineering Test Satellite-VI (ETS-VI) and a plan of experiments. Two experimental missions are planned using ETS-VI millimeter-wave (43/38 GHz bands) transponder, considering the millimeter-wave characteristics such as large transmission capacity and possibility to construct a small earth station with a high gain antenna. They are a personal communication system and an inter-satellite communication system. Experimental system including the configuration and the fundamental functions of the onboard transponder and the outline of the experiments are presented.

  20. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo

    2005-01-01

    for an efficient hybrid terrestrial-satellite communication system. Two integrated HAP-satellite scenarios are presented, in which the HAP is used to overcome some of the shortcomings of satellite- based communications. Moreover, it is shown that the integration of HAPs with satellite systems can be used......Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element...

  1. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  2. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  3. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    Science.gov (United States)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  4. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    arrives at a schedule of costs and payments for all the items and the years in which they will be incurred. The second category of costing problems is one of financing or engineering economics. All the costs are first "present valued" to some reference period using rates of return appropriate to the particular situation. One finally arrives at sets of annual costs which can be used as the basis for setting lease costs or revenue requirements and tariffs. The correspondence between methods using discounted rates of return and capital recovery formulae on one hand and those using various depreciation schedules, such as is typical of regulated industries on the other hand, is discussed. The remainder of the paper is devoted to discussing the relationship between critical parameters, such as replacement schedules, design lifetime, satellite power and Earth station antenna size, and the overall costs. It is shown that optima for these parameters may exist and can be calculated. In particular, the optimization of satellite replacement schedules to minimize the present value of total investment over a very long period is presented, along with simplified versions of the theory suitable for system planning. The choice of EIRP is also discussed and a procedure for choosing the value that minimizes the costs is shown.

  5. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  6. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  7. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  8. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  9. ENGINEERING CONTRACT ON FY-2 BATCH 2 SATELLITES SIGNED

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    The signing ceremony of the Engineering Contract on FY-2 Batch 2 (FY-2 02) Satellites was held in Beijing by Commission of Science, Technology and Industry for National Defense (COSTIND) on August 31, 2004. The contract on the development and manufacture of FY-2 batch 2 satellites and the contract on the launch, test and control of FY-2 Batch 2 satellites were signed by China Meteorological Administration (CMA),

  10. Advanced satellite communication system

    Science.gov (United States)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  11. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  12. The Omninet mobile satellite system

    Science.gov (United States)

    Salmasi, A.; Curry, W.

    Mobile Satellite System (MSS) design offering relatively low cost voice, data, and position location services to nonmetropolitan areas of North America is proposed. The system provides spectrally efficient multiple access and modulation techniques, and flexible user interconnection to public and private switched networks. Separate UHF and L-band satellites employing two 9.1 m unfurlable antennas each, achieve a 6048 channel capacity and utilize spot beams. Mobile terminals have modular design and employ 5 dBi omnidirectional antennas. Gateway stations (with two 5 m Ku-band antennas) and base stations (with a single 1.8 m Ku-band antenna) transmit terrestrial traffic to the satellite, where traffic is then transponded via an L-band or UHF downlink to mobile users. The Network Management Center uses two 5-m antennas and incorporates the Integrated-Adaptive Mobile Access Protocol to assure demand assignment of satellite capacity. Preliminary implementation of this low-risk system involves a mobile alphanumeric data service employing receive-only terminals at Ku-band projected for 1987, and plans for the launching of L-band receive-only packages as early as 1988.

  13. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  14. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  15. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  16. The Second Young Engineers' Satellite: Innovative Technology through Education

    Science.gov (United States)

    Fujii, Hironori A.; Kruijff, Michiel; van der Heide, Erik J.; Watanabe, Takeo

    The second Young Engineers' Satellite,YES2, is the longest manmade structure launched in 2007 and is space piggybacked on the Foton-M3 microgravity platform with the objective of a controlled deployment of a 32km tether. This paper introduces the object and the flight results of YES2 and the performance of the satellite is studied in comparison of the simulations and ground tests with respect to the flight results.

  17. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  18. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  19. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  20. SYSTEMS ENGINEERING RESEARCH

    Institute of Scientific and Technical Information of China (English)

    Abd-El-Kader SAHRAOUI; Dennis M. BUEDE; Andrew P. SAGE

    2008-01-01

    In this paper, we propose selected research topics that are believed central to progress and growth in the application of systems engineering (SE). As a professional activity, and as an intellectual activity, systems engineering has strong links to such associated disciplines as decision analysis, operation research, project management, quality management, and systems design. When focussing on systems engineering research, we should distinguish between subjects that are of systems engineering essence and others that more closely correspond to those that are more relevant for related disciplines.

  1. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  2. Unified Engineering Software System

    Science.gov (United States)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  3. Engineered Natural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — With its pressure vessels that simulate the pressures and temperatures found deep underground, NETL’s Engineered Natural Systems Laboratory in Pittsburgh, PA, gives...

  4. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  5. Global navigation satellite systems and their applications

    CERN Document Server

    Madry, Scott

    2015-01-01

    Dr. Madry, one of the world's leading experts in the field, provides in a condensed form a quick yet comprehensive overview of satellite navigation. This book concisely addresses the latest technology, the applications, the regulatory issues, and the strategic implications of satellite navigation systems. This assesses the strengths and weaknesses of satellite navigation networks and review of all the various national systems now being deployed and the motivation behind the proliferation of these systems.

  6. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  7. Systems engineering management plans.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  8. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  9. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  10. Optomechanical systems engineering

    CERN Document Server

    Kasunic, Keith J

    2015-01-01

    Covers the fundamental principles behind optomechanical design This book emphasizes a practical, systems-level overview of optomechanical engineering, showing throughout how the requirements on the optical system flow down to those on the optomechanical design. The author begins with an overview of optical engineering, including optical fundamentals as well as the fabrication and alignment of optical components such as lenses and mirrors. The concepts of optomechanical engineering are then applied to the design of optical systems, including the structural design of mechanical and optical co

  11. Design of the American Mobile Satellite System

    Science.gov (United States)

    Kittiver, Charles

    1991-01-01

    This paper presents an overview of the American Mobile Satellite Corporation (AMSC) Mobile Satellite System (MSS). A summary of the mobile satellite (MSAT) design and overall performance is provided. The design and components of both the forward link and return link transponders are described in detail. The design and operation of a unique hybrid matrix amplifier that offers flexible power distribution is outlined. The conceptual design and performance of three types of land mobile antennas are described.

  12. application to engine systems

    Directory of Open Access Journals (Sweden)

    G. George Zhu

    2000-01-01

    Full Text Available The q-Markov COVariance Equivalent Realization (q-Markov Cover method for identification uses either pulse, white noise or PRBS (Pseudo-Random Binary Signal as test excitation. This paper extended the q-Markov Cover using PRBS to the weighted multirate case, that is, the sample rate of the PRBS signal is different from the system output one. Then, the multirate PRBS q-Markov Cover is applied to identify a diesel engine model from the fuel command input to the engine speed output. The identified engine model has order of two and approximates the pure fuel system time delay using a first-order transfer function with a non-minimum phase numerator. Finally, the identified engine model was successfully used for designing engine idle speed governor and obtained satisfactory performance in the first try.

  13. 北斗在远海工程人员安全监管中的应用前景%Application prospect of BeiDou Navigation Satellite System in staff safety supervision of open- sea engineering

    Institute of Scientific and Technical Information of China (English)

    何建波; 张工; 崔银秋; 田俊峰

    2015-01-01

    北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统,作为先进的导航、定位、测量和授时手段,已经融入了国家建设和社会发展的各个应用领域。文章根据北斗系统的服务特色和服务优势,阐述北斗在远海工程人员安全监管的技术解决途径和应用前景,进行了有益的尝试。%China is implementing the BeiDou Navigation Satellite System, which is the independently developed and operated global navigation satellite system by China. It has been integrated into various applications of the national construction and so-cial development as the means of navigation, fixed position, measurement, and time service. Based on the service characteristics and advantages of BeiDou System, we describes the technology solutions and application prospect of BeiDou System in staff safety supervision of open-sea engineering, and carried on the beneficial attempt.

  14. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  15. Telecommunications system reliability engineering theory and practice

    CERN Document Server

    Ayers, Mark L

    2012-01-01

    "Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"

  16. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.; Van Vliet, B.; Van Lier, J.B.

    2011-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas, e

  17. Satellite Sanitary Systems in Kampala, Uganda

    NARCIS (Netherlands)

    Letema, S.C.; Vliet, van B.J.M.; Lier, van J.B.

    2012-01-01

    Satellite sewage collection and treatment systems have been independently developed and managed in East African cities outside the centrally planned and sewered areas. A satellite approach is a promising provisioning option parallel to public sewerage for middle- and high-income residential areas, e

  18. Joint Polar Satellite System Common Ground System Overview

    Science.gov (United States)

    Jamilkowski, M. L.; Smith, D. C.

    2011-12-01

    Jointly acquired by NOAA & NASA, the next-generation civilian environmental satellite system, Joint Polar Satellite System (JPSS), will supply the afternoon orbit & ground system of the restructured NPOESS program. JPSS will replace NOAA's current POES satellites and the ground processing part of both POES & DoD's Defense Weather Satellite System (DWSS)(DMSP replacement). JPSS sensors will collect meteorological, oceanographic, climatological and solar-geophysical data. The ground system, or JPSS Common Ground System (CGS), has 6 integrated product teams/segments: Command, Control & Communications (C3S); Interface Data Processing (IDPS); Field Terminal (FTS); Systems Engineering, Integration & Test (SEIT); Operations & Support (O&S); and Sustainment developed by Raytheon Intelligence & Information Systems. The IDPS will process JPSS data to provide Environmental Data Records (EDRs) to NOAA & DoD processing centers beginning with the NPOESS Preparatory Project (NPP) and through JPSS & DWSS eras. C3S will: manage overall JPSS & DWSS missions from control/status of space/ground assets to ensure timely delivery of high-quality data to IDPS; provide globally-distributed ground assets to collect/transport mission, telemetry and command data between satellites & processing locations; provide all commanding & state-of-health monitoring functions of NPP, JPSS and DWSS satellites, and delivery of mission data to each Central IDP and monitor/report system-wide health/status and data communications with external systems and between CGS segments. SEIT leads the overall effort, including: manage/coordinate/execute JPSS CGS activities with NASA participation/oversight; plan/conduct all activities related to systems engineering, develop & ensure completeness of JPSS CGS functional & technical baselines and perform integration, deployment, testing and verification; sponsor/support modeling & simulation, performance analysis and trade studies; provide engineering for the product

  19. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  20. Advanced tracking and data relay satellite system

    Science.gov (United States)

    Stern, Daniel

    1992-01-01

    The purpose of this communication satellite system are as follows: to provide NASA needs for satellite tracking and communications through the year 2012; to maintain and augment the current TDRS system when available satellite resources are expended in the latter part of the decade; to provide the necessary ground upgrade to support the augmented services; and to introduce new technology to reduce the system life cycle cost. It is concluded that no ATDRS spacecraft requirement for new modulation techniques, that data rate of 650 MBps is required, and that Space Station Freedom requirement is for 650 MBps data some time after the year 2000.

  1. Reliability Growth Analysis of Satellite Systems

    Science.gov (United States)

    2012-09-01

    obtained. In addition, the Cumulative Intensity Function ( CIF ) of a family of satellite systems was analyzed to assess its similarity to that of a...parameters are obtained. In addition, the Cumulative Intensity Function ( CIF ) of a family of satellite systems was analyzed to assess its similarity to that...System Figures 7a through 7i display the real CIF for a variety of GOES missions. These cumulative intensity functions have shapes similar to the

  2. A new digital land mobile satellite system

    Science.gov (United States)

    Schneider, Philip

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  3. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ (Continued) Applications In Global Environment And Natural Disaster Monitoring 1) Application in world crop yield estimation China is now one of the few nations in the world that can provide operational service with both GEO and polar-orbit meteorological satellites.

  4. Alignments between galaxies, satellite systems and haloes

    CERN Document Server

    Shao, Shi; Frenk, Carlos S; Gao, Liang; Crain, Robert A; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-01-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the disks of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of $33^{\\circ}$ in both cases. While the centrals are better aligned with the inner $10$ kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central - satellite alignment is weak (median misalignment angle of $52^{\\circ}$) and we find that around $20\\%$ of systems have a misalignment angle larger than $78^{\\circ}$, which is the value for the Milky Way. The central - satellite alignment is a conseq...

  5. Satellite power system (SPS) initial insurance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The beginning of a process to educate the insurance industry about the Satellite Power System is reported. The report is divided into three sections. In the first section a general history describes how space risks are being insured today. This is followed by an attempt to identify the major risks inherent to the SPS. The final section presents a general projection of insurance market reactions to the Satellite Power System.

  6. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  7. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  8. A Survey of Satellite Communications System Vulnerabilities

    Science.gov (United States)

    2008-06-01

    Myers, Raymond M. Nuber, Jaime L. Prieto , Jr., and Eric R. Wiswell, “Fast Packet Vs. Circuit Switch and Bent Pipe Satellite Network Architectures...2008. 81. Howell, Alan , “INMARSAT HORIZONS PROGRAM,” Institution of Electrical Engineers, Savoy Place, London, 1998. 82. http://www.infosec.gov.hk...ntia-rpt/02- 393/02-393.pdf, NTIA Report 02-393, pages 1-20, May 2002. 134. Sardella, Alan , “Securing Provider Backbone Networks: Packet Filters

  9. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  10. Odyssey, an optimized personal communications satellite system

    Science.gov (United States)

    Rusch, Roger J.

    Personal communications places severe demands on service providers and transmission facilities. Customers are not satisfied with the current levels of service and want improvements. Among the characteristics that users seek are: lower service rates, hand held convenience, acceptable time delays, ubiquitous service, high availability, reliability, and high quality. The space industry is developing commercial space systems for providing mobile communications to personal telephones. Provision of land mobile satellite service is fundamentally different from the fixed satellite service provided by geostationary satellites. In fixed service, the earth based antennas can depend on a clear path from user to satellite. Mobile users in a terrestrial environment commonly encounter blockage due to vegetation, terrain or buildings. Consequently, high elevation angles are of premium value. TRW studied the issues and concluded that a Medium Earth Orbit constellation is the best solution for Personal Communications Satellite Service. TRW has developed Odyssey, which uses twelve satellites in medium altitude orbit to provide personal communications satellite service. The Odyssey communications system projects a multibeam antenna pattern to the Earth. The attitude control system orients the satellites to ensure constant coverage of land mass and coastal areas. Pointing can be reprogrammed by ground control to ensure optimized coverage of the desired service areas. The payload architecture features non-processing, "bent pipe" transponders and matrix amplifiers to ensure dynamic power delivery to high demand areas. Circuit capacity is 3000 circuits per satellite. Each satellite weighs 1917 kg (4226 pounds) at launch and the solar arrays provide 3126 Watts of power. Satellites are launched in pairs on Ariane, Atlas, or other vehicles. Each satellite is placed in a circular orbit at an altitude of 10,354 km. There are three orbit planes inclined at 55° to the equatorial plane

  11. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  12. Intelligence-based systems engineering

    CERN Document Server

    Tolk, Andreas

    2011-01-01

    The International Council on Systems Engineering (INCOSE) defines Systems Engineering as an interdisciplinary approach and means to enable the realization of successful systems. Researchers are using intelligence-based techniques to support the practices of systems engineering in an innovative way. This research volume includes a selection of contributions by subject experts to design better systems.

  13. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  14. Engineering Multiagent Systems - Reflections

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2012-01-01

    In the first part I look at a theater performance by artistic director Troels Christian Jakobsen as a multiagent system. It is designed as a self-organising critical system using a framework where within its borders but without a script there is real interaction between the elements...... a curriculum for the MSc in Computer Science and Engineering program at the Technical University of Denmark with a focus on multiagent systems. As the director of studies I have observed that the students are working hard and with much creativity in advanced courses and projects involving intelligent agents...

  15. Verifying command sequences for satellite systems

    Science.gov (United States)

    Peters, James F., III; Ramanna, Sheela

    1992-10-01

    We present a formal basis for the design of a Checker used in validating safe schedules and in selecting error recovery schedules for satellite control systems. This design includes a high-level specification of Checker behavior and properties (called flight rules) of safe schedules. Specifications are written in Timed Linear Logic (TLL). Validation of schedules is performed in terms of real-time telemetry and deduction system proof rules. Telemetry (state information for satellite subsystems) serves as input to the Checker. Detection of violation of a flight rule by the Checker results in the selection of a contingency plan (error recovery schedule). The Checker is illustrated in terms of the TOPEX/Poseidon Oceanographic Satellite System.

  16. A relativistic and autonomous navigation satellite system

    CERN Document Server

    Delva, Pacôme; Kostić, Uros; Carloni, Sante

    2011-01-01

    A relativistic positioning system has been proposed by Bartolom\\'e Coll in 2002. Since then, several group developed this topic with different approaches. I will present a work done in collaboration with Ljubljana University and the ESA Advanced Concepts Team. We developed a concept, Autonomous Basis of Coordinates, in order to take advantage of the full autonomy of a satellite constellation for navigation and positioning, by means of satellite inter-links. I will present the advantages of this new paradigm and a number of potential application for reference systems, geophysics and relativistic gravitation.

  17. Global navigation satellite systems, inertial navigation, and integration

    CERN Document Server

    Grewal, Mohinder S; Bartone, Chris G

    2013-01-01

    An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kal

  18. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  19. A native IP satellite communications system

    Science.gov (United States)

    Koudelka, O.; Schmidt, M.; Ebert, J.; Schlemmer, H.; Kastner-Puschl, S.; Riedler, W.

    2004-08-01

    ≪ In the framework of ESA's ARTES-5 program the Institute of Applied Systems Technology (Joanneum Research) in cooperation with the Department of Communications and Wave Propagation has developed a novel meshed satellite communications system which is optimised for Internet traffic and applications (L*IP—Local Network Interconnection via Satellite Systems Using the IP Protocol Suite). Both symmetrical and asymmetrical connections are supported. Bandwidth on demand and guaranteed quality of service are key features of the system. A novel multi-frequency TDMA access scheme utilises efficient methods of IP encapsulation. In contrast to other solutions it avoids legacy transport network techniques. While the DVB-RCS standard is based on ATM or MPEG transport cells, the solution of the L*IP system uses variable-length cells which reduces the overhead significantly. A flexible and programmable platform based on Linux machines was chosen to allow the easy implementation and adaptation to different standards. This offers the possibility to apply the system not only to satellite communications, but provides seamless integration with terrestrial fixed broadcast wireless access systems. The platform is also an ideal test-bed for a variety of interactive broadband communications systems. The paper describes the system architecture and the key features of the system.

  20. Systems engineering agile design methodologies

    CERN Document Server

    Crowder, James A

    2013-01-01

    This book examines the paradigm of the engineering design process. The authors discuss agile systems and engineering design. The book captures the entire design process (functionbases), context, and requirements to affect real reuse. It provides a methodology for an engineering design process foundation for modern and future systems design. This book captures design patterns with context for actual Systems Engineering Design Reuse and contains a new paradigm in Design Knowledge Management.

  1. CARMENES system engineering

    Science.gov (United States)

    Pérez-Calpena, A.; Seifert, W.; Amado, P.; Quirrenbach, A.; García-Vargas, M. L.; Caballero, J.; Gesa, L.; Guenther, E.; Becerril, S.; Sanchez, M. A.; Veredas, G.; Ribas, I.; Reiners, A.

    2016-08-01

    CARMENES is a high resolution spectrograph built for the 3.5m telescope at the Calar Alto Observatory by a consortium formed by 11 German and Spanish institutions. CARMENES is composed by two separated highly stabilized spectrographs covering the VIS and NIR wavelength ranges to provide high-accuracy radial-velocity measurements with long-term stability. The technical and managerial complexity of the instrument, with a fixed project deadline, demanded a strong system engineering control to preserve the high level requirements during the development, manufacturing, assembly, integration and verification phases.

  2. Neptunian Satellites observed with Keck AO system

    Science.gov (United States)

    Marchis, F.; Urata, R.; de Pater, I.; Gibbard, S.; Hammel, H. B.; Berthier, J.

    2004-05-01

    The Neptunian system was observed on 9 different nights between July 2002 and October 2003 with the 10-m Keck telescope on Mauna Kea, Hawaii, and its facility instrument NIRC2 coupled with the Adaptive Optics system. Data were recorded in J (1.2μ m), and H (2.2μ m) bands. The angular resolution achieved on a one-minute integration time image is 0.50 arcsec, corresponding to a spatial resolution of 1100 km. The images display small structures such as the rings (de Pater et al. 2004), clouds in the atmosphere (Gibbard et al. 2003), and inner satellites, mainly Proteus, Larissa, Galatea, Despina, and Thalassa. On the 40 images, the positions and intensities of the satellites detected were accurately measured fitting the signal with a gaussian profile. The center of Neptune was obtained by fitting the disk position with an ellipse. After correcting for the detector distortion, we compared the satellite positions with the predicted ones delivered by several ephemerides. We used the JPL (NEP016 + NEP022 + DE405) and two IMCCE ephemerides, an old version (VSOP87+Owen et al., 1991) and a more recent one (DE405+Le Guyader et al., 1993). All cases, we confirmed the presence of an apparent shift between the predicted and the observed positions. Table 1 (see http://astron.berkeley.edu/ fmarchis/Science/Neptune/Satellites/) summarizes the mean distance of the shift for satellites most frequently observed and the various ephemerides. In this presentation, we will report the positions of the satellites, and present their color and possible photometric variations derived from the observations. This work has been partially supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 9876783.

  3. A commercial procedure execution engine completing the command chain of a university satellite simulation infrastructure

    Science.gov (United States)

    Fritz, Michael; Falke, Albert; Kuwahara, Toshinori; Roeser, Hans-Peter; Pearson, Steve; Witts, Andrew; Eickhoff, Jens

    2010-03-01

    The Institute of Space Systems at the University of Stuttgart has a small satellite programme consisting of currently four missions. The first of these missions is the Flying Laptop, the purpose of which are technology evaluation, Earth observation and scientific measurement. Since the budget for a University satellite programme is obviously limited, engineering models of the entire spacecraft are to be avoided. In order to keep technical risks at a low level, a simulation based development approach was selected instead which already has been applied as proven technology in industry. The Institute of Space Systems applies the system simulation infrastructure Model- based Development and Verification Environment (MDVE) developed by Astrium as real-time simulator which is commanded via a SCOS-2000 mission control system. Easy commanding of such an entire simulated S/C, respectively, later the hardware in AIT phase, is mandatory especially for students only working with the equipment for a typical 6 months thesis period. Therefore the infrastructure setup was completed by the test procedure editor and execution engine Manufacturing and Operations Information System (MOIS) which for the first time provides a complete command/execution/control chain in the programme.

  4. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  5. Communications satellite system for Africa

    Science.gov (United States)

    Kriegl, W.; Laufenberg, W.

    1980-09-01

    Earlier established requirement estimations were improved upon by contacting African administrations and organizations. An enormous demand is shown to exist for telephony and teletype services in rural areas. It is shown that educational television broadcasting should be realized in the current African transport and communications decade (1978-1987). Radio broadcasting is proposed in order to overcome illiteracy and to improve educational levels. The technical and commercial feasibility of the system is provided by computer simulations which demonstrate how the required objectives can be fulfilled in conjunction with ground networks.

  6. Engineering System Theory--A New Engineering Meta-Discipline

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper proposes a new engineering discipline--Engineering System Theory. It discusses rendered background, research objects and contents of the engineering system theory briefly. Finally, the meta-discipline standing of the engineering system theory in the whole knowledge system of engineering science and its development potential are pointed out.

  7. Engineering the LISA Project: Systems Engineering Challenges

    Science.gov (United States)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  8. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  9. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  10. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Omar A. Alcover Firpi

    2016-11-01

    Full Text Available A review of Google Earth Engine for archaeological remote sensing using satellite data. GEE is a freely accessible software option for processing remotely sensed data, part of the larger Google suite of products.

  11. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  12. Technology for a quasi-GSO satellite communications system

    OpenAIRE

    Katagi, T.; Yonezawa, R.; Chiba, I.; Urasaki, S.

    1999-01-01

    In this paper, a satellite communications system using a Quasi Geostationary Satellite Orbit (Quasi-GSO) is proposed. A 24-hour period Quasi-GSO system could give high quality communication to high latitude regions with its satellites observed from earth stations having high elevation angles. In this paper, a system concept and a deployable flat antenna with light weight antenna elements are described proposing it to be a good candidate for mobile communications satellite use.

  13. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  14. Incoherent correlator system for satellite orientation control

    Science.gov (United States)

    Kouris, Aristodemos; Young, Rupert C. D.; Chatwin, Christopher R.; Birch, Philip M.

    2002-03-01

    An incoherent correlator configuration is proposed and experimentally demonstrated that is capable of recognizing star patterns. The device may thus be employed for the orientation and navigation of a satellite or spacecraft. The correlator employs starlight directly and requires no laser or input spatial light modulator for operation. The filter is constructed form an array of mirrors that may be individually appropriately tilted so as recognize a particular star arrangement. The only other components of the system are a converging lens and CCD array detector. The device is capable of determining the pointing direction and rotation of a satellite or space vehicle. Experimental results employing the mirror array device illuminated with a point source early to simulate starlight are presented.

  15. Recommendation systems in software engineering

    CERN Document Server

    Robillard, Martin P; Walker, Robert J; Zimmermann, Thomas

    2014-01-01

    With the growth of public and private data stores and the emergence of off-the-shelf data-mining technology, recommendation systems have emerged that specifically address the unique challenges of navigating and interpreting software engineering data.This book collects, structures and formalizes knowledge on recommendation systems in software engineering. It adopts a pragmatic approach with an explicit focus on system design, implementation, and evaluation. The book is divided into three parts: "Part I - Techniques" introduces basics for building recommenders in software engineering, including techniques for collecting and processing software engineering data, but also for presenting recommendations to users as part of their workflow.?"Part II - Evaluation" summarizes methods and experimental designs for evaluating recommendations in software engineering.?"Part III - Applications" describes needs, issues and solution concepts involved in entire recommendation systems for specific software engineering tasks, fo...

  16. System identification of jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, N.

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performance change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.

  17. Maturity Curve of Systems Engineering

    Science.gov (United States)

    2008-12-01

    frequently described. One possible reason for the diversity for the definition of Systems Engineering is offered by Kasser and Massie (2001). They...Engineering and Its Definition In his paper to the Proceedings of the 17th International Symposium of the INCOSE, San Diego, CA., 2007, Kasser ...have different levels of experience as well as operating from a different level of Systems Engineering ( Kasser and Massie, 2001). For this

  18. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  19. System implementation for Earth Radiation Budget Satellite System

    Science.gov (United States)

    Cooper, J. E.; Woerner, C. V.

    1978-01-01

    A description is presented of the instrument system which is needed for the Earth Radiation Budget Satellite System (ERBSS). The system is to be composed of instruments on two of NOAA's near-polar sun-synchronous Tiros-N/NOAA A through G series of operational satellites and on a NASA midinclination satellite of the Applications Explorer Mission (AEM) type referred to as ERBS-A/AEM. The Tiros-N/NOAA satellites will be in nominal 833 km altitude circular orbits with orbital inclinations of 98 deg. The AEM satellite will be in a circular orbit with an inclination of approximately 56 deg and a nominal altitude of 600 km. Each satellite will carry wide field-of-view (WFOV) and medium field-of-view (MFOV) sensors, a sensor for measuring the solar constant, and a narrow field-of-view (NFOV) cross-track scanner. The conceptual design of the W/MFOV instrument is discussed along with the conceptual design of the scanner.

  20. Engine systems and methods of operating an engine

    Science.gov (United States)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  1. Technical comparison of several global mobile satellite communications systems

    Science.gov (United States)

    Comparetto, Gary M.

    The era of satellite-based mobile satellite communications (MSC) systems started with the first MARISAT satellite which was launched into a geostationary orbit over the Pacific Ocean in 1976 to provide communications between ships and shore stations. The combination of high cost and unacceptably large equipment has kept the space-based MSC systems from appealing to the wider market of personal mobile communications. The progress made over the last ten years, however, in digital voice processing, satellite technology, and component miniaturization has resulted in the viability of satellite-based mobile satellite communications systems to meet the growing market in personal mobile communications using handsets similar to those currently in use with land-based cellular systems. Three of the more mature LEO/MEO satellite systems are addressed in this paper including GLOBALSTAR, Iridium, and Odyssey. The system architectures of each system are presented along with a description of the satellite and user handset designs and the multiaccess techniques employed. It will be shown that, although a number of similarities exist among the system addressed, each system is unique in a variety of significant design areas. It is concluded that the technical feasibility of satellite-based mobile satellite communications systems seems to be secure. It will be challenging, however, for the vendors to actually develop and deploy these systems in a cost effective, timely, and reliable way that meets a continually evolving set of requirements based upon a rapidly changing technology base.

  2. Optimal Release Control of Companion Satellite System Using Electromagnetic Forces

    Institute of Scientific and Technical Information of China (English)

    Zengwen Xu,Peng Shi; Yushan Zhao∗

    2015-01-01

    Electromagnetic forces generated by the inter⁃action of component satellites can be used to release companion satellites. Optimal release trajectories for companion satellite system using inter⁃electromagnetic forces were investigated. Firstly, nonlinear relative motion dynamic equations of a two⁃craft electromagnetic companion satellite system were derived in spatial polar coordinates. Then principles of electromagnetic satellite formation flying were introduced. Secondly, the characteristics of the electromagnetic companion satellites release were analyzed and optimal release trajectories of companion satellites using electromagnetic forces were obtained using Gauss pseudospectral method. Three performance criteria were chosen as minimum time, minimum acceleration of the separation distance and minimum control acceleration. Finally, three release examples including expansion along separation distance, rotation in orbital plane and stable formation reconfiguration were given to demonstrate the feasibility of this method. Results indicated that the release trajectories can converge to optimal solutions effectively and the concept of release companion satellites using electromagnetic forces is practicable.

  3. 卫星成本风险分析与评估%Risk Analyzing and Evaluating of Satellite Engineering Cost

    Institute of Scientific and Technical Information of China (English)

    李一军; 王兆耀; 钱进

    2001-01-01

    Satellite engineering is a large-scale and complicated system engineer ing with longtime span, and varied indeterminate factors bring on very high risk of cost. It′s quite a problem to be solved urgently in the management of satel l ite developing that how the risk of satellite engineering cost can be evaluated effectively. It starts with analyzing the uncertainty of satellite cost and existed risk analysis methods, then on the base of it put forward a practica l and improved method adapted to the risk management of satellite cost. Finally this article presents the principle and method of reducing and controlling the r isk of cost.%从卫星成本不确定性分析入手,在已有的风险分析方法的基础上,针对卫星成本风险 管理的特点,提出了实用的改进方法,给出了降低和控制成本风险的原则和方法。

  4. National Satellite Forest Monitoring systems for REDD+

    Science.gov (United States)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  5. Joint Polar Satellite System Common Ground System Overview

    Science.gov (United States)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The JPSS CGS currently provides data processing for Suomi NPP, generating multiple terabytes per day across over two dozen environmental data products; that workload will be multiplied by two when the JPSS-1 satellite is

  6. System architecture for the Canadian interim mobile satellite system

    Science.gov (United States)

    Shariatmadar, M.; Gordon, K.; Skerry, B.; Eldamhougy, H.; Bossler, D.

    1988-05-01

    The system architecture for the Canadian Interim Mobile Satellite Service (IMSS) which is planned for commencement of commercial service in late 1989 is reviewed. The results of an associated field trial program which was carried out to determine the limits of coverage and the preliminary performance characteristics of the system are discussed.

  7. Satellite power system (SPS) public outreach experiment

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, S.R.

    1980-12-01

    To improve the results of the Satellite Power System (SPS) Concept Development and Evaluation Program, an outreach experiment was conducted. Three public interest groups participated: the L-5 Society (L-5), Citizen's Energy Project (CEP), and the Forum for the Advancement of Students in Science and Technology (FASST). Each group disseminated summary information about SPS to approximately 3000 constituents with a request for feedback on the SPS concept. The objectives of the outreach were to (1) determine the areas of major concern relative to the SPS concept, and (2) gain experience with an outreach process for use in future public involvement. Due to the combined efforts of all three groups, 9200 individuals/organizations received information about the SPS concept. Over 1500 receipients of this information provided feedback. The response to the outreach effort was positive for all three groups, suggesting that the effort extended by the SPS Project Division to encourage an information exchange with the public was well received. The general response to the SPS differed with each group. The L-5 position is very much in favor of SPS; CEP is very much opposed and FASST is relatively neutral. The responses are analyzed, and from the responses some questions and answers about the satellite power system are presented in the appendix. (WHK)

  8. MECHATRONICS SYSTEM ENGINEERING FOR

    DEFF Research Database (Denmark)

    Conrad, Finn; Roli, Francesco

    2005-01-01

    rotary vane actuator for robot manipulators is presented. The contribution proposes mathematical modelling, control and simulation of a novel water hydraulic rotary vane actuator applied to power and control a three-links manipulator. The results include engineering design and test of the proposed...

  9. MECHATRONICS SYSTEM ENGINEERING FOR

    DEFF Research Database (Denmark)

    Conrad, Finn; Roli, Francesco

    2005-01-01

    rotary vane actuator for robot manipulators is presented. The contribution proposes mathematical modelling, control and simulation of a novel water hydraulic rotary vane actuator applied to power and control a three-links manipulator. The results include engineering design and test of the proposed...

  10. Systems engineering for very large systems

    Science.gov (United States)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  11. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  12. Study, optimization, and design of a laser heat engine. [for satellite applications

    Science.gov (United States)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  13. Practice-based systems engineering programme

    CSIR Research Space (South Africa)

    Goncalves, D

    2010-08-01

    Full Text Available South Africa, and indeed internationally, has been experiencing a shortage of systems engineers. On the other hand we seem to have only introductory systems engineering courses at local universities. Systems engineers have developed by means...

  14. Global Ocean Surveillance With Electronic Intelligence Based Satellite System

    Science.gov (United States)

    Venkatramanan, Haritha

    2016-07-01

    The objective of this proposal is to design our own ELINT based satellite system to detect and locate the target by using satellite Trilateration Principle. The target position can be found by measuring the radio signals arrived at three satellites using Time Difference of Arrival(TDOA) technique. To locate a target it is necessary to determine the satellite position. The satellite motion and its position is obtained by using Simplified General Perturbation Model(SGP4) in MATLAB. This SGP4 accepts satellite Two Line Element(TLE) data and returns the position in the form of state vectors. These state vectors are then converted into observable parameters and then propagated in space. This calculations can be done for satellite constellation and non - visibility periods can be calculated. Satellite Trilateration consists of three satellites flying in formation with each other. The satellite constellation design consists of three satellites with an inclination of 61.3° maintained at equal distances between each other. The design is performed using MATLAB and simulated to obtain the necessary results. The target's position can be obtained using the three satellites ECEF Coordinate system and its position and velocity can be calculated in terms of Latitude and Longitude. The target's motion is simulated to obtain the Speed and Direction of Travel.

  15. Systems Engineering, Quality and Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    AS9100 has little to say about how to apply a Quality Management System (QMS) to aerospace test programs. There is little in the quality engineering Body of Knowledge that applies to testing, unless it is nondestructive examination or some type of lab or bench testing. If one examines how the systems engineering processes are implemented throughout a test program; and how these processes can be mapped to AS9100, a number of areas for involvement of the quality professional are revealed.

  16. Why systems engineering on telescopes?

    Science.gov (United States)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  17. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  18. System Engineering Paper

    Science.gov (United States)

    Heise, James; Hull, Bethanne J.; Bauer, Jonathan; Beougher, Nathan G.; Boe, Caleb; Canahui, Ricardo; Charles, John P.; Cooper, Zachary Davis Job; DeShaw, Mark A.; Fontanella, Luan Gasparetto; Friel, Mark; Goebel, Katie; Grant, Alex Martinsdacosta; Graves, Matt; Harms, Ryan Andrew; Hill, Aren; Lsely, Kevin Lee; Jose, Sonia; Klein, Andrew; Kolstad, Lauren Wickham; Lamp, Daniel A.; Lindquist, Mariangela Martin; Lopes, Daniel da Paula; Lourens, Rob; Matthews, Christopher

    2012-01-01

    The Iowa State University team, Team LunaCY, is composed of the following sub-teams: the main student organization, the Lunabotics Club; a senior mechanical engineering design course, ME 415; a senior multidisciplinary design course, ENGR 466; and a senior design course from Wartburg College in Waverly, Iowa. Team LunaCY designed and fabricated ART-E III, Astra Robotic Tractor- Excavator the Third, for the team's third appearance in the NASA Lunabotic Mining competition. While designing ART-E III, the team had four main goals for this year's competition:to reduce the total weight of the robot, to increase the amount of regolith simulant mined, to reduce dust, and to make ART-E III autonomous. After many designs and research, a final robot design was chosen that obtained all four goals of Team LunaCY. A few changes Team LunaCY made this year was to go to the electrical, computer, and software engineering club fest at Iowa State University to recruit engineering students to accomplish the task of making ART-E III autonomous. Team LunaCY chose to use LabView to program the robot and various sensors were installed to measure the distance between the robot and the surroundings to allow ART-E III to maneuver autonomously. Team LunaCY also built a testing arena to test prototypes and ART-E III in. To best replicate the competition arena at the Kennedy Space Center, a regolith simulant was made from sand, QuickCrete, and fly ash to cover the floor of the arena. Team LunaCY also installed fans to allow ventilation in the arena and used proper safety attire when working in the arena . With the additional practice in the testing arena and innovative robot design, Team LunaCY expects to make a strong appearance at the 2012 NASA Lunabotic Mining Competition. .

  19. Defining and representing events in a satellite scheduling system - The IEPS (Interactive Experimenter Planning System) approach

    Science.gov (United States)

    McLean, David R.; Littlefield, Ronald G.; Macoughtry, William O.

    A methodology is described for defining and representing satellite events from the IEPS perspective. The task of doing this is divided into four categories and includes defining and representing resource windows, event parameters, event scheduling strategies, and event constraints. The description of each of these categories includes examples from the IEPS ERBS-TDRSS Contact Planning System. This is a system which is being used by the Earth Radiation Budget Satellite (ERBS) schedulers to request TDRSS contact times from the NCC. The system is written in the C programming language and uses a custom built inference engine (TIE1) to do constraint checking and a custom built strategies interpreter to derive the plan. The planning system runs on the IBM-PC/AT or on any similar hardware which has a C development environment and 640K of memory.

  20. Design description report for a photovoltaic power system for a remote satellite earth terminal

    Science.gov (United States)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  1. Communication satellite system beyond the year 2000

    Science.gov (United States)

    Robertson, G. J.; Fourquet, J. M.

    1991-10-01

    The primary evolutionary factors of satellite communications technologies are reviewed based on the results of a study of novel satellite developments. A critical evaluation of the viability and availability of the technologies is utilized in conjunction with market forecasts to determine promising commercial strategies. Modern technologies are almost prepared for the development of a class of communications satellites and include bandwidth utilization, spacecraft bus modularity, and functional integration.

  2. Computational Intelligence for Engineering Systems

    CERN Document Server

    Madureira, A; Vale, Zita

    2011-01-01

    "Computational Intelligence for Engineering Systems" provides an overview and original analysis of new developments and advances in several areas of computational intelligence. Computational Intelligence have become the road-map for engineers to develop and analyze novel techniques to solve problems in basic sciences (such as physics, chemistry and biology) and engineering, environmental, life and social sciences. The contributions are written by international experts, who provide up-to-date aspects of the topics discussed and present recent, original insights into their own experien

  3. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  4. Simultaneous single epoch satellite clock modelling in Global Navigation Satellite Systems

    Science.gov (United States)

    Thongtan, Thayathip

    In order to obtain high quality positions from navigation satellites, range errors have to be identified and either modelled or estimated. This thesis focuses on satellite clock errors, which are needed to be known because satellite clocks are not perfectly synchronised with navigation system time. A new approach, invented at UCL, for the simultaneous estimation, in a single epoch, of all satellite clock offsets within a Global Navigation Satellite System (GNSS) from range data collected at a large number of globally distributed ground stations is presented. The method was originally tested using only data from a limited number of GPS satellites and ground stations. In this work a total of 50 globally distributed stations and the whole GPS constellation are used in order to investigate more fully the capabilities of the method, in terms of both accuracy and reliability. A number of different estimation models have been tested. These include those with different weighting schemes, those with and without tropospheric bias parameters and those that include assumptions regarding prior knowledge of satellite orbits. In all cases conclusions have been drawn based on formal error propagation theory. Accuracy has been assessed largely through the sizes of the predicted satellite clock standard deviations and, in the case of simultaneously estimating satellite positions, their error ellipsoids. Both internal and external reliability have been assessed as these are important contributors to integrity, something that is essential for many practical applications. It has been found that the accuracy and reliability of satellite clock offsets are functions of the number of known ground station clocks and distance from them, quality of orbits and quality of range measurement. Also the introduction of tropospheric zenith delay parameters into the model reduces both accuracy and reliability by amounts depending on satellite elevation angles. (Abstract shortened by UMI.)

  5. Industrial and Systems Engineering Applications in NASA

    Science.gov (United States)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  6. The Art and Science of Systems Engineering

    Science.gov (United States)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  7. Global navigation satellite system; Jisedai kokoho senjo system

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, S.; Suga, S. [Toshiba Corp., Tokyo (Japan)

    2000-05-01

    The safety of civil aviation relies on ground navigation aids. In areas where there are no ground aids and on oceanic air routes, aircraft must depend on their own navigation system. The predicted increase in civil aviation traffic in the near future will make it difficult for current navigation aids to support navigation in all phases of flights. To avoid this problem, the International Civil Aviation Organization (ICAO) is directing the establishment of standards for the global navigation satellite system (GNSS). GNSS employs navigation satellites, such as those of the global positioning system (GPS), to provide navigation capability throughout the world. In Japan, the Electronic Navigation Research Institute, the Ministry of Transport, and the Japan civil Aviation Promotion Foundation are carrying out research on this navigation system. Toshiba has been providing experimental equipment for this research. (author)

  8. Satellite data assimilation in global forecast system in India

    Science.gov (United States)

    Basu, Swati

    2014-11-01

    Satellite data is very important for model initialization and verification. A large number of satellite observations are currently assimilated into the Numerical Weather Prediction (NWP) systems at the National Centre for Medium Range Weather Forecasting (NCMRWF). Apart from Global meteorological observations from GTS, near-real time satellite observations are received at NCMRWF from other operational centres like ISRO, NOAA/NESDIS, EUMETCAST, etc. Recently India has become member of Asia-Pacific Regional ATOVS Retransmission Service (APRARS) for faster access to high resolution global satellite data useful for high resolution regional models. Indian HRPT at Chennai covers the APRARS data gap region over South East Asia. A robust data monitoring system has been implemented at NCMRWF to assess the quantity and quality of the data as well as the satellite sensor strength, before getting assimilated in the models. Validation of new satellite observations, especially from Indian satellites are being carried out against insitu observations and similar space borne platforms. After establishing the quality of the data, Observation System Experiments (OSEs) are being conducted to study their impact in the assimilation and forecast systems. OSEs have been carried out with the Oceansat-2 scatterometer winds and radiance data from Megha-Tropiques SAPHIR sensor. Daily rainfall analysis dataset is being generated by merging satellite estimates and in-situ observations. ASCAT soil wetness measurements from METOP satellite is being assimilated into the global model. Land surface parameters (LuLc and albedo) retrieved from Indian satellites are being explored for its possible usage in the global and regional models. OLR from Indian satellites are used for validating model outputs. This paper reviews the efforts made at NCMRWF in (i) assimilating the data from Indian/International satellites and (ii) generating useful products from the satellite data.

  9. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  10. Systems Engineering and Integration as a Foundation for Mission Engineering

    Science.gov (United States)

    2015-09-01

    218 –219) describes the uniqueness of systems engineering through its focus on “(1) the product or service as an enabler of the desired user behaviors...final system; humans may be involved in training, maintenance, planning, manufacture , and many aspects of the systems engineering life cycle. As such... ENGINEERING AND INTEGRATION AS A FOUNDATION FOR MISSION ENGINEERING by David F. Beam September 2015 Thesis Advisor: Gary Langford Second Reader

  11. Computer-Aided Communication Satellite System Analysis and Optimization.

    Science.gov (United States)

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  12. An Instructional Satellite System for the United States: Preliminary Considerations.

    Science.gov (United States)

    DuMolin, James R.; Morgan, Robert P.

    Based on educational, social, political, and other considerations, an instructional satellite system, AVSIN (Ausio-Visual Satellite Instruction), is hypothesized which represents one possible organizational and administrative arrangement for delivering large amounts of quality software to schools and learning centers. The AVSIN system is conceived…

  13. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  14. Evaluation of CDMA system capacity for mobile satellite system applications

    Science.gov (United States)

    Smith, Partrick O.; Geraniotis, Evaggelos A.

    1988-01-01

    A specific Direct-Sequence/Pseudo-Noise (DS/PN) Code-Division Multiple-Access (CDMA) mobile satellite system (MSAT) architecture is discussed. The performance of this system is evaluated in terms of the maximum number of active MSAT subscribers that can be supported at a given uncoded bit-error probability. The evaluation decouples the analysis of the multiple-access capability (i.e., the number of instantaneous user signals) from the analysis of the multiple-access mutliplier effect allowed by the use of CDMA with burst-modem operation. We combine the results of these two analyses and present numerical results for scenarios of interest to the mobile satellite system community.

  15. Computer systems and software engineering

    Science.gov (United States)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  16. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.

  17. Development of environmental monitoring satellite systems in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With the increase in global environmental problems,the necessity and urgency of remote sensing technology being applied to environmental monitoring has been widely recognized around the world.China has launched the environment and disaster monitoring and forecasting small satellite constellation HJ-1A/B and the FY3 atmosphere and environmental satellite,but they still cannot fully satisfy requirements for environmental monitoring.This paper summarizes the current status of satellite environmental monitoring in China and the existing problems of inadequate load design and low data utilization efficiency,and discusses the demand for environmental monitoring satellites.Based on the development of foreign satellite systems for environmental monitoring,the future development and key tasks of the environmental monitoring satellite system in China is discussed,as are some related initiatives.

  18. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  19. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would...... be a satellite covering the two nodes. The benefits in terms of throughput, resilience, and flexibility of network coding are quite relevant for wireless networks in general, and for satellite systems in particular. This chapter presents some of the basics in network coding, as well as an overview of specific...... scenarios where network coding provides a significant improvement compared to existing solutions, for example, in broadcast and multicast satellite networks, hybrid satellite-terrestrial networks, and broadband multibeam satellites. The chapter also compares coding perspectives and revisits the layered...

  20. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  1. Systems engineering using SDL-92

    CERN Document Server

    Olsen, A; Møller-Pedersen, B; Smith, JRW; Reed, R

    1994-01-01

    CCITT (now ITU-T) Specification and Description Language (SDL) and systems engineering (formal and informal) in SDL are considered in this publication. The latest version of the language, SDL-92 [ITU Z.100 SDL-92] is introduced. The book has been written for existing and potential users of SDL - technologists involved in the specification and engineering of systems. It offers easier learning, through examples and application, than the Z.100 Recommendation of March 1993, which gives precise technical definitions and concepts. The book has sufficient coverage of the language so that

  2. Global Navigation Satellite Systems (GNSS: The Utmost Interdisciplinary Integrator

    Directory of Open Access Journals (Sweden)

    Bernd Eissfeller

    2015-08-01

    Full Text Available Currently four global satellite navigation systems are under modernization and development: The US American GPS III, the Russian GLONASS, the European Galileo and Chinese BeiDou systems. In the paper the interdisciplinary contributions of different scientific areas to GNSS are assessed. It is outlined that GNSS is not only a technical system but also a basic element of mobile computing high-tech market. At the same time a GNSS has the role of a force enabler in security related applications. Technology, market and security policies are interdependent and are sometimes in a relationship of tension. The goal of the paper is to describe the overall systemics of GNSS from a holistic point of view. The paper also addresses the human factor side of GNSS. The requirements on human resources in GNSS are at least two-fold: On the one hand very specialized engineers are needed; on the other hand the generalists are necessary who are able to understand the system aspects. Decision makers in institutions and industry need special knowledge in technologies, economics and political strategies. Is the current university system able to educate and prepare such generalists? Are specialized master courses for GNSS needed? Are external training courses necessary?

  3. Computer Jet-Engine-Monitoring System

    Science.gov (United States)

    Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

    1992-01-01

    "Intelligent Computer Assistant for Engine Monitoring" (ICAEM), computer-based monitoring system intended to distill and display data on conditions of operation of two turbofan engines of F-18, is in preliminary state of development. System reduces burden on propulsion engineer by providing single display of summary information on statuses of engines and alerting engineer to anomalous conditions. Effective use of prior engine-monitoring system requires continuous attention to multiple displays.

  4. Computer Jet-Engine-Monitoring System

    Science.gov (United States)

    Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

    1992-01-01

    "Intelligent Computer Assistant for Engine Monitoring" (ICAEM), computer-based monitoring system intended to distill and display data on conditions of operation of two turbofan engines of F-18, is in preliminary state of development. System reduces burden on propulsion engineer by providing single display of summary information on statuses of engines and alerting engineer to anomalous conditions. Effective use of prior engine-monitoring system requires continuous attention to multiple displays.

  5. Reusable Reentry Satellite (RRS) system design study

    Science.gov (United States)

    1991-01-01

    The Reusable Reentry Satellite (RRS) is intended to provide investigators in several biological disciplines with a relatively inexpensive method to access space for up to 60 days with eventual recovery on Earth. The RRS will permit totally intact, relatively soft, recovery of the vehicle, system refurbishment, and reflight with new and varied payloads. The RRS is to be capable of three reflights per year over a 10-year program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is configured to permit the experimenter late access to the PM prior to launch and rapid access following recovery. The RRS will operate in one of two modes: (1) as a free-flying spacecraft in orbit, and will be allowed to drift in attitude to provide an acceleration environment of less than 10(exp -5) g. the acceleration environment during orbital trim maneuvers will be less than 10(exp -3) g; and (2) as an artificial gravity system which spins at controlled rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be rugged, easily maintained, and economically refurbishable for the next flight. Some systems may be designed to be replaced rather than refurbished, if cost effective and capable of meeting the specified turnaround time. The minimum time between recovery and reflight will be approximately 60 days. The PMs will be designed to be relatively autonomous, with experiments that require few commands and limited telemetry. Mass data storage will be accommodated in the PM. The hardware development and implementation phase is currently expected to start in 1991 with a first launch in late 1993.

  6. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  7. Study on fault locating technology for satellite power system

    Institute of Scientific and Technical Information of China (English)

    LONG Bing; JIANG Xing-wei; SONG Zheng-ji

    2005-01-01

    It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.

  8. TWRS Systems Engineering Working Plan

    Energy Technology Data Exchange (ETDEWEB)

    Eiholzer, C.R.

    1994-09-16

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations.

  9. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  10. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    Science.gov (United States)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  11. Space Flight Validation of Design and Engineering of the ZDPS-1A Pico-satellite

    Institute of Scientific and Technical Information of China (English)

    YANG Mu; WANG Hao; WU Changju; WANG Chunhui; DING Licong; ZHENG Yangming; JIN Zhonghe

    2012-01-01

    The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit.Unlike common pico-satellites,they are designed to be “larger but stronger” with more powerful platforms and unique payloads so as to bear a better promise for real applications.Through their space flight mission,the functionality and performance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions.Moreover,they have worked properly on orbit for one year so far,well exceeding their life expectancy of three months.Therefore,the space flight mission has reached all its goals,and verified that the design concept and the engineering process of the pico-satellites are sufficient in allowing them the desired functionality and performance in,and the adaption to the launch procedure and the low-Earth orbit space environment.In the foreseeable future,the platform together with the design concept and the engineering process of the pico-satellites are expected to be applied to more complicated real space applications.

  12. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  13. Essentials of Project and Systems Engineering Management

    CERN Document Server

    Eisner, Howard S

    2008-01-01

    The Third Edition of Essentials of Project and Systems Engineering Management enables readers to manage the design, development, and engineering of systems effectively and efficiently. The book both defines and describes the essentials of project and systems engineering management and, moreover, shows the critical relationship and interconnection between project management and systems engineering. The author's comprehensive presentation has proven successful in enabling both engineers and project managers to understand their roles, collaborate, and quickly grasp and apply all the basic princip

  14. Stability of Satellites in Closely Packed Planetary Systems

    CERN Document Server

    Payne, Matthew J; Holman, Matthew J; Perets, Hagai B

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary Systems with Tightly-packed Inner Planets (STIPs). We find that the majority of closely-spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to $\\sim 0.4 R_H$ (where $R_H$ is the Hill Radius) as opposed to $\\sim 0.5 R_H$ in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5 to 4.5 mutual Hill radii destabilize most satellites orbits only if $a\\sim 0.65 R_H$. In very close planetary pairs (e.g. the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close-approaches and the loss of satellites over a range of cir...

  15. Method Engineering: Engineering of Information Systems Development Methods and Tools

    NARCIS (Netherlands)

    Brinkkemper, J.N.; Brinkkemper, Sjaak

    1996-01-01

    This paper proposes the term method engineering for the research field of the construction of information systems development methods and tools. Some research issues in method engineering are identified. One major research topic in method engineering is discussed in depth: situational methods, i.e.

  16. Engineering Design Information System (EDIS)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  17. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  18. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  19. System capacity and economic modeling computer tool for satellite mobile communications systems

    Science.gov (United States)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  20. Technical and programmatic constraints in dynamic verification of satellite mechanical systems

    Science.gov (United States)

    Stavrinidis, C.; Klein, M.; Brunner, O.; Newerla, A.

    1996-01-01

    The development and verification of satellite systems covers various programmatic options. In the mechanical systems area, spacecraft test verification options include static, shaker vibration, modal survey, thermoelastic, acoustic, impact and other environmental tests. Development and verification tests influence the provision of satellite hardware, e.g. the structural model, engineering model, flight model, postflight etc., which need to be adopted by projects. In particular, adequate understanding of the satellite dynamic characteristics is essential for flight acceptance by launcher authorities. In general, a satellite shaker vibration test is requested by launcher authorities for expendable launchers. For the latter the launcher/satellite interface is well defined at the launcher clampband/separation device, and the interface is considered conveniently as a single point at the centre of the clampband. Recently the need has been identified to refine the interface idealization in launcher/satellite coupled loads dynamic analysis, particularly in cases where concentrated satellite loads are introduced at the interface, e.g. platform support struts. In the case of shuttle payloads, which are attached directly to the shuttle, shaker vibration at a single interface is not meaningful. Shuttle launcher authorities require identification of the satellite dynamic characteristics, e.g. by modal survey, and structural verification can be demonstrated by analysis, testing or a combination of analysis and testing. In the case of large satellite systems, which cannot be tested due to the limitation of the vibration shaker test facilities, a similar approach can be adapted for expendable launchers. In such an approach the dynamic characteristics of the satellite system will be identified by the modal survey test, and detailed satellite verification/qualification will be accomplished by analysis supported by subsystem and component level tests. Mechanical strength verification

  1. Analysis of Maritime Mobile Satellite Communication Systems

    Science.gov (United States)

    1988-12-01

    Communications and Surveil- lance, IEE, Conference publication n.95, 13-15 Mar. 1973. 2. Y. Karasawa and T. Shiokawa , Characteristics of L-Band Multipath Fading... Shiokawa . Analysis of M-ultipath Fading due to Sea Suface Scattering in Maritime Satellite Communication, Technical Group on Antennas and Propagation. IECE

  2. Isolated Galaxies and Isolated Satellite Systems

    CERN Document Server

    Ann, H B; Choi, Yun-Young

    2009-01-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02r_{vir,nei} and \\rho <\\bar{\\rho} well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests importance of hydrodynamic interaction among galaxies within their virial radii in galaxy evolution.

  3. Architecture analysis of the simplified libration point satellite navigation system

    Science.gov (United States)

    Zhang, Lei; Xu, Bo

    2016-10-01

    The libration point satellite navigation system is a novel navigation architecture that consists of satellites located in periodic orbits around the Earth-Moon libration points. Superiorities of the proposed system lie in its autonomy and extended navigation capability, which have been proved in our previous works. Based on the candidate architectures obtained before, a detailed analysis of the simplified libration point satellite navigation system, i.e. the Earth-Moon L1,2 two-satellite constellation, is conducted in this work. Firstly, relation between orbits amplitude is derived for the candidate two-satellite constellations to ensure continuous crosslink measurements between libration point satellites. Then, with the use of a reference lunar exploration mission scenario, navigation performances of different constellation configurations are evaluated by Monte-Carlo simulations. The simulation results indicate that the amplitude and initial phase combinations of libration point orbits have direct effect on the performance of the two-satellite constellations. By using a cooperative evolutionary algorithm for configuration parameter optimization, some optimal constellations are finally obtained for the simplified navigation architecture. The results obtained in this paper may be a reference for future system design.

  4. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  5. Use of CDMA access technology in mobile satellite systems

    Science.gov (United States)

    Ramasastry, Jay; Wiedeman, Bob

    1995-01-01

    Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.

  6. A Viable Systems Engineering Approach

    Science.gov (United States)

    2010-04-01

    methodology was not meeting the needs of the sponsors • The Agile approach Scrum was selected as the only viable solution for managing project...Self-organized teams Slide 11 Source: Agile Alliance (http://www.agilealliance.org/) Scrum Applied to Systems Engineering • Scrum is a framework for...ceremonies • A Scrum project is a series of iterations or Sprints where every 2-4 weeks produces fully developed requirements, functional analyses, and

  7. Systems engineering: A problem of perception

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1995-08-01

    The characterization of systems engineering as a discipline, process, procedure or a set of heuristics will have an impact on the implementation strategy, the training methodology, and operational environment. The systems engineering upgrade activities in the New Mexico Weapons Development Center and a search of systems engineering related information provides evidence of a degree of ambiguity in this characterization of systems engineering. A case is made in this article for systems engineering being the engineering discipline applied to the science of complexity. Implications of this characterization and some generic issues are delineated with the goal of providing an enterprise with a starting point for developing its business environment.

  8. Intelligent fault isolation and diagnosis for communication satellite systems

    Science.gov (United States)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  9. Propagation considerations in the American Mobile Satellite system design

    Science.gov (United States)

    Kittiver, Charles; Sigler, Charles E., Jr.

    1993-01-01

    An overview of the American Mobile Satellite Corporation (AMSC) mobile satellite services (MSS) system with special emphasis given to the propagation issues that were considered in the design is presented. The aspects of the voice codec design that effect system performance in a shadowed environment are discussed. The strategies for overcoming Ku-Band rain fades in the uplink and downlink paths of the gateway station are presented. A land mobile propagation study that has both measurement and simulation activities is described.

  10. Design of House Keeping System for a Certain Micro Satellite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents the design of hardware and software of the house keeping system for a certain microsatellite. The system uses microelectronic technique, large scale integrated circuits, processors and computers which has the advantages of strong function, high flexibility and reliability, It satisfies the requirements for efficient performance,light weight, small volume,and low consumption of power for microsatellite.

  11. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  12. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  13. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  14. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  15. A framework for systems engineering research

    CSIR Research Space (South Africa)

    Erasmus, L

    2013-08-01

    Full Text Available This presentation discusses a framework which is proposed to perform systems engineering research within South Africa and the necessity for hybrid research methods in systems engineering....

  16. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  17. 622 Mbps High-speed satellite communication system for WINDS

    Science.gov (United States)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  18. Systems Engineering: From Dream to Reality

    Science.gov (United States)

    2011-04-01

    Frankenstein a good systems engineer? Page 158 Created: 120211/v0.2 SSTC2011_Presentation_TEMPLATE Systems Engineering: From Dream to Reality SSTC 2011...ConstraintsSystems Engineering: From Dream to Reality Epilogue (2) Stating the Problem: Frankenstein was depressed when his mother dies. So he wanted to...Inc., 2009, Hoboken, New Jersey • Shelly,Mary, Frankenstein , Barnes & Noble Inc, 2003, New York • Blanchard, Benjamin S., System Engineering

  19. IMPGSS - International Medical Program Global Satellite System

    Science.gov (United States)

    2004-02-01

    additional comments regarding the significance of working with Tachyon and NASK under this Contract). 5.2.5 Requirements - Country/Region Assessments...services on a tentative exploratory basis by Tachyon ]. 5.2.7 Program Development Deliverable A 007 This is currently summarized in the Program Content...based satellite transmissions and transmission pricing based on segmented, limited use data volumes via Tachyon . " A more involved use of evaluation

  20. Multimedia Feedback Systems for Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.

    1998-12-15

    The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.

  1. An operational satellite remote sensing system for ocean fishery

    Institute of Scientific and Technical Information of China (English)

    MAOZhihua; ZHUQiankun; PANDelu

    2004-01-01

    Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from-3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75 ℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.

  2. Tsinghua-1 Micro-Satellite Power System Architecture and Design

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Tsinghua-1 Micro-satellite, the first satellite made by Tsinghua University, was launched in 2000. The power system of the Tsinghua-1 Micro-satellite is one of the most important subsystems. It provides all the power for the satellite platform and the payloads. The power system design includes the regulation,protection and distribution of a 4 × 35 W solar array and 7 Ah NiCd batteries. This subsystem essentially offerstwo buses: an unregulated 14 V bus and a regulated 5 V bus. All distributed power lines to the users areprotected by current tripping switches. In addition, some essential loads, such as the tele-command system,are supplied through fuses. The Tsinghua-1 Micro-satellite power system provides an efficient, flexible,reliable, and cost-effective solution for small satellites in low earth orbit. A better maximum power pointtracking method has been used to increase reliability margins and to increase the efficiency of the powersystem. The power system reliability was evaluated using several different tests, such as the power boardtest, the assembly integrate test (AIT), the electromagnetic compatibility (EMC) test and the thermal vacuumtest (TVT).``

  3. Airbreathing combined cycle engine systems

    Science.gov (United States)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  4. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    Science.gov (United States)

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  5. 3-dimensional current collection model. [of Tethered Satellite System 1

    Science.gov (United States)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  6. Information content in reflected global navigation satellite system signals

    DEFF Research Database (Denmark)

    Høeg, Per; Carlstrom, Anders

    2011-01-01

    The direct signals from satellites in global satellite navigation satellites systems (GNSS) as, GPS, GLONASS and GALILEO, constitute the primary source for positioning, navigation and timing from space. But also the reflected GNSS signals contain an important information content of signal travel...... times and the characteristics of the reflecting surfaces and structure. Ocean reflected signals from GNSS satellite systems reveal the mean height, the significant wave height and the roughness of the ocean. The estimated accuracy of the average surface height can be as low as 10 cm. For low elevations......, the signals reveal the incoherent scatter process at the reflection zone. By using open-loop high-precision GNSS receivers, it is possible to provide the in-phase and quadrature components of the signal at high sample rates, which enables investigation of the spectral signatures of the observations...

  7. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    Science.gov (United States)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and

  8. Phase control system concepts and simulations. [solar power satellite system

    Science.gov (United States)

    Lindsay, V. C.

    1980-01-01

    A phase control system concept for a solar power satellite is proposed which partitions the system into three major levels. The first level of phase control consists of a reference phase distribution system implemented in the form of phase distribution tree structure. The major purpose of the tree structure is to electronically compensate for the phase shift due to the transition path lengths from the center of the spacetenna to each phase control center located in each subarray. In the reference system, this is accomplished using the master slave returnable timing system technique. The second level of phase control consists of the beam steering and microwave power generating system which houses the power transponders. This transponder consists of a set of phase conjugation multipliers driven by the reference phase distribution system output and the output of a pilot spread spectrum receiver which accepts the received pilot via a diplexer connected to a separate receive horn or the subarray itself. The output of the phase conjugation circuits serve as inputs to the third level of the phase control system. The third level of phase control is associated with maintaining an equal and constant phase shift through the microwave power amplifier devices while minimizing the associated phase noise effects on the generated power beam. This is accomplished by providing a phase locked loop around each high power amplifier.

  9. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  10. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    Science.gov (United States)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  11. Hybrid Atom Electrostatic System for Satellite Geodesy

    Science.gov (United States)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential

  12. Guidance and Control System for a Satellite Constellation

    Science.gov (United States)

    Bryson, Jonathan Lamar; Cox, James; Mays, Paul Richard; Neidhoefer, James Christian; Ephrain, Richard

    2010-01-01

    A distributed guidance and control algorithm was developed for a constellation of satellites. The system repositions satellites as required, regulates satellites to desired orbits, and prevents collisions. 1. Optimal methods are used to compute nominal transfers from orbit to orbit. 2. Satellites are regulated to maintain the desired orbits once the transfers are complete. 3. A simulator is used to predict potential collisions or near-misses. 4. Each satellite computes perturbations to its controls so as to increase any unacceptable distances of nearest approach to other objects. a. The avoidance problem is recast in a distributed and locally-linear form to arrive at a tractable solution. b. Plant matrix values are approximated via simulation at each time step. c. The Linear Quadratic Gaussian (LQG) method is used to compute perturbations to the controls that will result in increased miss distances. 5. Once all danger is passed, the satellites return to their original orbits, all the while avoiding each other as above. 6. The delta-Vs are reasonable. The controller begins maneuvers as soon as practical to minimize delta-V. 7. Despite the inclusion of trajectory simulations within the control loop, the algorithm is sufficiently fast for available satellite computer hardware. 8. The required measurement accuracies are within the capabilities of modern inertial measurement devices and modern positioning devices.

  13. Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment

    Science.gov (United States)

    Squire, Michael D.; Cooke, William J.; Williamsen, Joel; Kessler, Donald; Vesely, William E.; Hull, Scott H.; Schonberg, William; Peterson, Glenn E.; Jenkin, Alan B.; Cornford, Steven L.

    2015-01-01

    The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report.

  14. Satellite augmentation of cellular type mobile radio telephone systems

    Science.gov (United States)

    Anderson, Roy E.

    NASA's ATS-6 satellite relayed voice bandwidth communications between five trucks and the trucking company dispatchers as the trucks traveled throughout the north-eastern quarter of the contiguous United States. The experiment, conducted over a seven month period, demonstrated that propagation characteristics are much different for the satellite-mobile links than for terrestrial-mobile links. A properly designed satellite system can provide high quality, reliable voice and data communications except where the vehicle-satellite path is shadowed by a structure or terrain feature. Mobile equipment in the experiment was adapted from commercial mobile radios. The vehicle antennas were 75 cm tall, 2 cm diam. Another experiment proved the feasibility of vehicle position surveillance using active two-way tone-code ranging through ATS-6 to provide one line of position and passive one-way ranging by measuring the time-of-arrival of a signal from an independent satellite. A position fix was printed out at an earth station 1 sec after it sent the interrogation signal to the distant vehicle, a towboat on the Mississippi River. The line of position from ATS-6 was accurate to 0.1 nautical mile using a voice bandwidth ranging signal. The line of position from the NOAA GOES satellite was accurate to 2 miles, using 100 Hz signal bandwidth. If the signal from the independent satellite had the same bandwidth and signal-to-noise ratio as ATS-6, the fixes would have been accurate to about 0.1 nautical mile. A concept study concluded that satellites might be a cost effective augmentation of terrestrial cellular type mobile radio telephone systems. The satellites would serve thinly populated areas where terrestrial systems are not cost effective. In the United States, the satellites would serve about 90% of the land area where 20% of the population resides. A multibeam satellite with many channels in each beam would be compatible with the urban terrestrial systems and together they would

  15. The Design and Implementation of a Remote Fault Reasoning Diagnosis System for Meteorological Satellites Data Acquisition

    Directory of Open Access Journals (Sweden)

    Zhu Jie

    2017-01-01

    Full Text Available Under the background of the trouble shooting requirements of FENGYUN-3 (FY-3 meteorological satellites data acquisition in domestic and oversea ground stations, a remote fault reasoning diagnosis system is developed by Java 1.6 in eclipse 3.6 platform. The general framework is analyzed, the workflow is introduced. Based on the system, it can realize the remote and centralized monitoring of equipment running status in ground stations,triggering automatic fault diagnosis and rule based fault reasoning by parsing the equipment quality logs, generating trouble tickets and importing expert experience database, providing text and graphics query methods. Through the practical verification, the system can assist knowledge engineers in remote precise and rapid fault location with friendly graphical user interface, boost the fault diagnosis efficiency, enhance the remote monitoring ability of integrity operating control system. The system has a certain practical significance to improve reliability of FY-3 meteorological satellites data acquisition.

  16. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system

    Science.gov (United States)

    Zhou, ShanShi; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhu, LingFeng; Chang, ZhiQiao; Tang, ChengPan; Gong, XiuQiang; Li, Ran; Yu, Yang

    2016-10-01

    A two-way satellite time and frequency transfer (TWSTFT) device equipped in the BeiDou navigation satellite system (BDS) can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination (MPOD) method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service (IGS) analysis centers (ACs) show that the reference time difference between BeiDou time (BDT) and golbal positoning system (GPS) time (GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10-12, which is similar to the GPS IIR.

  17. Improvements and Extensions for Joint Polar Satellite System Algorithms

    Science.gov (United States)

    Grant, K. D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of the old POES system managed by NOAA. JPSS satellites carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability provides environmental data products (Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, S-NPP, was launched in October 2011. The second satellite, JPSS-1, is scheduled for launch in January 2017. During a satellite's calibration and validation (Cal/Val) campaign, numerous algorithm updates occur. Changes identified during Cal/Val become available for implementation into the operational system for both S-NPP and JPSS-1. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of S-NPP Cal/Val and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral processing, extended spectral and spatial ranges for Ozone Mapping and Profiler Suite ozone Total Column and Nadir Profiles, and updates to Vegetation Index, Snow Cover, Active Fires, Suspended Matter, and Ocean Color. Updates will include Sea Surface Temperature, Cloud Mask, Cloud Properties, and other improvements.

  18. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  19. Applying System Engineering to Pharmaceutical Safety

    Directory of Open Access Journals (Sweden)

    Nancy Leveson

    2012-01-01

    Full Text Available While engineering techniques are used in the development of medical devices and have been applied to individual healthcare processes, such as the use of checklists in surgery and ICUs, the application of system engineering techniques to larger healthcare systems is less common. System safety is the part of system engineering that uses modeling and analysis to identify hazards and to design the system to eliminate or control them. In this paper, we demonstrate how to apply a new, safety engineering static and dynamic modeling and analysis approach to healthcare systems. Pharmaceutical safety is used as the example in the paper, but the same approach is potentially applicable to other complex healthcare systems. System engineering techniques can be used in re-engineering the system as a whole to achieve the system goals, including both enhancing the safety of current drugs while, at the same time, encouraging the development of new drugs.

  20. 23rd International Conference on Systems Engineering

    CERN Document Server

    Zydek, Dawid; Chmaj, Grzegorz

    2015-01-01

    This collection of proceedings from the International Conference on Systems Engineering, Las Vegas, 2014 is orientated toward systems engineering, including topics like aerospace, power systems, industrial automation and robotics, systems theory, control theory, artificial intelligence, signal processing, decision support, pattern recognition and machine learning, information and communication technologies, image processing, and computer vision as well as its applications. The volume’s main focus is on models, algorithms, and software tools that facilitate efficient and convenient utilization of modern achievements in systems engineering.

  1. Systems engineering in the global environment : a wicked future.

    Energy Technology Data Exchange (ETDEWEB)

    Griego, Regina M.

    2010-12-01

    This presentation discusses the following questions: (1) What are the Global Problems that require Systems Engineering; (2) Where is Systems Engineering going; (3) What are the boundaries of Systems Engineering; (4) What is the distinction between Systems Thinking and Systems Engineering; (5) Can we use Systems Engineering on Complex Systems; and (6) Can we use Systems Engineering on Wicked Problems?

  2. The Saturn System's Icy Satellites: New Results from Cassini

    Science.gov (United States)

    Lopes-Gautier, Rosaly M.; Buratti, Bonnie; Hendrix, A. R.

    2008-01-01

    Cassini-Huygens is a multidisciplinary, international planetary mission consisting of an orbiting spacecraft and a probe. The Huygens probe successfully landed on Titan's surface on January 14, 2005, while the orbiter has performed observations of Saturn, its rings, satellites, and magnetosphere since it entered orbit around Saturn on July 1, 2004. The Cassini mission has been prolific in its scientific discoveries about the Saturn system. In this special section, we present new mission results with a focus on the 'icy satellites,' which we define as all Saturn's moons with the exception of Titan. The results included in this section have come out of the Cassini SOST--Satellites Orbiter Science Team--a multi-instrument and multidiscipline group that works together to better understand the icy satellites and their interactions with Saturn and its rings. Other papers included in this issue present ground-based observations and interior modeling of these icy moons.

  3. Spatial Cloud Detection and Retrieval System for Satellite Images

    Directory of Open Access Journals (Sweden)

    Ayman Nasr

    2013-01-01

    Full Text Available In last the decade we witnessed a large increase in data generated by earth observing satellites. Hence, intelligent processing of the huge amount of data received by hundreds of earth receiving stations, with specific satellite image oriented approaches, presents itself as a pressing need. One of the most important steps in earlier stages of satellite image processing is cloud detection. Satellite images having a large percentage of cloud cannot be used in further analysis. While there are many approaches that deal with different semantic meaning, there are rarely approaches that deal specifically with cloud detection and retrieval. In this paper we introduce a novel approach that spatially detect and retrieve clouds in satellite images using their unique properties .Our approach is developed as spatial cloud detection and retrieval system (SCDRS that introduce a complete framework for specific semantic retrieval system. It uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tile sizes using spatial and textural properties of cloud regions. Second, we retrieve our tiles using a parametric statistical approach within a multilevel refinement process. Our approach has been experimentally validated against the conventional ones yielding enhanced precision and recall rates in the same time it gives more precise detection of cloud coverage regions.

  4. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  5. Dependent surveillance through an experimental satellite data link system

    Science.gov (United States)

    Cobley, G. A.

    The development and testing of an experimental dependent aircraft-surveillance system using a satellite data link is reported. In this system, the aircraft position is determined onboard using GPS or inertial navigation, enclosed in a message block using a data-link system, and transmitted to an Inmarsat GEO communication satellites; the ground station receives and analyzes the data to keep constant track of the aircraft position. The hardware implementation and the results of demonstrations performed on flights from Iowa to Wisconsin and the North Atlantic are discussed, and diagrams and maps are provided.

  6. Radiofrequency testing of satellite segment of simulated 30/20 GHz satellite communications system

    Science.gov (United States)

    Leonard, R. F.; Kerczewski, R.

    1985-01-01

    A laboratory communications system has been developed that can serve as a test bed for the evaluation of advanced microwave (30/20 GHz) components produced under NASA technology programs. The system will ultimately permit the transmission of a stream of high-rate (220 Mbps) digital data from the originating user, through a ground terminal, through a hardware-simulated satellite, to a receiving ground station, to the receiving user. This report contains the results of radiofrequency testing of the satellite portion of that system. Data presented include output spurious responses, attainable signal-to-noise ratios, a baseline power budget, usable frequency bands, phase and amplitude response data for each of the frequency bands, and the effects of power level variation.

  7. Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2010-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4 to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

  8. Systems biology characterization of engineered tissues.

    Science.gov (United States)

    Rajagopalan, Padmavathy; Kasif, Simon; Murali, T M

    2013-01-01

    Tissue engineering and molecular systems biology are inherently interdisciplinary fields that have been developed independently so far. In this review, we first provide a brief introduction to tissue engineering and to molecular systems biology. Next, we highlight some prominent applications of systems biology techniques in tissue engineering. Finally, we outline research directions that can successfully blend these two fields. Through these examples, we propose that experimental and computational advances in molecular systems biology can lead to predictive models of bioengineered tissues that enhance our understanding of bioengineered systems. In turn, the unique challenges posed by tissue engineering will usher in new experimental techniques and computational advances in systems biology.

  9. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world. This paper introduces how to establish the system, a positioning system based on communication satellites called Chinese Area Positioning System (CAPS). Instead of the typical navigation satellites, the communication satellites are configured firstly to transfer navigation signals from ground stations, and can be used to obtain service of the positioning, velocity and time, and to achieve the function of navigation and positioning. Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites, the measur- ing and calculation of transfer time of the signals, the carrier frequency drift in communication satellite signal transfer, how to improve the geometrical configuration of the constellation in the system, and the integration of navigation & communication. Several innovative methods are developed to make the new system have full functions of navigation and communication. Based on the development of crucial techniques and methods, the CAPS demonstration system has been designed and developed. Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E, 110.5°E, 134°E, 142°E and barometric altimetry are used in the CAPS system. The GEO satellites located at 134°E and 142°E are decommissioned GEO (DGEO) satellites. C-band is used as the navigation band. Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted. The ground segment consists of five ground stations; the master station is in Lintong, Xi’an. The ground stations take a lot of responsibilities, including monitor and management of the operation of all system components, determination of the satellite position and prediction of the satellite orbit, accomplishment of the virtual atomic clock

  10. Blossom Point Satellite Tracking and Command Station

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Blossom Point Satellite Command and Tracking Facility (BP) provides engineering and operational support to several complex space systems for the Navy...

  11. Integration of satellite fire products into MPI Earth System Model

    Science.gov (United States)

    Khlystova, Iryna G.; Kloster, Silvia

    2013-04-01

    Fires are the ubiquitous phenomenon affecting all natural biomes. Since the beginning of the satellite Era, fires are being continuously observed from satellites. The most interesting satellite parameter retrieved from satellite measurements is the burned area. Combined with information on biomass available for burning the burned area can be translated into climate relevant carbon emissions from fires into the atmosphere. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. Global continuous burned area dataset is provided by the Global Fire Emissions Dataset (GFED). GFED products were obtained from MODIS (and pre-MODIS) satellites and are available for the time period of 14 years (1997-2011). This dataset is widely used, well documented and supported by periodical updates containing new features. We integrate the global burned area product into the land model JSBACH, a part of the Earth-System model developed at the Max Plank Institute for Meteorology. The land model JSBACH simulates land biomass in terms of carbon content. Fire is an important disturbance process in the Earth's carbon cycle and affects mainly the carbon stored in vegetation. In the standard JSBACH version fire is represented by process based algorithms. Using the satellite data as an alternative we are targeting better comparability of modeled carbon emissions with independent satellite measurements of atmospheric composition. The structure of burned vegetation inside of a biome can be described as the balance between woody and herbaceous vegetation. GFED provides in addition to the burned area satellite derived information of the tree cover distribution within the burned area. Using this dataset, we can attribute the burned area to the respective simulated herbaceous or woody biomass within the vegetation model. By testing several extreme cases we evaluate the quantitative impact of vegetation balance between woody and herbaceous

  12. Automotive Stirling engine system component review

    Science.gov (United States)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  13. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  14. Multidisciplinary systems engineering architecting the design process

    CERN Document Server

    Crowder, James A; Demijohn, Russell

    2016-01-01

    This book presents Systems Engineering from a modern, multidisciplinary engineering approach, providing the understanding that all aspects of systems design, systems, software, test, security, maintenance and the full life-cycle must be factored in to any large-scale system design; up front, not factored in later. It lays out a step-by-step approach to systems-of-systems architectural design, describing in detail the documentation flow throughout the systems engineering design process. It provides a straightforward look and the entire systems engineering process, providing realistic case studies, examples, and design problems that will enable students to gain a firm grasp on the fundamentals of modern systems engineering.  Included is a comprehensive design problem that weaves throughout the entire text book, concluding with a complete top-level systems architecture for a real-world design problem.

  15. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  16. Design and characteristics of a multiband communication satellite antenna system

    Science.gov (United States)

    Ueno, Kenji; Itanami, Takao; Kumazawa, Hiroyuki; Ohtomo, Isao

    1995-04-01

    Feasibility studies on a multiband communication satellite antenna system and the key technologies involved in devising this system are described. The proposed multiband communication satellite utilizes four frequency bands: Ka (30/20 GHz), Ku (14/12 GHz), C (6/4 GHz), and S (2.6/2.5 GHz). It has six beam configurations, three multibeam and three shaped-beam. The following key technologies are presented: (1) a low-loss frequency selective subreflector (FSR) for compact feeds, (2) a low-loss and broadband frequency selective surface (FSS), and (3) a highly accurate and reliable mesh reflector.

  17. Improvement of orbit determination accuracy for Beidou Navigation Satellite System with Two-way Satellite Time Frequency Transfer

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Guo, Rui; He, Feng; Liu, Li; Zhu, Lingfeng; Li, Xiaojie; Wu, Shan; Zhao, Gang; Yu, Yang; Cao, Yueling

    2016-10-01

    The Beidou Navigation Satellite System (BDS) manages to estimate simultaneously the orbits and clock offsets of navigation satellites, using code and carrier phase measurements of a regional network within China. The satellite clock offsets are also directly measured with Two-way Satellite Time Frequency Transfer (TWSTFT). Satellite laser ranging (SLR) residuals and comparisons with the precise ephemeris indicate that the radial error of GEO satellites is much larger than that of IGSO and MEO satellites and that the BDS orbit accuracy is worse than GPS. In order to improve the orbit determination accuracy for BDS, a new orbit determination strategy is proposed, in which the satellite clock measurements from TWSTFT are fixed as known values, and only the orbits of the satellites are solved. However, a constant systematic error at the nanosecond level can be found in the clock measurements, which is obtained and then corrected by differencing the clock measurements and the clock estimates from orbit determination. The effectiveness of the new strategy is verified by a GPS regional network orbit determination experiment. With the IGS final clock products fixed, the orbit determination and prediction accuracy for GPS satellites improve by more than 50% and the 12-h prediction User Range Error (URE) is better than 0.12 m. By processing a 25-day of measurement from the BDS regional network, an optimal strategy for the satellite-clock-fixed orbit determination is identified. User Equivalent Ranging Error is reduced by 27.6% for GEO satellites, but no apparent reduction is found for IGSO/MEO satellites. The SLR residuals exhibit reductions by 59% and 32% for IGSO satellites but no reductions for GEO and MEO satellites.

  18. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    Science.gov (United States)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  19. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  20. Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE (trademark)) Guidelines

    Science.gov (United States)

    2011-06-01

    Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM...Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM) Guidelines 5a

  1. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    AI GuoXiang; SHI HuLi; WU HaiTao; LI ZhiGang; GUO Ji

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world.This paper introduces how to establish the system,a positioning system based on communication satellites called Chinese Area Positioning System (CAPS).Instead of the typical navigation satelIites,the communication satellites are configured firstly to transfer navigation signals from ground stations,and can be used to obtain service of the positioning,velocity and time,and to achieve the function of navigation and positioning.Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites,the measuring and calculation of transfer time of the signals,the carrier frequency drift in communication satellite ignal transfer,how to improve the geometrical configuration of the constellation in the system,and the integration of navigation & communication.Several innovative methods are developed to make the new system have full functions of navigation and communication.Based on the development of crucial techniques and methods,the CAPS demonstration system has been designed and developed.Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E,110.5°E,134°E,142°E and barometric altimetry are used in the CAPS system.The GEO satellites located at 134°E and 142°E re decommissioned GEO (DGEO) satellites.C-band is used as the navigation band.Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted.The ground segment consists of five ground stations; the master station is in Lintong,Xi'an.The ground stations take a lot of responsibilities,including monitor and management of the operation of all system components,determination of the satellite position and prediction of the satellite orbit,accomplishment of the virtual atomic clock measurement,transmission and receiving

  2. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    Science.gov (United States)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  3. An Orbiting Standards Platform for communication satellite system RF measurements

    Science.gov (United States)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  4. Mechanical Engineering Refrigeration Systems for Cold Storage

    Science.gov (United States)

    1981-10-01

    LEVELK NAVFAC-DM -3.4 OCTOBER 1981 ,T O MECHANICAL ENGINEERING let REFRIGERATION SYSTEMS FOR COLD STORAGE * ,DESIGN MANUAL 3.4 APPROVED FOR PUBLIC...NUMBERNAVFAC DM3. 4- TITLE (and Subtlte) S. TYPE OF REPORT & PERIOD COVERED NAVFAC Design Manual DM-3.4 Design Criteria Mechanical Engineering Final...U S.Navy I Naval Facilities Engineering Command I r DT I, - - __ IM, *r 3i 3.4-v MECHANICAL ENGINEERING DESIGN MANUALS Chapter superseded DM Number

  5. Industrial biosystems engineering and biorefinery systems.

    Science.gov (United States)

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  6. A road map for implementing systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

    1997-02-01

    Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

  7. Verification and Validation in Systems Engineering

    CERN Document Server

    Debbabi, Mourad; Jarraya, Yosr; Soeanu, Andrei; Alawneh, Luay

    2010-01-01

    "Verification and validation" represents an important process used for the quality assessment of engineered systems and their compliance with the requirements established at the beginning of or during the development cycle. Debbabi and his coauthors investigate methodologies and techniques that can be employed for the automatic verification and validation of systems engineering design models expressed in standardized modeling languages. Their presentation includes a bird's eye view of the most prominent modeling languages for software and systems engineering, namely the Unified Model

  8. Industrial Biosystems Engineering and Biorefinery Systems

    Institute of Scientific and Technical Information of China (English)

    Shulin Chen

    2008-01-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development

  9. Tank waste remediation system engineering plan

    Energy Technology Data Exchange (ETDEWEB)

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  10. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  11. Systems metabolic engineering for chemicals and materials.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  12. Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine

    Science.gov (United States)

    Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick

    2017-04-01

    Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.

  13. Model-Based Systems Engineering in Concurrent Engineering Centers

    Science.gov (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  14. Testing a satellite automatic nutation control system. [on synchronous meteorological satellite

    Science.gov (United States)

    Hrasiar, J. A.

    1974-01-01

    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

  15. Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems

    OpenAIRE

    Sasaki, Takanori; Stewart, Glen R.; Ida, Shigeru

    2010-01-01

    The Jovian regular satellite system mainly consists of four Galilean satellites that have similar masses and are trapped in mutual mean motion resonances except for the outer satellite, Callisto. On the other hand, the Saturnian regular satellite system has only one big icy body, Titan, and a population of much smaller icy moons. We have investigated the origin of these major differences between the Jovian and Saturnian satellite systems by semi-analytically simulating the growth and orbital ...

  16. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  17. The international maritime satellite communications system INMARSAT (Handbook)

    Science.gov (United States)

    Zhilin, Viktor A.

    The organization and services provided by the INMARSAT satellite communications system are summarized. The structure and operation of the system are described with reference to transmission line parameters, frequency assignment, signals, telex communications, electrical parameters of communication channels, modulation, synchronization, and methods of protection against errors in the transmission of discrete messages. The discussion also covers the principal components of the INMARSAT system and the operation of ship-based stations.

  18. A Fault tolerant Control Supervisory System development Procedurefor Small Satellites

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Larsen, Jesper Abildgaard

    The paper presents a stepwise procedure to develop a fault tolerant control system for small satellites. The procedure is illustrated through implementation on the AAUSAT-II spacecraft. As it is shown the presented procedure requires expertise from several disciplines that are nevertheless...

  19. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  20. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  1. Search and rescue satellite-aided tracking system

    Science.gov (United States)

    Trudell, B.; Gutwein, J. M.; Vollmers, R.; Wammer, D.

    1980-10-01

    The objective of Sarsat is to demonstrate that satellites can greatly facilitate the monitoring, detection, and location of distress incidents alerted by Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs) carried on commercial, military, and general aviation aircraft and some marine vessels. The detection and location will be accomplished by relaying, via satellite, ELT/EPIRB distress information to ground stations, which will complete the data processing and forward alert and position location data to rescue coordination services. This paper presents a Sarsat system description and a summary of Coast Guard and USAF objectives for the initial demonstration and evaluation tests of Sarsat.

  2. An interactive system for compositing digital radar and satellite data

    Science.gov (United States)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.

    1983-01-01

    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  3. Sensor system for Greenhouse Gas Observing Satellite (GOSAT)

    Science.gov (United States)

    Hamazaki, Takashi; Kuze, Akihiko; Kondo, Kayoko

    2004-11-01

    Global warming has become a very serious issue for human beings. In 1997, the Kyoto Protocol was adopted at the Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP3), making it mandatory for developed nations to reduce carbon dioxide emissions by six (6) to eight (8) per cent of their total emissions in 1990, and to meet this goal sometime between 2008 and 2012. The Greenhouse gases Observing SATellite (GOSAT) is design to monitor the global distribution of carbon dioxide (CO2) from orbit. GOSAT is a joint project of Japan Aerospace Exploration Agency (JAXA), the Ministry of Environment (MOE), and the National Institute for Environmental Studies (NIES). JAXA is responsible for the satellite and instrument development, MOE is involved in the instrument development, and NIES is responsible for the satellite data retrieval. The satellite is scheduled to be launched in 2008. In order to detect the CO2 variation of boundary layers, both the technique to measure the column density and the retrieval algorithm to remove cloud and aerosol contamination are investigated. Main mission sensor of the GOSAT is a Fourier Transform Spectrometer with high optical throughput, spectral resolution and wide spectral coverage, and a cloud-aerosol detecting imager attached to the satellite. The paper presents the mission sensor system of the GOSAT together with the results of performance demonstration with proto-type instrument aboard an aircraft.

  4. Accuracy Performance Evaluation of Beidou Navigation Satellite System

    Science.gov (United States)

    Wang, W.; Hu, Y. N.

    2017-03-01

    Accuracy is one of the key elements of the regional Beidou Navigation Satellite System (BDS) performance standard. In this paper, we review the definition specification and evaluation standard of the BDS accuracy. Current accuracy of the regional BDS is analyzed through the ground measurements and compared with GPS in terms of dilution of precision (DOP), signal-in-space user range error (SIS URE), and positioning accuracy. The Positioning DOP (PDOP) map of BDS around Chinese mainland is compared with that of GPS. The GPS PDOP is between 1.0-2.0 and does not vary with the user latitude and longitude, while the BDS PDOP varies between 1.5-5.0, and increases as the user latitude increases, and as the user longitude apart from 118°. The accuracies of the broadcast orbits of BDS are assessed by taking the precise orbits from International GNSS Service (IGS) as the reference, and by making satellite laser ranging (SLR) residuals. The radial errors of the BDS inclined geosynchronous orbit (IGSO) and medium orbit (MEO) satellites broadcast orbits are at the 0.5m level, which are larger than those of GPS satellites at the 0.2m level. The SLR residuals of geosynchronous orbit (GEO) satellites are 65.0cm, which are larger than those of IGSO, and MEO satellites, at the 50.0cm level. The accuracy of broadcast clock offset parameters of BDS is computed by taking the clock measurements of Two-way Satellite Radio Time Frequency Transfer as the reference. Affected by the age of broadcast clock parameters, the error of the broadcast clock offset parameters of the MEO satellites is the largest, at the 0.80m level. Finally, measurements of the multi-GNSS (MGEX) receivers are used for positioning accuracy assessment of BDS and GPS. It is concluded that the positioning accuracy of regional BDS is better than 10m at the horizontal component and the vertical component. The combined positioning accuracy of both systems is better than one specific system.

  5. System Study for Axial Vane Engine Technology

    Science.gov (United States)

    Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

    2008-01-01

    The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

  6. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  7. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  8. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    Science.gov (United States)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  9. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  10. Mobile satellite news gathering (SNG) system; Soko SNG (Satellite News Gathering) shasaikyoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Commercialization was made for broadcasting stations on a mobile station system capable of capturing a satellite automatically while the system is moving. Its feature is the enhanced tracking accuracy as a result of using the Company's original null-sensor (see Note), and detecting and controlling intersecting polarized waves of reference signals from the satellite. The material for transmission is digitally transmitted by MPEG2, making it possible to transmit more data than by conventional systems. The system is being used for live broadcasting of marathon races and emergency news broadcasting. It is expected that the system may be applied to applications other than broadcasting stations, such as automobiles and ships. (Note: A null-sensor is a unit used for adjusting antenna directions for an SNG transmitter. It uses IF receiving signals of H/V polarized waves of parabolic antenna as an input, and outputs the main polarized wave level and the intersecting polarized wave level.) (translated by NEDO)

  11. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  12. Applying Systems Engineering on Energy Challenges

    NARCIS (Netherlands)

    Safi, J.; Muller, G.; Bonnema, G.M.

    2012-01-01

    Systems engineering is a discipline with methods and techniques to address complex problems. We want to study how Systems Engineering methods can help to address today's grand challenges, such as the energy problem. The first step is problem definition which aims at articulating the problem in its c

  13. Dynamic systems-engineering process - The application of concurrent engineering

    Science.gov (United States)

    Wiskerchen, Michael J.; Pittman, R. Bruce

    1989-01-01

    A system engineering methodology is described which enables users, particulary NASA and DOD, to accommodate changing needs; incorporate emerging technologies; identify, quantify, and manage system risks; manage evolving functional requirements; track the changing environment; and reduce system life-cycle costs. The approach is a concurrent, dynamic one which starts by constructing a performance model defining the required system functions and the interrelationships. A detailed probabilistic risk assessment of the system elements and their interrelationships is performed, and quantitative analysis of the reliability and maintainability of an engineering system allows its different technical and process failure modes to be identified and their probabilities to be computed. Decision makers can choose technical solutions that maximize an objective function and minimize the probability of failure under resource constraints.

  14. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  15. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  16. Engine room cooling system using jet pump

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.W.; Lee, S.H. [Daewoo Heavy Industries Ltd. (Korea)

    2000-04-01

    Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated by secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump. (author). 4 refs., 7 figs., 5 tabs.

  17. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  18. Intelligent Systems for Engineers and Scientists

    CERN Document Server

    Hopgood, Adrian A

    2011-01-01

    The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and

  19. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  20. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  1. Automatic charge control system for satellites

    Science.gov (United States)

    Shuman, B. M.; Cohen, H. A.

    1985-01-01

    The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.

  2. A Reusable Software Architecture for Small Satellite AOCS Systems

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Laursen, Karl Kaas

    2006-01-01

    with both hardware and on-board software. Some of the key issues addressed by the framework are automatic translation of mathematical specifications of hybrid systems into executable software entities, management of execution of coupled models in a parallel distributed environment, as well as interaction......This paper concerns the software architecture called Sophy, which is an abbreviation for Simulation, Observation, and Planning in HYbrid systems. We present a framework that allows execution of hybrid dynamical systems in an on-line distributed computing environment, which includes interaction...... with external components, hardware and/or software, through generic interfaces. Sophy is primarily intended as a tool for development of model based reusable software for the control and autonomous functions of satellites and/or satellite clusters....

  3. Gravimetry, Relativity, and the Global Navigation Satellite Systems

    CERN Document Server

    Tarantola, Albert; Pozo, Jose Maria; Coll, Bartolome

    2009-01-01

    Relativity is an integral part of positioning systems, and this is taken into account in today's practice by applying many "relativistic corrections" to computations performed using concepts borrowed from Galilean physics. A different, fully relativistic paradigm can be developed for operating a positioning system. This implies some fundamental changes. For instance, the basic coordinates are four times (with a symmetric meaning, not three space coordinate and one time coordinate) and the satellites must have cross-link capabilities. Gravitation must, of course, be taken into account, but not using the Newtonian theory: the gravitation field is, and only is, the space-time metric. This implies that the positioning problem and the gravimetry problem can not be separated. An optimization theory can be developed that, because it is fully relativistic, does not contain any "relativistic correction". We suggest that all positioning satellite systems should be operated in this way. The first benefit of doing so wou...

  4. Analysis of satellite broadcasting systems for digital television

    Science.gov (United States)

    de Gaudenzi, Riccardo; Elia, Carlo; Viola, Roberto

    1993-01-01

    This paper introduces the new concept of digital direct satellite broadcasting (D-DBS), which allows unprecedented flexibility by providing a large number of audio-visual services. The concept elaborated on in this paper assumes an information rate of about 40 Mb/s, which is compatible with practically all present-day transponders. After discussion of the general system concept, the optimization procedure is introduced and results of the transmission system optimization are presented. Channel distortion and uplink/downlink interference effects are taken into account by means of a time domain system computer simulation approach. It is shown, by means of link budget analysis, how a medium power direct-to-home TV satellite can provide multimedia services to users equipped with small (60 cm) dish antennas.

  5. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  6. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  7. Space Weathering on Icy Satellites in the Outer Solar System

    Science.gov (United States)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  8. Visualizing systems engineering data with Java

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Robert H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vinzant, Aleta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1998-11-10

    Systems Engineers are required to deal with complex sets of data. To be useful, the data must be managed effectively, and presented in meaningful terms to a wide variety of information consumers. Two software patterns are presented as the basis for exploring the visualization of systems engineering data. The Model, View, Controller pattern defines an information management system architecture. The Entity, Relation, Attribute pattern defines the information model. MVC "Views" then form the basis for the user interface between the information consumer and the MVC "Controller"/"Model" combination. A Java tool set is described for exploring alternative views into the underlying complex data structures encountered in systems engineering.

  9. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  10. The European Satellite Navigation System Galileo

    Institute of Scientific and Technical Information of China (English)

    G.W. Hein; T. Pany

    2003-01-01

    This paper starts with a brief discussion of the Galileo project status and with a description of the present Galileo architecture (space segment, ground segment, user segment). It focuses on explaining special features compared to the American GPS system. The presentation of the user segment comprises a discussion of the actual Galileo signal structure. The Galileo carrier frequency, modulation scheme and data rate of all 10 navigation signals are described as well as parameters of the search and rescue service. The navigation signals are used to realize three types of open services, the safety of life service, two types of commercial services and the public regulated service. The signal performance in terms of the pseudorange code error due to thermal noise and multipath is discussed as well as interference to and from other radionavigation services broadcasting in the E5 and E6 frequency band. The interoperability and compatibility of Galileo and GPS is realized by a properly chosen signal structures in E5a/L5 and E2-L1-E1 and compatible geodetic and time reference frames. Some new results on reciprocal GPS/Galileo signal degradation due to signal overlay are presented as well as basic requirements on the Galileo code sequences.

  11. Progress of Expert Systems in Electromagnetic Engineering

    Institute of Scientific and Technical Information of China (English)

    LAI Sheng-jian; WANG Bing-zhong

    2005-01-01

    It is urgent to solve various problems in electromagnetic (EM) engineering under the increasingly complicated environment. Some expert systems (ES) come into being just to keep up with the demand for solving these problems. Combined with the analysis of development of ES technology and the development trend of EM engineering software in recent years, the application of ES technology in EM engineering is discussed, and especially the progress of complete ES in electromagnetic compatible (EMC) is introduced.

  12. Transforming System Engineering through Model-Centric Engineering

    Science.gov (United States)

    2015-11-18

    Resilient System Conceptual Representation of Environment [63] - Enhanced.... 26 Figure 13. Measurement Collection Instrument...Model- Based Enterprise [81], which brings in more focus on manufacturability. The concept characterized as Digital Thread2 envisions a frameworks ...that merges physics- based models generated by the discipline engineers during the detailed design process with MBSE’s conceptual and top-level

  13. Autonomous Attitude Determination and Control System for the Ørsted Satellite

    DEFF Research Database (Denmark)

    Bak, Thomas; Wisniewski, Rafal; Blanke, M.

    1996-01-01

    The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system.......The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system....

  14. Personal Access Satellite System (PASS) study. Fiscal year 1989 results

    Science.gov (United States)

    Sue, Miles K. (Editor)

    1990-01-01

    The Jet Propulsion Laboratory is exploring the potential and feasibility of a personal access satellite system (PASS) that will offer the user greater freedom and mobility than existing or currently planned communications systems. Studies performed in prior years resulted in a strawman design and the identification of technologies that are critical to the successful implementation of PASS. The study efforts in FY-89 were directed towards alternative design options with the objective of either improving the system performance or alleviating the constraints on the user terminal. The various design options and system issues studied this year and the results of the study are presented.

  15. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  16. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  17. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  18. Systems engineering: A formal approach. Part 1: System concepts

    Science.gov (United States)

    Vanhee, K. M.

    1993-03-01

    Engineering is the scientific discipline focused on the creation of new artifacts that are supposed to be of some use to our society. Different types of artifacts require different engineering approaches. However, in all these disciplines the development of a new artifact is divided into stages. Three stages can always be recognized: Analysis, Design, and Realization. The book considers only the first two stages of the development process. It focuses on a specific type of artifacts, called discrete dynamic systems. These systems consist of active components of actors that consume and produce passive components or tokens. Three subtypes are studied in more detail: business systems (like a factory or restaurant), information systems (whether automated or not), and automated systems (systems that are controlled by an automated information system). The first subtype is studied by industrial engineers, the last by software engineers and electrical engineers, whereas the second is a battlefield for all three disciplines. The union of these disciplines is called systems engineering.

  19. One experienced engineer`s approach to better/cheaper/faster satellite testing (philosophies and lessons learned)

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, C.M.

    1995-10-01

    In this paper, the author recalls hardware failures observed on satellites over the years; makes some observations about today`s environment of trying to build and test satellites; and makes specific recommendations concerning testing in general, as well as specifically addressing box-, payload-, spacecraft-, and full up satellite-level testing. The recommendations are intended to provide insight into how to produce satellites better, cheaper, and faster.

  20. Software And Systems Engineering Risk Management

    Science.gov (United States)

    2010-04-01

    Engineering Life Cycle Processes IS 15288 Systems Engineering Life Cycle Processes IS 16085 Risk Management Process Quality ISO TC 176 ISO 9001 Quality...carefully define their “Context” as there is little guidance • integrate RSKM into their ISO 9001 clause 8.5.3 Preventive action • avoid offers

  1. Concept of an Effective Sentinel-1 Satellite SAR Interferometry System

    OpenAIRE

    2016-01-01

    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Se...

  2. System analysis for millimeter-wave communication satellites

    Science.gov (United States)

    Holland, L. D.; Hilsen, N. B.; Gallagher, J. J.; Stevens, G.

    1980-01-01

    Research and development needs for millimeter-wave space communication systems are presented. Assumed propagation fade statistics are investigated along with high data rate diversity link and storage. The development of reliable ferrite switches, and high performance receivers and transmitters is discussed, in addition to improved tolerance of dish and lens fabrication for the antennas. The typical cost for using a simplex voice channel via a high capacity 40/50 GHz satellite is presented.

  3. Contemporary issues in systems science and engineering

    CERN Document Server

    Zhou, M; Weijnen, M

    2015-01-01

    This volume provides a comprehensive overview of all important areas in systems science and engineering and poses the issues and challenges in these areas in order to deal with ever-increasingly complex systems and newly emergent applications. The topics range from discrete event systems, distributed intelligent systems, grey systems, and enterprise information systems to conflict resolution, robotics and intelligent sensing, smart grids, and system of systems approaches. Individual chapters are written by leading experts in the field.

  4. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  5. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Science.gov (United States)

    2012-09-21

    ... COMMISSION Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Institution...-way global satellite communication devices, system and components thereof by reason of infringement of... after importation of certain two-way global satellite communication devices, system and components...

  6. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ... Proceeding; Certain Two-Way Global Satellite Communication Devices, System and Components Thereof; Notice of... United States after importation of certain two-way global satellite communication devices, system and... States after importation any two-way global satellite communication devices, system, and components...

  7. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  8. A preliminary design for a satellite power system

    Science.gov (United States)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  9. Implementation of concurrent engineering to Phase B space system design

    Science.gov (United States)

    Findlay, R.; Braukhane, A.; Schubert, D.; Pedersen, J. F.; Müller, H.; Essmann, O.

    2011-12-01

    Concurrent engineering (CE) has been in use within the space industry since the mid-1990s for the development of robust, effective design solutions within a reduced period of time; to date, however, such applications have focussed on Phase 0/A feasibility studies, with the potential for application in later phases not yet demonstrated. Applications at the DLR Institute of Space Systems have addressed this gap with practical attempts made on three satellite projects. The use of Phase 0/A CE techniques, such as dedicated CE sessions, online trade-offs, and design iterations and consolidation, was taken and augmented with more novel practices such as online requirements engineering. Underlying these practices was a suite of tools coming from both external and internal sources. While it is noted that the traditional time and cost benefits expected from Phase 0/A use are less likely to be achieved for Phase B applications, the resulting solutions demonstrated an increased robustness and performance.

  10. The system of concurrent engineering

    NARCIS (Netherlands)

    Wognum, Nel; Trienekens, Jacques

    2015-01-01

    Concurrent engineering (CE) has been a major theme in the 80s and 90s of the previous century in research and practice. Its main aim is to reduce time-tomarket, improve quality and reduce costs by taking into account downstream requirements and constraints already in the design phase. While start

  11. Present and Future Trends in Military Satellite Communication Systems

    Directory of Open Access Journals (Sweden)

    C.K. Chatterjee

    1993-01-01

    Full Text Available Recent years have seen a phenomenal growth in the field of satellite communications. Satcom systems offer many advantages for military applications which include wide area coverage, rapid deployment, flexible networking and long range service to moving platforms like ships, aircraft and vehicles. This paper gives an overview of the special features and future trends in military satcom systems. A brief account of various countermeasures against threats, use of EHF, spread-spectrum techniques and on board processing has also been given. Major technological advances are anticipated in near future to realise high capacity, secure and survivable satcom systems for Defence applications.

  12. A systems engineering primer for every engineer and scientist

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  13. Strength and stiffness of engineering systems

    CERN Document Server

    Leckie, Frederick A

    2009-01-01

    This book on the stiffness and strength of engineering systems integrates a wide array of topics into a unified text, including plasticity, fracture, composite materials, energy approaches, and mechanics of microdevices (MEMs)..

  14. A CASE FOR SERVICE SYSTEMS ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    James M. TIEN; Daniel BERG

    2003-01-01

    A case is made for further developing a branch of systems engineering that focuses on problemsand issues which arise in the service sector. We promulgate this special focus not only because of thesize and importance of the service sector but also because of the unique opportunities that systemsengineering can exploit in the design and joint production and delivery of services. We begin byconsidering the economic, technological and demographic contexts within which the service sectorhas flourished; we then address both services, especially emerging services, and systems engineering,followed by a discussion of how to advance the field of service systems engineering, and concludingwith several remarks. In particular, a number of service systems engineering methods are identified toenhance the design and production/delivery of services, especially taking advantage of the uniquefeatures that characterize services - namely, services, especially emerging services, are information-driven, customer-centric, e-oriented, and productivity-focused.

  15. System Engineering Process Realization Toolkit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA faces many systems engineering challenges as it seeks to conduct exploration and science missions concurrently. One such challenge is implementing a repeatable...

  16. Satellite Constellation Design with Adaptively Continuous Ant System Algorithm

    Institute of Scientific and Technical Information of China (English)

    He Quan; Han Chao

    2007-01-01

    The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a (n + 1)-fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA,a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased.Simulation results have shown that the ASA is more quick and efficient than other methods.

  17. Experience in applying educational technologies to the integrated system of engineering students

    Directory of Open Access Journals (Sweden)

    Natalya Churlyaeva, Sergey Kukushkin

    2011-08-01

    Full Text Available Some evolutional aspects of the institution currently known as Siberian State Aerospace University are presented as an example of degradation of the integrated system of engineering training and the entire engineering education on the way from planned to market economy. Prospects for some educational technologies expected earlier to raise university graduates’ competency are found out to be doubtful. The analysis of labor market requirements to alumnae shows that no traditional educational technology allows them reach the competence level required by the modern labor market. The existing system of university engineering education is criticized as a whole. Better prospects for preparing engineers have continuing professional training systems at enterprises that still pursue innova-tive projects. The current activity of such a system at Information Satellite Systems Joint-Stock Company as to preparing engineers along the “School-UniversityEnterprise” line is briefly outlined.

  18. Solar thermal system engineering guidebook

    Science.gov (United States)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  19. Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering

    Science.gov (United States)

    Bar-Yam, Yaneer

    We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

  20. Gasoline engine EMI suppression system

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, H.A.; Broitman, K.; Evangelista, R.; Teske, R.E.; Sulmone, M.

    1987-09-08

    A spark ignition engine device adapted for use with an internal combustion engine driving an accessory such as a pump in an EMI radiation sensitive environment and mounted in a mounting structure is described comprising: an engine having a magneto flywheel supported for generating an ignition current; first wire means for transmitting ignition current from the magneto flywheel including wires carrying the ignition current and radiated EMI from the magneto and a first conductive shield means covering the wires; a control box positioned on and grounded to the mounting structure; connector means for introducing the first wire means into the control box, including means grounding the first conductive shield to the box to complete transfer of the EMI from the shield to the ground; power pack means mounted in and grounded to the box to control the ignition current and inherently generating additional EMI inside the box; second wire means including wires connected to transmit ignition current from the individual capacitor means to the power pack means whereby the capacitors prevent re-radiation of the EMI generated by the power pack means back to the outside of the box; ignition coil means mounted in and grounded to the box for generating high tension ignition current and inherently generating additional EMI; third wire means including wires connected to transmit ignition current from the power pack means to the input of the ignition coil means, the wires inherently radiating additional EMI.

  1. Requirements engineering for human activity systems

    CSIR Research Space (South Africa)

    Erasmus, J

    2014-10-01

    Full Text Available . Office of the Chief Engineer, NASA, 2007. —. Systems Engineering Handbook. Washington, D.C.: National Aeronautics and Space Administration, 2007. Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software... and special tools necessary to perform the verification (NASA 2007). This information will also allow for proper planning and scheduling of the verification activities to be performed throughout the development and realisation of the product. Measures...

  2. Engines-only flight control system

    Science.gov (United States)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  3. Stirling cycle engine and refrigeration systems

    Science.gov (United States)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  4. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  5. CAPP Framework System for Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Difficulty in generalizing and lack of adaptability are important factors that hamper a computer aided process planning (CAPP) system from being popular and practical. New manufacturing philosophies such as Concurrent Engineering require special characteristic of a CAPP system. Proposed in this paper is a CAPP framework system for Concurrent Engineering (CAPPFS-CE) which can meet the requirements of Concurrent Engineering and whose information models, function models and decision logic can be customized by users to form various CAPP application systems. Its function requirements are discussed broadly. An architecture for CAPPFS-CE is presented. It is based on abstract information models (AIMs) and abstract function models (AFMs). The kernel is formed by customization interpretation, internal process control and decision engine. A new information modeling and system development method, information element method (IEM), is introduced to build up AIMs, decision engine, and AFMs and then realize a CAPPFS-CE. THCAPP-SHELL, a CAPPFS-CE developed by IEM, is demonstrated. A CAPP system produced by customizing THCAPP-SHELL for complex structural parts in a concurrent engineering environment is shown.

  6. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  7. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  8. Assessment of a satellite power system and six alternative technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  9. The Joint Polar Satellite System (JPSS) Program's Algorithm Change Process (ACP): Past, Present and Future

    Science.gov (United States)

    Griffin, Ashley

    2017-01-01

    The Joint Polar Satellite System (JPSS) Program Office is the supporting organization for the Suomi National Polar Orbiting Partnership (S-NPP) and JPSS-1 satellites. S-NPP carries the following sensors: VIIRS, CrIS, ATMS, OMPS, and CERES with instruments that ultimately produce over 25 data products that cover the Earths weather, oceans, and atmosphere. A team of scientists and engineers from all over the United States document, monitor and fix errors in operational software code or documentation with the algorithm change process (ACP) to ensure the success of the S-NPP and JPSS 1 missions by maintaining quality and accuracy of the data products the scientific community relies on. This poster will outline the programs algorithm change process (ACP), identify the various users and scientific applications of our operational data products and highlight changes that have been made to the ACP to accommodate operating system upgrades to the JPSS programs Interface Data Processing Segment (IDPS), so that the program is ready for the transition to the 2017 JPSS-1 satellite mission and beyond.

  10. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Science.gov (United States)

    2010-10-01

    ... satellite systems. 25.159 Section 25.159 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Processing of Applications § 25.159 Limits on pending applications and unbuilt satellite systems. (a) Applicants with a total...

  11. Modular High-Energy Systems for Solar Power Satellites

    Science.gov (United States)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  12. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD)...

  13. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: Recent progress and new applications

    Science.gov (United States)

    Jin, Shuanggen

    2017-02-01

    Nowadays, the new China's BeiDou Navigation Satellite System (BDS) has been developed well. At the end of 2016, over 23 BDS satellites were launched, including five geostationary Earth orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and nine medium Earth orbit (MEO) satellites. The current BDS service covers China and most Asia-Pacific regions with accuracy of better than 10 m in positioning, 0.2 m/s in velocity and 50 ns in timing. The BDS with global coverage will be completely established by 2020 with five GEO satellites and 30 MEO satellites. The main function of BDS is the positioning, navigation and timing (PNT) as well as short message communications. Together with the United States' GPS, Russia's GLONASS and the European Union's Galileo system as well as other regional augmentation systems, more new applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the next decades.

  14. Guidance, Navigation, and Control System for Maneuverable Pico-Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pico-satellites are an emerging new class of spacecraft. Maneuverable pico-satellites require active guidance, navigation, and control (GN&C) systems to perform...

  15. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  16. Personal documentation and information system for engineers

    OpenAIRE

    Sridhar, M. S.

    1989-01-01

    Enumerates the information explosion environment and the findings of past research on information gathering patterns of engineers, presents basic concepts of documentation, information and personal documentation and information system, stresses the need for systematic management of personal documentation and information system, explains briefly the various principles, procedures and processes involved in developing and managing personal documentation and information system and concludes ...

  17. Tank waste remediation system systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Peck, L.G.

    1998-01-08

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

  18. Designing nonuniform satellite systems for continuous global coverage using equatorial and polar circular orbits

    Science.gov (United States)

    Ulybyshev, S. Yu.

    2016-07-01

    We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.

  19. Requirements engineering for software and systems

    CERN Document Server

    Laplante, Phillip A

    2014-01-01

    Solid requirements engineering has increasingly been recognized as the key to improved, on-time and on-budget delivery of software and systems projects. This book provides practical teaching for graduate and professional systems and software engineers. It uses extensive case studies and exercises to help students grasp concepts and techniques. With a focus on software-intensive systems, this text provides a probing and comprehensive review of recent developments in intelligent systems, soft computing techniques, and their diverse applications in manufacturing. The second edition contains 100% revised content and approximately 30% new material

  20. Engineering monitoring expert system's developer

    Science.gov (United States)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  1. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  2. Designing flexible engineering systems utilizing embedded architecture options

    Science.gov (United States)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  3. The art and science of Systems Engineering

    Directory of Open Access Journals (Sweden)

    Jerome Longrew

    2014-12-01

    Full Text Available In this work are collected years of experience and the work of systems engineering, and debates centered in the industry leadership, of engineer and instructors around the world. A recurrent issue in this experiences and discussions is that community used a lot of terms and titles more diffused with the aim of achieve an agreement toward a common comprehension of this area of knowledge. Besides, it does not matter how are divided the functions and responsibilities among teams, the obligatoriness is ensure that this be clears and are run as a functional whole. The goal is provide a wide definition of systems engineer, described the characteristics of behave of highly effective engineered, and make explicit the expectations of the same.

  4. NVESTIGATION OF INTERNATIONAL ENGINEERING LICENSURE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Selim BARADAN

    2009-01-01

    Full Text Available In many countries, engineers are legally required to register to a "licensure" system, which is founded on education and experience criteria and administered by a government body, to use the "engineer" title and offer professional services to the public. In today's globalized world, international alliances such as FEANI, APEC and EMF award engineers with European, APEC and International Professional engineer titles within a framework of mutual recognition of qualifications enabling them to practice outside their own country. This article examines such international licensure systems, particularly their administration processes and registration criteria, and discusses how current licensure procedures in Turkey should be revamped in case of joining an international alliance such as European Union.

  5. Multiple Viewpoints System/ Software Engineering for Space

    Science.gov (United States)

    Blondelle, Gael; Panunzio, Marco; Pequery, Jerome; Bats, Melanie; Garcia, Gerald; Brun, Cedric

    2013-08-01

    This paper presents a return of experience on using viewpoint-oriented modeling to design on-board software for satellites. First, we demonstrate the interest of integrating heterogeneous viewpoints in a tool to cover the development process of an embedded system. Then, we recall the Space Component Model, its implementation with Obeo Designer, and the capability to extend it with specific purpose Domain Specific Languages. Last, we expose further viewpoints that could be implemented to address new aspects like safety or interoperability.

  6. System Engineering Concept Demonstration, System Engineering Needs. Volume 2

    Science.gov (United States)

    1992-12-01

    support, executable specification, quality assessment), management support, and communications (especially for organizationally or geographically ...34* Technical Management Plan (equivalent to SEMP) "* New Program Startup Guide "* System Specification "* Segement Specifications "* Design Analysis

  7. Systems Engineering for Contingency Basing

    Science.gov (United States)

    2012-11-30

    11 Figure 2 – Boardman Soft Systems Methodology ............................................................ 12...into detailed consideration of solution implementation The creation of systemigrams follow the Boardman Soft Systems Methodology (BSSM) of seven...are depicted in Figure 2 followed by a description of each step as it related to this sub-task. Figure 2 – Boardman Soft Systems Methodology Step

  8. Titanium in engine valve systems

    Energy Technology Data Exchange (ETDEWEB)

    Allison, J.E.; Sherman, A.M.; Bapna, M.R.

    1987-03-01

    Titanium alloys offer a unique combination of high strength-to-weight ratio, good corrosion resistance and favorable high temperature mechanical properties. Still, their relatively high cost has discouraged consideration for widespread use in automotive components. Recent demands for increased fuel economy have led to the consideration of these alloys for use as valve train materials where higher costs might be offset by improvements in performance and fuel economy. Lighter weight valve train components permit the use of lower spring loads, thus reducing friction and increasing fuel economy. Camshaft friction measurements made on a typical small displacement engine indicate that a two-to-four percent increase in fuel economy can be achieved. Valve train components are, however, subject to a severe operating environment, including elevated temperatures, sliding wear and high mechanical loads. This paper discusses the details of alloy and heat treatment selection for optimizing valve performance.

  9. Thermoelectric system for an engine

    Science.gov (United States)

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  10. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Ottinger, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.

  11. Engineered containment and control systems: nurturing nature.

    Science.gov (United States)

    Clarke, James H; MacDonell, Margaret M; Smith, Ellen D; Dunn, R Jeffrey; Waugh, W Jody

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

  12. Satellite Power System (SPS) financial/management scenarios

    Science.gov (United States)

    Vajk, J. P.

    1978-01-01

    The possible benefits of a Satellite Power System (SPS) program, both domestically and internationally, justify detailed and imaginative investigation of the issues involved in financing and managing such a large-scale program. In this study, ten possible methods of financing a SPS program are identified ranging from pure government agency to private corporations. The following were analyzed and evaluated: (1) capital requirements for SPS; (2) ownership and control; (3) management principles; (4) organizational forms for SPS; (5) criteria for evaluation; (6) detailed description and preliminary evaluation of alternatives; (7) phased approaches; and (8) comparative evaluation. Key issues and observations and recommendations for further study are also presented.

  13. Handoff algorithm for mobile satellite systems with ancillary terrestrial component

    KAUST Repository

    Sadek, Mirette

    2012-06-01

    This paper presents a locally optimal handoff algorithm for integrated satellite/ground communication systems. We derive the handoff decision function and present the results in the form of tradeoff curves between the number of handoffs and the number of link degradation events in a given distance covered by the mobile user. This is a practical receiver-controlled handoff algorithm that optimizes the handoff process from a user perspective based on the received signal strength rather than from a network perspective. © 2012 IEEE.

  14. Efficient medium access control protocol for geostationary satellite systems

    Institute of Scientific and Technical Information of China (English)

    王丽娜; 顾学迈

    2004-01-01

    This paper proposes an efficient medium access control (MAC) protocol based on multifrequency-time division multiple access (MF-TDMA) for geostationary satellite systems deploying multiple spot-beams and onboard processing,which uses a method of random reservation access with movable boundaries to dynamically request the transmission slots and can transmit different types of traffic. The simulation results have shown that our designed MAC protocol can achieve a high bandwidth utilization, while providing the required quality of service (QoS) for each class of service.

  15. Software engineering practices for control system reliability

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Schaffner; K. S White

    1999-04-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management.

  16. Industrial deployment of system engineering methods

    CERN Document Server

    Romanovsky, Alexander

    2013-01-01

    A formal method is not the main engine of a development process, its contribution is to improve system dependability by motivating formalisation where useful. This book summarizes the results of the DEPLOY research project on engineering methods for dependable systems through the industrial deployment of formal methods in software development. The applications considered were in automotive, aerospace, railway, and enterprise information systems, and microprocessor design.  The project introduced a formal method, Event-B, into several industrial organisations and built on the lessons learned to

  17. The Federated Satellite Systems paradigm: Concept and business case evaluation

    Science.gov (United States)

    Golkar, Alessandro; Lluch i Cruz, Ignasi

    2015-06-01

    This paper defines the paradigm of Federated Satellite Systems (FSS) as a novel distributed space systems architecture. FSS are networks of spacecraft trading previously inefficiently allocated and unused resources such as downlink bandwidth, storage, processing power, and instrument time. FSS holds the promise to enhance cost-effectiveness, performance and reliability of existing and future space missions, by networking different missions and effectively creating a pool of resources to exchange between participants in the federation. This paper introduces and describes the FSS paradigm, and develops an approach integrating mission analysis and economic assessments to evaluate the feasibility of the business case of FSS. The approach is demonstrated on a case study on opportunities enabled by FSS to enhance space exploration programs, with particular reference to the International Space Station. The application of the proposed methodology shows that the FSS concept is potentially able to create large commercial markets of in-space resources, by providing the technical platform to offer the opportunity for spacecraft to share or make use of unused resources within their orbital neighborhood. It is shown how the concept is beneficial to satellite operators, space agencies, and other stakeholders of the space industry to more flexibly interoperate space systems as a portfolio of assets, allowing unprecedented collaboration among heterogeneous types of missions.

  18. Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination

    Directory of Open Access Journals (Sweden)

    Liu Junhong

    2014-10-01

    Full Text Available The visibility for low earth orbit (LEO satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system (GPS. In addition, the spaceborne receivers’ observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination (POD results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional (3D accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about 30 cm. As for the precise relative orbit determination (PROD, the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit (GEO satellites is illustrated for POD.

  19. Basic performance of BeiDou-2 navigation satellite system used in LEO satellites precise orbit determination

    Institute of Scientific and Technical Information of China (English)

    Liu Junhong; Gu Defeng; Ju Bing; Yao Jing; Duan Xiaojun; Yi Dongyun

    2014-01-01

    The visibility for low earth orbit (LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system (GPS). In addition, the spaceborne receivers’ observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satel-lites orbits. The precise orbit determination (POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional (3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about 30 cm. As for the precise relative orbit determination (PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demon-strates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit (GEO) satellites is illustrated for POD.

  20. Engineering the System and Technical Integration

    Science.gov (United States)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  1. A Management Engineered System for Bilingual Instruction.

    Science.gov (United States)

    Blomstedt, Robert; Tinajero, Josefina

    The model shows how the essential components of a bilingual instructional setting can be interwoven with the concepts espoused in Management Engineered Teacher Education to provide a systems example that is adaptable to any classroom by the bilingual teacher. Implementation of the system begins with an assessment of the child's language…

  2. Systems Engineering of Coast Guard Aviator Training.

    Science.gov (United States)

    Hall, Eugene R.; Caro, Paul W.

    This paper describes a total-program application of the systems engineering concept of the U.S. Coast Guard aviation training programs. The systems approach used treats all aspects of the training to produce the most cost-effective integration of academic, synthetic, and flight training for the production of graduate Coast Guard aviators. The…

  3. Space Systems Failures Disasters and Rescues of Satellites, Rockets and Space Probes

    CERN Document Server

    Harland, David M

    2005-01-01

    In the 1960s and 1970s deep space missions were dispatched in pairs in case one was lost in launch or failed during its journey. Following the triumphs of the Viking landings on Mars in 1976 and both Voyagers spacecraft successfully surveying the outer giant planets of the Solar System, it was decided by NASA to cut costs and send out just a single probe. Although Magellan successfully mapped Venus by radar, it suffered from problems during the flight. Then came the loss of Mars Observer, whose engine exploded as it was preparing to enter Mars’ orbit because it was using technology designed for Earth’s satellites and the engine was not suited to spending several months in space. Later came the high-profile losses of Mars Climate Observer and Mars Polar Lander - a consequence of the faster, better, cheaper philosophy introduced by Dan Goldin in 1993. Even the highly successful Galileo mission suffered a major setback when its high-gain antenna (also based on satellite mission suffered a major setback when ...

  4. Titanium in Engine Valve Systems

    Science.gov (United States)

    Allison, J. E.; Sherman, A. M.; Bapna, M. R.

    1987-03-01

    Titanium alloys offer a unique combination of high strength-to-weight ratio, good corrosion resistance and favorable high temperature mechanical properties. Still, their relatively high cost has discouraged consideration for widespread use in automotive components. Recent demands for increased fuel economy have led to the consideration of these alloys for use as valve train materials where higher costs might be offset by improvements in performance and fuel economy. Lighter weight valve train components permit the use of lower spring loads, thus reducing friction and increasing fuel economy. Camshaft friction measurements made on a typical small displacement engine indicate that a twoto-four percent increase in fuel economy can be achieved. Valve train components are, however, subject to a severe operating environment, including elevated temperatures, sliding wear and high mechanical loads. This paper discusses the details of alloy and heat treatment selection for optimizing valve performance. When properly manufactured, titanium valves have been shown to withstand very stringent durability testing, indicating the technical feasibility of this approach to fuel economy improvement.

  5. Performance Evaluation of Data Compression Systems Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Lilian N. Faria

    2012-01-01

    Full Text Available Onboard image compression systems reduce the data storage and downlink bandwidth requirements in space missions. This paper presents an overview and evaluation of some compression algorithms suitable for remote sensing applications. Prediction-based compression systems, such as DPCM and JPEG-LS, and transform-based compression systems, such as CCSDS-IDC and JPEG-XR, were tested over twenty multispectral (5-band images from CCD optical sensor of the CBERS-2B satellite. Performance evaluation of these algorithms was conducted using both quantitative rate-distortion measurements and subjective image quality analysis. The PSNR, MSSIM, and compression ratio results plotted in charts and the SSIM maps are used for comparison of quantitative performance. Broadly speaking, the lossless JPEG-LS outperforms other lossless compression schemes, and, for lossy compression, JPEG-XR can provide lower bit rate and better tradeoff between compression ratio and image quality.

  6. Engineering skeletal muscle tissue in bioreactor systems

    Institute of Scientific and Technical Information of China (English)

    An Yang; Li Dong

    2014-01-01

    Objective To give a concise review of the current state of the art in tissue engineering (TE) related to skeletal muscle and kinds of bioreactor environment.Data sources The review was based on data obtained from the published articles and guidelines.Study selection A total of 106 articles were selected from several hundred original articles or reviews.The content of selected articles is in accordance with our purpose and the authors are authorized scientists in the study of engineered muscle tissue in bioreactor.Results Skeletal muscle TE is a promising interdisciplinary field which aims at the reconstruction of skeletal muscle loss.Although numerous studies have indicated that engineering skeletal muscle tissue may be of great importance in medicine in the near future,this technique still represents a limited degree of success.Since tissue-engineered muscle constructs require an adequate connection to the vascular system for efficient transport of oxygen,carbon dioxide,nutrients and waste products.Moreover,functional and clinically applicable muscle constructs depend on adequate neuromuscular junctions with neural calls.Third,in order to engineer muscle tissue successfully,it may be beneficial to mimic the in vivo environment of muscle through association with adequate stimuli from bioreactors.Conclusion Vascular system and bioreactors are necessary for development and maintenance of engineered muscle in order to provide circulation within the construct.

  7. Systems Engineering Capstone Marketplace Pilot

    Science.gov (United States)

    2013-11-05

    of student work. During Phase 3/Guideline Preparation (July 1, 2013-August 31, 2013) all participating faculty distilled the lessons of the...conducted an analysis of the volume of water that could be treated using their solar and battery powered system. Given adequate sunlight, their system...useful lessons learned were distilled from these conversations. They are reported in the next section. Additionally, a recommended template schedule for

  8. Cognitive systems engineering in health care

    CERN Document Server

    Bisantz, Ann M; Fairbanks, Rollin J

    2014-01-01

    Cognitive Engineering for Better Health Care Systems, Ann M. Bisantz, Rollin J. Fairbanks, and Catherine M. BurnsThe Role of Cognitive Engineering in Improving Clinical Decision Support, Anne Miller and Laura MilitelloTeam Cognitive Work Analysis as an Approach for Understanding Teamwork in Health Care, Catherine M. BurnsCognitive Engineering Design of an Emergency Department Information System, Theresa K. Guarrera, Nicolette M. McGeorge, Lindsey N. Clark, David T. LaVergne, Zachary A. Hettinger, Rollin J. Fairbanks, and Ann M. BisantzDisplays for Health Care Teams: A Conceptual Framework and Design Methodology, Avi ParushInformation Modeling for Cognitive Work in a Health Care System, Priyadarshini R. PennathurSupport for ICU Clinician Cognitive Work through CSE, Christopher Nemeth, Shilo Anders, Jeffrey Brown, Anna Grome, Beth Crandall, and Jeremy PamplinMatching Cognitive Aids and the "Real Work" of Health Care in Support of Surgical Microsystem Teamwork, Sarah Henrickson Parker and Shawna J. PerryEngageme...

  9. An inference engine for embedded diagnostic systems

    Science.gov (United States)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  10. Mobile radio alternative systems study satellite/terrestrial (hybrid) systems concepts

    Science.gov (United States)

    Kiesling, J. D.; Anderson, R. E.

    1983-01-01

    The use of satellites for mobile radio service in non-urban areas of the United States in the years from 1985 to 2000 was investigated. Several satellite concepts are considered: a system with single-beam coverage of the fifty United States and Puerto Rico, and multi-beam satellites with greater capacity. All of the needed functions and services identified in the market study are provided by the satellite systems, including nationwide radio access to vehicles without knowledge of vehicle location wideband data transmission from remote sites, two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The costs of providing the services are within acceptable limits, and the desired returns to the system investors are attractive. The criteria by which the Federal Communication judges the competing demands for public radio spectrum are reviewed with comments on how the criteria might apply to the consideration of land mobile satellites. Institutional arrangements for operating a mobile satellite system are based on the present institutional arrangements in which the services are offered to the end users through wireline and radio common carriers, with direct access by large private and government users.

  11. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  12. A low cost data logging system with satellite transmission capabilities

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; DeSa, E.J.; Desai, R.G.P.

    satellite navigator, deep sea echosounder, and a magnetometer on board a chartered research vessel. A novel data logger design was implemented with the extra option of transmitting logged data through the ships INMARSAT approved satellite terminal...

  13. A system architecture for an advanced Canadian wideband mobile satellite system

    Science.gov (United States)

    Takats, P.; Keelty, M.; Moody, H.

    In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.

  14. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  15. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  16. System verification and validation: a fundamental systems engineering task

    Science.gov (United States)

    Ansorge, Wolfgang R.

    2004-09-01

    Systems Engineering (SE) is the discipline in a project management team, which transfers the user's operational needs and justifications for an Extremely Large Telescope (ELT) -or any other telescope-- into a set of validated required system performance characteristics. Subsequently transferring these validated required system performance characteris-tics into a validated system configuration, and eventually into the assembled, integrated telescope system with verified performance characteristics and provided it with "objective evidence that the particular requirements for the specified intended use are fulfilled". The latter is the ISO Standard 8402 definition for "Validation". This presentation describes the verification and validation processes of an ELT Project and outlines the key role System Engineering plays in these processes throughout all project phases. If these processes are implemented correctly into the project execution and are started at the proper time, namely at the very beginning of the project, and if all capabilities of experienced system engineers are used, the project costs and the life-cycle costs of the telescope system can be reduced between 25 and 50 %. The intention of this article is, to motivate and encourage project managers of astronomical telescopes and scientific instruments to involve the entire spectrum of Systems Engineering capabilities performed by trained and experienced SYSTEM engineers for the benefit of the project by explaining them the importance of Systems Engineering in the AIV and validation processes.

  17. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  18. The changing world of global navigation satellite systems

    Science.gov (United States)

    Dow, John M.; Neilan, Ruth E.; Higgins, Matt; Arias, Felicitas

    The world of global navigation satellite systems (GNSS) has been changing very rapidly during the last years. New constellations are being developed in Europe (Galileo), India (IRNSS), Japan (QZNSS) and China (Compass), while both the US GPS and the Russian GLONASS programmes are engaged in very significant mediumto long-term improvements, which will make them even more valuable in the coming years to an ever wider range of civilian users. In addition, powerful regional augmentation systems are becoming (or have already become) operational, providing users with important real time information concerning the integrity of the signals being broadcast by those two systems: these include the US WAAS, the European EGNOS, the Japanese MSAS, the Indian GAGAN and others. Following a number of United Nations sponsored regional workshops, a report by an ad hoc UN "GNSS Action Team" and several preparatory meetings, the International Committee on GNSS (ICG) was established in December 2005 in Vienna, Austria. The ICG is an informal body with the main objective of promoting cooperation on matters of mutual interest related to civil satellite-based positioning, navigation, timing, and value-added services, as well as compatibility and interoperability among the GNSS systems. A further important objective is to encourage the use of GNSS to support sustainable development, particularly in the developing countries. The United Nations Office for Outer Space Affairs (UNOOSA) plays a key role in facilitating the work of the ICG. The members of the Committee are GNSS system providers, while international organisations representing users of GNSS can qualify for participation in the work of the Committee as associate members or observers. The interests of the space geodetic, mapping and timing communities are represented in particular through ICG associate membership of the IGS, IAG, FIG, IERS, while BIPM is an ICG observer. This paper will highlight the background of these developments

  19. System Design and Key Technologies of the GF-3 Satellite

    Directory of Open Access Journals (Sweden)

    ZHANG Qingjun

    2017-03-01

    Full Text Available GF-3 satellite, the first C band and multi-polarization SAR satellite in China, achieves breakthroughs in a number of core and key technologies. The satellite technology abides by the principle of “Demand Pulls, Technology Pushes”, forming a series of innovation point, and reaching or surpassing international level in main technical specification.

  20. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  1. Metasynthetic computing and engineering of complex systems

    CERN Document Server

    Cao, Longbing

    2015-01-01

    Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro

  2. Integrated Standardization and Systems Engineering Management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Integrated standardization is one of the fundamenta l forms of modern standardization. It is the combination of system science and the content of standardization. The development of system science has provided theo retic foundation and precondition for integrated standardization. The relevant r esearch on integrated standardization and system engineering illustrate that int egrated standardization is a advanced method which presented with the developmen t of modern science and technology . Integrated st...

  3. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  4. Preliminary environmental assessment for the satellite power system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A preliminary assessment of the impact of the Satellite Power System (SPS) on the environment is presented. Information that has appeared in documents referenced herein is integrated and assimilated. The state-of-knowledge as perceived from recently completed DOE-sponsored studies is disclosed, and prospective research and study programs that can advance the state-of-knowledge and provide an expanded data base for use in an assessment planned for 1980 are defined. Alternatives for research that may be implemented in order to achieve this advancement are also discussed in order that a plan can be selected which will be consistent with the fiscal and time constraints on the SPS Environmental Assessment Program. Health and ecological effects of microwave radiation, nonmicrowave effects on health and the environment (terrestrial operations and space operations), effects on the atmosphere, and effects on communications systems are examined in detail. (WHK)

  5. A European mobile satellite system concept exploiting CDMA and OBP

    Science.gov (United States)

    Vernucci, A.; Craig, A. D.

    1993-01-01

    This paper describes a novel Land Mobile Satellite System (LMSS) concept applicable to networks allowing access to a large number of gateway stations ('Hubs'), utilizing low-cost Very Small Aperture Terminals (VSAT's). Efficient operation of the Forward-Link (FL) repeater can be achieved by adopting a synchronous Code Division Multiple Access (CDMA) technique, whereby inter-code interference (self-noise) is virtually eliminated by synchronizing orthogonal codes. However, with a transparent FL repeater, the requirements imposed by the highly decentralized ground segment can lead to significant efficiency losses. The adoption of a FL On-Board Processing (OBP) repeater is proposed as a means of largely recovering this efficiency impairment. The paper describes the network architecture, the system design and performance, the OBP functions and impact on implementation. The proposed concept, applicable to a future generation of the European LMSS, was developed in the context of a European Space Agency (ESA) study contract.

  6. The silicon solar satellite power system - A net energy analysis

    Science.gov (United States)

    Hannon, B.; Naughton, J. P.

    The physical aspects and net energy balance of a Satellite Solar Power System (SSPS) are examined. The feasibility of operating with or without laser annealing for the cells, possible variations in the total system costs, the projected worth of the energy, and the R&D costs are explored. The energy needed to mine, refine, fabricate, manufacture, launch, and maintain the SSPS materials and structures are included in the energy analysis, and cost-to-energy ratio of energy used to energy produced graphs are provided for the cases of the use or non-use of laser annealing for radiation protection for the solar cells. The resulting energy ratios indicate that the reference SSPS compares unfavorably with coal or nuclear earth-based plants, although further research is necessary to determine what level of technology is actually required for construction of the SSPS.

  7. NASA ACTS Multibeam Antenna (MBA) System. [Advanced Communications Technology Satellite

    Science.gov (United States)

    Choung, Youn H.; Stiles, W. Herschel; Wu, Joseph; Wong, William C.; Chen, C. Harry

    1986-01-01

    The design of the Advanced Communications Technology Satellite MBA system, which provides both spot beam and scanning beam coverage to both high and low burst rates data-users is examined. The MBA consists of receive and transmit antennas installed on a common precision mounting platform that is integrated to the bus through three flexures; a lightweight system with low thermal distortion is obtained by using composite materials for the MBA structures. The RF design, which is a Cassegrain reflector with a large equivalent focal length/aperture size, is described. Consideration is given to the position of the feed in order to minimize scan loss and sidelobe levels, the size of the subreflector in order to minimize feed spillover, and antenna performance degradation caused by reflector surface distortion. Breadbroad model test result reveal that the maximum sidelobe level outside the 2.5 HPBW region is -30 dB or lower relative to the power.

  8. Radio systems engineering a tutorial approach

    CERN Document Server

    Santos, Héctor J De Los; Ponte, Juan

    2015-01-01

    This book is intended for readers who already have knowledge of devices and circuits for radio-frequency (RF) and microwave communication and are ready to study the systems engineering-level aspects of modern radio communications systems. The authors provide a general overview of radio systems with their components, focusing on the analog parts of the system and their non-idealities. Based on the physical functionality of the various building blocks of a modern radio system, block parameters are derived, which allows the examination of their influence on the overall system performance. The dis

  9. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    Science.gov (United States)

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  10. Assembly design system based on engineering connection

    Science.gov (United States)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  11. Onboard Supervisor for the Ørsted Satellite Attitude Control System

    DEFF Research Database (Denmark)

    Bøgh, S.A.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    1995-01-01

    The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system.......The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system....

  12. UAS CNPC Satellite Link Performance - Sharing Spectrum with Terrestrial Systems

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for radio line-of-sight (LOS), terrestrial based CNPC link at 5030-5091 MHz. For a beyond radio line-of-sight (BLOS), satellite-based CNPC link, aviation safety spectrum allocations are currently inadequate. Therefore, the 2015 WRC will consider the use of Fixed Satellite Service (FSS) bands to provide BLOS CNPC under Agenda Item 1.5. This agenda item requires studies to be conducted to allow for the consideration of how unmanned aircraft can employ FSS for BLOS CNPC while maintaining existing systems. Since there are terrestrial Fixed Service systems also using the same frequency bands under consideration in Agenda Item 1.5 one of the studies required considered spectrum sharing between earth stations on-board unmanned aircraft and Fixed Service station receivers. Studies carried out by NASA have concluded that such sharing is possible under parameters previously established by the International Telecommunications Union. As the preparation for WRC-15 has progressed, additional study parameters Agenda Item 1.5 have been proposed, and some studies using these parameters have been added. This paper examines the study results for the original parameters as well as results considering some of the more recently proposed parameters to provide insight into the complicated process of resolving WRC-15 Agenda Item 1.5 and achieving a solution for BLOS CNPC for unmanned aircraft.

  13. Engineering design of systems models and methods

    CERN Document Server

    Buede, Dennis M

    2009-01-01

    The ideal introduction to the engineering design of systems-now in a new edition. The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: * The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology * Additional material on partitioning functions and components * More descriptive material on usage scenarios based on literature from use case development * Updated homework assignments * The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference ...

  14. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  15. NNIC—neural network image compressor for satellite positioning system

    Science.gov (United States)

    Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo

    2007-04-01

    We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.

  16. Evaluation of voice codecs for the Australian mobile satellite system

    Science.gov (United States)

    Bundrock, Tony; Wilkinson, Mal

    1990-01-01

    The evaluation procedure to choose a low bit rate voice coding algorithm is described for the Australian land mobile satellite system. The procedure is designed to assess both the inherent quality of the codec under 'normal' conditions and its robustness under 'severe' conditions. For the assessment, normal conditions were chosen to be random bit error rate with added background acoustic noise and the severe condition is designed to represent burst error conditions when mobile satellite channel suffers from signal fading due to roadside vegetation. The assessment is divided into two phases. First, a reduced set of conditions is used to determine a short list of candidate codecs for more extensive testing in the second phase. The first phase conditions include quality and robustness and codecs are ranked with a 60:40 weighting on the two. Second, the short listed codecs are assessed over a range of input voice levels, BERs, background noise conditions, and burst error distributions. Assessment is by subjective rating on a five level opinion scale and all results are then used to derive a weighted Mean Opinion Score using appropriate weights for each of the test conditions.

  17. Satellite lines at the ionization threshold in charge transfer systems

    Science.gov (United States)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  18. The engineering of microprocessor systems guidelines on system development

    CERN Document Server

    1979-01-01

    The Engineering of Microprocessor Systems: Guidelines on System Development provides economical and technical guidance for use when incorporating microprocessors in products or production processes and assesses the alternatives that are available. This volume is part of Project 0251 undertaken by The Electrical Research Association, which aims to give managers and development engineers advice and comment on the development process and the hardware and software needed to support the engineering of microprocessor systems. The results of Phase 1 of the five-phase project are contained in this fir

  19. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  20. Design and observations of satellite laser ranging system for daylight tracking at Shanghai Observatory

    Institute of Scientific and Technical Information of China (English)

    杨福民; 肖炽昆; 陈婉珍; 张忠萍; 谭德同; 龚向东; 陈菊平; 黄力; 章建华

    1999-01-01

    The first satellite laser ranging system for daylight tracking in China was set up at Shanghai Observatory, Chinese Academy of Sciences. Both false alarm probability due to strong background noises and detection probability of the laser returns with single photon level from satellite in daylight for our system are analysed. The system design and performance characteristics of subsystems, adopted techniques and satellite ranging observations are given.

  1. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  2. Chain modeling for life cycle systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J.J. [Sandia National Lab., Albuquerque, NM (United States); Shapiro, V. [Univ. of Wisconsin, Madison, WI (United States). Spatial Automation Lab.

    1997-12-01

    Throughout Sandia`s history, products have been represented by drawings. Solid modeling systems have recently replaced drawings as the preferred means for representing product geometry. These systems are used for product visualization, engineering analysis and manufacturing planning. Unfortunately, solid modeling technology is inadequate for life cycle systems engineering, which requires maintenance of technical history, efficient management of geometric and non-geometric data, and explicit representation of engineering and manufacturing characteristics. Such information is not part of the mathematical foundation of solid modeling. The current state-of-the-art in life cycle engineering is comprised of painstakingly created special purpose tools, which often are incompatible. New research on {open_quotes}chain modeling{close_quotes} provides a method of chaining the functionality of a part to the geometric representation. Chain modeling extends classical solid modeling to include physical, manufacturing, and procedural information required for life cycle engineering. In addition, chain modeling promises to provide the missing theoretical basis for Sandia`s parent/child product realization paradigm. In chain modeling, artifacts and systems are characterized in terms of their combinatorial properties: cell complexes, chains, and their operators. This approach is firmly rooted in algebraic topology and is a natural extension of current technology. The potential benefits of this approach include explicit hierarchical and combinatorial representation of physics, geometry, functionality, test, and legacy data in a common computational framework that supports a rational decision process and partial design automation. Chain modeling will have a significant impact on design preservation, system identification, parameterization, system reliability, and design simplification.

  3. Engine Auxiliary System Guideline: Lubricating Oil Systems

    OpenAIRE

    Linna, Joni

    2015-01-01

    This thesis was done for Wärtsilä Technical Services organization, the purpose of this work was to gather and structure information about the lubricating oil systems from the company’s internal databases, interviews with system specialists and from different literature sources covering Ship Power and Power Plant products. The outcome was a guideline, covering typical power plant and marine system descriptions, all components used in the lubricating oil system with their functional description...

  4. Satellite power system. Concept development and evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The Reference System description emphasizes technical and operational information required in support of environmental, socioeconomic, and comparative assessment studies. Supporting information has been developed according to a guideline of implementing two 5 GW SPS systems per year for 30 years beginning with an initial operational data of 2000 and with SPS's being added at the rate of two per year (10 GW/year) until 2030. The Reference System concept, which features gallium--aluminum--arsenide (GaAlAs) and silicon solar cell options, is described in detail. The concept utilizes a planar solar array (about 55 km/sup 2/) built on a graphite fiber reinforced thermoplastic structure. The silicon array uses a concentration ratio of one (no concentration), whereas the GaAlAs array uses a concentration ratio of two. A one-kilometer diameter phased array microwave antenna is mounted on one end. The antenna uses klystrons as power amplifiers with slotted waveguides as radiating elements. The satellite is constructed in geosynchronous orbit in a six-month period. The ground receiving stations (rectenna) are completed during the same time period. The other two major components of an SPS program are (1) the construction bases in space and launch and mission control bases on earth and (2) fleets of various transportation vehicles that support the construction and maintenance operations of the satellites. These transportation vehicles include Heavy Lift Launch Vehicles (HLLV), Personnel Launch Vehicles (PLV), Cargo Orbit Transfer Vehicles (COTV), and Personnel Orbit Transfer Vehicles (POTV). The earth launch site chosen is the Kennedy Space Center, pending further study.

  5. Satellite Data Assimilation within KIAPS-LETKF system

    Science.gov (United States)

    Jo, Y.; Lee, S., Sr.; Cho, K.

    2016-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.

  6. Vocational Teaching Cube System of Engineering Graphics

    Institute of Scientific and Technical Information of China (English)

    YangDaofu; LiuShenli

    2003-01-01

    Based on long-time research on vocational teaching cube theory in graphics education and analyzing on the intellectual structure in the process of reading engineering drawing, the graphics intellectual three-dimensional model, which is made up of 100 cubes, is founded and tested in higher vocational graphics education. This system serves as a good guidance to the graphics teaching.

  7. Molecular assembly in natural and engineered systems

    CERN Document Server

    Howorka, Stefan

    2011-01-01

    This volume explores some of the most exciting recent advances in basic research on molecular assembly in natural and engineered systems and how this knowledge is leading to advances in the various fields.* This series provides a forum for discussion of new discoveries, approaches, and ideas * Contributions from leading scholars and industry experts * Reference guide for researchers involved in molecular biology and related fields

  8. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  9. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  10. Global tracking and inventory of military hardware via LEO satellite: A system approach and likely scenario

    Science.gov (United States)

    Bell, David; Estabrook, Polly; Romer, Richard

    1995-01-01

    A system for global inventory control of electronically tagged military hardware is achievable using a LEO satellite constellation. An equipment Tag can communicate directly to the satellite with a power of 5 watts or less at a data rate of 2400 to 50,000 bps. As examples, two proposed commercial LEO systems, IRIDIUM and ORBCOMM, are both capable of providing global coverage but with dramatically different telecom capacities. Investigation of these two LEO systems as applied to the Tag scenario provides insight into satellite design trade-offs, constellation trade-offs and signal dynamics that effect the performance of a satellite-based global inventory control system.

  11. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  12. The systems engineering overview and process (from the Systems Engineering Management Guide, 1990)

    Science.gov (United States)

    1993-01-01

    The past several decades have seen the rise of large, highly interactive systems that are on the forward edge of technology. As a result of this growth and the increased usage of digital systems (computers and software), the concept of systems engineering has gained increasing attention. Some of this attention is no doubt due to large program failures which possibly could have been avoided, or at least mitigated, through the use of systems engineering principles. The complexity of modern day weapon systems requires conscious application of systems engineering concepts to ensure producible, operable and supportable systems that satisfy mission requirements. Although many authors have traced the roots of systems engineering to earlier dates, the initial formalization of the systems engineering process for military development began to surface in the mid-1950s on the ballistic missile programs. These early ballistic missile development programs marked the emergence of engineering discipline 'specialists' which has since continued to grow. Each of these specialties not only has a need to take data from the overall development process, but also to supply data, in the form of requirements and analysis results, to the process. A number of technical instructions, military standards and specifications, and manuals were developed as a result of these development programs. In particular, MILSTD-499 was issued in 1969 to assist both government and contractor personnel in defining the systems engineering effort in support of defense acquisition programs. This standard was updated to MIL-STD499A in 1974, and formed the foundation for current application of systems engineering principles to military development programs.

  13. Principles of e-learning systems engineering

    CERN Document Server

    Gilbert, Lester

    2008-01-01

    The book integrates the principles of software engineering with the principles of educational theory, and applies them to the problems of e-learning development, thus establishing the discipline of E-learning systems engineering. For the first time, these principles are collected and organised into the coherent framework that this book provides. Both newcomers to and established practitioners in the field are provided with integrated and grounded advice on theory and practice. The book presents strong practical and theoretical frameworks for the design and development of technology-based mater

  14. Fringe Projection Measurement System in Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    林朝辉; 何海涛; 郭红卫; 陈明仪; 石璇; 俞涛

    2005-01-01

    Acquisition of physical data with high precision is a key step in reverse engineering ( RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invented, developed and made applicable. This paper introduces a three dimensional optical measurement method based on digital fringe projection technique in RE to improve the technique through its application. A practical example is presented and the result demonstrates the applicability and feasibility of the measurement system as well as the reliability and validity of relevant methods and algorithms.

  15. A Model for Educating Systems Engineers

    Science.gov (United States)

    2012-03-01

    M.D. Engelhart, E.J. Furst, W.H. Hill, and D. R. Krathwohl, Taxonomy of educational objectives the classification of educational goals handbook I... Educating Systems Engineers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...Shaw, “Advancing Software Engineering Professional Education ”, IEEE Software, vol. 23, no. 6, pp. 58-63, July/August 2011. [6] B.S. Bloom , B.S

  16. Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units.

    Science.gov (United States)

    Syverud, Brian C; VanDusen, Keith W; Larkin, Lisa M

    2016-03-01

    Tissue engineered skeletal muscle has potential for application as a graft source for repairing soft tissue injuries, a model for testing pharmaceuticals, and a biomechanical actuator system for soft robots. However, engineered muscle to date has not produced forces comparable to native muscle, limiting its potential for repair and for use as an in vitro model for pharmaceutical testing. In this study, we examined the trophic effects of dexamethasone (DEX), a glucocorticoid that stimulates myoblast differentiation and fusion into myotubes, on our tissue engineered three-dimensional skeletal muscle units (SMUs). Using our established SMU fabrication protocol, muscle isolates were cultured with three experimental DEX concentrations (5, 10, and 25 nM) and compared to untreated controls. Following seeding onto a laminin-coated Sylgard substrate, the administration of DEX was initiated on day 0 or day 6 in growth medium or on day 9 after the switch to differentiation medium and was sustained until the completion of SMU fabrication. During this process, total cell proliferation was measured with a BrdU assay, and myogenesis and structural advancement of muscle cells were observed through immunostaining for MyoD, myogenin, desmin, and α-actinin. After SMU formation, isometric tetanic force production was measured to quantify function. The histological and functional assessment of the SMU showed that the administration of 10 nM DEX beginning on either day 0 or day 6 yielded optimal SMUs. These optimized SMUs exhibited formation of advanced sarcomeric structure and significant increases in myotube diameter and myotube fusion index, compared with untreated controls. Additionally, the optimized SMUs matured functionally, as indicated by a fivefold rise in force production. In conclusion, we have demonstrated that the addition of DEX to our process of engineering skeletal muscle tissue improves myogenesis, advances muscle structure, and increases force production in the

  17. Medium-rate speech coding simulator for mobile satellite systems

    Science.gov (United States)

    Copperi, Maurizio; Perosino, F.; Rusina, F.; Albertengo, G.; Biglieri, E.

    1986-01-01

    Channel modeling and error protection schemes for speech coding are described. A residual excited linear predictive (RELP) coder for bit rates 4.8, 7.2, and 9.6 kbit/sec is outlined. The coder at 9.6 kbit/sec incorporates a number of channel error protection techniques, such as bit interleaving, error correction codes, and parameter repetition. Results of formal subjective experiments (DRT and DAM tests) under various channel conditions, reveal that the proposed coder outperforms conventional LPC-10 vocoders by 2 subjective categories, thus confirming the suitability of the RELP coder at 9.6 kbit/sec for good quality speech transmission in mobile satellite systems.

  18. Applying Membrane Systems in Food Engineering

    OpenAIRE

    Escuela, Gabi; Hinze, Thomas; Dittrich, Peter; Schuster, Stefan; Moreno Álvarez, Mario; Research Group on Natural Computing (Universidad de Sevilla) (Coordinador)

    2010-01-01

    Food engineering deals with manufacturing, packaging and distributing systems for drug and food products. In this work, we discuss about the applicability of membrane systems to model environmental conditions and their e ects on the produces during storage of fresh fruits and vegetables. In particular, we are interested in abstract molecular interactions that occur between produce, lm and surrounding atmosphere factors involved in fresh fruit and vegetable package designs. We ...

  19. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were <1,732 m from the true location. Argos's new location class zero processing provided many more locations than normal processing, but mean location error was much higher than locations estimated normally. Locations were biased when animals were at elevations other than those used in Argos's calculations.Long-term and short-term indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  20. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  1. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  2. A general interactive system for compositing digital radar and satellite data

    Science.gov (United States)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.

    1981-01-01

    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  3. Introducing Model Based Systems Engineering Transforming System Engineering through Model-Based Systems Engineering

    Science.gov (United States)

    2014-03-31

    MOF   Meta  Object  Facility   MOP   Measure  of  Performance   MVS   Multiple...Virtual   Storage   NASA   National  Aeronautics  and  Space  Administration   NAVAIR   U.S.  Navy  Naval  Air  Systems  Command... MOF ®,   XMI®,   SysML™,   BPML™   are   registered   trademarks   or   trademarks   of   the   Object  Management

  4. Visualization aided system of hydropower engineering management%Visualization aided system of hydropower engineering management

    Institute of Scientific and Technical Information of China (English)

    Huang Yuan; Nie Miaojing; Yan Hongyan

    2012-01-01

    For the purpose of realizing the information visualization of hydropower engineering management, we construeted three kinds of graphics models sorted by hierarchy for system modelling, employed the construction simulation system to simulate the real-time construction behaviours, introduced the graphics rendering system to organize and update the virtual scene, and designed the interaction system to respond to the user-initiated and simulation-initiated events. So, the real-time, interactive visualization aided system of hydropower engineering management is developed. Eventually, the effectiveness and capabilities of the system are showed through the application examples in China.

  5. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Bloom, H.

    The tri-agency Integrated Program Office (IPO) is responsible for managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS will replace the current military and civilian operational polar-orbiting ``weather'' satellites. The Northrop Grumman Space Technology - Raytheon team was competitively selected in 2002 as the Acquisition and Operations contractor team to develop, integrate, deploy, and operate NPOESS satellites to meet the tri-agency user requirements for NPOESS over the 10-year (2009-2018) operational life of the program. Beginning in 2009, NPOESS spacecraft will be launched into three orbital planes to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving operational ``weather'' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - atmosphere, ocean, land, and the space environment. In recent years, the operational weather forecasting and climate science communities have levied more rigorous requirements on space-based observations of the Earth's system that have significantly increased demands on performance of the instruments, spacecraft, and ground systems required to deliver NPOESS data, products, and information to end users. The ``end-to-end'' system consists of: the spacecraft; instruments and sensors on the spacecraft; launch support capabilities; the command, control, communications, and data routing infrastructure; and data processing hardware and software. NPOESS will observe significantly more phenomena simultaneously from space than its operational predecessors. NPOESS is expected to deliver large volumes of more accurate measurements at higher spatial (horizontal and vertical) and temporal resolution at much higher data

  6. Gas data transmission system by satellite telephone; Systeme de transmission de donnees sur le gaz utilisant le telephone par satellite

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, S.; Tanji, A. [Dengineer Co., Ltd (Japan); Akiyama, S. [Buyo Gas Company (Japan)

    2000-07-01

    Dengineer Co., Ltd. and Buyo Gas Co., Ltd. had been developing and using the data and alarm transmission system by public telephone since 1984, that was first practical use in Japan. It is very important for business management that adjusts the production value of gas by measuring gas pressures in each governor. Also, it is indispensable to know the accident of gas leakage or abnormal gas pressure quickly. But this convenient system is not spread yet in Japanese market cause of the following reasons. - Take time and cost for installation of terminal station. - Terminal station is apt to damage by thunder. - Big disaster must stop working this system. In order to solve those problems, we have developed and tested the system organized of the satellite telephone system and solar cells for power. This system will be very useful for wide place, not only Japanese market but also the area, which has no electricity and phone. Also, it will be convenient for international rescue as is able to access it from the foreign countries. (authors)

  7. Engineering healthcare as a service system.

    Science.gov (United States)

    Tien, James M; Goldschmidt-Clermont, Pascal J

    2010-01-01

    Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology approach of systems engineering to the development of a healthcare service system that is both integrated and adaptive. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.

  8. FQPSK techniques for satellite and mobile radio communications systems

    Science.gov (United States)

    Li, Yazhuo; Tang, Jing; Tao, Xiaofeng

    2005-11-01

    A continuous phase modulation (CPM) and constant envelope modulation (CEM) alternative of Feher-Patented quadrature phase-shift keying (FQPSK) modulation technique is presented. It is found to provide good spectral efficiencies, power efficiencies, and bit error rate (BER) performance. The modulation schemes of FQPSK are described. The spectral efficiencies, BER performance are also compared with FQPSK and other modulation techniques which are widely used in current mobile and cordless radio standards. The results show that FQPSK modulated signal exhibits much less spectrum spreading than QPSK, OQPSK, and MSK, and the error probability performance of the FQPSK is superior to those in narrow-band nonlinear channels. Based on that, the system capacity and power dissipation are also analyzed for communication systems. It is found that the encoder or receiver for the FQPSK signal to be fully compatible with original I/Q modulated one. FQPSK technique is suitable for nonlinear channels, such as satellite and mobile communications systems reducing the AM/AM and AM/PM adverse effects. At last it is also attempted to extend the application in 3G (CDMA) and 4G (OFDM) mobile communications systems.

  9. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  10. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  11. Use of global navigation satellite systems for monitoring deformations of water-development works

    Energy Technology Data Exchange (ETDEWEB)

    Kaftan, V. I. [Russian Academy of Sciences, Geophysical Center (Russian Federation); Ustinov, A. V. [JSC Institut Gidropreoekt (Russian Federation)

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  12. DIDACTIC ENGINEERING: DESIGNING NEW GENERATION LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Nail K. Nuriyev

    2016-09-01

    Full Text Available Introduction: the article deals with the organisation of training activities in the man-made environment. Didactic engineering is seen as a methodology within which problems of didactics are solved with application of pedagogical, psychological, engineering methods. It is obvious that in order to implement the training of future engineers in a competence-based format (according to educational standard a new type of teaching system is needed, with new capacities (properties. These systems should set each student towards the development of professionally significant (key abilities, taking into account his/her psychological characteristics; ensure training on the verge of permissible difficulties (developing training, and thereby achieve rapid development of key skills, through his/her zone of “immediate development”; to diagnose the quality of possession of a competence in the academic sense. For the objectivity and reliability of assessment of the level and depth of learned knowledge it is necessary to generate this evaluation in a metric format. As a result, we created a didactic system, which combines all the listed properties and the properties of classical systems. This allowed us to construct a new generation of didactic systems. Materials and Methods: the research is based on a systematic analysis of the activity of an engineer; on models of “zones of immediate development” by L. S. Vygotsky; on “developmental education” by L. N. Zankova; on the use of pedagogical and psychological patterns as well as taxonomic methods, didactic engineering, theory of probability and mathematical statistics. Results: constructed is a model for training engineers in the metric format of competence, which envisages a rapid development of students project and constructive abilit ies based on their knowledge learned. Discussion and Conclusions: the parameters defining the probability of engineer’s success have been described; the taxonomic scale

  13. A Ku-band satellite system for the cable television industry

    Science.gov (United States)

    Napoli, Joseph

    This paper describes the satellite requirements for the Ku-band used for satellite delivery of television programming. The case for using the Ku-band is reviewed, including the business benefits to the cable industry, the superior protection against failure, the pace of technical advances, and the channel capacity. The characteristics of the satellites carrying the Ku-band are described, and a protection plan for the satellites is considered. The technical characteristics of the Ku-band and related systems considerations are addressed. Signal outage at the Ku-band is discussed, and Ku-band receiving system design is examined, including system installation and operations.

  14. A MEO Tracking and Data Relay Satellite System Constellation Scheme for China

    Institute of Scientific and Technical Information of China (English)

    WU Ting-yong; WU Shi-qi; LING Xiang

    2005-01-01

    A medium earth orbit (MEO) tracking and data relay satellite system (TDRSS) constellation scheme for China is proposed. This system consists of MEO satellite constellation, inter-satellite links (ISLs) and terrestrial gateway station, which can provide continuous bidirectional data transmission links between low altitude spacecrafts and the terrestrial gateway station in China. Theoretical analysis and simulation results indicate that the proposed constellation can cover the global low altitude space sphere and earth surface of China continuously, and has a preferable practical perspective.

  15. Engineering embedded systems physics, programs, circuits

    CERN Document Server

    Hintenaus, Peter

    2015-01-01

    This is a textbook for graduate and final-year-undergraduate computer-science and electrical-engineering students interested in the hardware and software aspects of embedded and cyberphysical systems design. It is comprehensive and self-contained, covering everything from the basics to case-study implementation. Emphasis is placed on the physical nature of the problem domain and of the devices used. The reader is assumed to be familiar on a theoretical level with mathematical tools like ordinary differential equation and Fourier transforms. In this book these tools will be put to practical use. Engineering Embedded Systems begins by addressing basic material on signals and systems, before introducing to electronics. Treatment of digital electronics accentuating synchronous circuits and including high-speed effects proceeds to micro-controllers, digital signal processors and programmable logic. Peripheral units and decentralized networks are given due weight. The properties of analog circuits and devices like ...

  16. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  17. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  18. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  19. A system engineering strategy for the Campbell River system

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Ralph [BMT Defence Services Ltd, Bath, (United Kingdom)

    2010-07-01

    The Campbell River runs through parkland in an area of great beauty on the Vancouver Island. The river system has three main reservoirs, each with a dam and powerhouse. Any development in the parkland would invoke intense community interest. BC Hydro initiated a systems engineering assessment to investigate how the river system should be developed for the future and to provide guidance on where investment should be prioritised for safe and sustainable long-term management of the river system's assets. This paper presented the systems engineering process and demonstrated the benefits. The study offered three parallel strands of analysis: flood routing and power modelling, risk assessment, and systems engineering analysis. The results of the analysis provided clear recommendations to retain the existing configuration of dams and reservoirs while recognizing the protection of the environment as a dominant constraint and continuing to generate power.

  20. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  1. Adaptive beamforming in a CDMA mobile satellite communications system

    Science.gov (United States)

    Munoz-Garcia, Samuel G.

    1993-01-01

    Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of multiple access scheme in these future mobile communication systems. This is due to a variety of reasons such as the excellent performance in multipath environments, high scope for frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is limited by the self-interference between the transmissions of the different users in the network. Moreover, the disparity between the received power levels gives rise to the near-far problem, this is, weak signals are severely degraded by the transmissions from other users. In this paper, the use of time-reference adaptive digital beamforming on board the satellite is proposed as a means to overcome the problems associated with CDMA. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference sources. Since CDMA is interference limited, the interference protection provided by the antenna converts directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of power control. A payload architecture will be presented that illustrates the practical implementation of this concept. This digital payload architecture shows that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques -in particular digital beamforming- has become possible, being most attractive for Mobile Satellite Communications.

  2. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    Science.gov (United States)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  3. Deep Charging Evaluation of Satellite Power and Communication System Components

    Science.gov (United States)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  4. Engineering Encounters: The Cat in the Hat Builds Satellites. A Unit Promoting Scientific Literacy and the Engineering Design Process

    Science.gov (United States)

    Rehmat, Abeera P.; Owens, Marissa C.

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a unit promoting scientific literacy and the engineering design process. The integration of engineering with scientific practices in K-12 education can promote creativity, hands-on learning, and an improvement in students'…

  5. Evolution of a Unique Systems Engineering Capability

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  6. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  8. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  9. Large deployable antenna to be loaded on Engineering Test Satellite-8; Gijutsu shiken eisei VIII gata tosaiyo ogata tenkai antena

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A large deployable antenna to be loaded on the Engineering Test Satellite-8, which is scheduled to be launched in 2002, is about 19m x 17m, the world largest on-satellite deployable antenna/reflection mirror, with two sets to be loaded for transmission and reception. This antenna is featured by a metallic mesh structure for the reflection surface and by a module structure in which fourteen hexagonal modules are combined comprising the entirety. While a test is conducted using the development model, verification is scheduled on the method of antenna deployment analysis examined so far and on the validity of the method for estimating the shape of the mesh reflection face under zero gravity. The results thus obtained will be reflected on the design of flight articles for which high quality is required. (translated by NEDO)

  10. Biomedical Engineering Strategies in System Design Space

    Science.gov (United States)

    Savageau, Michael A.

    2011-01-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a “system design space” for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further

  11. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  12. Risk calculation method for complex engineering system

    Directory of Open Access Journals (Sweden)

    Li-ping WANG

    2011-09-01

    Full Text Available This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM, which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.

  13. Development and test of the ASAT Bipropellant Attitude Control System (ACS) engine

    Science.gov (United States)

    Hodge, K. F.; Allen, K. A.; Hemmings, B.

    1993-06-01

    The recent Kinetic Energy Anti-Satellite (KE ASAT) Bipropellant Attitude Control System (ACS) Engine testing demonstrated and characterized performance and operational durability. Within the ASAT mission, the bipropellant engines are used to despin the missile after shroud deployment and to provide attitude control of the Kill Vehicle (KV) during all phases of the KV free flight. These engines provide all attitude control thrust from booster separation until target intercept. The ASAT ACS engine is unique both in the amount of on-time that the engine sees during a tactical mission scenario and the high thermal loads which result from performing two diametrically opposed missions with a single thruster - long steady state burns and very short response time pulse mode operations. Two flightweight ASAT ACS Bipropellant engines were individually tested in a developmental test program. Testing was conducted at ambient conditions. Hot-fire testing consisted of steady-state, mission duty cycle (MDC), Chamber Pressure (Pc) excursion, mixture ratio excursion, and pulse performance. Testing was conducted by Rockwell's Rocketdyne Division at the Santa Susana Field Laboratory (SSFL), Systems Test Laboratory IV (STL IV), Cell 37A. Two additional engine tests are planned and will include altitude testing. This paper will summarize engine development, component development testing, valve orificing and cold flow calibration, and engine hot-fire testing approach and results.

  14. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    Science.gov (United States)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  15. Content Analysis in Systems Engineering Acquisition Activities

    Science.gov (United States)

    2016-04-30

    quantitative and qualitative methods exist to (1) capture or generate data needed for a particular analysis, (2) reduce the data, (3) evaluate the data to...presented in this report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval...analysis in systems engineering technical evaluation processes. Content analysis is a qualitative data analysis methodology used to discover

  16. Global Hawk Systems Engineering. Case Study

    Science.gov (United States)

    2010-01-01

    as Aurora and Grob. Fourteen teams responded. The bids submitted covered a wide-range of size and performance for a $10 million UFP, causing the...Delos Reyes , 95th Air Base Wing Public Affairs, 1 December 2006 Roll Out of Firs Production Block 10 Global Hawk Systems Engineering Case Study...Delos Reyes , 95th DoD News Briefing, June 28, 1995 Air Base Wing Public Affairs, December 1, 2006 Edwards Test Production Global Hawk for Possible

  17. Submarine Combat Systems Engineering Project Capstone Project

    Science.gov (United States)

    2011-06-06

    Combat Systems Engineering Project Capstone Project by John Becker Denman Sweetman Shaun Cookinham Mark Wasilewski Shawn Goode Samuel D...This report was prepared by: John Becker Denman Sweetman Shaun Cookinham Mark Wasilewski Shawn Goode Samuel D. Winograd David Rhodes...ELEMENT NUMBER 6. AUTHOR(S) John Becker, Shaun Cookinham, Shawn Goode, David Rhodes 5d. PROJECT NUMBER Mark Wasilewski , Samuel Winograd 5e. TASK

  18. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, Ryuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Takeda, Takaaki, E-mail: ryukih@stu.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp [VASA Entertainment Co. Ltd. (Japan)

    2015-01-20

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets.

  19. Charter for Systems Engineer Working Group

    Science.gov (United States)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  20. Measurements of Integration Gain for the Cospas-Sarsat System from Geosynchronous Satellites

    Science.gov (United States)

    Klein-Lebbink, Elizabeth; Christo, James; Peters, Robert; Nguyen, Xuan

    2015-01-01

    The GOES-R satellite is the first satellite to use a standard straight bent pipe transponder with no on-board re-modulation to support Search and Rescue (SAR) operations. Here, we report on the link measurements with a high fidelity satellite transponder simulator made up of satellite EDU (Engineering Design Units) components using an uplink from a beacon simulator and received by a GEOLUT (GEOsynchronous satellite Local User Terminal). We also report on the first ever measurements showing the performance gain obtained by the signal integration performed by the GEOLUT. In addition, a simulator made of commercially available off-the-shelf components assembled to develop the test plan was found to perform very close to the high fidelity simulator. In this paper, we describe what message integration is, how it is implemented in the particular satellite receiving station model used for this tests, and show the measured improvement in message decoding due to this integration process. These are the first tests to quantify the integration gain and are the first tests on the new SARSAT standard for the bent pipe (no onboard re-modulation) repeater used in GOES-R. An inexpensive satellite simulator to run test scripts built from off the shelf components was also found to have the same performance as a high fidelity simulator using actual satellite EDUs.

  1. Modular injection systems for miniature engines

    Science.gov (United States)

    Cochran, Mike

    1992-07-01

    Mission requirements for Kinetic Energy Weapons will require miniaturization of current vehicle propulsion systems for future Space Defence Iniative Programs. A modular injection system (MIS) valve is presented which will decrease cost, size and weight of miniaturized storable bipropellant rocket engines and features two poppet-type propellant valve modules pneumatically linked to a pilot solenoid module. A prototype modular injection valve sized for 100lbf thrust was designed and is being tested to show lower costs, fewer moving parts and a reduction in weight and size. Results show that this valve meets objectives of one-half weight, one-half cost and one-fifth the envelopment of current production valves. Studies indicate that a cruciform configuration of four nominal 100lbf thrust engines can be controlled by four modular injection valve systems in a single housing of less than 1.0 m3. Following further development and correlation of results this concept may be scaled to control four higher thrust engines.

  2. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  3. Satellite Power System (SPS) FY 79 Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Satellite Power System (SPS) program is a joint effort of the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). It is managed by the SPS Project Office within DOE's Office of Energy Research. SPS project organization is shown in Figure 1. The SPS Project Office was established in 1978 and is responsible for the planning, management and integration of SPS research in four areas: systems definition, environmental assessment, societal assessment, and comparative assessment. In fulfilling its responsibilities, the SPS Project Office directs research and assessment efforts to determine the feasibility of the SPS concept, funds organizations supporting the program, and disseminates information developed from project research and assessments. The objective of the SPS program is to develop an initial understanding of the technical feasibility, the economic practicality, and the social and environmental acceptability of the SPS concept. This is being accomplished through implementation of the Concept Development and Evaluation Program Plan which is scheduled for completion by the end of FY 1980. The SPS Project Office annually issues a Program Summary which describes the research undertaken during the preceding fiscal year. This Program Summary covers FY 1979. It includes work completed in FY 1977 and FY 1978 in order to give a comprehensive picture of the DOE involvement in the SPS concept development and evaluation process.

  4. 4{sup +} Dimensional nuclear systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y. [PHILOSOPHIA, Seoul (Korea, Republic of)

    2009-04-15

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4{sup +}D) Technology{sup TM}, a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4{sup +}D Technology{sup TM}for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4{sup +}D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4{sup +}D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between

  5. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Science.gov (United States)

    Ai, Guo-Xiang; Shi, Hu-Li; Wu, Hai-Tao; Yan, Yi-Hua; Bian, Yu-Jing; Hu, Yong-Hui; Li, Zhi-Gang; Guo, Ji; Xian-DeCai

    2008-12-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3``G'' (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navigation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to overcome the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D positioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accuracy orbit measurement; (3) combination of navigation message and wide/local area differential processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5° and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  6. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3"G" (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navi-gation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to over-come the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D posi-tioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accu-racy orbit measurement; (3) combination of navigation message and wide/local area differen-tial processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5°and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  7. A decade of teaching systems engineering to Bachelor students

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Lutters-Weustink, Ilanit F.; Jauregui Becker, Juan Manuel

    2016-01-01

    The paper treats a setup for introducing systems engineering to undergraduate (Bachelor) students. The teaching module challenges students, and provides them with ample opportunity to employ the systems engineering process, tools and thinking. Through reflection, the students make the learning

  8. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-09-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  9. Application of systems engineering: An acquisition agent perspective

    CSIR Research Space (South Africa)

    Niken, A

    2014-10-01

    Full Text Available This article covers a descriptive case study on the application of systems engineering and systems engineering management at Armscor. The report also covers the investigation into development methods used and the how the requirements changes...

  10. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  11. A classification system for virophages and satellite viruses.

    Science.gov (United States)

    Krupovic, Mart; Kuhn, Jens H; Fischer, Matthias G

    2016-01-01

    Satellite viruses encode structural proteins required for the formation of infectious particles but depend on helper viruses for completing their replication cycles. Because of this unique property, satellite viruses that infect plants, arthropods, or mammals, as well as the more recently discovered satellite-like viruses that infect protists (virophages), have been grouped with other, so-called "sub-viral agents." For the most part, satellite viruses are therefore not classified. We argue that possession of a coat-protein-encoding gene and the ability to form virions are the defining features of a bona fide virus. Accordingly, all satellite viruses and virophages should be consistently classified within appropriate taxa. We propose to create four new genera - Albetovirus, Aumaivirus, Papanivirus, and Virtovirus - for positive-sense single-stranded (+) RNA satellite viruses that infect plants and the family Sarthroviridae, including the genus Macronovirus, for (+)RNA satellite viruses that infect arthopods. For double-stranded DNA virophages, we propose to establish the family Lavidaviridae, including two genera, Sputnikvirus and Mavirus.

  12. Engineering Challenges for Closed Ecological System facilities

    Science.gov (United States)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  13. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    OpenAIRE

    Zhang Run-ning; Jiang Xiu-peng

    2014-01-01

    HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that supp...

  14. A discussion on mobile satellite system and the myths of CDMA and diversity revealed

    Science.gov (United States)

    Hart, Nicholas; Goerke, Thomas; Jahn, Axel

    1995-01-01

    The paper explores the myths and facts surrounding: link margins and constellation designs; the use of satellite diversity in a mobile satellite channel; trade-offs in multiple access technique. Different satellite constellations are presented, which are comparable with those used by the big LEO proponents, with the associated trade-offs in the system design. Propagation data and results from various narrowband and wideband measurement campaigns are used to illustrate the expected differences in service performance.

  15. Fundamentals of electric power engineering engineering from electromagnetics to power systems

    CERN Document Server

    Ceraolo, Massimo

    2014-01-01

    At the basis of many sectors of engineering, electrical engineering deals with electricity phenomena involved in the transfer of energy and power. Professionals requiring a refresher course in this interdisciplinary branch need look no further than Fundamentals of Electric Power Engineering, which imparts tools and trade tricks to remembering basic concepts and grasping new developments. Even established engineers must supplement their careers with an invigorated knowledge base, and this comprehensive resource helps non-electrical engineers amass power system information quickly.

  16. Ground Simulation of an Autonomous Satellite Rendezvous and Tracking System Using Dual Robotic Systems

    Science.gov (United States)

    Trube, Matthew J.; Hyslop, Andrew M.; Carignan, Craig R.; Easley, Joseph W.

    2012-01-01

    A hardware-in-the-loop ground system was developed for simulating a robotic servicer spacecraft tracking a target satellite at short range. A relative navigation sensor package "Argon" is mounted on the end-effector of a Fanuc 430 manipulator, which functions as the base platform of the robotic spacecraft servicer. Machine vision algorithms estimate the pose of the target spacecraft, mounted on a Rotopod R-2000 platform, relay the solution to a simulation of the servicer spacecraft running in "Freespace", which performs guidance, navigation and control functions, integrates dynamics, and issues motion commands to a Fanuc platform controller so that it tracks the simulated servicer spacecraft. Results will be reviewed for several satellite motion scenarios at different ranges. Key words: robotics, satellite, servicing, guidance, navigation, tracking, control, docking.

  17. Software Engineering and Swarm-Based Systems

    Science.gov (United States)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  18. 11th Annual Systems Engineering Conference

    Science.gov (United States)

    2008-10-23

    value equation in engineering and acquisition to align systems of systems with dynamic mission needs Mr. Philip J Boxer Ms. Suzanne Garcia Mr. William...Modeling and Simulation Mr. Van SullivanLTC Favio Lopez 2D5 7175 LVC Architecture Roadmap - A Path Forward for Distributed Simulation Mr. James W...734-5892 Marsha Smith 736-5211 545 A/C Sust Sq (VIP/SAM) Erik Michelsen 736-3233 544 A/C Sust Sq (Tanker/Airlift) Karl Turner 739-2985 546 A/C Sust

  19. Excitation of inclinations in ring-satellite systems

    Science.gov (United States)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1984-01-01

    Resonant gravitational interactions between a ring and a satellite produce secular variations of their orbital inclinations. Interactions at vertical resonances, analogous to Lindblad resonances but involving inclinations instead of eccentricities, excite inclinations. There is no inclination analog of the corotation resonance. An equatorial ring changes the inclination of a nearby satellite in qualitatively the same way that a satellite in an equatorial orbit changes the inclination of a nearby ring. Viscous dissipation in a ring leads to an equilibrium value of its inclination. These results provide a basis for discussing the origins of the inclinations of planetary rings.

  20. Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    Science.gov (United States)

    Ivancic, William D.; Budinger, James M.; Staples, Edward J.; Abramovitz, Irwin; Courtois, Hector A.

    1992-01-01

    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies.

  1. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  2. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  3. Engineering surveying

    CERN Document Server

    Schofield, W

    2001-01-01

    The aim of Engineering Surveying has always been to impart and develop a clear understanding of the basic topics of the subject. The author has fully revised the book to make it the most up-to-date and relevant textbook available on the subject.The book also contains the latest information on trigonometric levelling, total stations and one-person measuring systems. A new chapter on satellites ensures a firm grasp of this vitally important topic.The text covers engineering surveying modules for civil engineering students on degree courses and forms a reference for the engineering surveying module in land surveying courses. It will also prove to be a valuable reference for practitioners.* Simple clear introduction to surveying for engineers* Explains key techniques and methods* Details reading systems and satellite position fixing

  4. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  5. Engineered nanoscaled polyplex gene delivery systems.

    Science.gov (United States)

    Fernandez, Christian A; Rice, Kevin G

    2009-01-01

    Improving the transfection efficiencies of nonviral gene delivery requires properly engineered nanoscaled delivery carriers that can overcome the multiple barriers associated with the delivery of oligonucleotides from the site of administration to the nucleus or cytoplasm of the target cell. This article reviews the current advantages and limitation of polyplex nonviral delivery systems, including the apparent barriers that limit gene expression efficiency compared to physical methods such as hydrodynamic dosing and electroporation. An emphasis is placed on engineered nanoscaled polyplexes (NSPs) of modular design that both self-assemble and systematically disassemble at the desired stage of delivery. It is suggested that NSPs of increasingly sophisticated designs are necessary to improve the efficiency of the rate limiting steps in gene delivery.

  6. 14 CFR 33.95 - Engine-propeller systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine-propeller systems tests. 33.95 Section 33.95 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller...

  7. 46 CFR 126.470 - Marine-engineering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply. ...

  8. 29 CFR 1926.758 - Systems-engineered metal buildings.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Systems-engineered metal buildings. 1926.758 Section 1926... Systems-engineered metal buildings. (a) All of the requirements of this subpart apply to the erection of systems-engineered metal buildings except §§ 1926.755 (column anchorage) and 1926.757 (open web...

  9. Systems design and engineering : facilitating multidisciplinary development projects

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Veenvliet, Karel; Broenink, Johannes F.

    2016-01-01

    As its name implies, the aim of Systems Design and Engineering: Facilitating Multidisciplinary Development Projects is to help systems engineers develop the skills and thought processes needed to successfully develop and implement engineered systems. Such expertise typically does not come through

  10. G-MAP: a novel night vision system for satellites

    Science.gov (United States)

    Miletti, Thomas; Maresi, Luca; Zuccaro Marchi, Alessandro; Pontetti, Giorgia

    2015-10-01

    The recent developments of single-photon counting array detectors opens the door to a novel type of systems that could be used on satellites in low Earth orbit. One possible application is the detection of non-cooperative vessels or illegal fishing activities. Currently only surveillance operations conducted by Navy or coast guard address this topic, operations by nature costly and with limited coverage. This paper aims to describe the architectural design of a system based on a novel single-photon counting detector, which works mainly in the visible and features fast readout, low noise and a 256x256 matrix of 64 μm-pixels. This detector is positioned in the focal plane of a fully aspheric reflective f/6 telescope, to guarantee state of the art performance. The combination of the two grants optimal ground sampling distance, compatible with the average dimension of a vessel, and overall performance. A radiative analysis of the light transmitted from emission to detection is presented, starting from models of lamps used for attracting fishes and illuminating the deck of the boats. A radiative transfer model is used to estimate the amount of photons emitted by such vessels reaching the detector. Since the novel detector features high framerate and low noise, the system as it is envisaged is able to properly serve the proposed goal. The paper shows the results of a trade-off between instrument parameters and spacecraft operations to maximize the detection probability and the covered sea surface. The status of development of both detector and telescope are also described.

  11. Engineering implementation of satellite calibration for radar%雷达卫星标校的工程实现研究

    Institute of Scientific and Technical Information of China (English)

    郭佳意; 钮俊清

    2014-01-01

    为确保雷达系统的测量精度,给出了一种用于标校雷达动态跟踪过程中系统误差的工程实现方法--卫星标校法。该方法通过观测卫星轨迹,将量测值与真实星历值比对,通过最优化解法标定雷达的系统误差。考虑雷达结构特点导致的误差和大气折射误差修正后的残余误差,建立了卫星标校的系统误差模型。最后,采用实测数据验证了该误差模型的可行性与可靠性。该方法在标校过程中不受人为、天气等因素影响,可以适应雷达的动态技术状态。%To guarantee the measurement precision of radar system, this paper presents an engineering implementation method, named satellite calibration, used for calibrating the system error in the course of radar dynamic tracking. This method contrasts the measurement value to the real ephemeris value by observing the satellite track, and calibrate the radar’s system errors by using the optimal solution. Considering that the errors caused by the features of radar configuration and the residual errors after correction of atmosphere refraction errors, the author sets up a system error model for satellite calibration, and finally proves the feasibility and reliability of this proposed error model using the test data. As this method is not affected by some factitious and weather factors, it can be also adapted to radar’s dynamic technical state.

  12. Classification of Satellite Resonances in the Solar System

    Science.gov (United States)

    Luan, Jing; Goldreich, Peter

    2017-01-01

    Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io–Europa, Europa–Ganymede, and Enceladus–Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas–Tethys and Titan–Hyperion MMRs, and their resonant arguments are the only ones to exhibit substantial librations. Could there be a causal connection between the libration amplitude and the presence of a separatrix? Our suspicions were aroused by Goldreich & Schlichting, who demonstrate that sufficiently deep in a MMR, eccentricity damping could destabilize librations. However, our investigation reveals that libration amplitudes in both the Mimas–Tethys and Titan–Hyperion MMRs are fossils. Although the Mimas–Tethys MMR is overstable, its libration amplitude grows on the tidal damping timescale of Mimas’s inclination, which is considerably longer than a Hubble time. On the other hand, the Titan–Hyperion MMR is stable, but tidal damping of Hyperion’s eccentricity is too weak to have affected the amplitude of its libration.

  13. Fates of satellite ejecta in the Saturn system, II

    Science.gov (United States)

    Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart

    2017-03-01

    We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.

  14. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  15. Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites

    Science.gov (United States)

    Kuznetsov, V. I.; Danilova, T. V.

    2017-03-01

    We describe the methods and algorithms of a multifunctional astronomical system of the autonomous navigation and orientation for artificial Earth satellites based on the automatization of the system approach to the design and programming problems of the subject area.

  16. Transforming System Engineering through Model-Centric Engineering

    Science.gov (United States)

    2015-01-31

    can be addressed through “engineering,” and NAVAIR is making some headway on this item. As for item #3, this topic relates to a question posed by...through “engineering,” and NAVAIR is making some headway on this item. The third topic relates to a question posed by our sponsor after our review of the...ACAT Acquisition Category AFT Architecture Framework Tool of NASA/JPL AGI Analytical Graphics, Inc. AGM Acquisition Guidance Model ANSI American

  17. Reducing acquisition risk through integrated systems of systems engineering

    Science.gov (United States)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  18. A SYSTEM DESIGN PROCESS TAILORED FOR REVERSE ENGINEERING AND REENGINEERING

    Directory of Open Access Journals (Sweden)

    Tae-Hun Yoon

    2010-10-01

    Full Text Available This paper discusses a system design process using a reverse engineering. The Reverse Engineering Approach, if possible, is a cost-effective and easy approach to be used in a system design. All industries use this approach consciously or unconsciously to reduce system development risks. It can be a part of formal process, simple requirement reuse, or adoption of industry standards. The reverse engineering approach can be considered as an effective system design method in immature system engineering environments. This paper proposes a system design process using reverse engineering which can be tailored for large complex system development projects. The proposed process composed of two stages to produce system specification generation. The reverse engineering stage is performed to define functional and physical architecture of legacy system used as reference model when they are not available. The reengineering stage takes outputs of the reverse engineering stage to define the rest of logical and physical solutions.

  19. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Science.gov (United States)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  20. Design and implementation of an experiment scheduling system for the ACTS satellite

    Science.gov (United States)

    Ringer, Mark J.

    1994-01-01

    The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.

  1. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    Science.gov (United States)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  2. Applying Agile Requirements Engineering Approach for Re-engineering & Changes in existing Brownfield Adaptive Systems

    OpenAIRE

    Masood, Abdullah; Ali, M. Asim

    2014-01-01

    Requirements Engineering (RE) is a key activity in the development of software systems and is concerned with the identification of the goals of stakeholders and their elaboration into precise statements of desired services and behavior. The research describes an Agile Requirements Engineering approach for re-engineering & changes in existing Brownfield adaptive system. The approach has few modifications that can be used as a part of SCRUM development process for re-engineering & changes. The ...

  3. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  4. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-07-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  5. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De La Torre, Pedro R.

    2012-10-06

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  6. A satellite system for multimedia personal communications at Ka-band and beyond

    Science.gov (United States)

    Vatalaro, F.; Losquadro, G.

    1995-01-01

    The main characteristics of the satellite extremely high frequency (EHF) communication of multimedia mobile services (SECOMS) system are given and the results of the preliminary analysis are included. The SECOMS provides a first generation Ka band system with coverage over Western Europe, in order to satisfy business user needs of very large bandwidths and terminal mobility. The satellite system also provides a second generation EHF enhanced system with increased capacity and enlarged coverage, to serve all of Europe and the nearby countries.

  7. A comparing design of satellite attitude control system based on reaction wheel

    Institute of Scientific and Technical Information of China (English)

    CHENG Hao; GE Sheng-min; SHEN Yi

    2008-01-01

    The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system.To solve this problem,the idea of speed feedback compensation control reaction wheel is put forward.This paper introduces the comparison on design and performance of two satellite attitude control systems,which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel.Analysis shows that the speed feedback compensation control flywheel system may effectively suppress the torque fluctuation.Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance.

  8. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  9. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  10. Europa Jupiter System Mission (EJSM): Exploration Of The Jovian System And Its Icy Satellites

    Science.gov (United States)

    Grasset, Olivier; Pappalardo, R.; Greeley, R.; Blanc, M.; Dougherty, M.; Bunce, E.; Lebreton, J.; Prockter, L.; Senske, D.; EJSM Joint Science Definition Team

    2009-09-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) Determine whether the Jupiter system harbors habitable worlds and (2) Characterize the processes that are operating within the Jupiter system. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with orbiters developed by NASA and ESA (future contributions by JAXA and Russia are also possible). The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and "stand-alone” measurements.

  11. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.

    Science.gov (United States)

    Tan, Yung-Chieh; Lee, Abraham Phillip

    2005-10-01

    Emulsions are widely used to produce sol-gel, drugs, synthetic materials, and food products. Recent advancements in microfluidic droplet emulsion technology has enabled the precise sampling and processing of small volumes of fluids (picoliter to femtoliter) by the controlled viscous shearing in microchannels. However the generation of monodispersed droplets smaller than 1 microm without surfactants has been difficult to achieve. Normally, the generation of satellite droplets along with parent droplets is undesirable and makes it difficult to control volume and purity of samples in droplets. In this paper, however, several methods are presented to passively filter out satellite droplets from the generation of parent droplets and use these satellite droplets as the source for monodispersed production of submicron emulsions. A passive satellite droplet filtration system and a dynamic satellite droplet separation system are demonstrated. Satellite droplets are filtered from parent droplets with a two-layer channel geometry. This design allows the creation and collection of droplets that are less than 100 nm in diameter. In the dynamic separation system, satellite droplets of defined sizes can be selectively separated into different collecting zones. The separation of the satellite droplets into different collecting zones correlates with the cross channel position of the satellite droplets during the breakup of the liquid thread. The delay time for droplets to switch between the different alternating collecting zones is nominally 1 min and is proportional to the ratio of the oil shear flows. With our droplet generation system, monodispersed satellite droplets with an average radius of 2.23 +/- 0.11 microm, and bidispersed secondary and tertiary satellite droplets with radii of 1.55 +/- 0.07 microm and 372 +/- 46 nm respectively, have been dynamically separated and collected.

  12. Design and simulation of satellite attitude control system based on Simulink and VR

    Science.gov (United States)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  13. Optical monitoring system for a turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  14. International Conference on Intelligent Technologies and Engineering System (ICITES 2012)

    CERN Document Server

    Huang, Yi-Cheng; Intelligent Technologies and Engineering Systems

    2013-01-01

    This book concentrates on intelligent technologies as it relates to engineering systems. The book covers the following topics: networking, signal processing, artificial intelligence, control and software engineering, intelligent electronic circuits and systems, communications, and materials and mechanical engineering. The book is a collection of original papers that have been reviewed by technical editors. These papers were presented at the International Conference on Intelligent Technologies and Engineering Systems, held Dec. 13-15, 2012.

  15. Dutch Micro Systems Technology for the Next Generation of Small Satellites

    NARCIS (Netherlands)

    Gill, E.; Monna, G.L.E.; Scherpen, J.M.A.; Verhoeven, C.J.M.

    2007-01-01

    Advanced microelectronics and Micro Systems Technology (MST) enable an increased functional performance of small satellites with decreased demands on mass, size and power. The research and development cluster MISAT stimulates the design and development of advanced small satellite platforms based on

  16. Dutch Micro Systems Technology for the Next Generation of Small Satellites

    NARCIS (Netherlands)

    Gill, E.; Monna, G.L.E.; Scherpen, J.M.A.; Verhoeven, C.J.M.

    2007-01-01

    Advanced microelectronics and Micro Systems Technology (MST) enable an increased functional performance of small satellites with decreased demands on mass, size and power. The research and development cluster MISAT stimulates the design and development of advanced small satellite platforms based on

  17. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    Science.gov (United States)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  18. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  19. Structural Control Systems Implemented in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Cristian Pastia

    2005-01-01

    Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.

  20. Instrumentation & Data Acquisition System (D AS) Engineer

    Science.gov (United States)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.