WorldWideScience

Sample records for satellite surface wind

  1. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea...

  2. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    and the Baltic Sea. The aim is to evaluate their potential use and demonstrate their applicability within the context of offshore wind energy; for the quantication of the wind resources and for the identication of diurnal warming of the sea surface temperature. Space-borne observations of wind are obtained from...

  3. Satellite SAR observation of the sea surface wind field caused by rain cells

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; YUAN Xinzhe; DING Jing; XIE Xuetong; ZHANG Yi; XU Ying

    2016-01-01

    Rain cells or convective rain, the dominant form of rain in the tropics and subtropics, can be easy detected by satellite Synthetic Aperture Radar (SAR) images with high horizontal resolution. The footprints of rain cells on SAR images are caused by the scattering and attenuation of the rain drops, as well as the downward airflow. In this study, we extract sea surface wind field and its structure caused by rain cells by using a RADARSAT-2 SAR image with a spatial resolution of 100 m for case study. We extract the sea surface wind speeds from SAR image by using CMOD4 geophysical model function with outside wind directions of NCEP final operational global analysis data, Advance Scatterometer (ASCAT) onboard European MetOp-A satellite and microwave scatterometer onboard Chinese HY-2 satellite, respectively. The root-mean-square errors (RMSE) of these SAR wind speeds, validated against NCEP, ASCAT and HY-2, are 1.48 m/s, 1.64 m/s and 2.14 m/s, respectively. Circular signature patterns with brighter on one side and darker on the opposite side on SAR image are interpreted as the sea surface wind speed (or sea surface roughness) variety caused by downdraft associated with rain cells. The wind speeds taken from the transect profile which superposes to the wind ambient vectors and goes through the center of the circular footprint of rain cell can be fitted as a cosine or sine curve in high linear correlation with the values of no less than 0.80. The background wind speed, the wind speed caused by rain cell and the diameter of footprint of the rain cell with kilometers or tens of kilometers can be acquired by fitting curve. Eight cases interpreted and analyzed in this study all show the same conclusion.

  4. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  5. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    Science.gov (United States)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  6. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  7. Satellite Observations of Wind Farm Impacts on Nocturnal Land Surface Temperature in Iowa

    Directory of Open Access Journals (Sweden)

    Ronald A. Harris

    2014-12-01

    Full Text Available Wind farms (WFs are believed to have an impact on lower boundary layer meteorology. A recent study examined satellite-measured land surface temperature data (LST and found a local nighttime warming effect attributable to a group of four large WFs in Texas. This study furthers their work by investigating the impacts of five individual WFs in Iowa, where the land surface properties and climate conditions are different from those in Texas. Two methods are used to assess WF impacts: first, compare the spatial coupling between the LST changes (after turbine construction versus before and the geographic layouts of the WFs; second, quantify the LST difference between the WFs and their immediate surroundings (non-WF areas. Each WF shows an irrefutable nighttime warming signal relative to the surrounding areas after their turbines were installed, and these warming signals are generally coupled with the geographic layouts of the wind turbines, especially in summer. This study provides further observational evidence that WFs can cause surface warming at nighttime, and that such a signal can be detected by satellite-based sensors.

  8. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter...

  9. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  10. Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations

    Science.gov (United States)

    Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe

    2017-04-01

    Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.

  11. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies m...

  12. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    Science.gov (United States)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  13. Features of Ocean Surface Winds Observed by the QuikSCAT Satellite Before Tropical Cyclogenesis over the South China Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LAU Kai-Hon; FUNG Chi-Hung; ZHANG Qinghong

    2008-01-01

    Ocean surface winds observed by the Quick Scatterometer (QuikSCAT) satellite prior to the geneses of 36 tropical cy- clones (TCs) in the South China Sea (SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [-(f+ζ)( u/ x+ v/ y)] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis, which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.

  14. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Satellite sea surface winds data on CD-ROM (NODC Accession 0000318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface wind and other data were collected using microwave scatterometers satellite in a world-wide distribution from May 5, 1991 to May 31, 2000. Data were...

  15. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    and NIO. Though there had been three cruises during the period, there were very few satellite-ship overlaps. Data pairs (satellite derived and in situ) of surface wind speed, significant wave height and minimum significant swell height were used to find...

  16. Satellite information for wind energy applications

    DEFF Research Database (Denmark)

    Nielsen, M.; Astrup, Poul; Hasager, Charlotte Bay

    2004-01-01

    wind data from several types of satellite observations. The RWT software allows an optimal calculation ofSAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain...... an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEMand land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface...

  17. Satellite information for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Astrup, P.; Bay Hasager, C.

    2004-11-01

    An introduction to satellite information relevant for wind energy applications is given. It includes digital elevation model (DEM) data based on satellite observations. The Shuttle Radar Topography Mission (SRTM) is useful for regional scale wind resource studies. Comparison results from complex terrain in Spain and flat terrain in Denmark are found to be acceptable for both sites. Also land cover type information can be retrieved from satellite observations. Land cover type maps have to be combined with roughness data from field observation or literature values. Land cover type maps constitute an aid to map larger regions within shorter time. Field site observations of obstacles and hedges are still necessary. The raster-based map information from DEM and land cover maps can be converted for use in WASP. For offshore locations it is possible to estimate the wind resources based on ocean surface wind data from several types of satellite observations. The RWT software allows an optimal calculation of SAR wind resource statistics. A tab-file with SAR-based observed wind climate (OWC) data can be obtained for 10 m above sea level and used in WASP. RWT uses a footprint averaging technique to obtain data as similar as possible to mast observations. Maximum-likelihood fitting is used to calculate the Weibull A and k parameters from the constrained data set. Satellite SAR wind maps cover the coastal zone from 3 km and offshore with very detailed information of 400 m by 400 m grid resolution. Spatial trends in mean wind, energy density, Weibull A and k and uncertainty values are provided for the area of interest. Satellite scatterometer wind observations have a spatial resolution of 25 km by 25 km. These data typically represent a site further offshore, and the tab-file statistics should be used in WASP combined with topography and roughness information to assess the coastal wind power potential. Scatterometer wind data are observed {approx} twice per day, whereas SAR only

  18. Scientific opportunities using satellite surface wind stress measurements over the ocean

    Science.gov (United States)

    1982-01-01

    Scientific opportunities that would be possible with the ability to collect wind data from space are highlighted. Minimum requirements for the space platform and ground data reduction system are assessed. The operational uses that may develop in government and commercial applications of these data are reviewed. The opportunity to predict the large-scale ocean anomaly called El Nino is highlighted.

  19. High-resolution satellite-derived ocean surface winds in the Nordic-Barents seas region: Implications for ocean modeling (Invited)

    Science.gov (United States)

    Dukhovskoy, D. S.; Bourassa, M. A.; Hughes, P. J.

    2010-12-01

    High-resolution (0.25°) ocean surface wind velocity data derived from satellite observations are used to analyze winds in the Nordic-Barents seas during 2007-2008. For the analysis, a Cross-Calibrated, Multi-Platform (CCMP), multi-instrument ocean surface wind velocity data set is utilized. The product has been developed by National Aeronautics and Space Administration (NASA) within Making Earth Science data records for Use in Research Environments (MEaSUREs) Program. A variational method was used to combine wind measurements derived from satellite-born active and passive remote sensing instruments. In the objective procedure, winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis (DS111.1) were used as the background fields. The ocean surface wind fields are compared with those derived from the National Centers for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The NCEP/NCAR fields are commonly used to provide atmospheric forcing for Arctic Ocean models. The utility of using high-resolution winds in the ocean modeling is discussed. In particular, air-sea heat fluxes estimated from the two wind data sets are compared. It is anticipated that wind fields with higher spatial and temporal resolution will better resolve small-scale, short-lived atmospheric systems. As an example, the ice free region in the Nordic and Barents seas is frequently impacted by very intense cyclones known as “polar lows” with wind speeds near to or above gale force. A polar low forms over the sea and predominantly during the winter months. The size of these cyclones varies greatly from 100 to 1000 km. Presumably small-scale cyclones are misrepresented or not resolved in the NCAR fields leading to biases in the air-sea flux calculations in the ocean models. Inaccurate estimates of the air-sea fluxes eventually lead to biases in the Arctic Ocean model solutions.

  20. Gap Filling of the CALYPSO HF Radar Sea Surface Current Data through Past Measurements and Satellite Wind Observations

    Directory of Open Access Journals (Sweden)

    Adam Gauci

    2016-01-01

    Full Text Available High frequency (HF radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.

  1. Ocean surface wind stress

    Science.gov (United States)

    Harrison, D. E.

    1984-01-01

    The need for improved surface wind and wind stress data is discussed. The collection of wind data using ship reports, research buoys, and cloud motion vectors is examined. The need for data on surface-wind stress fields is emphasized. Accurate stress data are required for studying: (1) the normal seasonal cycle and the intraannual events; (2) wind stress curls and the forcing of ocean circulation; (3) El Nino events; and (4) the low response of the midlatitude ocean circulation.

  2. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450....... QuikSCAT ocean wind vector observations have been analysed for the same four parameters and ASCAT for mean wind speed. All satellite data has been compared to in-situ observations available in the Norsewind project. SSM/I passive microwave wind speed data from 24 years observed around 6 times per day...... are used to estimate trends in offshore winds and interestingly a shift in the seasonal pattern is notice. All satellite-based wind products are valid at 10 m, thus it is desirable to lift winds to higher levels for wind energy products. A method has been suggested to lift winds from 10 m to hub...

  3. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extra...

  4. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...

  5. Global analysis of ocean surface wind and wind stress using a general circulation model and Seasat scatterometer winds

    Science.gov (United States)

    Kalnay, E.; Atlas, R.

    1986-01-01

    Instantaneous and 15-day time-averaged fields of surface wind, wind stress, curl of the wind stress, and wind divergence are presented. These fields are derived from the Goddard Laboratory for Atmospheres four-dimensional analysis/forecast cycle, for the period September 6-30, 1978, using conventional data, satellite temperature soundings, cloud-track winds, and subjectively dealiased Seasat scatterometer winds.

  6. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    the uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost....... The advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  7. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    Science.gov (United States)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  8. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    Ocean surface winds observed by satellite scatterometer (QuikSCAT) and passive microwave (SMM/I) provide valuable information for wind energy applications. In wind energy two long-term aspects on the offshore wind climate is of concern. One is the 20-year average necessary for the estimation...

  9. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  10. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    The aim of the paper is to present offshore wind farm wake observed from satellite Synthetic Aperture Radar (SAR) wind fields from RADARSAT-1/-2 and Envisat and to compare these wakes qualitatively to wind farm wake model results. From some satellite SAR wind maps very long wakes are observed. Th...

  11. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  12. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.;

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atl...

  13. Wind waves in tropical cyclones: satellite altimeter observations and modeling

    Science.gov (United States)

    Golubkin, Pavel; Kudryavtsev, Vladimir; Chapron, Bertrand

    2016-04-01

    Results of investigation of wind-wave generation by tropical cyclones using satellite altimeter data are presented. Tropical cyclones are generally relatively small rapidly moving low pressure systems that are capable of generating severe wave conditions. Translation of a tropical cyclone leads to a prolonged period of time surface waves in the right sector remain under high wind forcing conditions. This effect has been termed extended fetch, trapped fetch or group velocity quasi-resonance. A tropical cyclone wave field is thus likely more asymmetrical than the corresponding wind field: wind waves in the tropical cyclone right sector are more developed with larger heights than waves in the left one. A dataset of satellite altimeter intersections of the Western Pacific tropical cyclones was created for 2010-2013. Data from four missions were considered, i.e., Jason-1, Jason-2, CryoSat-2, SARAL/AltiKa. Measurements in the rear-left and front-right sectors of tropical cyclones were examined for the presence of significant wave asymmetry. An analytical model is then derived to efficiently describe the wave energy distribution in a moving tropical cyclone. The model essentially builds on a generalization of the self-similar wave growth model and the assumption of a strongly dominant single spectral mode in a given quadrant of the storm. The model provides a criterion to anticipate wave enhancement with the generation of trapped abnormal waves. If forced during a sufficient timescale interval, also defined from this generalized self-similar wave growth model, waves can be trapped and large amplification of the wave energy will occur in the front-right storm quadrant. Remarkably, the group velocity and corresponding wavelength of outrunning wave systems will become wind speed independent and solely relate to the translating velocity. The resulting significant wave height also only weakly depends on wind speed, and more strongly on the translation velocity. Satellite

  14. OW ASCAT Ocean Surface Winds - 2-Day Composites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  15. A Novel Sampling Method for Satellite-Based Offshore Wind Resource Estimation

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Hasager, Charlotte Bay

    Synthetic aperture radar (SAR) measurements from satellites can be used to estimate the spatial wind speed variation offshore in great detail. The radar senses cm-scale roughness at the sea surface which can be translated to wind speed at the height 10 m using an empirical geophysical model......-based wind climatology have improved gradually as more data were collected. The satellite scenes have been treated as random samples and weighted equally in our previous analyses. Here we introduce a novel sampling strategy based on the wind class methodology that is normally applied in numerical modeling...... climatologically representative large-scale meteorological conditions for the region of interest. The wind classes are used to make the most representative selection of satellite images from the ENVISAT image catalogue. A minimum of one satellite image is chosen per wind class. The frequency of occurrence of each...

  16. Offshore winds from a new generation of European satellites

    DEFF Research Database (Denmark)

    Badger, Merete; Karagali, Ioanna; Ahsbahs, Tobias Torben

    Offshore wind fields retrieved from satellite Synthetic Aperture Radar (SAR) observations can give valuable insight in the spatial wind variability over large areas. We can utilize this for mapping of wind farm wakes, wind resources, coastal wind speed gradients, storms, and other wind phenomena...... satellites and services could lower these barriers for applications in wind energy significantly. The Sentinel-1 A/B missions by the European Space Agency (ESA) deliver C-band SAR observations at an unprecedented coverage and spatial resolution. Over the seas of Europe, approximately 200 new acquisitions...... take place every day. DTU Wind Energy operates a system for processing of the raw SAR data to wind fields in near-real-time. The wind fields are available for download; for example by users in the wind energy community. Comparisons with mast and lidar observations have shown RMS errors of 1.3-1.5 m...

  17. Satellite Constellation for Ocean Wind and Stress

    Science.gov (United States)

    Liu, W.; Xie, X.

    2009-12-01

    A scatterometer sends microwave pulses to the earth's surface and measure the power backscattered from the surface roughness. The roughness is believed to be in equilibrium with the stress (turbulent transport of momentum). The backscatter depends not only on the magnitude of the stress but also the stress direction relative to the direction of the radar beam. Measuring both stress magnitude and direction is the major unique capability of the scatterometer. Although stress drives ocean circulation, we do not have any large-scale stress measurement except from the scatterometer; our concept of stress distribution is largely derived from our knowledge on wind. Stress is closely related to wind. The geophysical product of the scatterometer is the equivalent neutral wind. It is a fictitious quantity, which has an unambiguous relation with surface stress by definition, while the relation between actual wind and surface stress depends on atmospheric vertical density stratification. Over most of the ocean, the atmosphere is near neutral and the current is much smaller than wind and it is generally assumed that the equivalent neutral wind is the actual wind. QuikSCAT, a Ku-band scatterometer, was launched in 1999. The scientific contributions to natural disaster, energy, weather, climate, water, ecosystem, and agriculture from one decade of QuikSCAT measurements will be presented. A C-band scatterometer, ASCAT, was launched by European Space Agency in 2006. Ku-band scatterometers, similar in design with QuikSCAT, will be launched by India and China in 2010 and 2011. One polar orbiting scatterometer could only sample the earth at most two times a day. If the future scatterometers will produce similarly high quality data, the future constellation of scatterometers, with different overhead crossing time, will meet the six hourly revisit frequency required by the operational weather forecast community and the inertial frequency required by research oceanographers. The coverage

  18. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  19. OW CCMP ocean surface wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of ocean...

  20. Simulation of the surface wind field and wind waves over the Oman Sea

    Science.gov (United States)

    Hamzeloo, Sima; Hadi Moeini, Mohammad; Jandaghi Alaee, Majid

    2016-04-01

    Surface wind field is one of the most important factors in the generation of the marine hydrodynamic phenomena such as wind waves that highly affected by the surface winds. Therefore, accessibility to the correct wind field is of great importance for accurate prediction and simulation of the hydrodynamic variables. Nowadays numerical mesoscale weather prediction models are widely applied as powerful tools to simulate wind and other atmospheric variables with predefined temporal and spatial resolution in desired areas. Despite appropriate results of the numerical models in many regions, there are still some complications in the simulation of the surface wind field in areas with complex orography since the surface wind field is highly affected by the local topography, land-sea discontinuity, temperature gradient etc. Nowadays, with the development of high-speed processors the third generation spectral models are generally used for simulation of wind waves. Wind data are the main input parameters of the numerical spectral wave model. Therefore, the quality of the input wind data can be assessed by comparison of the wave model outputs with measured values. The main goal of the current study is to simulate surface wind field over the Oman Sea using WRF modeling system. To verify the model results, the simulated wind speeds were compared with synoptic and buoy measurements and satellite observations. Wind-wave parameters simulated by the spectral model were also compared with wave measurements to verify simulated surface wind field as the input of the wave model. The Comparison simulated wind speed and directions in coastal synoptic stations and QuikSCAT satellite shows sufficient results for both offshore and coastal areas.

  1. Surface winds over West Antarctica

    Science.gov (United States)

    Bromwich, David

    1993-01-01

    Five winter months (April-August 1988) of thermal infrared satellite images were examined to investigate the occurrence of dark (warm) signatures across the Ross Ice Shelf in the Antarctic continent. These features are inferred to be generated by katabatic winds that descend from southern Marie Byrd Land and then blow horizontally across the ice shelf. Significant mass is added to this airstream by katabatic winds blowing from the major glaciers that flow through the Transantarctic Mountains from East Antarctica. These negatively buoyant katabatic winds can reach the northwestern edge of the shelf - a horizontal propagation distance of up to 1,000 km - 14 percent of the time. Where the airstream crosses from the ice shelf to the ice-covered Ross Sea, a prominent coastal polynya is formed. Because the downslope buoyancy force is near zero over the Ross Ice Shelf, the northwestward propagation of the katabatic air mass requires pressure gradient support. The study shows that the extended horizontal propagation of this atmospheric density current occurred in conjunction with the passage of synoptic cyclones over the southern Amundsen Sea. These cyclones can strengthen the pressure gradient in the interior of West Antarctica and make the pressure field favorable for northwestward movement of the katabatic winds from West Antarctica across the ice shelf in a geostrophic direction. The glacier winds from East Antarctica are further accelerated by the synoptic pressure gradient, usually undergo abrupt adjustment beyond the exit to the glacier valley, and merge into the mountain-parallel katabatic air mass.

  2. A Non-MLE Approach for Satellite Scatterometer Wind Vector Retrievals in Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Suleiman Alsweiss

    2014-05-01

    Full Text Available Satellite microwave scatterometers are the principal source of global synoptic-scale ocean vector wind (OVW measurements for a number of scientific and operational oceanic wind applications. However, for extreme wind events such as tropical cyclones, their performance is significantly degraded. This paper presents a novel OVW retrieval algorithm for tropical cyclones which improves the accuracy of scatterometer based ocean surface winds when compared to low-flying aircraft with in-situ and remotely sensed observations. Unlike the traditional maximum likelihood estimation (MLE wind vector retrieval technique, this new approach sequentially estimates scalar wind directions and wind speeds. A detailed description of the algorithm is provided along with results for ten QuikSCAT hurricane overpasses (from 2003–2008 to evaluate the performance of the new algorithm. Results are compared with independent surface wind analyses from the National Oceanic and Atmospheric Administration (NOAA Hurricane Research Division’s H*Wind surface analyses and with the corresponding SeaWinds Project’s L2B-12.5 km OVW products. They demonstrate that the proposed algorithm extends the SeaWinds capability to retrieve wind speeds beyond the current range of approximately 35 m/s (minimal hurricane category-1 with improved wind direction accuracy, making this new approach a potential candidate for current and future conically scanning scatterometer wind retrieval algorithms.

  3. Detection of wind wakes offshore from satellite SAR

    Science.gov (United States)

    Christiansen, M. B.; Hasager, C. B.

    A study is presented on the mapping of ocean wind fields for detection of wind wakes downstream of an offshore wind farm. The study is based on ERS-2 Synthetic Aperture Radar (SAR) scenes obtained in 2003 over Horns Reef in the North Sea. A large offshore wind farm (80 wind turbines) is located 14-20 km offshore of Denmark on this submerged reef. Meteorological observations are available from an offshore mast; wind speed is measured at four heights up to 62 m and wind direction is measured at 60 m. Maps of wind speed are generated from geophysical model functions (CMOD-4, CMOD-IFR2) with a resolution of 400 m by 400 m using wind direction obtained from in-situ measurements as model input. The wind maps display zones of reduced mean wind speed downstream of the wind farm compared to upwind conditions. The reduction is approximately 10 % immediately behind the wind farm and the wake effect is vanishing over distances in the order of 10 km downstream. This is consistent with wake model predictions. Satellite SAR provides a good estimate of the propagation of wind wakes. Information on how structures affect the local wind climate is useful for wind energy purposes, particularly for siting of future offshore wind farms.

  4. a Diagnostic Approach to Obtaining Planetary Boundary Layer Winds Using Satellite-Derived Thermal Data

    Science.gov (United States)

    Belt, Carol Lynn

    The feasibility of using satellite-derived thermal data to generate realistic synoptic-scale winds within the planetary boundary layer (PBL) is examined. Diagnostic "modified Ekman" wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite-derived winds based on 62 predawn (0921 GMT 19 April 1979) TIROS-N soundings are compared to similarly-derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface. Horizontal moisture divergence, moisture advection, velocity divergence and relative vorticity are computed at 300 m AGL using satellite-derived winds and moisture data. Results show excellent agreement with corresponding RAOB-derived values. Areas of horizontal moisture convergence, velocity convergence, and positive vorticity are nearly coincident and align in regions which later develop intense convection. Vertical motion at 1600 m AGL is computed using stepwise integration of the satellite winds through the PBL. Values and patterns are similar to those obtained using the RAOB-derived winds. Regions of maximum upward motion correspond with areas of greatest moisture convergence and the convection that later develops.

  5. Wind Atlas of Bay of Bengal with Satellite Wind Measurement

    DEFF Research Database (Denmark)

    Nadi, Navila Rahman

    The objective of this study is to obtain appropriate offshore location in the Bay of Bengal, Bangladesh for further development of wind energy. Through analyzing the previous published works, no offshore wind energy estimation has been found here. That is why, this study can be claimed as the first...... footstep towards offshore wind energy analysis for this region. Generally, it is difficult to find offshore wind data relative to the wind turbine hub heights, therefore a starting point is necessary to identify the possible wind power density of the region. In such scenario, Synthetic aperture radars (SAR......) have proven useful. In this study, SAR based dataset- ENVISAT ASAR has been used for Wind Atlas generation. Furthermore, a comparative study has been performed with Global Wind Atlas (GWA) to determine a potential offshore wind farm. Additionally, the annual energy production of that offshore windfarm...

  6. Comparison of Satellite-Derived Wind Measurements with Other Wind Measurement Sensors

    Science.gov (United States)

    Susko, Michael; Herman, Leroy

    1995-01-01

    The purpose of this paper is to compare the good data from the Jimsphere launches with the data from the satellite system. By comparing the wind speeds from the Fixed Pedestal System 16 (FPS-16) Radar/Jimsphere Wind System and NASA's 50-MHz Radar Wind Profiler, the validation of winds from Geostationary Operational Environmental Satellite 7 (GOES-7) is performed. This study provides an in situ data quality check for the GOES-7 satellite winds. Comparison was made of the flowfields in the troposphere and the lower stratosphere of case studies of pairs of Jimsphere balloon releases and Radar Wind Profiler winds during Space Shuttle launches. The mean and standard deviation of the zonal component statistics, the meridional component statistics, and the power spectral density curves show good agreement between the two wind sensors. The standard deviation of the u and v components for the STS-37 launch (consisting of five Jimsphere/Radar Wind Profiler data sets) was 1.92 and 1.67 m/s, respectively; for the STS-43 launch (there were six Jimsphere/Wind Profiler data sets) it was 1.39 and 1.44 m/s, respectively. The overall standard deviation was 1.66 m/s for the u component and 1.55 m/s tor the v component, and a standard deviation of 2.27 m/s tor the vector wind difference. The global comparison of satellite with Jimsphere balloon vector winds shows a standard deviation of 3.15 m/s for STS-43 and 4.37 m/s for STS-37. The overall standard deviation of the vector wind was 3.76 m/s, with a root-mean-square vector difference of 4.43 m/s. These data have demonstrated that this unique comparison of the Jimsphere and satellite winds provides excellent ground truth and a frame of reference during testing and validation of satellite data

  7. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  8. 622 Mbps High-speed satellite communication system for WINDS

    Science.gov (United States)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  9. Characterizing Tropospheric Winds by Combining MISR Cloud-Track and QuikSCAT Surface Wind Vectors

    Science.gov (United States)

    Davies, R.; Garay, M. J.; Moroney, C. M.; Liu, W. T.

    2007-12-01

    Numerous studies have found that the inclusion of wind observations results in a significantly greater improvement in operational weather forecasts compared to the addition of temperature or pressure observations alone. However, global tropospheric wind measurements are only available from 12-hourly rawinsonde launches from selected locations, primarily over land. For years the world's oceans were "data voids" in terms of wind measurements. Only recently have satellites begun to fill this gap. The SeaWinds scatterometer on the QuikSCAT satellite obtains winds referenced to 10 meters above the surface over the global oceans under nearly all weather conditions. The wind speed and direction data from QuikSCAT have been extensively tested against surface observations and are of such quality that these data are routinely assimilated into numerical weather prediction models run by both the National Center for Environmental Prediction (NCEP) and the European Centre for Medium Range Weather Forecasting (ECMWF). However, scatterometer data only provide wind information near the ocean surface. This information can be complemented with satellite cloud-track winds that provide information about winds in the free troposphere over the ocean, as well as over land, where scatterometer data are not available. In particular, the height resolved cloud motion vectors from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the NASA EOS Terra satellite yield wind speeds for clouds at altitudes less than approximately 2.5 km that are shown to compare favorably with the QuikSCAT winds globally. In addition, the direction of the MISR winds is similar to the QuikSCAT wind vectors when compared on the same basis. The synergistic use of these two sets of wind observations has the potential to make possible a variety of new studies: from improved forecast and climate model validation; to increased understanding of tropospheric water vapor transport; to observations of the coupling

  10. A new strategic sampling for offshore wind assessment using radar satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, P.; Lafrance, G.; Bernier, M.; Lafrance, J. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada); Choisnard, J. [Hydro-Quebec, Varennes, PQ (Canada)

    2007-07-01

    Synthetic Aperture Radar (SAR) satellite images have been used for offshore wind assessment. Several offshore wind farms are in operation or under construction in northern Europe. The European target for 2030 is 300 GW, of which half is intended for onshore and half for offshore development. Offshore projects in the east coast United States, the Gulf of Mexico and west coast of Canada are in the planning stage. Information obtained from SAR can be used to supplement current mapping methods of offshore wind energy resources. SAR is a useful tool to localize wind pattern over water surfaces. Other sources of offshore wind observations include meteorological stations such as buoys and masts; remote sensing instruments onboard satellites such as scatterometers (QuikSCAT, ASCAT) or passive microwave radiometers; and numerical weather prediction models. The synergy between scatterometers and SAR was discussed. The SAR system has been used for microscale resolution wind mapping in the Gaspe Peninsula. Strategic sampling zones were chosen in proximity to the QuikSCAT grid. It was concluded that 270 and 570 SAR images are needed to calculate average wind speed (U) and mean power output of a 3 MW wind turbine (P) over the Gaspe Peninsula region, respectively. It was concluded that microscale regional wind mapping can be produced at a lower cost with strategic sampling compared to random sampling. refs., tabs., figs.

  11. Wind class sampling of satellite SAR imagery for offshore wind resource mapping

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Nielsen, Morten

    2010-01-01

    High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical-dynamical down......High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is introduced, based on a method for statistical......-dynamical downscaling of large-scale wind conditions using a set of wind classes that describe representative wind situations. One or more SAR scenes are then selected to represent each wind class and the classes are weighted according to their frequency of occurrence. The wind class methodology was originally...... developed for mesoscale modeling of wind resources. Its performance in connection with sampling of SAR scenes is tested against two sets of random SAR samples and meteorological observations at three sites in the North Sea during 2005–08. Predictions of the mean wind speed and the Weibull scale parameter...

  12. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  13. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    capacity is found in the European Seas. The European Wind Energy Association, EWEA, expects the cumulative offshore capacity in Europe will reach 150 GW in year 2030. The offshore environment is far less well-known than over land and this increases the challenge of planning, operation and maintenance...

  14. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  15. Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds

    Indian Academy of Sciences (India)

    B N Goswami; E N Rajagopal

    2003-03-01

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds su ered from easterly bias of 1.0-1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0-3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001.

  16. Mapping surface disturbance from wind farms

    Science.gov (United States)

    Diffendorfer, James E.

    2013-04-01

    Wind energy is one of the fastest growing segments of the electricity market and this trend will likely continue as countries strive to reduce CO2 production while meeting growing energy demands. One impact of wind facilities is surface disturbance, including roads, that lead to habitat loss and fragmentation. Numerous studies of wind power utilize estimates of surface disturbance for GIS-based modeling or basic calculations of the land area required to generate energy using wind. However published estimates of the land use required for a MW of electricity from wind facilities vary by more than 10 times (0.83 to 250 MW/Km2). We report results from a geospatial analysis of 39 wind facilities in the United States that we fully digitized using high resolution photo-imagery. The selected sites and analyses were designed to elucidate the effects of turbine size, topography, and land use on the area requirements of wind facilities. The results indicate point estimates of average surface disturbance/MW have wide levels of variation, explained primarily by Landcover and Topography. Wind facilities in agricultural landscapes had smaller surface disturbance/ha than facilities in forests and shrublands, and facilities in relatively flat topography had smaller surface disturbance/ha than facilities on hills, ridges, or mesas. Land use, topography, and turbine size all influenced turbine spacing. The statistical models suggest we can predict geographic locations where new wind facilities could be placed with minimized surface disturbance.

  17. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    Abhijit Sarkar; Sujit Basu; A K Varma; Jignesh Kshatriya

    2002-09-01

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall of the auto- correlation in the first few hours with a decorrelation time scale of about 6 hours. For a meaningful comparison between satellite derived products and in situ data, satellite data acquired at different time intervals should be used with appropriate `weights', rather than treating the data as concurrent in time. This paper presents a scheme for temporal weighting using the auto-correlation analysis. These temporal `weights' can potentially improve the root mean square (rms) deviation between satellite and in situ measurements. A case study using the TRMM Microwave Imager (TMI) and Indian Ocean buoy wind speed data resulted in an improvement of about 10%.

  18. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    , and interannual wind variability information, with time series that range from 3 to 11years in duration. Remotely-sensed equivalent neutral winds provide spatial information on the wind climate. NASA QuikSCAT winds are temporally consistent at a 25km resolution. ESA Synthetic Aperture Radar winds are temporally...... and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  19. CFOSAT: A new Chinese-French satellite for joint observations of ocean wind vector and directional spectra of ocean waves

    OpenAIRE

    Hauser, Danièle; Tison, Céline; Amiot, Thierry; Delaye, Lauriane; Mouche, Alexis; Guitton, Gilles; Aouf, Lotfi; Castillan, Patrick

    2016-01-01

    International audience; CFOSAT (the China France Oceanography Satellite) is a joint mission from the Chinese and French Space Agencies, devoted to the observation ocean surface wind and waves so as to improve wind and wave forecast for marine meteorology, ocean dynamics modeling and prediction, climate variability knowledge, fundamental knowledge of surface processes. Currently under Phase D (manufacturing phase), the launch is now planned for mid-2018 the later. The CFOSAT will carry two pay...

  20. Retrieval algorithm of sea surface wind vectors for WindSat based on a simple forward model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yili

    2013-01-01

    WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer,which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space.In this paper,a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat.The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model.Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation,by which a group of ambiguous wind directions was obtained.A median filter was then used to remove ambiguity of wind direction.Evaluated with sea surface wind speed and direction data from the U.S.National Data Buoy Center (NDBC),root mean square errors are 1.2 m/s and 30° for retrieved wind speed and wind direction,respectively.The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications,without reducing accuracy.

  1. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...

  2. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  3. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed...... offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  4. Sea surface wind speed estimation from space-based lidar measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2008-02-01

    Full Text Available Global satellite observations of lidar backscatter measurements acquired by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO mission and collocated sea surface wind speed data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E, are used to investigate the relation between wind driven wave slope variance and sea surface wind speed. The new slope variance – wind speed relation established from this study is similar to the linear relation from Cox-Munk (1954 and the log-linear relation from Wu (1972, 1990 for wind speed larger than 7 m/s and 13.3 m/s, respectively. For wind speed less than 7 m/s, the slope variance is proportional to the square root of the wind speed, assuming a two dimensional isotropic Gaussian wave slope distribution. This slope variance – wind speed relation becomes linear if a one dimensional Gaussian wave slope distribution is assumed. Contributions from whitecaps and subsurface backscattering are effectively removed by using 532 nm lidar depolarization measurements. This new slope variance – wind speed relation is used to derive sea surface wind speed from CALIPSO single shot lidar measurements (70 m spot size, after correcting for atmospheric attenuation. The CALIPSO wind speed result agrees with the collocated AMSR-E wind speed, with 1.2 m/s rms error.

  5. Variability of the wind field in the tropical oceans as observed by satellite sensors

    Energy Technology Data Exchange (ETDEWEB)

    Grima, N.; Bentamy, A.; Quilfen, Y. [IFREMER/Brest, Plouzane (France)

    1995-12-31

    It is generally agreed today that the knowledge of the interaction between atmosphere and ocean is essential for understanding climate and ocean circulation, especially in tropical regions where the oceans are mainly and quickly influenced by wind action. The wind stress is the primary force driving the topical oceans from daily to interannual time scales. Conventional measurements from ships of the wind vectors are not available with a sufficient quality regarding the data accuracy as well as their coverage. Satellite observations of the surface wind over the sea are now available on a routine basis at the Institut Francais de Recherche pour l`Exploitation de la Mer (IFREMER), derived from the European Remote Sensing-1 (ERS-1) scatterometer and altimeter and from the radiometer Special Sensor Microwave/Imager (SSM/I). More than 3 years of weekly stress fields (1991--1994) with a resolution of one degree in latitude and longitude are produced using an objective analysis method. The accuracy of these gridded winds was evaluated by comparison with TAO buoys in the tropical Pacific area (Riou, 1995). The root mean square differences are of the order of 1.2 m/s and 15 degrees. The greatest differences are observed in the TOGA/COARE region where the wind variability is largest on the weekly scale. The low frequencies (monthly to interannual) of the wind variability are discussed and compared to those obtained from the TAO buoys. In this paper the time and space scales of the sea surface wind are described using a complex EOF analysis. One of the most interesting results is that the weekly averaged wind fields derived from ERS-1 scatterometer are useful to depict a 30--50-day oscillation over the tropical Pacific ocean.

  6. Assimilation of GMS-5 satellite winds using nudging method with MM5

    Institute of Scientific and Technical Information of China (English)

    GAO Shanhong; WU Zengmao; YANG Bo

    2006-01-01

    With the aid of Meteorological Information Composite and Processing System (MICAPS), satellite wind vectors derived from the Geostationary Meteorological Statellite-5 (GMS-5) and retrieved by National Satellite Meteorology Center of China (NSMC) can be obtained. Based on the nudging method built in the fifth-generation Mesoscale Model (MM5) of Pennsylvania State University and National Center for Atmospheric Research, a data preprocessor is developed to convert these satellite wind vectors to those with specified format required in MM5. To examine the data preprocessor and evaluate the impact of satellite winds from GMS-5 on MM5 simulations, a series of numerical experimental forecasts consisting of four typhoon cases in 2002 are designed and implemented. The results show that the preprocessor can process satellite winds smoothly and MM5 model runs successfully with a little extra computational load during ingesting these winds, and that assimilation of satellite winds by MM5 nudging method can obviously improve typhoon track forecast but contributes a little to typhoon intensity forecast. The impact of the satellite winds depends heavily upon whether the typhoon bogussing scheme in MM5 was turned on or not. The data preprocessor developed in this paper not only can treat GMS-5 satellite winds but also has capability with little modification to process derived winds from other geostationary satellites.

  7. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  8. Surface Emissivity Derived From Multispectral Satellite Data

    Science.gov (United States)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    1998-01-01

    Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.

  9. Satellite dynamics on the Laplace surface

    CERN Document Server

    Tremaine, Scott; Namouni, Fathi

    2008-01-01

    The orbital dynamics of most planetary satellites is governed by the quadrupole moment from the equatorial bulge of the host planet and the tidal field from the Sun. On the Laplace surface, the long-term orbital evolution driven by the combined effects of these forces is zero, so that orbits have a fixed orientation and shape. The "classical" Laplace surface is defined for circular orbits, and coincides with the planet's equator at small planetocentric distances and with its orbital plane at large distances. A dissipative circumplanetary disk should settle to this surface, and hence satellites formed from such a disk are likely to orbit in or near the classical Laplace surface. This paper studies the properties of Laplace surfaces. Our principal results are: (i) if the planetary obliquity exceeds 68.875 deg there is a range of semimajor axes in which the classical Laplace surface is unstable; (ii) at some obliquities and planetocentric distances there is a distinct Laplace surface consisting of nested eccentr...

  10. How predictable are equatorial Atlantic surface winds?

    Science.gov (United States)

    Richter, Ingo; Doi, Takeshi; Behera, Swadhin

    2017-04-01

    Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the variability and predictability of monthly mean surface winds in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface wind variability over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface wind variability is due to either internal atmospheric variability or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of variability in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface wind variability decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface wind variance in AMJ is predictable, while the rest is due to internal atmospheric variability. Other months show significantly lower predictability. The relatively strong internal variability as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic variability.

  11. WIND STRESS AND SURFACE ROUGHNESS AT AIR-SEA INTERFACE

    Science.gov (United States)

    Based on the compiled data of thirty independent observations, the report presents the wind - stress coefficient, the surface roughness and the...boundary layer flow regime at the air-sea interface under various wind conditions. Both the wind - stress coefficient and the surface roughness are found to...data and Charnock’s proportionality constant is determined. Finally, two approximate formulae for the wind - stress coefficient, one for light wind and the other for strong wind are suggested.

  12. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  13. Retrieval of vertical wind profiles during monsoon from satellite observed winds over the Indian Ocean using complex EOF analysis

    Indian Academy of Sciences (India)

    C M Kishtawal; Sujit Basu; S Karthikeyan

    2001-03-01

    The aim of this paper is to study the feasibility of deriving vertical wind profiles from current satellite observations. With this aim, we carried out complex empirical orthogonal function (CEOF) analysis of a large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first two CEOFs explain 67% of the total variance in wind fields. While the first principal component is well correlated with the winds at 850 mb ( = 0.80), the second one is highly correlated with winds at 200 mb ( = 0.89). This analysis formed the basis of a retrieval algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between 2ms-1 and 6ms-1 at different levels, which is much less than the natural variance of winds at these levels. For a better visualization of retrieval, we have provided retrieved and true wind profiles side by side for four typical synoptic conditions during the monsoon season.

  14. CFOSAT: a new Chinese-French satellite for joint observations of ocean wind vector and directional spectra of ocean waves

    Science.gov (United States)

    Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Mouche, A.; Guitton, G.; Aouf, L.; Castillan, P.

    2016-05-01

    CFOSAT (the China France Oceanography Satellite) is a joint mission from the Chinese and French Space Agencies, devoted to the observation ocean surface wind and waves so as to improve wind and wave forecast for marine meteorology, ocean dynamics modeling and prediction, climate variability knowledge, fundamental knowledge of surface processes. Currently under Phase D (manufacturing phase), the launch is now planned for mid-2018 the later. The CFOSAT will carry two payloads, both Ku-Band radar: the wave scatterometer (SWIM) and the wind scatterometer (SCAT). Both instruments are based on new concepts with respect to existing satellite-borne wind and wave sensors. Indeed, one of the originalities of CFOSAT is that it will provide simultaneously and in the same zone, the directional spectra of ocean waves and the wind vector. The concept used to measure the directional spectra of ocean waves has never been used from space until now: it is based on a near-nadir incidence pointing, rotating fan-beam radar, used in a real-aperture mode. In this paper we present the CFOSAT mission, its objectives and main characteristics. We then focus on the SWIM instrument, the expected geophysical products and performances. Finally, we present ongoing studies based on existing satellite data of directional spectra of ocean waves (Sentinel-1, ..) and carried out in preparation to CAL/VAL activities and to future data exploitation.

  15. CYGNSS Observations of Surface Wind Speeds in Oceanic Tropical and Extratropical Cyclones

    Science.gov (United States)

    Posselt, D. J.; Crespo, J.; Naud, C. M.

    2016-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission is the first of the new generation of NASA Earth Venture missions, and consists of a constellation of eight small satellites scheduled for launch in November 2016. The mission utilizes GPS signals reflected from the Earth's surface to infer near-surface wind speeds over the global tropical oceans. The eight-satellite constellation will observe ocean-surface wind speeds in all weather conditions (including in heavy precipitation) with a median revisit time of approximately 3 hours. While CYGNSS is designed to measure wind speeds in the inner core of tropical cyclones, it will observe near-surface winds over all oceanic regions within the span of its orbit. The orbit inclination is 35 degrees, which means that the satellite will observe primarily the tropics and sub-tropics; however, because the antennae are angled 28 degrees off-nadir, the effective range of latitudes spans -40 to 40 degrees. As such, CYGNSS will observe regions known to be characterized by rapid extratropical cyclone development (e.g., the southern portion of the Gulf Stream off the U.S. East Coast). In this presentation, we discuss CYGNSS sampling characteristics, with an eye toward its potential to observe winds not only in tropical cyclones, but in extratropical cyclones as well. We simulate orbits over a historical extratropical storm, and also utilize a multi-year database of cyclone centers to determine CYGNSS sampling characteristics integrated over many storms.

  16. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaoqi; ZHU Jianhua; LIN Mingsen; ZHAO Yili; WANG He; CHEN Chuntao; PENG Hailong; ZHANG Youguang

    2014-01-01

    A scanning microwave radiometer (RM) was launched on August 16, 2011, on board HY-2 satellite. The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations, respectively, from January to June 2012. The wind speed root-mean-square (RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform, respectively. On a global scale, the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat, the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above. With analyzing the global map of a mean difference between HY-2 RM and WindSat, it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions. In the open sea, there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations, while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.

  17. Satellite SAR applied in offhore wind resource mapping: possibilities and limitations

    Science.gov (United States)

    Hasager, C. B.

    Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations is presented. The study is based on a series of more than 60 ERS-2 SAR satellite scenes from the Horns Rev in the North Sea. The wind climate from the coastline and 80 km offshore is mapped in detail with a resolution of 400 m by 400 m grid cells. Spatial variations in wind speed as a function of wind direction and fetch are observed and discussed. The satellite wind fields are compared to in-situ observations from a tall offshore meteorological mast at which wind speed at 4 levels are analysed. The mast is located 14 km offshore and the wind climate is observed continously since May 1999. For offshore wind resource mapping the SAR-based wind field maps can constitute an alternative to in-situ observations and a practical method is developed for applied use in WAsP (Wind Atlas Analysis and Application Program). The software is the de facto world standard tool used for prediction of wind climate and power production from wind turbines and wind farms. The possibilities and limitations on achieving offshore wind resource estimates using SAR-based wind fields in lieu of in-situ data are discussed. It includes a presentation of the footprint area-averaging techniques tailored for SAR-based wind field maps. Averaging techniques are relevant for the reduction of noise apparent in SAR wind speed maps. Acknowledgments: Danish Research Agency (SAT-WIND Sagsnr. 2058-03-0006) for funding, ESA (EO-1356, AO-153) for ERS-2 SAR scenes, and Elsam Engineering A/S for in-situ met-data.

  18. An overview on SAR measurements of sea surface wind

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies show that synthetic aperture radar (SAR) has the capability of providing high-resolution (sub-kilometer) sea surface wind fields. This is very useful for applications where knowledge of the sea surface wind at fine scales is crucial. This paper aims to review the latest work on sea surface wind field retrieval using SAR images. As shown, many different approaches have been developed for retrieving wind speed and wind direction. However, much more work will be required to fully exploit the SAR data for improving the retrieval accuracy of high-resolution winds and for producing wind products in an operational sense.

  19. Ocean surface currents from satellite data

    Science.gov (United States)

    Dohan, Kathleen

    2017-04-01

    The atmosphere drives entire ocean motions, and yet the exchange of momentum between the atmosphere and ocean occurs in the thin layer where they meet, involving the smallest scales of turbulence. The Ocean Surface Current Analyses Real-time (OSCAR) project attempts to better understand this exchange using satellite observations with simplified physics to calculate global ocean currents. The goal is to continually improve the physics in OSCAR and more accurately model the currents. The theoretical study will help coupled ocean-atmosphere modeling efforts whereas the societal benefits of measuring ocean currents are broad, e.g., fish larval dispersion, heat transport, commercial shipping, and search and rescue.

  20. Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Pena Diaz, Alfredo; Badger, Merete

    2014-01-01

    is offshore wind energy, where accurate and frequent measurements are required for siting and operating modern wind farms. The greatest advantage of satellite observations rests in their extended spatial coverage. This paper presents analyses of the 10 year data set from QuikSCAT, for the overview of the wind...... for comparisons. Mean biases (in situ minus satellite) are close to zero for wind speed and -2.7° for wind direction with a standard deviation of 1.2 m s  − 1 and 15°, respectively. The impact of using QuikSCAT and in situ measurements extrapolated to 10 m for wind power density estimations is assessed......, accounting for possible influences of rain-contaminated retrievals, the sample size, the atmospheric stability effects and either fitting the Weibull distribution or obtaining the estimates from the time series of wind speed observations.Copyright © 2012 John Wiley & Sons, Ltd....

  1. Slow ions in plasma wind tunnels. [satellite-ionosphere interaction

    Science.gov (United States)

    Oran, W. A.; Stone, N. H.; Samir, U.

    1976-01-01

    One of the limitations of simulation experiments for the study of interaction between a satellite and its space environment is the background of slow ions in the plasma chamber. These ions appear to be created by charge exchange between the beam ions and residual neutral gas and may affect measurements of the current and potential in the wake. Results are presented for a plasma wind tunnel experiment to study the effect of slow ions on both the ion and electron current distribution and the electron temperature in the wake of a body in a streaming plasma. It is shown that the effect of slow ions for beam ion density not exceeding 3 is not significant for measurements of ion current variations in the wake zone. This is not the case when studies are aimed at the quantitative examination of electron current and temperature variations in the near wake zone. In these instances, the measurements of electron properties in the wake should be done at very low system pressures or over a range of system pressures in order to ascertain the influence of slow ions.

  2. WindSat satellite comparisons with nearshore buoy wind data near the U.S. west and east coasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; SHI Hanqing; YU Hong; YI Xin

    2016-01-01

    Nearshore wind speeds retrieved by WindSat are validated by a comparison with the moored buoy observations near the U.S. west and east coasts. A 30 min and 25 km collection window is used for the WindSat wind data and buoy measurements from January 2004 to December 2014. Comparisons show that the overall root-mean-square error is better than 1.44 m/s near the U.S. coasts, and the result for the east coast is better than that for the west coast. The retrieval accuracy of the descending portions is slightly better than that of the ascending portions. Most buoy-to-buoy variations are not significantly correlated with the coastal topography, the longitude and the distance from the shore or satellite-buoy separation distance. In addition, comparisons between a polarimetric microwave radiometer and a microwave scatterometer are accomplished with the nearshore buoy observations from 2007 to 2008. The WindSat-derived winds tend to be lower than the buoy observations near the U.S. coasts. In contrast, the QuikSCAT-derived winds tend to be higher than the buoy observations. Overall, the retrieval accuracy of WindSat is slightly better than that of QuikSCAT, and these satellite-derived winds are sufficiently accurate for scientific studies.

  3. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  4. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    Science.gov (United States)

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-09

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.

  5. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  6. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  7. Deterministic prediction of surface wind speed variations

    OpenAIRE

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K; K. Satheesh Kumar

    2014-01-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that determin...

  8. Offshore wind resource mapping for Europe by Synthetic Aperture Radar (SAR) satellite data

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete

    2015-01-01

    For the New European Wind Atlas (NEWA) project with 8 participating countries during5 years (March 2015 – March 2020) we will develop a new wind atlas covering most of the European countries as well as most of the offshore areas in Europe. For the offshore atlas we will rely on a combination...... of satellite remote sensing observations and atmospheric modelling. The satellite data include Synthetic Aperture Radar (SAR) from the European Space Agency from Envisat and the Copernicus mission Sentinel-1. SAR has the advantage of high spatial resolution such that we can cover near-coastal areas where many...... wind farms are planned. In the Danish RUNE project near-shore offshore winds are investigate from SAR, atmospheric modelling and ground-based remote sensing lidar. In the European Space Agency project ResGrow SAR wind resource maps at various locations in the European Seas are used to estimate the wind...

  9. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    The offshore wind climate in Iceland is examined based on satellite synthetic aperture radar (SAR), coastal meteorological station measurements, and results from two atmospheric model data sets, HARMONIE and NORA10. The offshore winds in Iceland are highly influenced by the rugged coastline. Lee...

  10. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  11. Study of Practicability of Improved Irwin's Surface Wind Sensor

    National Research Council Canada - National Science Library

    Junji KATAGIRI; Toshio TSURUMI; Takeshi OHKUMA; Hisao MARUKAWA

    2009-01-01

      The practicability of a surface wind sensor (SWS) is examined by comparing the mean and fluctuating wind velocities obtained from this instrument with those measured by an omni-directional multi-channel anemometer (OMA...

  12. Satellite discrimination of snow/cloud surfaces

    Science.gov (United States)

    Crane, R. G.; Anderson, M. R.

    1984-01-01

    Differentiation between cloud cover and snow surfaces using remotely sensed data is complicated by the similarity of their radiative temperatures, and also by their similar reflectances at visible wavelengths. A method of cloud analysis over snow-covered regions is presented, using 1.51-1.63 micron data from an experimental sensor on board a U.S. Air Force Defense Meteorological Satellite Program platform. At these wavelengths, snow appears relatively 'black' while clouds are highly reflective. The spatial structure of the 1.51-1.63 micron reflectivity fields over a continuous snow surface are examined. Plots of mean reflectance against coefficients of variation for 4 x 4 pixel areas reveals a cluster of points have low reflectivity and low variability, corresponding to snow-covered (cloud free) areas, and a similar cluster with high reflectances corresponding to 100 per cent cloud cover. For the case of a single layered cloud, the radiances associated with partially filled fields of view are also inferred.

  13. Satellite SAR wind resource mapping in China (SAR-China)

    DEFF Research Database (Denmark)

    Badger, Merete

    The project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ is funded by the EU-China Energy and Environment Programme (EEP) and runs for one year (August 2008 - August 2009). The project is lead by the China Meteorological Administrat...... offshore at a high spatial resolution (1 km). The detailed wind resource maps will be used, in combination with other data sets, for an assessment of potential sites for offshore wind farm development along the coastline from Fujian to Shandong in China....

  14. Effectiveness of WRF wind direction for retrieving coastal sea surface wind from synthetic aperture radar

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi;

    2013-01-01

    Wind direction is required as input to the geophysical model function (GMF) for the retrieval of sea surface wind speed from a synthetic aperture radar (SAR) images. The present study verifies the effectiveness of using the wind direction obtained from the weather research and forecasting model...

  15. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.;

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...

  16. Evaluation of ENVISAT ASAR data for sea surface wind retrieval in Hong Kong coastal waters of China

    Institute of Scientific and Technical Information of China (English)

    XU Qing; LIN Hui; ZHENG Quanan; XIU Peng; CHENG Yongcun; LIU Yuguang

    2008-01-01

    The C-band wind speed retrieval models,CMOD4,CMOD-IFR2,and CMODS were applied to retrieval of sea surface wind speeds from ENVISAT(European environmental satellite)ASAR(advanced synthetic aperture radar)data in the coastal waters near Hang Kong during a period from October 2005 to July 2007.The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT(quick scatterometer)wind products.The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s.The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896,respectively.The root mean square errors are the same 1.74m/s.Namely,the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the COastal waters near Hong Kong.

  17. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  18. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, Pauline; Badger, Jake

    2015-01-01

    Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR) are sometimes visible and atmospheric and wake models are here shown to convincingly...... to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases...

  19. Comparison of horizontal winds from the LIMS satellite instrument with rocket measurements

    Science.gov (United States)

    Smith, A. K.; Bailey, P. L.

    1985-01-01

    Statistical results are given for a comparison between horizontal geostrophic winds computed from satellite height data and all available in situ rocket wind soundings during a 7-month period. The satellite data are the daily mapped fields from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument, which extend from 100 to 0.1 mbar. Results indicate that in both the tropics and the extratropical Northern Hemisphere, the average zonal and meridional wind speeds agree to within 2-4 m/s throughout the stratosphere. The rms differences are much larger, with values of 5-10 m/s in the lower stratosphere, increasing to 20-40 m/s in the lower mesosphere. Time series show that LIMS and rocketsonde zonal wind speeds show coherent variations with temporal periods of 1-2 weeks and more, and both exhibit irregular variations on time scales of less than one week.

  20. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed...

  1. Estimation of surface insolation using sun-synchronous satellite data

    Science.gov (United States)

    Darnell, Wayne L.; Staylor, W. Frank; Gupta, Shashi K.; Denn, Fred M.

    1988-01-01

    A technique is presented for estimating insolation at the earth's surface using only sun-synchronous satellite data. The technique was tested by comparing the insolation results from year-long satellite data sets with simultaneous ground-measured insolation taken at five continental United States sites. Monthly average insolation values derived from the satellite data showed a standard error of 4.2 W/sq m, or 2.7 percent of the average ground insolation value.

  2. Deterministic prediction of surface wind speed variations

    Science.gov (United States)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  3. Satellite Reentry Control Via Surface Area Amplification

    Science.gov (United States)

    2009-03-01

    balloon will act as a parachute that will decrease the potential energy of the object through atmospheric drag. This is most effective by objects...atmosphere. During these activities the sun releases tremendous amounts of energy and mass, producing strong winds. These winds change the earth’s atmosphere...an ant falling from a skyscraper will survive and go on to carry fifty times its own weight. Even biological cells stay at the microscopic size levels

  4. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will

  5. New Approaches To Off-Shore Wind Energy Management Exploiting Satellite EO Data

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Venafra, Sara; Potenza, Marco Alberto Carlo

    2013-12-01

    Wind as an energy resource has been increasingly in focus over the past decades, starting with the global oil crisis in the 1970s. The possibility of expanding wind power production to off-shore locations is attractive, especially in sites where wind levels tend to be higher and more constant. Off-shore high-potential sites for wind energy plants are currently being looked up by means of wind atlases, which are essentially based on NWP (Numerical Weather Prediction) archive data and that supply information with low spatial resolution and very low accuracy. Moreover, real-time monitoring of active off- shore wind plants is being carried out using in-situ installed anemometers, that are not very reliable (especially on long time periods) and that should be periodically substituted when malfunctions or damages occur. These activities could be greatly supported exploiting archived and near real-time satellite imagery, that could provide accurate, global coverage and high spatial resolution information about both averaged and near real-time off-shore windiness. In this work we present new methodologies aimed to support both planning and near-real-time monitoring of off-shore wind energy plants using satellite SAR(Synthetic Aperture Radar) imagery. Such methodologies are currently being developed in the scope of SATENERG, a research project funded by ASI (Italian Space Agency). SAR wind data are derived from radar backscattering using empirical geophysical model functions, thus achieving greater accuracy and greater resolution with respect to other wind measurement methods. In detail, we calculate wind speed from X-band and C- band satellite SAR data, such as Cosmo-SkyMed (XMOD2) and ERS and ENVISAT (CMOD4) respectively. Then, using also detailed models of each part of the wind plant, we are able to calculate the AC power yield expected behavior, which can be used to support either the design of potential plants (using historical series of satellite images) or the

  6. Altimeter Estimation of Sea Surface Wind Stress for Light to Moderate Winds

    Science.gov (United States)

    Vandemark, Douglas; Edson, James B.; Chapron, Bertrand

    1997-01-01

    Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.

  7. Wind flow and wind loads on the surface of a tower- shaped building: Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non- hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  8. Impacts of wind farms on surface air temperatures

    Science.gov (United States)

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  9. Ocean Wind Fields from Satellite Active Microwave Sensors

    OpenAIRE

    Zecchetto, S.

    2010-01-01

    Scatterometer QuikSCAT data have been downloaded from the Physical Oceanography Distributed Active Archive Center (PODAAC) of the Jet Propulsion Laboratory, Pasadena, USA. The ASCAT data have been obtained from the Koninklijk Nederlands Meteorologisch Instituut (Dutch Meteorological Service KNMI, www.knmi.nl) operating in the framework of the Ocean & Sea Ice Satellite Application Facility (www.osi-saf.org) of EUMETSAT. The Envisat ASAR Wide Swath image has been downloaded from the ESA web ser...

  10. Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean

    Indian Academy of Sciences (India)

    M Mohapatra; Monica Sharma

    2015-10-01

    Tropical cyclone (TC) wind field monitoring and forecast are important for mariners, ships on sea and modelling group for creation of synthetic vortex, and storm surge and coastal inundation forecasting. Among others, a multi-platform satellite surface wind analysis developed by Co-operative Institute for Research in the Atmosphere (CIRA), USA for the TCs are referred by India Meteorological Department for surface wind field monitoring of TC. Hence, a study has been undertaken to analyze the characteristics of surface wind distribution and hence the structure of TC based on the real time data available from CIRA during 2007–2013. The study includes 19 TCs over the Bay of Bengal (BOB) and six over Arabian Sea (AS). The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms−1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for analysis. The objective is to develop a reference surface wind structure of TC and examine its validity with respect to physical processes. The size of outer core (34(17) knot (ms−1) wind radial extension) as well as inner core (50(26) and 64(33) knot (ms−1) wind radial extension) increases significantly with increase in intensification of TC over BOB during both pre-monsoon and post-monsoon seasons and over AS during pre-monsoon season. The outer core of winds in TCs over the BOB is asymmetric in both pre-monsoon and post-monsoon seasons and for all categories of intensity of TCs. On the other hand, the asymmetry in inner core winds is significantly less. There is also no asymmetry in radial wind extension over the AS during both the seasons, except in case of outer core wind radial extension of VSCS during pre-monsoon season. The low level environment like enhanced cross equatorial flow, lower/middle level relative humidity, vertical wind shear and proximity of TC to the land surface are the determining

  11. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    that for specific conditions, e.g. very stable atmosphere, the wind profiles can be heavily influenced by the boundary layer height at the 100 m level in the northern European seas. A very interesting part of the analysis includes the shear exponent (alpha) calculated during seasons, during 24-hours and for 12 wind...

  12. A satellite-borne radar wind sensor (RAWS)

    Science.gov (United States)

    Moore, Richard K.; Stuart, Michael; Propp, Timothy

    1993-01-01

    Modeling global atmospheric circulations and forecasting the weather would improve if worldwide information on winds aloft were available. Accurate prediction of weather is important to agriculture, shipping, air traffic, and many other fields. Global system models of climate are of great importance. Current global atmospheric models use pressure measurements and thermodynamic properties to calculate the effects of wind for use in Numerical Weather Prediction (NWP) models. Inputs to the NWP models are temperature, pressure and wind velocities at different heights. Clearly direct wind measurements could significantly improve the NWP model performance. The RAdar Wind Sounder (RAWS) program at the University of Kansas is a study of the feasibility and the trade-offs in the design of a space-based radar system to measure wind vectors. This can be done by measuring the Doppler shift of cloud and rain returns from three or more points and calculating the components of the wind vector. The RAWS study to date uses the candidate system selected after preliminary study of frequencies and sensitivities. Two frequencies chosen, 10 and 35 GHz, allow higher sensitivity for clouds and more penetration for rain. The past year was devoted to modeling the signal-to-noise ratio (SNR) achievable for the two frequencies. The determination of SNR versus cloud penetration depth used a cloud backscattering and attenuation model in the appropriate radar equation. Calculations assumed reasonable losses in reception and transmission, in addition to the atmospheric attenuation. We discovered that ice clouds provide a higher SNR than previously calculated, but some water clouds give lower SNRs than we calculated before. One of the primary issues in the SNR calculation was the choice of the drop size distribution. Although Xin used several distributions (e.g., log normal, Khrigian and Mazin), this year we used the Deirmendjian cloud model. SNR versus cloud penetration plots were generated to

  13. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  14. Widespread land surface wind decline in the Northern Hemisphere

    Science.gov (United States)

    Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.

    2010-09-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from

  15. Using CYGNSS to Observe Convectively Driven Near-Surface Winds in Tropical Precipitation Systems During Madden-Julian Oscillation Events

    Science.gov (United States)

    Lang, Timothy J.; Li, Xuanli; Mecikalski, John; Hoover, Kacie; Castillo, Tyler; Chronis, Themis

    2017-01-01

    The Cyclone Global Navigation OKLMA 1411 UTC Satellite System (CYGNSS) is a multi-satellite constellation that launched 15 December 2016. The primary objective of CYGNSS is to use bistatic Global Positioning System (GPS) reflectometry to accurately measure near-surface wind speeds within the heavily raining inner core of tropical cyclones. CYGNSS also features rapid revisit times over a given region in the tropics - ranging from several minutes to a few hours, depending on the constellation geometry at that time. Despite the focus on tropical cyclones, the ability of CYGNSS to provide rapid updates of winds, unbiased by the presence of precipitation, has many other potential applications related to general tropical convection.

  16. Deriving the effect of wind speed on clean marine aerosol optical properties using the A-Train satellites

    Directory of Open Access Journals (Sweden)

    V. P. Kiliyanpilakkil

    2011-11-01

    Full Text Available The relationship between "clean marine" aerosol optical properties and ocean surface wind speed is explored using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E on board the AQUA satellite. Detailed data analyses are carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. Based on remotely sensed optical properties the CALIPSO algorithm is capable of discriminating "clean marine" aerosols from other types often present over the ocean (such as urban/industrial pollution, desert dust and biomass burning. The global mean optical depth of "clean marine" aerosol at 532 nm (AOD532 is found to be 0.052 ± 0.038 (mean plus or minus standard deviation. The mean layer integrated particulate depolarization ratio of marine aerosols is 0.02 ± 0.016. Integrated attenuated backscatter and color ratio of marine aerosols at 532 nm were found to be 0.003 ± 0.002 sr−1 and 0.530 ± 0.149, respectively. A logistic regression between AOD532 and 10-m surface wind speed (U10 revealed three distinct regimes. For U10 ≤ 4 m s−1 the mean CALIPSO-derived AOD532 is found to be 0.02 ± 0.003 with little dependency on the surface wind speed. For 4 < U10 ≤ 12 m s−1, representing the dominant fraction of all available data, marine aerosol optical depth is linearly correlated with the surface wind speed values, with a slope of 0.006 s m−1. In this intermediate wind speed region, the AOD532 vs. U10 regression slope derived here is comparable to previously reported values. At very high wind speed values (U10 > 18 m s−1, the AOD532-wind speed relationship

  17. Global ocean wind power sensitivity to surface layer stability

    Science.gov (United States)

    Capps, Scott B.; Zender, Charles S.

    2009-05-01

    Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind power by +58% and -4%, respectively. Our best estimate of mean global ocean wind power is 731 W m-2, about 50% greater than the 487 W m-2 based on previous methods. 80 m wind power is 1.2-1.5 times 10 m power equatorward of 30° latitude, between 1.4 and 1.7 times 10 m power in wintertime storm track regions and >6 times 10 m power in stable regimes east of continents. These results are relatively insensitive to methodology as wind power calculated using a fitted Weibull probability density function is within 10% of power calculated from discrete wind speed measurements over most of the global oceans.

  18. Effect of film slicks on near-surface wind

    Science.gov (United States)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  19. Greenland surface albedo changes 1981-2012 from satellite observations

    Science.gov (United States)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  20. The near-surface wind field over the Antarctic continent

    Science.gov (United States)

    van Lipzig, N. P. M.; Turner, J.; Colwell, S. R.; van den Broeke, M. R.

    2004-12-01

    A 14 year integration with a regional atmospheric model has been used to determine the near-surface climatological wind field over the Antarctic ice sheet at a horizontal grid spacing of 55 km. Previous maps of the near-surface wind field were generally based on models ignoring the large-scale pressure-gradient forcing term in the momentum equation. Presently, state-of-the-art atmospheric models include all pressure-gradient forcing terms. Evaluation of our model output against in situ data shows that the model is able to represent realistically the observed increase in wind speed going from the interior to the coast, as well as the observed wind direction at South Pole and Dumont d'Urville and the bimodal wind distribution at Halley.

  1. Error estimates for ocean surface winds: Applying Desroziers diagnostics to the Cross-Calibrated, Multi-Platform analysis of wind speed

    Science.gov (United States)

    Hoffman, Ross N.; Ardizzone, Joseph V.; Leidner, S. Mark; Smith, Deborah K.; Atlas, Robert M.

    2013-04-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind project [Atlas et al., 2011] generates high-quality, high-resolution, vector winds over the world's oceans beginning with the 1987 launch of the SSM/I F08, using Remote Sensing Systems (RSS) microwave satellite wind retrievals, as well as in situ observations from ships and buoys. The variational analysis method [VAM, Hoffman et al., 2003] is at the center of the CCMP project's analysis procedures for combining observations of the wind. The VAM was developed as a smoothing spline and so implicitly defines the background error covariance by means of several constraints with adjustable weights, and does not provide an explicit estimate of the analysis error. Here we report on our research to develop uncertainty estimates for wind speed for the VAM inputs and outputs, i.e., for the background (B), the observations (O) and the analysis (A) wind speed, based on the Desroziers et al. [2005] diagnostics (DD hereafter). The DD are applied to the CCMP ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed error standard deviations vary with latitude in the range 0.7-1.5 m/s and that the cross-calibrated Remote Sensing Systems (RSS) wind speed retrievals standard deviations are in the range 0.5-0.8 m/s. Further the estimated CCMP analysis wind speed standard deviations are in the range 0.2-0.4 m/s. The results suggests the need to revise the parameterization of the errors due to the FGAT (first guess at the appropriate time) procedure. Errors for wind speeds S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, A cross-calibrated, multi-platform ocean surface wind velocity product for meteorological and oceanographic applications, Bull. Am. Meteorol. Soc., 92, 157-174, 2011, doi:10.1175/2010BAMS2946.1. Desroziers, G., L. Berre, B. Chapnik, and P. Poli

  2. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  3. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  4. Retrieval of sea surface winds under hurricane conditions from GNSS-R observations

    Institute of Scientific and Technical Information of China (English)

    JING Cheng; YANG Xiaofeng; MA Wentao; YU Yang; DONG Di; LI Ziwei; XU Cong

    2016-01-01

    Reflected signals from global navigation satellite systems (GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds. The power of GNSS reflectometry (GNSS-R) signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps (DDMs), whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds. However, the bistatic radar cross section (BRCS), which is strongly related to the sea surface roughness, is extensively used in radar. Therefore, a bistatic radar cross section (BRCS) map with a modified BRCS equation in a GNSS-R application is introduced. On the BRCS map, three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed. Airborne Hurricane Dennis (2005) GNSS-R data are then used. More than 16 000 BRCS maps are generated to establish GMFs of the three observables. Finally, the proposed model and classic one-dimensional delay waveform (DW) matching methods are compared, and the proposed model demonstrates a better performance for the high wind speed retrievals.

  5. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high-resolution hur......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  6. Surface wind energy trends near Taiwan in winter since 1871

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available The tropical surface wind speed in boreal winter reaches a maximum near Taiwan. This stable wind resource may be used for future clean energy development. How this surface wind energy source has changed in past 141 years is investigated using the 20th century reanalysis dataset and CMIP5 models. Our observational analysis shows that the surface wind speed experienced a weakening trend in the past 141 years (1871 - 2010. The average decreasing rate is around -1.4 m s-1 per century. The decrease is primarily attributed to the relative sea surface temperature (SST cooling in the subtropical North Pacific, which forces a large-scale low-level anti-cyclonic circulation anomaly in situ and is thus responsible for the southerly trend near Taiwan. The relative SST trend pattern is attributed mainly to the greenhouse gas effect associated with anthropogenic activities. The southerly trend near Taiwan is more pronounced in the boreal winter than in summer. Such seasonal difference is attributed to the reversed seasonal mean wind, which promotes more efficient positive feedback in the boreal winter. The CMIP5 historical run analysis reveals that climate models capture less SST warming and large-scale anti-cyclonic circulation in the subtropical North Pacific, but the simulated weakening trend of the surface wind speed near Taiwan is too small.

  7. Detecting surface geostrophic currents using wavelet filter from satellite geodesy

    Institute of Scientific and Technical Information of China (English)

    HSU; HouTse

    2007-01-01

    According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.

  8. Detecting surface geostrophic currents using wavelet filter from satellite geodesy

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZiZhan; LU Yang; HSU HouTse

    2007-01-01

    According to the features of spatial spectrum of the dynamic ocean topography (DOT), wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96), combining an altimetry-derived mean sea surface height model (KMSS04), two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter, and the DOT models associated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global, Kuroshio and equatorial Pacific regions with that from oceanography, and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale, the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography, which indicates that ocean currents detected by satellite measurement have reached relatively high precision.

  9. Surface diurnal warming in the East China Sea derived from satellite remote sensing

    Science.gov (United States)

    Song, Dan; Duan, Zhigang; Zhai, Fangguo; He, Qiqi

    2017-09-01

    Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature (SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang (Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.

  10. Satellite remote sensing of ultraviolet irradiance on the ocean surface

    Institute of Scientific and Technical Information of China (English)

    LI Teng; PAN Delu; BAI Yan; LI Gang; HE Xianqiang; CHEN Chen-Tung Arthur; GAO Kunshan; LIU Dong; LEI Hui

    2015-01-01

    Ultraviolet (UV) radiation has a significant influence on marine biological processes and primary productivity;however, the existing ocean color satellite sensors seldom contain UV bands. A look-up table of wavelength-integrated UV irradiance (280–400 nm) on the sea surface is established using the coupled ocean atmosphere radiative transfer (COART) model. On the basis of the look-up table, the distributions of the UV irradiance at middle and low latitudes are inversed by using the satellite-derived atmospheric products from the Aqua satellite, including aerosol optical thickness at 550 nm, ozone content, liquid water path, and the total precipitable water. The validation results show that the mean relative difference of the 10 d rolling averaged UV irradiance between the satellite retrieval and field observations is 8.20% at the time of satellite passing and 13.95% for the daily dose of UV. The monthly-averaged UV irradiance and daily dose of UV retrieved by satellite data show a good correlation with thein situ data, with mean relative differences of 6.87% and 8.43%, respectively. The sensitivity analysis of satellite inputs is conducted. The liquid water path representing the condition of cloud has the highest effect on the retrieval of the UV irradiance, while ozone and aerosol have relatively lesser effect. The influence of the total precipitable water is not significant. On the basis of the satellite-derived UV irradiance on the sea surface, a preliminary simple estimation of ultraviolet radiation’s effects on the global marine primary productivity is presented, and the results reveal that ultraviolet radiation has a non-negligible effect on the estimation of the marine primary productivity.

  11. Satellite monitoring of sea surface pollution

    Science.gov (United States)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  12. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  13. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  14. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces is dete...

  15. World′s first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed "KIZUNA"

    Directory of Open Access Journals (Sweden)

    Takashi Sawai

    2013-01-01

    Full Text Available Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA has developed the "Kizuna" ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan, Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also

  16. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  17. Artificial Crater Formation on Satellite Surfaces Using an Orbiting Railgun

    Science.gov (United States)

    Dissly, R. W.; Miller, K. L.; Carlson, R. J.

    2003-01-01

    The specification of greater than 45kW of disposable power available on the JIMO spacecraft raises the possibility of a new class of instrumentation that has utility at such power levels. In this presentation we discuss the concept of an electromagnetic mass driver that can launch projectiles from orbit around one of the Galilean satellites directed on a trajectory that will impact the satellite surface. The resulting impact will create a crater that will provide information on the mechanical properties of surface and near-surface materials, expose subsurface materials for remote spectral identification, and form a vapor cloud that can be sensed for composition either remotely or in-situ. An analog for such a controlled cratering experiment is Deep Impact, a mission to observe the crater and ensuing ejecta cloud formed by a ballistic projectile into a comet surface in July, 2005.

  18. Artificial Crater Formation on Satellite Surfaces Using an Orbiting Railgun

    Science.gov (United States)

    Dissly, R. W.; Miller, K. L.; Carlson, R. J.

    2003-01-01

    The specification of greater than 45kW of disposable power available on the JIMO spacecraft raises the possibility of a new class of instrumentation that has utility at such power levels. In this presentation we discuss the concept of an electromagnetic mass driver that can launch projectiles from orbit around one of the Galilean satellites directed on a trajectory that will impact the satellite surface. The resulting impact will create a crater that will provide information on the mechanical properties of surface and near-surface materials, expose subsurface materials for remote spectral identification, and form a vapor cloud that can be sensed for composition either remotely or in-situ. An analog for such a controlled cratering experiment is Deep Impact, a mission to observe the crater and ensuing ejecta cloud formed by a ballistic projectile into a comet surface in July, 2005.

  19. Comments on Navy/NRL requirements for sea surface temperature and surface wind measurements on Seasat-A

    Science.gov (United States)

    Ruskin, R. E.; Jeck, R. K., Jr.

    1974-01-01

    SEASAT instrumentation payload requirements to provide satellite data for the Navy fleet operational fog prediction program include: (1) some form of C-band microwave radiometer capability; (2) a scanning antenna with a 40-km Instanteneous Field of View (IFOV) for the C-band channel; (3) a narrow band and high resolution IR scanning radiometer for cloud free areas; and (4) a capability for measuring surface winds of 3 to 50 m/sec at + or - 10% accuracy and 50 to 100 km spatial resolution.

  20. Surface ages of mid-size Saturnian satellites

    CERN Document Server

    Di Sisto, Romina P

    2015-01-01

    The observations of the surfaces of the mid sized Saturnian satellites made by Cassini Huygens mission have shown a variety of features that allows study of the processes that took place and are taking place on those worlds. Research of the Saturnian satellite surfaces has clear implications for Saturn history and surroundings. In a recent paper, the production of craters on the mid sized Saturnian satellites by Centaur objects was calculated considering the current Solar System. We have compared our results with crater counts from Cassini images and we have noted that the number of observed small craters is less than our calculated number. In this paper we estimate the age of the surface for each observed terrain on each mid sized satellite of Saturn. We have noticed that since there are less observed small craters than calculated (except on Iapetus), this results in younger ages. This could be the result of efficient endogenous or exogenous process(es) for erasing small craters and or crater saturation at t...

  1. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Barthelmie, R.; Dellwik, E.; Hoffmann Joergensen, B.; Gylling Mortensen, N.; Nielsen, M.; Pryor, S.; Rathmann, O.

    2002-05-01

    A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote Sensing Centre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded by the ERS-2 SAR satellite have been obtained from the NERSC. For the Danish site the wind speed and wind direction maps have been compared to in-situ observations from a met-mast at Horns Rev in the North Sea located 14 km offshore. The SAR wind speeds have been area-averaged by simple and advanced footprint modelling, ie. the upwind conditions to the meteorological mast are explicitly averaged in the SAR wind speed maps before comparison. The comparison results are very promising with a standard error of {+-} 0.61 m s{sup -1}, a bias {approx}2 m s{sup -1} and R{sup 2} {approx}0.88 between in-situ wind speed observations and SAR footprint averaged values at 10 m level. Wind speeds predicted by the local scale model LINCOM and the mesoscale model KAMM2 have been compared to the spatial variations in the SAR wind speed maps. The finding is a good correspondence between SAR observations and model results. Near the coast is an 800 m wide band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. A total of 16 cases were analyzed for Horns Rev. For Maddalena in Italy five cases were analyzed. At the Italian site the SAR wind speed maps were compared to WAsP and KAMM2 model results. The WAsP model

  2. The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan;

    2011-01-01

    This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...... of uncertainties and discuss the utilization of reliability-based design of surface footings for wind turbines....

  3. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    Science.gov (United States)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  4. Effects of surface wind speed decline on hydrology in China

    Science.gov (United States)

    Liu, X.; Zhang, X.; Tang, Q.; Zhang, X.

    2013-12-01

    Surface wind speed decline in China has been widely reported, but its effects on hydrology have not been fully evaluated to date. In this study, we evaluate the effects of wind speed decline on hydrology in China during 1966-2011 by using the Variable Infiltration Capacity (VIC) hydrological model. Two model experiments, i.e. VIC simulations with the observed (EXP1) and detrended wind speed (EXP2), are performed in the major river basins in China. The differences between the two experiments are analyzed to assess the effects of wind speed decline on hydrology. Results show that wind speed has decreased by 29% of its mean in China, even by 80% for some areas in the northern China. The wind speed decline have resulted in a decrease of evapotranspiration by 1-3% of mean annual evapotranspiration and an increase of runoff by 1-6% of mean annual runoff at most basins in China. The effect of wind speed on runoff and soil moisture is large in the northern basins where small change in hydrological conditions would have significant implications for water management. In addition, Wind speed decline has offset the expansion of the drought area in China. It has contributed to a reduction of drought areas by 21%, 17%, 15% and 12% for the mean drought area in the Songhuajiang River, Hai River, Liao River and Yellow River basins, respectively, and by 8.8% of the mean drought area over China. The effect of wind speed decline on soil moisture drought is large in most basins in China expect for the Southwest and Pearl River basins.

  5. Spatio-temporal variability in sea surface wind stress near and off the east coast of Korea

    Institute of Scientific and Technical Information of China (English)

    NAM SungHyun; KIM Young Ho; PARK Kyung-Ae; KIM Kuh

    2005-01-01

    Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCAT), and global reanalyzed products (ECMWF,NOGAPS,and NCEP/NCAR). Temporal variabilities are analyzed at 3 frequency bands; synoptic (2~20 d), intra-seasonal (20~90 d),and seasonal (>90 d).Synoptic and intra-seasonal variations are predominant near and off the Donghae City due to the passage of the mesoscale weather system. Seasonal variation is caused by southeastward wind stress during Asian winter monsoon. The sea surface wind stress from reanalyzed datasets,QuikSCAT and KMA-B measurements off the coast show good agreement in the magnitude and direction,which are strongly aligned with the alongshore direction. At the land-based sites,wind stresses are much weaker by factors of 3~10 due to the mountainous landmass on the east parts of Korea Peninsula. The first EOF modes(67 % ~70%) of wind stresses from reanalyzed and QuikSCAT data have similar structures of the strong southeastward wind stress in winter along the coast but show different curl structures at scales less than 200 kn due to the orographic effects. The second EOF modes (23 % ~25%)show southwestward wind stress in every September along the east coast of the North Korea

  6. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  7. Low-Frequency Rotation of Surface Winds over Canada

    Directory of Open Access Journals (Sweden)

    Richard B. Richardson

    2012-10-01

    Full Text Available Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W to 25 days at Resolute (75°N, 95°W. Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” (i.e., cyclonic rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.

  8. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  9. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    Science.gov (United States)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  10. Shrinkage of magnetosphere observed by TC-1 satellite during the high-speed solar wind stream

    Institute of Scientific and Technical Information of China (English)

    LI LiuYuan; CAO JinBin; ZHOU GuoCheng; YANG JunYing; YAN ChunXiao; ZHANG TieLong; H. REME; I. DANDOURAS; C. M. CARR

    2008-01-01

    During the interval 06:14-07:30 UT on August 24, 2005, since the Earth's magneto-pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magnetic field (IMF), the magnetopause moved Inward for about 3.1 RE. Meanwhile, TC-1 satellite shifted from northern plasma sheet to the northern lobe/mantle region, although it kept Inward flying during the Interval 06:00-07:30UT. The shift of TC-1 from the plasma sheet to the lobe/mantle is caused by the simultaneous inward displacements of the plasma sheet and near-Earth lobe/mantle region, and their inward movement velocity is larger than the inward motion velocity of TC-1. The Joint inward dis-placements of the magnetopause, the lobe/mantle region and the plasma sheet indicate that the whole magnetosphere shrinks inward due to the magnetospheric compression by the high-speed solar wind stream, and the magnetospheric ions are attached to the magnetic field lines (i.e. 'frozen' in magnetic field) and move inward in the shrinking process of magnetosphere. The large shrinkage of magne-tosphere indicates that the near-Earth magnetotail compression caused by the strong solar wind dynamic pressure is much larger than its thickening caused by the southward component of the IMF, and the locations of magnetospheric regions with different plasmas vary remarkably with the variation of the solar wind dynamic pressure.

  11. Operational high latitude surface irradiance products from polar orbiting satellites

    Science.gov (United States)

    Godøy, Øystein

    2016-12-01

    It remains a challenge to find an adequate approach for operational estimation of surface incoming short- and longwave irradiance at high latitudes using polar orbiting meteorological satellite data. In this presentation validation results at a number of North Atlantic and Arctic Ocean high latitude stations are presented and discussed. The validation results have revealed that although the method works well and normally fulfil the operational requirements, there is room for improvement. A number of issues that can improve the estimates at high latitudes have been identified. These improvements are partly related to improved cloud classification using satellite data and partly related to improved handling of multiple reflections over bright surfaces (snow and sea ice), especially in broken cloud conditions. Furthermore, the availability of validation sites over open ocean and sea ice is a challenge.

  12. Using ARM Data to Evaluate Satellite Surface Solar Flux Retrievals

    Energy Technology Data Exchange (ETDEWEB)

    Hinkelman, L.M.; Stackhouse, P.W.; Young, D.F.; Long, C.N.; Rutan, D.

    2005-03-18

    The accurate, long-term radiometric data collected by Atmospheric Radiation Measurement (ARM) has become essential to the evaluation of surface radiation budget data from satellites. Since the spatial and temporal characteristics of data from these two sources are very different, the comparisons are typically made for long-term average values. While such studies provide a general indication of the quality of satellite flux products, more detailed analysis is required to understand specific retrieval algorithm weaknesses. Here we show how data from the ARM shortwave flux analysis (SFA) value added product (VAP) are being used to assess solar fluxes in the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB), release 2.5.

  13. Determining Land-Surface Parameters from the ERS Wind Scatterometer

    NARCIS (Netherlands)

    Woodhouse, I.H.; Hoekman, D.H.

    2000-01-01

    The ERS-1 wind scatterometer (WSC) has a resolution cell of about 50 km but provides a high repetition rate (less than four days) and makes measurements at multiple incidence angles. In order to retrieve quantitative geophysical parameters over land surfaces using this instrument, a method is presen

  14. The Influence of Wind on HF Radar Surface Current Forecasts

    Science.gov (United States)

    2008-12-01

    9 1. Ekman , 1905 .........................................................................................9 2. McNally, Luther and...x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. Ekman Spiral. – The angle between the wind and the surface current is 45º... Paul Jessen Terry Rago Superv. Gen. Eng. Robert Wyland I also appreciate the Oceanography and Meteorology/Oceanography students

  15. Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes

    Science.gov (United States)

    Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.

    2010-12-01

    The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from

  16. Wind-Speed—Surface-Heat-Flux Feedback in Dust Devils

    Science.gov (United States)

    Ito, Junshi; Niino, Hiroshi

    2016-06-01

    Strong winds associated with dust devils can induce locally large heat fluxes from the surface, and resulting enhanced buoyancy may further intensify the dust devils. This positive wind—surface-heat-flux feedback is studied using a large-eddy simulation of a convective boundary layer. A comparison of the results with and without the feedback process for the same environment demonstrates the significance of the feedback process for simulated dust devils.

  17. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  18. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  19. Near-nadir microwave specular returns from the sea surface - Altimeter algorithms for wind and wind stress

    Science.gov (United States)

    Wu, Jin

    1992-01-01

    Two approaches have been adopted to construct altimeter wind algorithms: one is based on the mean-square sea surface slope, and the other is based on the Seasat scatterometer wind. Both types of algorithms are critically reviewed with respect to the mechanism governing near-nadir sea returns and the comparison between altimeter and buoy winds. A new algorithm is proposed; it is deduced on the basis of microwave specular reflection and is finely tuned with buoy-measured winds. On the basis of this algorithm and the formula of the wind-stress coefficient, a simple wind-stress algorithm is also proposed.

  20. Spatial development of the wind-driven water surface flow

    Science.gov (United States)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  1. Multi-Spectral Satellite Imagery and Land Surface Modeling Supporting Dust Detection and Forecasting

    Science.gov (United States)

    Molthan, A.; Case, J.; Zavodsky, B.; Naeger, A. R.; LaFontaine, F.; Smith, M. R.

    2014-12-01

    Current and future multi-spectral satellite sensors provide numerous means and methods for identifying hazards associated with polluting aerosols and dust. For over a decade, the NASA Short-term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center in Huntsville has focused on developing new applications from near real-time data sources in support of the operational weather forecasting community. The SPoRT Center achieves these goals by matching appropriate analysis tools, modeling outputs, and other products to forecast challenges, along with appropriate training and end-user feedback to ensure a successful transition. As a spinoff of these capabilities, the SPoRT Center has recently focused on developing collaborations to address challenges with the public health community, specifically focused on the identification of hazards associated with dust and pollution aerosols. Using multispectral satellite data from the SEVIRI instrument on the Meteosat series, the SPoRT team has leveraged EUMETSAT techniques for identifying dust through false color (RGB) composites, which have been used by the National Hurricane Center and other meteorological centers to identify, monitor, and predict the movement of dust aloft. Similar products have also been developed from the MODIS and VIIRS instruments onboard the Terra and Aqua, and Suomi-NPP satellites, respectively, and transitioned for operational forecasting use by offices within NOAA's National Weather Service. In addition, the SPoRT Center incorporates satellite-derived vegetation information and land surface modeling to create high-resolution analyses of soil moisture and other land surface conditions relevant to the lofting of wind-blown dust and identification of other, possible public-health vectors. Examples of land surface modeling and relevant predictions are shown in the context of operational decision making by forecast centers with potential future applications to public health arenas.

  2. CYGNSS Spaceborne Constellation for Ocean Surface Winds: Mission Design and Sampling Properties

    Science.gov (United States)

    Ruf, Chris; Ridley, Aaron; Clarizia, Maria Paola; Gleason, Scott; Rose, Randall; Scherrer, John

    2014-05-01

    The NASA Earth Venture Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission scheduled to launch in October 2016 that is focused on tropical cyclone (TC) inner core process studies. CYGNSS is specifically designed to address the inadequacy in observations of the inner core that result from two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS measurements of bistatic radar cross section of the ocean can be directly related to the near surface wind speed, in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC mission in 2005-6. CYGNSS will advance the wind measuring capability demonstrated by the experimental payload on UK-DMC to a more mature ocean science mission. The CYGNSS constellation is comprised of 8 observatories in 500 km circular orbits at a common inclination angle of 35°. Each observatory contains a Delay Doppler Mapping Instrument (DDMI) which consists of a multi-channel GPS receiver, a low gain zenith antenna and two high gain nadir antennas. Each DDMI measures simultaneous specular scattered signals from the 4 GPS transmitters with the highest probable signal-to-noise ratio. The receivers coherently integrate the received signals for 1 ms, then incoherently integrate on board for an additional one second. This results in 32 wind measurements per second. CYGNSS has spatial and temporal sampling properties that are distinctly different from conventional wide-swath polar imagers. Spatial sampling is marked by 32 simultaneous single pixel "swaths" that are 25 km wide and, typically, 100s of km long. They can be considered roughly

  3. Influence of surface stressing on stellar coronae and winds

    CERN Document Server

    Jardine, M; van Ballegooijen, A; Donati, J -F; Morin, J; Fares, R; Gombosi, T I

    2013-01-01

    The large-scale field of the Sun is well represented by its lowest energy (or potential) state. Recent observations, by comparison, reveal that many solar-type stars show large-scale surface magnetic fields that are highly non-potential - that is, they have been stressed above their lowest-energy state. This non-potential component of the surface field is neglected by current stellar wind models. The aim of this paper is to determine its effect on the coronal structure and wind. We use Zeeman-Doppler surface magnetograms of two stars - one with an almost potential, one with a non-potential surface field - to extrapolate a static model of the coronal structure for each star. We find that the stresses are carried almost exclusively in a band of uni-directional azimuthal field that is confined to mid-latitudes. Using this static solution as an initial state for an MHD wind model, we then find that the final state is determined primarily by the potential component of the surface magnetic field. The band of azimut...

  4. Surface chlorophyll, westerly winds, and El Nino in the western Pacific warm pool

    Science.gov (United States)

    Radenac, Marie-Hélène; Messié, Monique; Bosc, Christelle

    The western equatorial Pacific warm pool is characterized by sea surface temperature (SST) higher than 29° C and sea surface salinity (SSS) lower than 35. It is usually considered as a broad oligotrophic region with a nitrate exhausted and low chlorophyll (lower than 0.1 mg m-3 ) surface layer. Nevertheless, ocean colour imagery shows that surface chlorophyll concentrations vary at the interannual, seasonal, and intraseasonal time-scales. In this study, we use the 2000-2007 SeaWiFS data together with QuikScat wind, TMI SST, altimetric sea level, and OSCAR satellite-derived surface currents to describe and understand the variability of the surface chlorophyll in the region. In particular, nutrient and phytoplankton-rich waters upwelled near the country-regionplaceNew Guinea coast influence the distribution of surface chlorophyll in the equatorial warm pool from intra-seasonal to interannual time-scales. We show that the eastern part of the region is occupied by a quasi-persistent strip of very oligotrophic waters with chlorophyll concentrations close to those observed in the subtropical gyres (0.07 mg m-3 ). It extends over about 20 degrees of longitude and its width varies seasonally and with the El Niño/La Niña phases. Overall, this very oligotrophic zone matches n n the well-documented region with the warmest SST (over 30° C), thickest barrier layer (more than 20 m), and highest sea level (more than 220 cm) of the equatorial Pacific. Its eastern limit matches the eastern edge of the warm pool and moves zonally at seasonal and interannual time-scales. While the eastern edge has been described in previous studies, the western edge is poorly known. It is marked by the 0.1 mg m-3 chlorophyll isoline and its zonal motions occur at seasonal, interannual, and intraseasonal time-scales, as well. We investigate the late-2001 to late-2002 time period to assess the intra-seasonal variability of the surface chlorophyll in relation with the wind intra-seasonal variability

  5. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar

    Science.gov (United States)

    Liu, Zhishen; Wang, Zhangjun; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Zhang, Xin; Bi, Decang; Chen, Yubao; Li, Rongzhong; Yang, Yuqiang

    2009-06-01

    The Key Laboratory of Ocean Remote Sensing of the Ministry of Education of China, Ocean University of China, has developed the first mobile Doppler wind lidar in China. As an important component of meteorological services for the Good Luck Beijing 2007 Qingdao International Regatta, the mobile Doppler wind lidar was used to measure the sea surface wind (SSW) with 100 m*100 m spatial and 10-min temporal resolution in Qingdao from 15 to 23 August 2007. We present the results from two aspects of this campaign. First, the lidar was operated in the fixed-direction mode and compared to SSW simultaneously measured by a collocated buoy. Second, we present lidar wind measurements throughout the regatta and show good agreement with the match situation of the International Regatta. In addition, we present a case study, accounting for the observation of sailboats stopped by the headwind. With considerable data accumulated, we have shown that the mobile Doppler wind lidar can indeed provide near real-time SSW in support of the sailing games. The lidar has also provided meteorological services for the 2008 Olympic sailing games from 8 to 22 August and Paralympics Sailing Games from 8 to 13 September 2008 in Qingdao.

  6. Variability in the coupling between sea surface temperature and wind stress in the global coastal ocean

    Science.gov (United States)

    Wang, Yuntao; Castelao, Renato M.

    2016-08-01

    Mesoscale ocean-atmosphere interaction between sea surface temperature (SST) and wind stress throughout the global coastal ocean was investigated using 7 years of satellite observations. Coupling coefficients between crosswind SST gradients and wind stress curl and between downwind SST gradients and wind stress divergence were used to quantify spatial and temporal variability in the strength of the interaction. The use of a consistent data set and standardized methods allow for direct comparisons between coupling coefficients in the different coastal regions. The analysis reveals that strong coupling is observed in many mid-latitude regions throughout the world, especially in regions with strong fronts like Eastern and Western Boundary Currents. Most upwelling regions in Eastern Boundary Currents are characterized by strong seasonal variability in the strength of the coupling, which generally peaks during summer in mid latitudes and during winter at low latitudes. Seasonal variability in coastal regions along Western Boundary Currents is comparatively smaller. Intraseasonal variability is especially important in regions of strong eddy activity (e.g., Western Boundary Currents), being particularly relevant for the coupling between crosswind SST gradients and wind stress curl. Results from the analysis can be used to guide modeling studies, since it allows for the a priori identification of regions in which regional models need to properly represent the ocean-atmosphere interaction to accurately represent local variability.

  7. Deterministic nature of the underlying dynamics of surface wind fluctuations

    Directory of Open Access Journals (Sweden)

    R. C. Sreelekshmi

    2012-10-01

    Full Text Available Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  8. Deterministic nature of the underlying dynamics of surface wind fluctuations

    Science.gov (United States)

    Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.

    2012-10-01

    Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  9. Satellite techniques for determining the geopotential of sea surface elevations

    Science.gov (United States)

    Pisacane, V. L.

    1986-01-01

    Spaceborne altimetry with measurement accuracies of a few centimeters which has the potential to determine sea surface elevations necessary to compute accurate three-dimensional geostrophic currents from traditional hydrographic observation is discussed. The limitation in this approach is the uncertainties in knowledge of the global and ocean geopotentials which produce satellite and height uncertainties about an order of magnitude larger than the goal of about 10 cm. The quantitative effects of geopotential uncertainties on processing altimetry data are described. Potential near term improvements, not requiring additional spacecraft, are discussed. Even though there is substantial improvements at the longer wavelengths, the oceanographic goal will be achieved. The geopotential research mission (GRM) is described which should produce geopotential models that are capable of defining the ocean geoid to 10 cm and near-earth satellite position. The state of the art and the potential of spaceborne gravimetry is described as an alternative approach to improve our knowledge of the geopotential.

  10. UV laser approach to doppler tropospheric wind sounding from a satellite

    Science.gov (United States)

    McKay, Jack A.; Wilkerson, Thomas D.; Heller, Donald F.; Walling, John C.

    1995-12-01

    The possibility of direct detection of tropospheric wind speed Doppler shift with an ultraviolet laser is considered. The use of the UV eliminates all practical concerns of eye safety, permits the use of uncooled detectors, and yields enhanced aerosol and Rayleigh backscatter signals. The Rayleigh signal, which in the free troposphere can exceed the aerosol signal by three orders of magnitude, is itself a candidate for wind speed measurement, despite the Doppler broadening of this signal. The basis of this approach is a diode-pumped, frequency-doubled alexandrite laser, which offers very high electrical to optical energy efficiency, an estimated 9%, in generating UV output. Efficiency is critical for a satellite based lidar system due to the size, cost, and mass of solar power generation and waste heat disposal subsystems. Pumping of alexandrite with 680 nm laser diodes has been demonstrated. Narrow linewidth, high spectral purity, and high frequency stability have been obtained with laser diode injection seeding of a ring alexandrite laser. The tunable diode laser control allows tuning of the laser for spacecraft velocity compensation. The potential performance of a wind sounding lidar scaled to match the 300 W power capability of a mid-sized satellite is evaluated for the extremely weak aerosol conditions of the southern hemisphere oceans. A 20 W output laser system, with 1 m aperture telescope, at 350 km altitude, may yield measurement precisions better than plus or minus 3 m/s through most of the troposphere, deteriorating to plus or minus 10 m/s under extreme conditions. A Rayleigh backscatter system will yield plus or minus 3 m/s precision to 8 km altitude, plus or minus 5 m/s at 15 km, even with zero aerosol content.

  11. Path planning on satellite images for unmanned surface vehicles

    Directory of Open Access Journals (Sweden)

    Joe-Ming Yang

    2015-01-01

    Full Text Available In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle A * algorithm (FAA *, an advanced A * algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV

  12. Global mesospheric tidal winds observed by the high resolution Doppler imager on board the upper atmosphere research satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Y.T.; Lieberman, R.S.; Hays, P.B.; Ortland, D.A.; Marshall, A.R.; Wu, D.; Skinner, W.R.; Burrage, M.D.; Gell, D.A.; Yee, J.H.

    1993-06-18

    This paper presents results of mesospheric and lower thermospheric wind tides. The observations come from the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite. From these observations, the authors report the observation of tidal effects on top of the meridonal winds observed in this region. Previous measurements have been mainly limited to radar measurements from fixed ground stations, which do not give consistent results, and do not provide a global picture of the wave structure.

  13. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  14. Sea surface height variability in the North East Atlantic from satellite altimetry

    Science.gov (United States)

    Sterlini, Paul; de Vries, Hylke; Katsman, Caroline

    2016-08-01

    Data from 21 years of satellite altimeter measurements are used to identify and understand the major contributing components of sea surface height variability (SSV) on monthly time-scales in the North East Atlantic. A number of SSV drivers is considered, which are categorised into two groups; local (wind and sea surface temperature) and remote (sea level pressure and the North Atlantic oscillation index). A multiple linear regression model is constructed to model the SSV for a specific target area in the North Sea basin. Cross-correlations between candidate regressors potentially lead to ambiguity in the interpretation of the results. We therefore use an objective hierarchical selection method based on variance inflation factors to select the optimal number of regressors for the target area and accept these into the regression model if they can be associated to SSV through a direct underlying physical forcing mechanism. Results show that a region of high SSV exists off the west coast of Denmark and that it can be represented well with a regression model that uses local wind, sea surface temperature and sea level pressure as primary regressors. The regression model developed here helps to understand sea level change in the North East Atlantic. The methodology is generalised and easily applied to other regions.

  15. Shrinkage of magnetosphere observed by TC-1 satellite during the high-speed solar wind stream

    Institute of Scientific and Technical Information of China (English)

    H.; RME; I.; DANDOURAS; C.; M.; CARR

    2008-01-01

    During the interval 06:14―07:30 UT on August 24, 2005, since the Earth’s magneto- pause was suddenly compressed by the persistent high-speed solar wind stream with the southward component of the interplanetary magnetic field (IMF), the magnetopause moved inward for about 3.1 RE. Meanwhile, TC-1 satellite shifted from northern plasma sheet to the northern lobe/mantle region, although it kept inward flying during the interval 06:00―07:30UT. The shift of TC-1 from the plasma sheet to the lobe/mantle is caused by the simultaneous inward displacements of the plasma sheet and near-Earth lobe/mantle region, and their inward movement velocity is larger than the inward motion velocity of TC-1. The joint inward dis-placements of the magnetopause, the lobe/mantle region and the plasma sheet indicate that the whole magnetosphere shrinks inward due to the magnetospheric compression by the high-speed solar wind stream, and the magnetospheric ions are attached to the magnetic field lines (i.e. ‘frozen’ in magnetic field) and move inward in the shrinking process of magnetosphere. The large shrinkage of magne-tosphere indicates that the near-Earth magnetotail compression caused by the strong solar wind dynamic pressure is much larger than its thickening caused by the southward component of the IMF, and the locations of magnetospheric regions with different plasmas vary remarkably with the variation of the solar wind dynamic pressure.

  16. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  17. On the onset of surface wind drift at short fetches as observed in a wind wave flume

    Science.gov (United States)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Robles, Lucia

    2014-05-01

    Ocean surface drift is of great relevance to properly model wind waves and specially the early stages of surface waves development and ocean-atmosphere fluxes during incipient wind events and storms. In particular, wave models are not so accurate predicting wave behaviour at short fetches, where wind drift onset might be very important. The onset of surface drift induced by wind and waves is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide reference information to the corresponding surface drift onset recorded at rather short non-dimensional fetches. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Surface drift values were up to 0.5 cm/s for the highest wind while very distinctive shear was detected in the upper 1.5 cm. Rather linear variation of surface drift was observed with depth. Evolution of the surface drift velocity is analysed and onset behaviour is addressed with particular emphasis in accelerated winds. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from ANUIES-ECOS M09-U01 project, CONACYT-187112 Estancia Sabática, and Institute Carnot, is greatly acknowledged.

  18. Ice Surface Elevation Changes in East Antarctica from Satellite Altimetry

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; DiMarzio, John

    1998-01-01

    Estimates of the overall mass balance and seasonal and inter-annual variations in the surface mass balance are obtainable from time-series of ice surface elevations measured by satellite altimetry. Beginning in 2001, NASA's ICESat laser altimeter and lidar mission will significantly improve the range accuracy, the orbit accuracy, and the spatial coverage for measurement of ice sheet elevations (to 86 S) , as compared to previous radar altimeters designed for ocean measurements The radar altimeters on Seasat and Geosat provided ice sheet measurements to 72 S, and on ERS-1 and ERS-2 to 81 S. Although radar altimetry has significant limitations in coverage (due to loss of tracking) and accuracy over sloping surfaces, information on ice-sheet surface-elevation changes has been derived for parts of Antarctica. Recently, the accuracy of the ice measurements by Seasat (3 months of 1978) and Geosat (1985 to 1989) have been improved by new calculations of the satellite orbit heights and other altimeter corrections. Residual orbit errors and inter-satellite biases are evaluated by crossover analysis and by global adjustments to an ocean surface derived from altimeter data. The standard deviation of the orbit error is less than 9 cm, and the long-term trend in the error appears to be less than 1 cm/yr. Orbit errors can be further reduced by adjustment to the ocean surface, but false signals of several cm/yr may be also introduced by the adjustments. These false signals are caused mainly by residual errors in the altimeter corrections over the ocean, and secondary by real changes in the ocean surface elevation. Maps of ice sheet elevation changes north of 72 S are derived from Seasat-Geosat crossovers and from 4.5 years of Geosat crossovers. A notable ice thinning rate of about 50 cm/yr is found at elevations below 2200 meters between 70 and 72 S to the East of the Amery ice shelf, in both the Seasat-Geosat and Geosat-Geosat time intervals Above 2200 meters, to the ridge

  19. Impact of Air Pollution on Summer Surface Winds in Xi'an

    Institute of Scientific and Technical Information of China (English)

    杨新; 董文杰; 刘芳霞

    2011-01-01

    By analysis of observation data,this paper demonstrates that pollution particles could reduce surface wind speed through blocking solar radiation to the ground.The comparation between temperature at the lowland meteorological station Xi'an and that over the nearby highland station Mt.Hun suggests that surface solar radiation at Xi'an is reduced due to the increasing anthropogenic aerosols.The reduced surface energy suppresses the atmospheric instability and convective flows,and thus the downward transfer of faster winds aloft is reduced.Consequently,wind speeds near surface are weakened.This reduction of surface winds is shown by the significant reverse trends of wind speeds over the two stations at different elevations.The aerosols' effects on winds are also manifested in the trends of radionsonde wind speed.The decreased surface winds in Xi'an have also reduced local pan evaporation.

  20. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  1. Direct determination of surface albedos from satellite imagery

    Science.gov (United States)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  2. Linking oil production to surface subsidence from satellite radar interferometry

    Science.gov (United States)

    Xu, Haibin; Dvorkin, Jack; Nur, Amos

    Land subsidence over the Belridge and Lost Hills oil fields, Southern California, was measured using spaceborne interferometric synthetic aperture radar (InSAR). During the 105-day period between 11/5/95 and 2/17/96, the subsidence in the center of the Lost Hills field reached 15 cm. We assume that this surface subsidence resulted from the vertical shrinkage of the reservoir, which in turn was due to oil production and the resulting pore pressure drop. We model this mechanical effect using an elastic deformation theoretical solution with input constants taken from relevant experiments. The modeled surface deformation matches the InSAR measured values. This result indicates that it is possible, in principle, to monitor hydrocarbon production using satellite-based measurements of earth deformation.

  3. Surface chlorophyll distributions in the upper Gulf of Thailand investigated using satellite imagery and ecosystem model

    Science.gov (United States)

    Buranapratheprat, Anukul

    MERIS data and Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model coupled with the Princeton Ocean Model (POM), were used to investigate seasonal variations in surface chlorophyll distributions and their controlling factors to clarify phytoplankton dynamics in the upper Gulf of Thailand. Chlorophyll maps were produced by application on MERIS Level 2 data an empirical algorithm derived from the regression analysis of the relationship between chlorophyll-a concentration and remote sensing reflectance ratio. The results indicated that the patterns of seasonal chlorophyll distributions corresponded to local wind and water circulations. The model simulation highlighted the importance of river water as a significant nutrient source, and its movement after discharge into the sea is controlled by seasonal circulations. High chlorophyll concentration located along the western coast following the direction of counter-clockwise circulation, forced by the northeast winds, while chlorophyll accumulation was observed in the northeastern corner of the gulf due to clockwise circulation, driven by the southwest winds. These key simulated results are consistent with those of field observations and satellite images captured in the same periods of time, and also described seasonal shifting of blooming areas previously reported. Sensitivity analysis of simulated chlorophyll distributions suggested that not only nutrients but also wind-induced vertical movement plays a significant role in controlling phytoplankton growth. Plankton blooms occur in zones of upwelling or where vertical diffusivities are low. Increasing nutrients in the water column due to river loads leads to increasing potential for severe plankton blooms when other photosynthetic factors, such as water stability and light, are optimized. The knowledge of seasonal patterns of blooming can be used to construct environmental risk maps which are very useful for planning to mitigate the eutrophic problems

  4. A multi-model assessment of the impact of currents, waves and wind in modelling surface drifters and oil spill

    Science.gov (United States)

    De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P. M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; Manganiello, C.

    2016-11-01

    Validation of oil spill forecasting systems suffers from a lack of data due to the scarcity of oil slick in situ and satellite observations. Drifters (surface drifting buoys) are often considered as proxy for oil spill to overcome this problem. However, they can have different designs and consequently behave in a different way at sea, making it not straightforward to use them for oil spill model validation purposes and to account for surface currents, waves and wind when modelling them. Stemming from the need to validate the MEDESS4MS (Mediterranean Decision Support System for Marine Safety) multi-model oil spill prediction system, which allows access to several ocean, wave and meteorological operational model forecasts, an exercise at sea was carried out to collect a consistent dataset of oil slick satellite observations, in situ data and trajectories of different type of drifters. The exercise, called MEDESS4MS Serious Game 1 (SG1), took place in the Elba Island region (Western Mediterranean Sea) during May 2014. Satellite images covering the MEDESS4MS SG1 exercise area were acquired every day and, in the case an oil spill was observed from satellite, vessels of the Italian Coast Guard (ITCG) were sent in situ to confirm the presence of the pollution. During the exercise one oil slick was found in situ and drifters, with different water-following characteristics, were effectively deployed into the oil slick and then monitored in the following days. Although it was not possible to compare the oil slick and drifter trajectories due to a lack of satellite observations of the same oil slick in the following days, the oil slick observations in situ and drifters trajectories were used to evaluate the quality of MEDESS4MS multi-model currents, waves and winds by using the MEDSLIK-II oil spill model. The response of the drifters to surface ocean currents, different Stokes drift parameterizations and wind drag has been examined. We found that the surface ocean currents

  5. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor

    Science.gov (United States)

    Meissner, Thomas; Wentz, Frank J.; Ricciardulli, Lucrezia

    2014-09-01

    In order to achieve the required accuracy in sea surface salinity (SSS) measurements from L-band radiometers such as the Aquarius/SAC-D or SMOS (Soil Moisture and Ocean Salinity) mission, it is crucial to accurately correct the radiation that is emitted from the ocean surface for roughness effects. We derive a geophysical model function (GMF) for the emission and backscatter of L-band microwave radiation from rough ocean surfaces. The analysis is based on radiometer brightness temperature and scatterometer backscatter observations both taken on board Aquarius. The data are temporally and spatially collocated with wind speeds from WindSat and F17 SSMIS (Special Sensor Microwave Imager Sounder) and wind directions from NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System). This GMF is the basis for retrieval of ocean surface wind speed combining L-band H-pol radiometer and HH-pol scatterometer observations. The accuracy of theses combined passive/active L-band wind speeds matches those of many other satellite microwave sensors. The L-band GMF together with the combined passive/active L-band wind speeds is utilized in the Aquarius SSS retrieval algorithm for the surface roughness correction. We demonstrate that using these L-band wind speeds instead of NCEP wind speeds leads to a significant improvement in the SSS accuracy. Further improvements in the roughness correction algorithm can be obtained by adding VV-pol scatterometer measurements and wave height (WH) data into the GMF.

  6. Features of wind field over the sea surface in the coastal area

    Science.gov (United States)

    Monzikova, A. K.; Kudryavtsev, V. N.; Myasoedov, A. G.; Chapron, B.; Zilitinkevich, S. S.

    2017-01-01

    In this paper we analyze SAR wind field features, in particular the effects of wind shadowing. These effects represent the dynamics of the internal atmospheric boundary layer, which is formed due to the transition of the air flow arriving from the rough land surface to the "smooth" water surface. In the wind-shadowed area, the flow accelerates, and a surface wind stress increases with fetch. The width of the shadow depends not only on the wind speed and atmospheric boundary layer stratification, but also on geographic features such as windflow multiple transformations over the complex surface land-Lake Chudskoe-land-Gulf of Finland. Measurements showed that, in the area of wind acceleration, the surface stress normalized by an equilibrium value (far from the coast) is a universal function of dimensionless fetch Xf/G. Surface wind stress reaches an equilibrium value at Xf/G ≈ 0.4, which is the scale of the planetary-boundary-layer relaxation.

  7. Space Weathering of the Lunar Surface by Solar Wind Particles

    Science.gov (United States)

    Kim, Sungsoo S.; Sim, Chaekyung

    2017-08-01

    The lunar regolith is space-weathered to a different degree in response to the different fluxes of incident solar wind particles and micrometeoroids. Crater walls, among other slating surfaces, are good tracers of the space-weathering process because they mature differently depending on the varying incident angles of weathering agents. We divide a crater wall into four quadrants (north, south, east, and west) and analyze the distribution of 950-nm/750-nm reflectance-ratio and 750-nm reflectance values in each wall quadrant, using the topography-corrected images by Multispectral Imager (MI) onboard SELENE (Kaguya). For thousands of impact craters across the Moon, we interpret the spectral distributions in the four wall quadrants in terms of the space weathering by solar wind particles and micrometeoroids and of gardening by meteroids. We take into account the solar-wind shielding by the Earth’s magnetotail to correctly assess the different spectral behaviors between east- and west-facing walls of the craters in the near-side of the Moon.

  8. Measurements of wind friction speeds over lava surfaces and assessment of sediment transport

    Science.gov (United States)

    Greeley, Ronald; Iversen, James D.

    1987-01-01

    Wind velocity profiles were obtained over alluvial plains, lava flows, and a cinder cone in the Mojave Desert to determine the wind shear and the potential for particle transport. It was found that aerodynamic roughness for winds increases nearly a factor of 5 as flow crosses from the alluvium to the lava surface, resulting in wind shear that is 21 percent greater. Thus, wind erosion and sand flux may be substantially enhanced over the lava field. Moreover, wind flow turbulence is enhanced in the wake of the cinder cone, which also increases erosion and sediment transportation by the wind.

  9. Generation of high resolution sea surface temperature using multi-satellite data for operational oceanography

    Institute of Scientific and Technical Information of China (English)

    YANG Chan-Su; KIM Sun-Hwa; OUCHI Kazuo; BACK Ji-Hun

    2015-01-01

    In the present article, we introduce a high resolution sea surface temperature (SST) product generated daily by Korea Institute of Ocean Science and Technology (KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared (IR) satellite SST data acquired by advanced very high resolution radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Multifunctional Transport Satellites-2 (MTSAT-2) Imager and Meteorological Imager (MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2 (AMSR2), and WindSAT within-situ temperature data. These input satellite andin-situ SST data are merged by using the optimal interpolation (OI) algorithm. The root-mean-square-errors (RMSEs) of satellite andin-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature (GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System (KOOS) as an input parameter for data assimilation.

  10. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  11. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  12. Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    杨劲松; 黄韦艮; 周长宝

    2001-01-01

    A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.

  13. Wind flow and wind loads on the surface of a tower-shaped building:Numerical simulations and wind tunnel experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.

  14. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu;

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one ...

  15. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  16. Estimation of Near Surface Wind Speeds in Strongly Rotating Flows

    CERN Document Server

    Crowell, Sean; Wicker, Louis

    2013-01-01

    Modeling studies consistently demonstrate that the most violent winds in tornadic vortices occur in the lowest tens of meters above the surface. These velocities are unobservable by radar platforms due to line of sight consider- ations. In this work, a methodology is developed which utilizes parametric tangential velocity models derived from Doppler radar measurements, to- gether with a tangential momentum and mass continuity constraint, to esti- mate the radial and vertical velocities in a steady axisymmetric frame. The main result is that information from observations aloft can be extrapolated into the surface layer of the vortex. The impact of the amount of information available to the retrieval is demonstrated through some numerical tests with pseudo-data.

  17. Use of surface drifters to increase resolution and accuracy of oceanic geostrophic circulation mapped from satellite only (altimetry and gravimetry)

    Science.gov (United States)

    Mulet, Sandrine; Rio, Marie-Hélène; Etienne, Hélène

    2017-04-01

    Strong improvements have been made in our knowledge of the surface ocean geostrophic circulation thanks to satellite observations. For instance, the use of the latest GOCE (Gravity field and steady-state Ocean Circulation Explorer) geoid model with altimetry data gives good estimate of the mean oceanic circulation at spatial scales down to 125 km. However, surface drifters are essential to resolve smaller scales, it is thus mandatory to carefully process drifter data and then to combine these different data sources. In this framework, the global 1/4° CNES-CLS13 Mean Dynamic Topography (MDT) and associated mean geostrophic currents have been computed (Rio et al, 2014). First a satellite only MDT was computed from altimetric and gravimetric data. Then, an important work was to pre-process drifter data to extract only the geostrophic component in order to be consistent with physical content of satellite only MDT. This step include estimate and remove of Ekman current and wind slippage. Finally drifters and satellite only MDT were combined. Similar approaches are used regionally to go further toward higher resolution, for instance in the Agulhas current or along the Brazilian coast. Also, a case study in the Gulf of Mexico intends to use drifters in the same way to improve weekly geostrophic current estimate.

  18. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...

  19. Application of Satellite-Derived Wind Profiles to Joint Precision Airdrop System (JPADS) Operations

    Science.gov (United States)

    2010-03-01

    the Vertical Wind Profile ...............................................................59 Ekman Spiral Boundary Layer Wind Profile...61 37. Depiction of Ekman Spiral Wind Profile in the Boundary Layer .......................62 38. Thermal Winds with Ekman ...Menzel, et al., 1998) 23 In a paper detailing the application of GOES soundings to weather forecasting, W. Paul Menzel et al. describe the

  20. Linking the Presence of Surfactant Associated Bacteria on the Sea Surface and in the Near Surface Layer of the Ocean to Satellite Imagery

    Science.gov (United States)

    Hamilton, Bryan; Dean, Cayla; Kurata, Naoko; Soloviev, Alex; Tartar, Aurelien; Shivji, Mahmood; Perrie, William; Lehner, Susanne

    2015-04-01

    Several genera of bacteria residing on the sea surface and in the near-surface layer of the ocean have been found to be involved in the production and decay of surfactants. Under low wind speed conditions, these surfactants can suppress short gravity capillary waves at the sea surface and form natural sea slicks. These features can be observed with both airborne and satellite-based synthetic aperture radar (SAR). We have developed a new method for sampling the sea surface microlayer that has reduced contamination from the boat and during lab handling of samples. Using this new method, a series of experiments have been conducted to establish a connection between the presence of surfactant-associated bacteria in the upper layer of the ocean and sea slicks. DNA analysis of in situ samples taken during a RADARSAT-2 satellite overpass in the Straits of Florida during the 2010 Deepwater Horizon oil spill showed a higher abundance of surfactant-associated bacterial genera in the slick area as compared to the non-slick area. These genera were found to be more abundant in the subsurface water samples collected as compared to samples taken from the sea surface. The experiment was repeated in the Straits of Florida in September 2013 and was coordinated with TerraSAR-X satellite overpasses. The observations suggest that the surfactants contributing to sea slick formation are produced by marine bacteria in the organic matter-rich water column and move to the sea surface by diffusion or advection. Thus, within a range of wind-wave conditions, the organic materials present in the water column (such as dissolved oil spills) can be monitored with SAR satellite imagery. In situ sampling was also performed in the Gulf of Mexico in December 2013 during RADARSAT-2 and TerraSAR-X satellite overpasses. Areas near natural oil seeps identified from archived TerraSAR-X imagery were targeted for in situ sampling. A number of samples from this location have been analyzed to determine the

  1. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite

    Institute of Scientific and Technical Information of China (English)

    MA Wentao; YANG Xiaofeng; YU Yang; LIU Guihong; LI Ziwei; JING Cheng

    2015-01-01

    Rainfall has two significant effects on the sea surface, including salinity decreasing and surface becoming rougher, which have further influence on L-band sea surface emissivity. Investigations using the Aquarius and TRMM 3B42 matchup dataset indicate that the retrieved sea surface salinity (SSS) is underestimated by the present Aquarius algorithm compared to numerical model outputs, especially in cases of a high rain rate. For example, the bias between satellite-observed SSS and numerical model SSS is approximately 2 when the rain rate is 25 mm/h. The bias can be eliminated by accounting for rain-induced roughness, which is usually modeled by rain-generated ring-wave spectrum. The rain spectrum will be input into the Small Slope Approximation (SSA) model for the simulation of sea surface emissivity influenced by rain. The comparison with theoretical model indicated that the empirical model of rain spectrumis more suitable to be used in the simulation. Further, the coefficients of the rain spectrum are modified by fitting the simulations with the observations of the 2–year Aquarius and TRMM matchup dataset. The calculations confirm that the sea surface emissivity increases with the wind speed and rain rate. The increase induced by the rain rate is rapid in the case of low rain rate and low wind speed. Finally, a modified model of sea surface emissivity including the rain spectrum is proposed and validated by using the matchup dataset in May 2014. Compared with observations, the bias of the rain-induced sea surface emissivity simulated by the modified modelis approximately 1e–4, and the RMSE is slightly larger than 1e–3. With using more matchup data, thebias between model retrieved sea surface salinities and observationsmay be further corrected, and the RMSE may be reduced to less than 1 in the cases of low rain rate and low wind speed.

  2. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    Science.gov (United States)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  3. Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8)

    Science.gov (United States)

    Wagner, C. A.; Lerch, F. J.; Brownd, J. E.; Richardson, J. A.

    1976-01-01

    A refinement was obtained in the earth's gravitational field using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution (Goddard Earth Model 7) includes 64,000 laser measurements taken on 7 satellites during the international satellite geodesy experiment (ISAGEX) program. The GEM 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution GEM 8 combines the same satellite data as in GEM 7 with surface gravimetry over 39% of the earth. The GEM 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulation of the geoidal surface computed by GEM 7 has an accuracy of about 3m (rms). The overall accuracy of the geoid estimated by GEM 8 is estimated to be about 4-1/4m (rms), an improvement of almost 1m over previous solutions.

  4. Gravimetric geodesy and sea surface topography studies by means of satellite-to-satellite tracking and satellite altimetry

    Science.gov (United States)

    Siry, J. W.

    1972-01-01

    A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.

  5. Interactions of satellite-speed helium atoms with satellite-surfaces. 1. Spatial distributions of reflected helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1975-06-01

    Interactions of satellite-speed helium atoms with practical satellite surfaces were investigated experimentally, and spatial distributions of satellite-speed helium beams scattered from four different engineering surfaces were measured. The 7000-m/s helium beams were produced using an arc-heated supersonic molecular beam source. The test surfaces included cleaned 6061-T6 aluminum plate, anodized aluminum foil, white paint, and quartz surfaces. Both in-plane (in the plane containing the incident beam and the surface normal) and out-of-plane spatial distributions of reflected helium atoms were measured for six different incidence angles (0, 15, 30, 45, 60, and 75 deg from the surface normal). It was found that a large fraction of the incident helium atoms were scattered back in the vicinity of the incoming beam, particularly in the case of glancing incidence angles. This unexpected scattering feature results perhaps from the gross roughness of these test surfaces. This prominent backscattering could yield drag coefficients which are higher than for surfaces with either forward-lobed or diffusive (cosine) scattering patterns. (auth)

  6. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  7. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    have made an attempt to study the annual and inter-annual variability of certain prominent processes occurring over the tropical Indian Ocean. The monthly mean values of Wind Speed (FSU), Sea Surface Temperature (REYNOLDS) and Sea Surface Height Anomaly...

  8. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.;

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  9. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  10. Surface deformations and wave generation by wind blowing over a viscous liquid

    CERN Document Server

    Paquier, Anna; Rabaud, Marc

    2015-01-01

    We investigate experimentally the early stage of the generation of waves by a turbulent wind at the surface of a viscous liquid. The spatio-temporal structure of the surface deformation is analyzed by the optical method Free Surface Synthetic Schlieren, which allows for time-resolved measurements with a micrometric accuracy. Because of the high viscosity of the liquid, the flow induced by the turbulent wind in the liquid remains laminar, with weak surface drift velocity. Two regimes of deformation of the liquid-air interface are identified. In the first regime, at low wind speed, the surface is dominated by rapidly propagating disorganized wrinkles, elongated in the streamwise direction, which can be interpreted as the surface response to the pressure fluctuations advected by the turbulent airflow. The amplitude of these deformations increases approximately linearly with wind velocity and are essentially independent of the fetch (distance along the channel). Above a threshold in wind speed, the perturbations ...

  11. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    Science.gov (United States)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  12. Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences

    Science.gov (United States)

    Craeye, C.; Sobieski, P. W.; Bliven, L. F.

    1997-01-01

    Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.

  13. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    Science.gov (United States)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  14. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer

    Science.gov (United States)

    Efthimiou, G. C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J. G.; Coceal, O.

    2016-11-01

    Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model's basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.

  15. NOAA/NESDIS Satellite Derived Surface Oil Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NESDIS Experimental Marine Pollution Surveillance Report (EMPSR) and the Daily Composite product are new products of the NOAA Satellite Analysis Branch and...

  16. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  17. Variation in wind speed and surface shear stress from open floor to porous parallel windbreaks: A wind tunnel study

    Science.gov (United States)

    Guan, De-Xin; Zhong, Ye; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Shi, Ting-Ting; Zhu, Ting-Yao

    2009-08-01

    As vegetative windbreaks become established on a large scale in agricultural ecosystems, understanding the influence of windbreak networks on the momentum budget of the atmospheric boundary layer becomes important. The authors conducted a wind tunnel experiment to study the variation of wind speed profile and surface shear stress of wind flow passing from an open surface to another with parallel windbreaks. Five spacing (L = 5, 10, 15, 20, 30 h, wherein h is the windbreak height) windbreak arrays with moderate porosity (aerodynamic porosity α = 0.501) were used in the experiments. Both near-floor and over-array wind speed measurements showed that airflow will approach equilibrium state behind a special windbreak of the array, varying from 4th to 9th windbreak when the spacing change from 30 to 5 h. Within the range of L/h values investigated, arrays with narrower spacing cause higher friction velocity and roughness length, which were up to 2.26 and nearly 100 times those observed over open floor, respectively. A semiempirical momentum budget model is developed on the arrayed surface to estimate windbreak drag and shear stress on the protected floor. Windbreak drag accounts for more than 80% of shear stress on the arrayed surface, and the shear stress on protected floor is less than 20% when L/h < 40 based on the model estimation. The sum of the two estimated components agrees well with the estimates obtained from over-array wind profiles.

  18. Improvement in the geopotential derived from satellite and surface data /Gem 7 and 8/

    Science.gov (United States)

    Wagner, C. A.; Lerch, F. J.; Brownd, J. E.; Richardson, J. A.

    1977-01-01

    A refinement has been obtained in the earth's gravitational field by using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution Gem 7 (Goddard Earth Model 7) includes 64,000 laser measurements taken on seven satellites. Gem 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution Gem 8 combines the same satellite data as Gem 7 with surface gravimetry over 39% of the earth. Gem 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulations of the geoidal surface computed by Gem 7 have an accuracy of about 2.5 m (rms). The overall accuracy of the geoid calculated by Gem 8 is estimated to be about 4 m (rms). The new combination solution is the first to show signs of 'convection rolls' in the upper mantle below the Pacific Ocean.

  19. Improvement in the geopotential derived from satellite and surface data /Gem 7 and 8/

    Science.gov (United States)

    Wagner, C. A.; Lerch, F. J.; Brownd, J. E.; Richardson, J. A.

    1977-01-01

    A refinement has been obtained in the earth's gravitational field by using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution Gem 7 (Goddard Earth Model 7) includes 64,000 laser measurements taken on seven satellites. Gem 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution Gem 8 combines the same satellite data as Gem 7 with surface gravimetry over 39% of the earth. Gem 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulations of the geoidal surface computed by Gem 7 have an accuracy of about 2.5 m (rms). The overall accuracy of the geoid calculated by Gem 8 is estimated to be about 4 m (rms). The new combination solution is the first to show signs of 'convection rolls' in the upper mantle below the Pacific Ocean.

  20. Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies

    Science.gov (United States)

    Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.

    2014-01-01

    The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.

  1. Wave glider observations of surface winds and currents in the core of Typhoon Danas

    Science.gov (United States)

    Mitarai, S.; McWilliams, J. C.

    2016-11-01

    Simultaneous monitoring of surface winds and currents is essential to understand oceanic responses to tropical cyclones. We used a new platform, a Wave Glider (Liquid Robotics) to observe air-sea processes during a typhoon, equivalent to a category 4-hurricane, at peak strength, near Okinawa, Japan. Surface winds showed strong asymmetry in both speed and direction, faster fore than aft. Rotations of surface winds and currents were not coupled; currents rotated clockwise in the wake of the typhoon eye after passage of rapid wind rotations. Wind work was mostly done ahead of the eye, amplifying prior inertial motions with a phase shift. Wind-induced energy was nearly balanced with an increase in estimated kinetic energy of the upper ocean current, relative to prior inertial oscillations. This study provides a newer, more complete view of actual atmosphere-ocean interactions in a typhoon.

  2. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  3. Solar wind reflection from the lunar surface: The view from far and near

    CERN Document Server

    Saul, L; Vorburger, A; M., D F Rodríguez; Fuselier, S A; McComas, D J; Möbius, E; Barabash, S; Funsten, Herb; Janzen, Paul

    2013-01-01

    The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scatteri...

  4. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  5. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  6. Interannual variations of surface winds over China marginal seas

    Institute of Scientific and Technical Information of China (English)

    SUN Che; YAN Xiaomei

    2012-01-01

    In a study of surface monsoon winds over the China marginal seas,Sun et al.(2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability.This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric,oceanic and land factors.The findings include:1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastem China,Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal,strengthening in the La Ni(n)a phase and weakening in the El Ni(n)o phase.This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.

  7. Using Satellite Data to Represent Tropical Instability Waves (TIWs-Induced Wind for Ocean Modeling: A Negative Feedback onto TIW Activity in the Pacific

    Directory of Open Access Journals (Sweden)

    Jinzhong Min

    2013-05-01

    Full Text Available Recent satellite data and modeling studies indicate a pronounced role Tropical Instability Waves (TIW-induced wind feedback plays in the tropical Pacific climate system. Previously, remotely sensed data were used to derive a diagnostic model for TIW-induced wind stress perturbations (τTIW, which was embedded into an ocean general circulation model (OGCM to take into account TIW-induced ocean-atmosphere coupling in the tropical Pacific. While the previous paper by Zhang (2013 is concerned with the effect on the mean ocean state, the present paper is devoted to using the embedded system to examine the effects on TIW activity in the ocean, with τTIW being interactively determined from TIW-scale sea surface temperature (SSTTIW fields generated in the OGCM, written as τTIW = αTIW·F(SSTTIW, where αTIW is a scalar parameter introduced to represent the τTIW forcing intensity. Sensitivity experiments with varying αTIW (representing TIW-scale wind feedback strength are performed to illustrate a negative feedback induced by TIW-scale air-sea coupling and its relationship with TIW variability in the ocean. Consistent with previous modeling studies, TIW wind feedback tends to have a damping effect on TIWs in the ocean, with a general inverse relationship between the τTIW intensity and TIWs. It is further shown that TIW-scale coupling does not vary linearly with αTIW: the coupling increases linearly with intensifying τTIW forcing at low values of αTIW (in a weak τTIW forcing regime; it becomes saturated at a certain value of αTIW; it decreases when αTIW goes above a threshold value as the τTIW forcing increases further. This work presents a clear demonstration of using satellite data to effectively represent TIW-scale wind feedback and its multi-scale interactions with large-scale ocean processes in the tropical Pacific.

  8. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  9. A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-01-01

    Full Text Available Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (rah is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (rs is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i data from the semi-empirical approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  10. Survey on effect of surface winds on aircraft design and operation and recommendations for needed wind research

    Science.gov (United States)

    Houbolt, J. C.

    1973-01-01

    A survey of the effect of environmental surface winds and gusts on aircraft design and operation is presented. A listing of the very large number of problems that are encountered is given. Attention is called to the many studies that have been made on surface winds and gusts, but development in the engineering application of these results to aeronautical problems is pointed out to be still in the embryonic stage. Control of the aircraft is of paramount concern. Mathematical models and their application in simulation studies of airplane operation and control are discussed, and an attempt is made to identify their main gaps or deficiencies. Key reference material is cited. The need for better exchange between the meteorologist and the aeronautical engineer is discussed. Suggestions for improvements in the wind and gust models are made.

  11. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F10 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  12. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  13. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F13 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  14. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F11 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  15. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F08 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  16. A comparison of synthetic aperture radars applied for satellite remote sensing of the ocean surface

    Digital Repository Service at National Institute of Oceanography (India)

    Tilley, D.G.; Sarma, Y.V.B.

    surface winds. The environmental interpretation of these remotely sensed ocean data is often restrictEd. by incomplete understanding of SAR systems' capabilities and limitations. Hence, in this paper, the radiometric properties and spatial resolution...

  17. NWP Impact of Cloud Top and Boundary Layer Winds from a Satellite Borne Lidar: an Observing System Simulation Experiment

    Science.gov (United States)

    Isaacs, R. G.; Grassotti, C.; Hoffman, R. N.; Mickelson, M.; Nehrkorn, T.; Louis, J.-F.

    1992-01-01

    Observing systems simulation experiments (OSSE's) provide a powerful tool to assess the impact of proposed satellite borne observing systems on meteorological applications models. We describe the results of an OSSE conducted to assess the impact of data from a low power lidar wind sensor on the forecast accuracy of a global spectral numerical weather prediction (NWP) model, the Air Force Geophysics Laboratory Global Data Assimilation System. The instrument would be operating at near-infrared wavelengths thereby increasing the backscatter signal relative to comparable infrared lidar.

  18. Inertial currents in the Indian Ocean derived from satellite tracked surface drifters

    Digital Repository Service at National Institute of Oceanography (India)

    Saji, P.K.; Shenoi, S.S.C.; Almeida, A.M.; Rao, L.V.G.

    ´sume´ – Courants d’inertie dans l’oce´an Indien estime´s a` partir de flotteurs de surface suivis par satellite. Des flotteurs de surface suivis par satellite ont e´te´ utilise´s pour analyser les caracte´ristiques des courants d’inertie dans l’oce´an Indien...

  19. Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.

  20. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    with uncertainties for same flux values resulting from climatological ship observations. For net satellite derived heat flux varying from 0 to 300 w/m sup(2) the uncertainties were found to be of the order of 50-90 w/m sup(2). For the same range of flux values...

  1. Complex Wind-Induced Variations of Surface Snow Accumulation Rates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; van den Broeke, M.; Lenaerts, J.

    2015-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. Using airborne radar, lidar and thresholds of surface slope, modeled surface mass balance (SMB) and wind fields, we have predicted continent-wide distribution of wind-scour zones over Antarctica. These zones are located over relatively steep ice surfaces formed by ice flow over bedrock topography. Near-surface winds accelerate over these steeper slopes and erode and sublimate the snow. This results in numerous localized regions (typically ≤ 200 km2) with reduced or negative surface accumulation. Although small zones of re-deposition occur at the base of the steeper slope areas, the redeposited mass is small relative to the ablation loss. Total losses from wind-scour and wind-glaze areas amounts to tens of gigatons annually. Near the coast, winds often blow significant amounts of surface snow from these zones into the ocean. Large uncertainties remain in SMB estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss or redistribution over the wind-scour zones. In this study, we also use Operation IceBridge's snow radar data to provide evidence for a gradual ablation of ~16-18 m of firn (~200 years of accumulation) from wind-scour zones over the upper Recovery Ice Stream catchment. The maximum ablation rates observed in this region are ~ -54 kg m-2 a-1 (-54 mm water equivalent a-1). Our airborne radio echo-sounding analysis show snow redeposition downslope of the wind-scour zones is <10% of the cumulative mass loss. Our study shows that the local mass loss is dominated by sublimation to water vapor rather than wind-transport of snow.

  2. Statistical downscaling of sea-surface wind over the Peru-Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model

    Energy Technology Data Exchange (ETDEWEB)

    Goubanova, K. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Echevin, V.; Terray, P. [IPSL/UPMC/IRD, Laboratoire d' Oceanographie et de Climatologie, Experimentation et Approches Numeriques, Paris (France); Dewitte, B. [CNES/CNRS/IRD/UPS, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale, Toulouse (France); Instituto del Mar del Peru, Callao (Peru); Instituto Geofisico del Peru, Lima (Peru); Codron, F. [UPMC/CNRS, Laboratoire de Meteorologie Dynamique, Paris (France); Takahashi, K. [Instituto Geofisico del Peru, Lima (Peru); Vrac, M. [IPSL/CNRS/CEA/UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France)

    2011-04-15

    The key aspect of the ocean circulation off Peru-Chile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru-Chile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10 m for the period 2000-2008. The large-scale 10 m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2 x CO{sub 2} and 4 x CO{sub 2} IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability. (orig.)

  3. A Method for Sea Surface Wind Field Retrieval from SAR Image Mode Data

    Institute of Scientific and Technical Information of China (English)

    SHAO Weizeng; SUN Jian; GUAN Changlong; SUN Zhanfeng

    2014-01-01

    To retrieve wind field from SAR images, the development for surface wind field retrieval from SAR images based on the improvement of new inversion model is present. Geophysical Model Functions (GMFs) have been widely applied for wind field retrieval from SAR images. Among them CMOD4 has a good performance under low and moderate wind conditions. Although CMOD5 is developed recently with a more fundamental basis, it has ambiguity of wind speed and a shape gradient of normalized radar cross section under low wind speed condition. This study proposes a method of wind field retrieval from SAR image by com-bining CMOD5 and CMOD4 Five VV-polarisation RADARSAT2 SAR images are implemented for validation and the retrieval re-sults by a combination method (CMOD5 and CMOD4) together with CMOD4 GMF are compared with QuikSCAT wind data. The root-mean-square error (RMSE) of wind speed is 0.75 m s-1 with correlation coefficient 0.84 using the combination method and the RMSE of wind speed is 1.01 m s-1 with correlation coefficient 0.72 using CMOD4 GMF alone for those cases. The proposed method can be applied to SAR image for avoiding the internal defect in CMOD5 under low wind speed condition.

  4. Removing the impact of wind direction on remote sensing of sea surface salinity

    Institute of Scientific and Technical Information of China (English)

    YIN Xiaobin; LIU Yuguang; ZHANG Hande

    2006-01-01

    Using the small-slope approximation model of microwave emission of rough sea surface, the impacts of sea surface wind on brightness temperature variations generated by the surface roughness, i.e. △Th,v, are investigated. Here △T denotes the brightness temperature variation, and "h" and "v" denote the horizontal and vertical polarizations respectively. △Th,v has a linear relation with wind speed, sea surface temperature (SST) and sea surface salinity (SSS) respectively. Further more, the impact of wind direction on SSS retrieval, under small incidence angles, can be removed by calculating (△Th+△Tv). These characteristics provide simple new ways to develop an SSS retrieval algorithm without wind direction factor.

  5. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Science.gov (United States)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  6. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  7. Surface deformations and wave generation by wind blowing over a viscous liquid

    Science.gov (United States)

    Paquier, A.; Moisy, F.; Rabaud, M.

    2015-12-01

    We investigate experimentally the early stage of the generation of waves by a turbulent wind at the surface of a viscous liquid. The spatio-temporal structure of the surface deformation is analyzed by the optical method Free Surface Synthetic Schlieren, which allows for time-resolved measurements with a micrometric accuracy. Because of the high viscosity of the liquid, the flow induced by the turbulent wind in the liquid remains laminar, with weak surface drift velocity. Two regimes of deformation of the liquid-air interface are identified. In the first regime, at low wind speed, the surface is dominated by rapidly propagating disorganized wrinkles, elongated in the streamwise direction, which correspond to the surface response to the pressure fluctuations advected by the turbulent airflow. The amplitude of these deformations increases approximately linearly with wind velocity and are essentially independent of the fetch (distance along the channel). Above a threshold in wind speed, we observe the growth of well defined gravity-capillary waves with crests nearly perpendicular to the wind direction. In this second regime, the wave amplitude increases with wind speed but far more quickly than in the first regime.

  8. Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions

    Science.gov (United States)

    2016-06-07

    science /abl/cblast LONG-TERM GOALS We will investigate air-sea transfer of momentum, heat, and moisture under weak wind conditions. We will...over the ASIT tower and the wind direction was good for the tower sonic performance (6 days in total). As we found last year that although the momentum...flux derived from the aircraft is flight- direction dependent, which was recently found to be a common problem for all aircraft flux measurements

  9. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    OpenAIRE

    Sujay Kulkarni; Huei-Ping Huang

    2014-01-01

    The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5) archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models proje...

  10. Probability distribution of surface wind speed induced by convective adjustment on Venus

    Science.gov (United States)

    Yamamoto, Masaru

    2017-03-01

    The influence of convective adjustment on the spatial structure of Venusian surface wind and probability distribution of its wind speed is investigated using an idealized weather research and forecasting model. When the initially uniform wind is much weaker than the convective wind, patches of both prograde and retrograde winds with scales of a few kilometers are formed during active convective adjustment. After the active convective adjustment, because the small-scale convective cells and their related vertical momentum fluxes dissipate quickly, the large-scale (>4 km) prograde and retrograde wind patches remain on the surface and in the longitude-height cross-section. This suggests the coexistence of local prograde and retrograde flows, which may correspond to those observed by Pioneer Venus below 10 km altitude. The probability distributions of surface wind speed V during the convective adjustment have a similar form in different simulations, with a sharp peak around ∼0.1 m s-1 and a bulge developing on the flank of the probability distribution. This flank bulge is associated with the most active convection, which has a probability distribution with a peak at the wind speed 1.5-times greater than the Weibull fitting parameter c during the convective adjustment. The Weibull distribution P(> V) (= exp[-(V/c)k]) with best-estimate coefficients of Lorenz (2016) is reproduced during convective adjustments induced by a potential energy of ∼7 × 107 J m-2, which is calculated from the difference in total potential energy between initially unstable and neutral states. The maximum vertical convective heat flux magnitude is proportional to the potential energy of the convective adjustment in the experiments with the initial unstable-layer thickness altered. The present work suggests that convective adjustment is a promising process for producing the wind structure with occasionally generating surface winds of ∼1 m s-1 and retrograde wind patches.

  11. Cauchy-Matern Model of Sea Surface Wind Speed at the Lake Worth, Florida

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available We study the Cauchy-Matern (CM process with long-range dependence (LRD. The closed form of its power spectrum density (PSD function is given. We apply it to model the autocovariance function (ACF and the PSD of the sea surface wind speed (wind speed for short observed in the Lake Worth, Florida, over the 1984–2006 period. The present results exhibit that the wind speed at the Lake Worth over 1984–2006 is of LRD. The present results exhibit that the CM process may yet be a novel model to fit the wind speed there.

  12. Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Larsén, Xiaoli Guo; Badger, Merete

    2013-01-01

    Spectra derived from ENVISAT Advanced Synthetic Aperture Radar (ASAR) and QuikSCAT near-surface ocean winds are investigated over the North Sea. The two sensors offer a wide range of spatial resolutions, from 600 m to 25 km, with different spatial coverage over the area of interest. This provides...... a unique opportunity to study the impact of the spatial resolution on the spectral properties of the wind over a wide range of length scales. Initially, a sub-domain in the North Sea is chosen, due to the overlap of 87 wind scenes from both sensors. The impact of the spatial resolution is manifested...... or lower. The lower power levels of coarser resolution wind products, particularly when comparing QuikSCAT to ENVISAT ASAR, strongly suggest that the effective resolution of the wind products should be high enough to resolve the spectral properties. Spectra computed from 87 wind maps are consistent...

  13. Impact of high-resolution sea surface temperature, emission spikes and wind on simulated surface ozone in Houston, Texas during a high ozone episode

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Jeon, Wonbae; Roy, Anirban; Westenbarger, David A.; Kim, Hyun Cheol

    2017-03-01

    Model-measurement comparisons for surface ozone often show significant error, which could be attributed to problems in meteorology and emissions fields. A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the contributions of these inputs. In this space, a base WRF run (BASE) and a WRF run initializing with NOAA GOES satellite sea surface temperature (SST) (SENS) were performed to clarify the impact of high-resolution SST on simulated surface ozone (O3) over the Greater Houston area during 25 September 2013, corresponding to the high O3 episode during the NASA DISCOVER-AQ Texas campaign. The SENS case showed reduced land-sea thermal contrast during early morning hours due to 1-2 °C lower SST over water bodies. The lowered SST reduced the model wind speed and slowed the dilution rate. These changes led to a simulated downwind O3 change of ∼5 ppb near the area over land with peak simulated afternoon O3. However, the SENS case still under-predicted surface O3 in urban and industrial areas. Episodic flare emissions, dry sunny postfrontal stagnated conditions, and land-bay/sea breeze transitions could be the potential causes of the high O3. In order to investigate the additional sources of error, three sensitivity simulations were performed for the high ozone time period. These involved adjusted emissions, adjusted wind fields, and both adjusted emissions and winds. These scenarios were superimposed on the updated SST (SENS) case. Adjusting NOx and VOC emissions using simulated/observed ratios improved correlation and index of agreement (IOA) for NOx from 0.48 and 0.55 to 0.81 and 0.88 respectively, but still reported spatial misalignment of afternoon O3 hotspots. Adjusting wind fields to represent morning weak westerly winds and afternoon converging zone significantly mitigated under-estimation of the observed O3 peak. For example, simulations with adjusted wind fields and adjusted (emissions + wind fields) reduced under-estimation of the peak

  14. Applications of SMAP data to retrieval of ocean surface wind and salinity

    Science.gov (United States)

    Yueh, Simon; Fore, Alexander; Tang, Wenqing; Hayashi, Akiko; Stiles, Bryan; Zhang, Fuqing; Weng, Yonghui; Real, Nicolas

    2016-10-01

    We have examined the L-band radiometer and radar data from NASA's Soil Moisture Active Passive (SMAP) mission for ocean research and applications. We find that the SMAP data are in excellent agreement with the geophysical model function (GMF) derived from the Aquarius data up to a wind speed of 20 ms-1. For severe wind conditions, the higher resolution data from SMAP allowed us to assess the sensitivity of L-band radiometer signals to hurricane force winds. We applied the L-band GMF to the retrieval of ocean surface wind and SSS from the SMAP data. Comparison with the European Center for Medium-Range Weather Forecasting, WindSat and RapidSCAT wind speeds suggests that SMAP's radiometer wind speed reaches an excellent accuracy of about 1.1-1.7 ms-1 below a wind speed of 20 ms-1. We have also found that the maximum wind speed derived from the SMAP radiometer data can reach 140 knots for severe storms and are generally in good agreement with the hurricane track analysis and operational aircraft Stepped Frequency Microwave Radiometer wind speeds. The spatial patterns of the SMAP SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features.

  15. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Gust (knots)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind gust forecasts from the National Digital Forecast Database...

  16. Effect of phase coupling on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...

  17. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  18. An atmosphere-wave regional coupled model: improving predictions of wave heights and surface winds in the southern North Sea

    Science.gov (United States)

    Wahle, Kathrin; Staneva, Joanna; Koch, Wolfgang; Fenoglio-Marc, Luciana; Ho-Hagemann, Ha T. M.; Stanev, Emil V.

    2017-04-01

    The coupling of models is a commonly used approach when addressing the complex interactions between different components of earth systems. We demonstrate that this approach can result in a reduction of errors in wave forecasting, especially in dynamically complicated coastal ocean areas, such as the southern part of the North Sea - the German Bight. Here, we study the effects of coupling of an atmospheric model (COSMO) and a wind wave model (WAM), which is enabled by implementing wave-induced drag in the atmospheric model. The numerical simulations use a regional North Sea coupled wave-atmosphere model as well as a nested-grid high-resolution German Bight wave model. Using one atmospheric and two wind wave models simultaneously allows for study of the individual and combined effects of two-way coupling and grid resolution. This approach proved to be particularly important under severe storm conditions as the German Bight is a very shallow and dynamically complex coastal area exposed to storm floods. The two-way coupling leads to a reduction of both surface wind speeds and simulated wave heights. In this study, the sensitivity of atmospheric parameters, such as wind speed and atmospheric pressure, to the wave-induced drag, in particular under storm conditions, and the impact of two-way coupling on the wave model performance, is quantified. Comparisons between data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justify its implementation for both operational and climate simulations.

  19. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  20. Comparison among four kinds of data of sea surface wind stress in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    谢强; 王卫强; 毛庆文

    2002-01-01

    By using remote sensing (ERS) data, FSU data, GOADS data and Hellerman & Rcsenstein objective analysis data to analyze the sea surface wind stress in the South China Sea, it is found that the remote sensing data have higher resolution and more reasonable values. Therefore we suggest that remote sensing data be chosen in the study of climatological features of sea surface wind stress and its seasonal variability in the South China Sea, especially in the study of small and middle scale eddies.

  1. Satellite-Based Surface Heat Budgets and Sea Surface Temperature Tendency in the Tropical Eastern Indian and Western Pacific Oceans for the 1997/98 El Nino and 1998/99 La Nina

    Science.gov (United States)

    Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung

    2002-01-01

    The 1997/98 is a strong El Nino warm event, while the 1998/99 is a moderate La Nina cold event. We have investigated surface heat budgets and sea surface temperature (SST) tendency for these two events in the tropical western Pacific and eastern Indian Oceans using satellite-retrieved surface radiative and turbulent fluxes. The radiative fluxes are taken from the Goddard Satellite-retrieved Surface Radiation Budget (GSSRB), derived from radiance measurements of the Japanese Geostationary Meteorological Satellite 5. The GSSRB covers the domain 40 deg S - 4 deg N, 90 deg E-17 deg W and a period from October 1997 to December 2000. The spatial resolution is 0.5 deg x 0.5 deg lat-long and the temporal resolution is 1 day. The turbulent fluxes are taken from Version 2 of the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF-2). The GSSTF-2 has a spatial resolution of 1 deg x 1 deg lat-long over global Oceans and a temporal resolution of 1 day covering the period July 1987-December 2000. Daily turbulent fluxes are derived from the S S M (Special Sensor Microwave/Imager) surface wind and surface air humidity, and the SST and 2-m air temperature of the NCEP/NCAR reanalysis, using a stability-dependent bulk flux algorithm. The changes of surface heat budgets, SST and tendency, cloudiness, wind speed, and zonal wind stress of the 1997/98 El Nino relative to the1998/99 La Nina for the northern winter and spring seasons are analyzed. The relative changes of surface heat budgets and SST tendency of the two events are quite different between the tropical eastern Indian and western Pacific Oceans. For the tropical western Pacific, reduced solar heating (more clouds) is generally associated with decreased evaporative cooling (weaker winds), and vise versa. The changes in evaporative cooling over-compensate that of solar heating and dominate the spatial variability of the changes in net surface heating. Both solar heating and evaporative cooling offset each other to reduce

  2. Influence of persistent wind scour on the surface mass balance of Antarctica

    NARCIS (Netherlands)

    Das, I.; Bell, R.E.; Lenaerts, J.T.M.; Broeke, M.R. van den

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records1,2. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimati

  3. Estimation of Land Surface Energy Balance Using Satellite Data of Spatial Reduced Resolution

    Science.gov (United States)

    Vintila, Ruxandra; Radnea, Cristina; Savin, Elena; Poenaru, Violeta

    2010-12-01

    The paper presents preliminary results concerning the monitoring at national level of several geo-biophysical variables retrieved by remote sensing, in particular those related to drought or aridisation. The study, which is in progress, represents also an exercise for to the implementation of a Land Monitoring Core Service for Romania, according to the Kopernikus Program and in compliance with the INSPIRE Directive. The SEBS model has been used to retrieve land surface energy balance variables, such as turbulent heat fluxes, evaporative fraction and daily evaporation, based on three information types: (1) surface albedo, emissivity, temperature, fraction of vegetation cover (fCover), leaf area index (LAI) and vegetation height; (2) air pressure, temperature, humidity and wind speed at the planetary boundary layer (PBL) height; (3) downward solar radiation and downward longwave radiation. AATSR and MERIS archived reprocessed images have provided several types of information. Thus, surface albedo, emissivity, and land surface temperature have been retrieved from AATSR, while LAI and fCover have been estimated from MERIS. The vegetation height has been derived from CORINE Land Cover and PELCOM Land Use databases, while the meteorological information at the height of PBL have been estimated from the measurements provided by the national weather station network. Other sources of data used during this study have been the GETASSE30 digital elevation model with 30" spatial resolution, used for satellite image orthorectification, and the SIGSTAR-200 geographical information system of soil resources of Romania, used for water deficit characterisation. The study will continue by processing other AATSR and MERIS archived images, complemented by the validation of SEBS results with ground data collected on the most important biomes for Romania at various phenological stages, and the transformation of evaporation / evapotranspiration into a drought index using the soil texture

  4. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  5. Satellite Monitoring of the Surface Water and Energy Budget in the Central Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG Kun; Toshio KOIKE

    2008-01-01

    The water and energy cycle in the Tibetan Plateau is an important component of Monsoon Asia and the global energy and water cycle. Using data at a CEOP (Coordinated Enhanced Observing Period)-Tibet site, this study presents a first-order evaluation on the skill of weather forecasting from GCMs and satellites in producing precipitation and radiation estimates. The satellite data, together with the satellite leaf area index, are then integrated into a land data assimilation system (LDAS-UT) to estimate the soil moisture and surface energy budget on the Plateau. The system directly assimilates the satellite microwave brightness temperature, which is strongly affected by soil moisture but not by cloud layers, into a simple biosphere model. A major feature of this system is a dual-pass assimilation technique, which can auto-calibrate model parameters in one pass and estimate the soil moisture and energy budget in the other pass. The system outputs, including soil moisture, surface temperature, surface energy partition, and the Bowen ratio, are compared with observations, land surface models, the Global Land Data Assimilation System, and four general circulation models. The results show that this satellite data-based system has a high potential for a reliable estimation of the regional surface energy budget on the Plateau.

  6. Coastal sea-surface temperature anomalies during the 2014-2016 northeast Pacific marine heat wave: regional variability, timing, and relation to wind stress anomalies

    Science.gov (United States)

    Gentemann, C. L.; Fewings, M. R.; Garcia-Reyes, M.

    2016-12-01

    In 2014-2016, sea-surface temperatures (SSTs) in the region along the Washington, Oregon, and California coasts were significantly warmer than usual, with a maximum SST anomaly of 6.2°C measured near Santa Barbara. This marine heat wave was associated with major ecosystem disturbances, including a toxic algae bloom of Pseudo-nitzschia that had massive economic and ecological impacts. Here, we use satellite and blended reanalysis products to report the magnitude, extent, duration, and evolution of SST, wind stress, and wind stress curl anomalies along the west coast of the continental United States during 2014-2016. Using high-resolution wind stress instead of the Bakun upwelling index shows clear differences in upwelling phenology in 2015.

  7. Calibration of GNSS-R surface wind retrievals using the ERA analysis

    Science.gov (United States)

    Danielson, Rick; Johannessen, Johnny; Cardellach, Estel; Fabra, Fran; Catarino, Nuno

    2017-04-01

    The Space GNSS Receiver Remote Sensing Instrument (SGR-ReSI) of the TechDemoSat-1 (TDS-1) satellite collected and processed about half a million fast delivery wind speed retrievals. Exploring ways to validate these data provides an opportunity, not just to quantify, but also potentially to reduce wind speed retrieval errors (in an ordinary least squares sense) and thereby improve the correspondence between the data to be calibrated and an unknown target wind analysis. The ERA Interim analysis is employed as a calibrated reference for the TDS-1 wind speed retrievals. Simultaneous assessment of error in these two collocated data leads to a global (i.e., for all collocations) and local (i.e., as a function of wind speed) determinations of statistical properties characterizing bias (both additive and multiplicative), RMS error, and correlation with an unknown target analysis. The approach taken is widely referred to as the triple collocation method (Stoffelen 1998, McColl et al. 2014), where a simplifying assumption is that three wind estimates can be obtained from these two datasets (TDS-1 and ERA).

  8. Satellite tracking of harbour seals on Horns Reef - Use of the Horns Reef wind farm area and the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Tougaard, J.; Tougaard, S.; Jensen, Thyge [Fisheries and Maritime Museum Esbjerg (Denmark); Ebbesen, I. [Univ. of Sourthern Denmark, Inst. of Biology, Odense (Denmark); Teilmann, J. [NationL Environmental Res. Inst., Roskidle (Denmark)

    2003-03-15

    Ten harbour seals (Phoca vitulina) caught on the Danish Wadden Sea island Roemoe were equipped with satellite linked time depth recorders. The animals were caught on three separate occasions (Jan. 4th, Feb. 18th and May 6th, 2002). The transmitters worked between 49 and 100 days, relaying positional and dive information back via the ARGOS satellite service until beginning of July. Background for the studies is the construction of the Worlds largest off shore wind farm on Horns Reef. Based on previous studies using VHF-transmitters, it was expected that the seals would spend considerable time on Horns Reef. The VHF-telemetry studies showed that the preferred direction for seals leaving the Danish Wadden Sea is NW from Graedyb tidal area outside Esbjerg, the direction directly towards the wind farm area. The previously used VHF-transmitters had a limited detection range and it was decided to equip a number of seals from the same area as before with satellite transmitters. This allows for positioning of the seals in the entire North Sea as well as providing dive summary information, as a transmitter with a depth transducer was chosen for the study. Positional information revealed that animals move about more extensively than previously believed. Substantial variation between animals was observed and each seal seemed to have adopted its own foraging strategy. Some animals travelled to the centre of the North Sea on foraging trips and spent considerable time close to the bottom at 30-70 meters depth. Other seals remained in the German Bight and yet others spent considerable time on and around Horns Reef. The area of Horns reef wind farm constitutes a negligible fraction of the total area visited by the tagged seals. The reef as a whole however, appears to be important to the seals both for foraging and as transit area to other feeding grounds further off shore. The resolution in positional information is not sufficiently high to allow for a detailed study of the effects

  9. Backup Communication Routing Through Internet Satellite, WINDS for Transmitting of Disaster Relief Data

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2011-09-01

    Full Text Available A countermeasure for round trip delay which occurs in between satellite and ground with network accelerator is investigated together with operating system dependency on effectiveness of accelerator. Also disaster relief data transmission experiments are conducted for mitigation of disaster together with acceleration of disaster related data transmission between local government and disaster prevention center. Disaster relief information including remote sensing satellite images and information from the disaster occurred areas to local government for creation of evacuation information is accelerated so that it becomes possible to send them to the residents in the suffered areas due to disaster through data broadcasting in the digital TV channel.

  10. Wind influence on surface current variability in the Ibiza Channel from HF Radar

    Science.gov (United States)

    Lana, Arancha; Marmain, Julien; Fernández, Vicente; Tintoré, Joaquin; Orfila, Alejandro

    2016-04-01

    Surface current variability is investigated using 2.5 years of continuous velocity measurements from an high frequency radar (HFR) located in the Ibiza Channel (Western Mediterranean Sea). The Ibiza Channel is identified as a key geographical feature for the exchange of water masses but still poorly documented. Operational, quality controlled, HFR derived velocities are provided by the Balearic Islands Coastal Observing and Forecasting System (SOCIB). They are assessed by performing statistical comparisons with current-meter, ADCP, and surface lagrangian drifters. HFR system does not show significant bias, and its accuracy is in accordance with previous studies performed in other areas. The main surface circulation patterns are deduced from an EOF analysis. The first three modes represent almost 70 % of the total variability. A cross-correlation analysis between zonal and meridional wind components and the temporal amplitudes of the first three modes reveal that the first two modes are mainly driven by local winds, with immediate effects of wind forcing and veering following Ekman effect. The first mode (37 % of total variability) is the response of meridional wind while the second mode (24 % of total variability) is linked primarily with zonal winds. The third and higher order modes are related to mesoscale circulation features. HFR derived surface transport presents a markedly seasonal variability being mostly southwards. Its comparison with Ekman-induced transport shows that wind contribution to the total surface transport is on average around 65 %.

  11. Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.

    2014-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of

  12. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the GPM satellite

    Science.gov (United States)

    Ebtehaj, A. M.; Kummerow, C. D.

    2017-06-01

    Satellites are playing an ever-increasing role in estimating precipitation over remote areas. Improving satellite retrievals of precipitation requires increased understanding of its passive microwave signatures over different land surfaces. Snow-covered surfaces are notoriously difficult to interpret because they exhibit both emission from the land below and scattering from the ice crystals. Using data from the Global Precipitation Measurement (GPM) satellite, we demonstrate that microwave brightness temperatures of rain and snowfall transition from a scattering to an emission regime from summer to winter, due to expansion of less emissive snow cover. Evidence suggests that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The results demonstrate that, using a multifrequency matching method, the probability of snowfall detection can even be higher than rainfall—chiefly because of the information content of the low-frequency channels that respond to the (near) surface temperature.

  13. Variability and trends of surface solar radiation in Europe based on CM SAF satellite data records

    Science.gov (United States)

    Trentmann, Jörg; Pfeifroth, Uwe; Sanchez-Lorenzo, Arturo; Urbain, Manon; Clerbaux, Nicolas

    2017-04-01

    The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based high-quality climate data records, with a focus on the global energy and water cycle. Here, the latest releases of the CM SAF's data records of surface solar radiation, Surface Solar Radiation Data Set - Heliosat (SARAH), and CM SAF cLouds, Albedo and Radiation dataset from AVHRR data (CLARA), are analyzed and validated with reference to ground-based measurements, e.g., provided by the Baseline Surface Radiation Network (BSRN), the World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). Focus is given to the trends and the variability of the surface irradiance in Europe as derived from the surface and the satellite-based data records. Both data sources show an overall increase (i.e., brightening) after the 1980s, and indicate substantial decadal variability with periods of reduced increase (or even a decrease) and periods with a comparable high increase. Also the increase shows a pronounced spatial pattern, which is also found to be consistent between the two data sources. The good correspondence between the satellite-based data records and the surface measurements highlight the potential of the satellite data to represent the variability and changes in the surface irradiance and document the dominant role of clouds over aerosol to explain its variations. Reasons for remaining differences between the satellite- and the surface-based data records (e.g., in Southern Europe) will be discussed. To test the consistency of the CM SAF solar radiation data records we also assess the decadal variability of the solar reflected radiation at the top-of-the atmosphere (TOA) from the CM SAF climate data record based on the MVIRI / SEVIRI measurements from 1983 to 2015. This data record complements the SARAH data record in its temporal and spatial coverage; fewer and different assumptions are used in the retrieval to generate the TOA reflected solar

  14. Wind flow modulation due to variations of the water surface roughness

    Science.gov (United States)

    Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana

    2016-04-01

    Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described

  15. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea...

  16. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  17. The zero gravity curve and surface and radii for geostationary and geosynchronous satellite orbits

    Directory of Open Access Journals (Sweden)

    Sjöberg L.E.

    2017-02-01

    Full Text Available A geosynchronous satellite orbits the Earth along a constant longitude. A special case is the geostationary satellite that is located at a constant position above the equator. The ideal position of a geostationary satellite is at the level of zero gravity, i.e. at the geocentric radius where the gravitational force of the Earth equals the centrifugal force. These forces must be compensated for several perturbing forces, in particular for the lunisolar tides. Considering that the gravity field of the Earth varies not only radially but also laterally, this study focuses on the variations of zero gravity not only on the equator (for geostationary satellites but also for various latitudes. It is found that the radius of a geostationary satellite deviates from its mean value of 42164.2 km only within ±2 m, mainly due to the spherical harmonic coefficient J22, which is related with the equatorial flattening of the Earth. Away from the equator the zero gravity surface deviates from the ideal radius of a geosynchronous satellite, and more so for higher latitudes. While the radius of the former surface increases towards infinity towards the poles, the latter decreases about 520 m from the equator to the pole. Tidal effects vary these radii within ±2.3 km.

  18. Using Surface Pressure to Improve Tropical Cyclone Surface Wind Retrievals from Synthetic Aperture Radar Imagery

    Science.gov (United States)

    2012-09-30

    Jochen Horstmann of NATO Undersea Research Centre ( NURC ). GD and NURC have developed separate methods for estimating wind directions. In addition, NURC ...has been developing “cross-pol” GMFs, which have a lot of promise in the high wind regime. The GD and NURC wind directions are merged into a single

  19. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  20. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements

    Science.gov (United States)

    Minnett, Peter J.; Corlett, Gary K.

    2012-11-01

    In addition to having known uncertainty characteristics, Climate Data Records (CDRs) of geophysical variables derived from satellite measurements must be of sufficient length to resolve signals that might reveal the signatures of climate change against a background of larger, unrelated variability. The length of the record requires using satellite measurements from many instruments over several decades, and the uncertainty requirement implies that a consistent approach be used to establish the errors in the satellite retrievals over the entire period. Retrieving sea-surface temperature (SST) from satellite is a relatively mature topic, and the uncertainties of satellite retrievals are determined by comparison with collocated independent measurements. To avoid the complicating effects of near-surface temperature gradients in the upper ocean, the best validating measurements are from ship-board radiometers that measure, at source, the surface emission that is measured in space, after modification by its propagation through the atmosphere. To attain sufficient accuracy, such ship-based radiometers must use internal blackbody calibration targets, but to determine the uncertainties in these radiometric measurements, i.e. to confirm that the internal calibration is effective, it is necessary to conduct verification of the field calibration using independent blackbodies with accurately known emissivity and at very accurately measured temperatures. This is a well-justifiable approach to providing the necessary underpinning of a Climate Data Record of SST.

  1. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    Science.gov (United States)

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  2. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  3. Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.

    Science.gov (United States)

    Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail

    2017-06-09

    We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x-configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.

  4. Short term forecasting of surface layer wind speed using a continuous cascade model

    CERN Document Server

    Baile, Rachel; Poggi, Philippe

    2010-01-01

    This paper describes a statistical method for short-term forecasting of surface layer wind velocity amplitude relying on the notion of continuous cascades. Inspired by recent empirical findings that suggest the existence of some cascading process in the mesoscale range, we consider that wind speed can be described by a seasonal component and a fluctuating part represented by a "multifractal noise" associated with a random cascade. Performances of our model are tested on hourly wind speed series gathered at various locations in Corsica (France) and Netherlands. The obtained results show a systematic improvement of the prediction as compared to reference models like persistence or Artificial Neural Networks.

  5. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    and autonomous weather station) were utilized for measuring sea truth parameters such as sea surface temperature (SST), Sea Surface Wind Speed (WS) and Columnar Water Vapor (WV). Total match-ups for SST and WS measured from various platforms exceeded 1400 (2 hrs...

  6. A fast model for mean and turbulent wind characteristics over terrain with mixed surface roughness

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Jensen, N.O.

    1997-01-01

    The real-time near-range atmospheric model chain in RODOS already includes the fast spectral LINCOM code, which was originally developed by Rise for modelling the mean wind fields over hilly, but otherwise homogeneous, terrain. Its output is used as a wind field driver for the dispersion model...... of arrival of radioactive clouds traversing, for instance, a land/water/land surface, and (2) for calculation of the turbulent shear stress, and thereby the scaling parameters, over mixed terrain....

  7. Remote Sensing of Sea Surface Wind of Hurricane Michael by GPS Reflected Signals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the propagating geometry and the waveform of the GPS reflected signals are expatiated in detail. Furthermore, the principle and the method of retrieving sea surface wind are presented. In order to test the feasibility of retrieval, the experiment data obtained by NASA in Hurricane Michael are used. The result shows that the retrieval accuracy of wind speed is about 2 m/s.

  8. Effects of winds, tides and storm surges on ocean surface waves in the Sea of Japan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; TIAN Jiwei; LI Peiliang; HOU Yijun

    2007-01-01

    Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.

  9. A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3

    Science.gov (United States)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.

    1994-01-01

    An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until

  10. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  11. Extreme winds in the Western North Pacific

    DEFF Research Database (Denmark)

    Ott, Søren

    2006-01-01

    A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methodsused to estimate surface wind speeds from...

  12. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; Velde, van der R.; Vekerdy, Z.; Su, Z.

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado

  13. Analysis of some methods for obtaining sea surface temperature from satellite observations

    Science.gov (United States)

    Price, J. C.

    1973-01-01

    Satellite measurements of sea surface temperature must be corrected for atmospheric moisture, cloud contamination, reflected solar radiation and other sources of error. Procedures for reducing errors are discussed. It appears that routine accuracies of 1 C are possible, given low noise spectral measurements in the infrared.

  14. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park

  15. Satellite Splat: An Inelastic Collision with a Surface-launched Projectile

    Science.gov (United States)

    2015-04-23

    Satellite splat: an inelastic collision with a surface-launched projectile Philip R Blanco1 and Carl E Mungan2 1Department of Physics and Astronomy ...orbital motion, inelastic collision, momentum conservation, energy conservation 1. Introduction Introductory physics courses cover momentum conservation

  16. Assimilation of satellite observed snow albedo in a land surface model

    NARCIS (Netherlands)

    Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Zhongbo

    2012-01-01

    This study assesses the impact of assimilating satellite-observed snow albedo on the Noah land surface model (LSM)-simulated fluxes and snow properties. A direct insertion technique is developed to assimilate snow albedo into Noah and is applied to three intensive study areas in North Park (Colorado

  17. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture

    NARCIS (Netherlands)

    Dorigo, W.A.; Jeu, de R.A.M.; Chung, D.; Parinussa, R.M.; Liu, Y.; Wagner, W.; Fernandez-Prieto, D.

    2012-01-01

    [1] Global trends in a new multi-satellite surface soil moisture dataset were analyzed for the period 1988–2010. 27% of the area covered by the dataset showed significant trends (p = 0.05). Of these, 73% were negative and 27% positive. Subtle drying trends were found in the Southern US, central Sout

  18. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  19. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions

    Science.gov (United States)

    Xian, George

    2008-01-01

    By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.

  20. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  1. Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient

    Indian Academy of Sciences (India)

    E C Monahan

    2002-09-01

    Stage A whitecaps (spilling wave crests) have a microwave emissivity of close to 1. Thus if even a small fraction of the sea surface is covered by these features there will be a detectable enhancement in the apparent microwave brightness temperature of that surface as determined by satellite-borne microwave radiometers. This increase in the apparent microwave brightness temperature can as a consequence be routinely used to estimate the fraction of the sea surface covered by stage A whitecaps. For all but the very lowest wind speeds it has been shown in a series of controlled experiments that the air-sea gas transfer coeffcient for each of a wide range of gases, including carbon dioxide and oxygen, is directly proportional to the fraction of the sea surface covered by these stage A whitecaps.

  2. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    OpenAIRE

    Sonia Wharton; Matthew Simpson; Jessica L. Osuna; Jennifer F. Newman; Biraud, Sebastien C.

    2014-01-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near surface wind profile, including heights reached by multi-megawatt (MW) wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE) Southern Great Plains (SGP) Atmospheric Radiation Measurement Program (ARM) Central Facili...

  3. Impact of climate change on surface wind regime over the Peru-Chile upwelling region

    Science.gov (United States)

    Goubanova, K.; Echevin, V.; Dewitte, B.; Garreaud, R.; Terray, P.; Vrac, M.

    2009-04-01

    The ocean region off the Chile-Peru coast is characterized by upwelling of cold, nutrient-rich waters, which drives an exceptionally high biological productivity. This upwelling is induced by the persistent southerly winds along the coast that exhibit a coastal jet structure at intraseasonal scales. Recent climate change studies based on the coupled atmosphere-ocean general circulation models (AOGCM) show a strengthening of the large-scale southerlies along the subtropical coast that could lead to an increase in coastal upwelling. However the coastal jet events which represent a considerable source of the synoptic variability of the alongshore winds are characterized by horizontal scale comparable to a AOGCM grid cell size, and cannot be therefore explicitly resolved by the AOGCMs. In order to provide a regional estimate of the winds as predicted by the coarse-resolution AOGCMs, a statistical downscaling method based on multiple linear regression is proposed. Large-scale wind at 10 m and sea level pressure are chosen as the predictor variables for regional 10 m wind. The validation is performed in two steps. First, QuikSCAT and ERS satellite products and NCEP reanalysis for the period 1992-2006 are used to build and validate the statistical model for the present climate. Second, the model is validated under a warmer climate: it is applied to large-scale predictors extracted from HadCM3 AOGCM simulations for the A2 and B2 SRES scenarios (2071-2100); the downscaled wind is then compared with outputs of the PRECIS regional climate model, forced at its boundaries by the same HadCM3 scenarios. To assess climate change impact on the along-shore wind, the statistical downscaling is applied to two contrasted SRES scenarios, namely the so-called preindustrial and CO2 quadrupling. The outputs of the IPSL-CM4 AOGCM are used as predictors. Evolution of the along-shore wind regime with a focus on the change of the coastal jet characteristics is discussed. For this particular

  4. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika

    2009-01-01

    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  5. Micro-swimmer dynamics in free-surface turbulence subject to wind stress

    Science.gov (United States)

    Marchioli, Cristian; Lovecchio, Salvatore; Soldati, Alfredo

    2016-11-01

    We examine the effect of wind-induced shear on the orientation and distribution of motile micro-swimmers in free-surface turbulence. Winds blowing above the air-water interface can influence the distribution and productivity of motile organisms via the shear generated just below the surface. Swimmer dynamics depend not only by the advection of the fluid but also by external stimuli like nutrient concentration, light, gravity. Here we focus on gyrotaxis, resulting from the gravitational torque generated by an asymmetric mass distribution within the organism. The combination of such torque with the viscous torque due to shear can re-orient swimmers, reducing their vertical migration and causing entrapment in horizontal fluid layers. Through DNS-based Euler-Lagrangian simulations we investigate the effect of wind-induced shear on the motion of gyrotactic swimmers in turbulent open channel flow. We consider different wind directions and swimmers with different reo-rientation time (reflecting the ability to react to turbulent fluctuations). We show that only stable (high-gyrotaxis) swimmers may reach the surface and form densely concentrated filaments, the topology of which depends on the wind direction. Otherwise swimmers exhibit weaker vertical fluxes and segregation at the surface.

  6. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    Nayak, Michael; Nimmo, Francis; Udrea, Bogdan

    2016-03-01

    Impacts on planetary bodies can lead to both prompt secondary craters and projectiles that reimpact the target body or nearby companions after an extended period, producing so-called "sesquinary" craters. Here we examine sesquinary cratering on the moons of Mars. We model the impact that formed Voltaire, the largest crater on the surface of Deimos, and explore the orbital evolution of resulting high-velocity ejecta across 500 years using four-body physics and particle tracking. The bulk of mass transfer to Phobos occurs in the first 102 years after impact, while reaccretion of ejecta to Deimos is predicted to continue out to a 104 year timescale (cf. Soter, S. [1971]. Studies of the Terrestrial Planets. Cornell University). Relative orbital geometry between Phobos and Deimos plays a significant role; depending on the relative true longitude, mass transfer between the moons can change by a factor of five. Of the ejecta with a velocity range capable of reaching Phobos, 25-42% by mass reaccretes to Deimos and 12-21% impacts Phobos. Ejecta mass transferred to Mars is caused by Deimos material. However the high-velocity ejecta mass reaccreted to Deimos from a Voltaire-sized impact is comparable to the expected background mass accumulated on Deimos between Voltaire-size events. Considering that the high-velocity ejecta contains only 0.5% of the total mass sent into orbit, sesquinary ejecta from a Voltaire-sized impact could feasibly resurface large parts of the Moon, erasing the previous geological record. Dating the surface of Deimos may be more challenging than previously suspected.

  7. Surface melt and ponding on Larsen C Ice shelf and the impact of foehn winds

    OpenAIRE

    Luckman, Adrian; Elvidge, Andrew; Jansen, Daniela; Kulessa, Bernd; Kuipers-Munneke, Peter; King, John; Barrand, Nick

    2014-01-01

    A common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt ponds. We investigated surface melt on Larsen C Ice Shelf at high resolution using Envisat advanced synthetic aperture radar (ASAR) data and explored melt ponds in a range of satellite image...

  8. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  9. Satellite sea surface temperatures along the West Coast of the United States during the 2014-2016 northeast Pacific marine heat wave

    Science.gov (United States)

    Gentemann, Chelle L.; Fewings, Melanie R.; García-Reyes, Marisol

    2017-01-01

    From January 2014 to August 2016, sea surface temperatures (SSTs) along the Washington, Oregon, and California coasts were significantly warmer than usual, reaching a maximum SST anomaly of 6.2°C off Southern California. This marine heat wave occurred alongside the Gulf of Alaska marine heat wave and resulted in major disturbances in the California Current ecosystem and massive economic impacts. Here we use satellite and blended reanalysis products to report the magnitude, extent, duration, and evolution of SSTs and wind stress anomalies along the West Coast of the continental United States during this event. Nearshore SST anomalies along the entire coast were persistent during the marine heat wave, and only abated seasonally, during spring upwelling-favorable wind stress. The coastal marine heat wave weakened in July 2016 and disappeared by September 2016.

  10. Coastal Boundary Layer Characteristics of Wind, Turbulence, and Surface Roughness Parameter over the Thumba Equatorial Rocket Launching Station, India

    Directory of Open Access Journals (Sweden)

    K. V. S. Namboodiri

    2014-01-01

    Full Text Available The study discusses the features of wind, turbulence, and surface roughness parameter over the coastal boundary layer of the Peninsular Indian Station, Thumba Equatorial Rocket Launching Station (TERLS. Every 5 min measurements from an ultrasonic anemometer at 3.3 m agl from May 2007 to December 2012 are used for this work. Symmetries in mesoscale turbulence, stress off-wind angle computations, structure of scalar wind, resultant wind direction, momentum flux (M, Obukhov length (L, frictional velocity (u*, w-component, turbulent heat flux (H, drag coefficient (CD, turbulent intensities, standard deviation of wind directions (σθ, wind steadiness factor-σθ relationship, bivariate normal distribution (BND wind model, surface roughness parameter (z0, z0 and wind direction (θ relationship, and variation of z0 with the Indian South West monsoon activity are discussed.

  11. Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE

    Science.gov (United States)

    Hall, Forrest G.; Huemmrich, Karl F.; Goetz, Scott J.; Sellers, Piers J.; Nickeson, Jaime E.

    1992-11-01

    The FIFE staff science group, consisting of the authors, developed and evaluated process models relating surface energy and mass flux, that is, surface rates, to boundary layer and surface biophysical characteristics, that is, surface states. In addition, we developed and evaluated remote sensing algorithms for inferring surface state characteristics. In this paper we report the results of our efforts. We also look in detail at the sensor and satellite platform requirements (spatial resolution and orbital requirements) as driven by surface energy balance dynamics and spatial variability. We examine also the scale invariance of the process models and remote sensing algorithms, that is, to what degree do the remotely sensed parameters and energy balance relations translate from the patch level where they were developed to the mesoscale level where they are required? Finally, we examine the atmospheric correction and calibration issues involved in extending the remotely sensed observations within a season and between years. From these investigations we conclude that (1) existing formulations for the radiation balance and latent heat components of the surface energy balance equation are valid at the patch level. (2) Many of the surface physiological characteristics that parameterize these formulations can be estimated using satellite remote sensing at both local and regional scales; a few important ones cannot. (3) The mathematical structures relating radiation and surface energy flux to remote sensing parameters are, for the most part, scale invariant over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) study area. The conditions for scale invariance are derived. (4) The precision of satellite remote sensing estimates of surface reflectance, calibrated and corrected for atmospheric effects, is no worse than about 1% absolute. The errors may actually be smaller, but an upper bound of 1% results from sampling variance

  12. Entrainment of radio frequency chaff by wind as a function of surface aerodynamic roughness.

    Science.gov (United States)

    Gillies, John A; Nickling, William G

    2003-02-01

    Radio frequency (RF) chaff (approximately 2-cm x 25-microm diameter aluminum-coated glass silicate cylinders) released by military aircraft during testing and training activities has the potential to become entrained by wind upon settling to the Earth's surface. Once entrained from the surface there is the potential for RF chaff to be abraded and produce PM10 and PM2.5, which are regulated pollutants and pose health concerns. A series of portable wind tunnel tests were carried out to examine the propensity of RF chaff to become entrained by wind by defining the relationship between the threshold friction velocity of RF chaff (u(*t RF chaff)) and aerodynamic roughness (z(o)) of surfaces onto which it may deposit. The test surfaces were of varying roughness including types near the Naval Air Station (NAS), Fallon, NV, where RF chaff is released. The u(*t) of this fibrous material ranged from 0.14 m/sec for a smooth playa to 0.82 m/sec for a rough crusted playa surface with larger cobble-sized (approximately 6-26-cm diameter) rocks rising above the surface. The u(*t RF chaff) is dependent on the z(o) of the surface onto which it falls as well as the physical characteristics of the roughness. The wind regime of Fallon would allow for chaff suspension events to occur should it settle on typical surfaces in the area. However, the wind climatology of this area makes the probability of such events relatively low.

  13. Quarter-Century Offshore Winds from SSM/I and WRF in the North Sea and South China Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Zhu, Rong;

    2016-01-01

    We study the wind climate and its long-term variability in the North Sea and South China Sea, areas relevant for offshore wind energy development, using satellite-based wind data, because very few reliable long-term in-situ sea surface wind observations are available. The Special Sensor Microwave...

  14. Quality Control Methodology Of A Surface Wind Observational Database In North Eastern North America

    Science.gov (United States)

    Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Conte, Jorge; Beltrami, Hugo

    2016-04-01

    This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. The database consists of 526 sites (486 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions with uneven measurement units and changing measuring procedures, instrumentation and heights. The records span from 1953 to 2010. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. The first phases deal with problems often related with data recording and management: (1) compilation stage dealing with the detection of typographical errors, decoding problems, site displacements and unification of institutional practices; (2) detection of erroneous data sequence duplications within a station or among different ones; (3) detection of errors related with physically unrealistic data measurements. The last phases are focused on instrumental errors: (4) problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; (5) high variability related erroneous records; (6) standardization of wind speed record biases due to changing measurement heights, detection of wind speed biases on week to monthly timescales, and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Additionally, around 15.9% wind speed records and 2.4% of wind direction data have been also corrected.

  15. Super-Eddington stellar winds driven by near-surface energy deposition

    Science.gov (United States)

    Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill

    2016-05-01

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.

  16. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  17. The inner small satellites of Saturn: Their varied surfaces tell dynamic tales

    Science.gov (United States)

    Thomas, Peter C.; Helfenstein, P.; Burns, J. A.

    2013-10-01

    According to images from the Cassini Imaging Science Subsystem (ISS), the surface forms and overall shapes of Saturn’s inner small satellites occur in groups that populate different orbital niches. Co-orbitals Janus and Epimetheus are the most lunar-like of the small satellites; ring moons Atlas, Pan, and Daphnis have latitude-dependent morphology likely related to how ring material is supplied (Charnoz et al., 2007). The shepherding moon Prometheus may show a stripped mantle/core structure. Arc/ring embedded moons are small, smooth ellipsoids, unique among well-imaged small solar system objects. The Trojan satellites (Calypso, Telesto, Helene) have deep coverings showing multi-step histories of deposition and erosion, and include branching networks of downslope transport. We report the quantitative characteristics of these bodies’ shapes, mean properties, and surface characteristics. The differences may arise from the amounts of loose material available to cover the surfaces. Modeling of ejecta sources from large icy satellites in addition to interactions with ring particles may be required to explain all the variation among these small, icy bodies. The semi-global drainage patterns on the Trojans are especially enigmatic. Why is there nothing comparable on other small satellites? The tapered albedo markings on the Trojans suggest process-specific surface properties. Cassini ISS UV3/IR3 color ratios show that, for Helene, erosion and downslope motion result in a surface that is bluer in color; or a less active surface remains/becomes redder. Sustained exogenic processes such as E-ring particle impacts and charged-particle bombardment compete with geological processes, but on the Trojans, both leave strong signatures. The different amounts of interconnected surfaces on the small satellites range from the cratered landscapes of Janus and Epimetheus, through the semi-global drainage patterns of the Trojans, to complete smoothing of the arc/ring embedded objects

  18. Improving knowledge of the surface salinity annual cycle with Aquarius satellite measurements

    Science.gov (United States)

    Lagerloef, G. S. E.

    2016-12-01

    To improve knowledge of the ocean surface salinity annual cycle, and its link to global precipitation patterns, remains a key science measurement objective for satellites. The Aquarius satellite data are applied here to address this, and the analysis is not as straightforward as it may seem. Sensor calibration is considered carefully to ensure that seasonality in external calibration data sources do not alias the satellite measurements. For example, quasi-monthly calibration error signals were identified early in the Aquarius mission. Subsequently, Aquarius data processing has relied primarily on an ocean target calibration method, whereby the satellite observations were co-located with output from the US Navy operational HYCOM model to adjust for these quasi-monthly calibration drifts. It was later determined that HYCOM salinity fields are themselves adjusted with a climatological restoring term, that imprints the seasonal climatology signal on the sensor calibration. When that output is compared with a parallel Aquarius data processing that bypasses the HYCOM ocean target calibration, and substitutes a simulation of the sensor electronics, the globally averaged output show very different annual signals between these trials. A modified ocean-target calibration, that employs satellite data matched directly with the in situ observations, is presently being investigated. The methodology uses signal processing to separate the satellite-in situ differences related to the sensor calibration from geophysical error sources. This remains a work-in-progress, and the results, with any unresolved issues, will be discussed. The presentation will also provide a very brief summary of Aquarius scientific accomplishments, the final "legacy" data set production, and the program to continue salinity data processing from other satellites.

  19. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  20. Mesoscale Near-Surface Wind Speed Variability Mapping with Synthetic Aperture Radar.

    Science.gov (United States)

    Young, George; Sikora, Todd; Winstead, Nathaniel

    2008-11-05

    Operationally-significant wind speed variability is often observed within synthetic aperture radar-derived wind speed (SDWS) images of the sea surface. This paper is meant as a first step towards automated distinguishing of meteorological phenomena responsible for such variability. In doing so, the research presented in this paper tests feature extraction and pixel aggregation techniques focused on mesoscale variability of SDWS. A sample of twenty eight SDWS images possessing varying degrees of near-surface wind speed variability were selected to serve as case studies. Gaussian high- and low-pass, local entropy, and local standard deviation filters performed well for the feature extraction portion of the research while principle component analysis of the filtered data performed well for the pixel aggregation. The findings suggest recommendations for future research.

  1. Applications of AMSR-E Measurements for Tropical Cyclone Predictions Part Ⅰ: Retrieval of Sea Surface Temperature and Wind Speed

    Institute of Scientific and Technical Information of China (English)

    Banghua YAN; Fuzhong WENG

    2008-01-01

    Existing satellite microwave algorithms for retrieving Sea Surface Temperature(Sst)and wind(SSW)are applicable primarily for non-raining cloudy conditions.With the launch of the Earth Observing System (EOS)Aqua satellite in 2002,the Advanced Microwave Scanning Radiometer(AMSR-E)onboard provides some unique measurements at lower frequencies which are sensitive to ocean surface parameters under ad-verse weather conditions.In this study,a new algorithm is developed to derive SST and SSW for hurricane predictions such as hurricane vortex analysis from the AMSR-E measurements at 6.925 and 10.65 GHz.In the algorithm,the effects of precipitation emission and scattering on the measurements are properly taken into account.The algorithm performances are evaluated with buoy measurements and aircraft dropsonde data.It is found that the root mean square (RMS) errors for SST and SSW are about 1.8K and 1.9m s(-1),respectively,when the results are compared with the buoy data over open oceans under precipitating clouds (e.g.,its liquid water path is larger than 0.5 mm),while they are 1.1 K for SST and 2.0 ms(-1)for SSW,respectively,when the retrievals are validated against the dropsonde measurements over warm oceans.These results indicate that our newly developed algorithm catl provide some critical surface information for trop-ical cycle predictions.Currently,this newly developed algorithm has been implemented into the hybrid variational scheme for the hurricane vortex analysis to provide predictions of SST and SSW fields.

  2. Field and numerical study of wind and surface waves at short fetches

    Science.gov (United States)

    Baydakov, Georgy; Kuznetsova, Alexandra; Sergeev, Daniil; Papko, Vladislav; Kandaurov, Alexander; Vdovin, Maxim; Troitskaya, Yuliya

    2016-04-01

    Measurements were carried out in 2012-2015 from May to October in the waters of Gorky Reservoir belonging to the Volga Cascade. The methods of the experiment focus on the study of airflow in the close proximity to the water surface. The sensors were positioned at the oceanographic Froude buoy including five two-component ultrasonic sensors WindSonic by Gill Instruments at different levels (0.1, 0.85, 1.3, 2.27, 5.26 meters above the mean water surface level), one water and three air temperature sensors, and three-channel wire wave gauge. One of wind sensors (0.1 m) was located on the float tracking the waveform for measuring the wind speed in the close proximity to the water surface. Basic parameters of the atmospheric boundary layer (the friction velocity u∗, the wind speed U10 and the drag coefficient CD) were calculated from the measured profiles of wind speed. Parameters were obtained in the range of wind speeds of 1-12 m/s. For wind speeds stronger than 4 m/s CD values were lower than those obtained before (see eg. [1,2]) and those predicted by the bulk parameterization. However, for weak winds (less than 3 m/s) CD values considerably higher than expected ones. The new parameterization of surface drag coefficient was proposed on the basis of the obtained data. The suggested parameterization of drag coefficient CD(U10) was implemented within wind input source terms in WAVEWATCH III [3]. The results of the numerical experiments were compared with the results obtained in the field experiments on the Gorky Reservoir. The use of the new drag coefficient improves the agreement in significant wave heights HS [4]. At the same time, the predicted mean wave periods are overestimated using both built-in source terms and adjusted source terms. We associate it with the necessity of the adjusting of the DIA nonlinearity model in WAVEWATCH III to the conditions of the middle-sized reservoir. Test experiments on the adjusting were carried out. The work was supported by the

  3. Projected changes to surface wind characteristics and extremes over North America in CRCM5

    Science.gov (United States)

    Jeong, Dae Il; Sushama, Laxmi

    2017-04-01

    Changes in the tendency of wind speed and direction have significant implications for long-term water cycle, air pollution, arid and semiarid environments, fire activity, and wind energy production. Furthermore, changes in wind extremes have direct impacts on buildings, infrastructures, agriculture, power lines, and trees. This study evaluates projected changes to wind speed characteristics (i.e., seasonal and annual mean, seasonal and diurnal cycles, directional distribution, and extreme events) for the future 2071-2100 period, with respect to the current 1981-2010 period over North America, using four different simulations from the fifth-generation Canadian Regional Climate Model (CRCM5) with two driving GCMs under RCP (Representative Concentration Pathways) 4.5 and 8.5 scenarios. The CRCM5 simulates the climatology of mean sea level pressure gradient and associated wind direction over North America well when compared to ERA-Interim reanalysis dataset. The CRCM5 also reproduces properly the spatial distributions of observed seasonal and annual mean wind speeds obtained from 611 meteorological stations across North America. The CRCM5 simulations generally suggest an increase in future mean wind speed for northern and eastern parts of Canada, due to a decrease of future mean sea level pressure and more intense low pressure air circulation systems already situated in those regions such as Aleutian and Icelandic Lows. Projected changes to annual maximum wind speed show more spatial variability compared to seasonal and annual mean wind speed as extreme wind speed is influenced more by regional-scale features associated with instantaneous surface temperature and air pressure gradients. The CRCM5 simulations suggest some increases in the future 50-year return levels of wind speed, mainly due to changes in the inter-annual variability of annual maximum wind speed. However, the projected changes vary in spatial pattern with the driving GCM fields and emission scenarios

  4. Ice surface temperatures: seasonal cycle and daily variability from in-situ and satellite observations

    Science.gov (United States)

    Madsen, Kristine S.; Dybkjær, Gorm; Høyer, Jacob L.; Nielsen-Englyst, Pia; Rasmussen, Till A. S.; Tonboe, Rasmus T.

    2016-04-01

    Surface temperature is an important parameter for understanding the climate system, including the Polar Regions. Yet, in-situ temperature measurements over ice- and snow covered regions are sparse and unevenly distributed, and atmospheric circulation models estimating surface temperature may have large biases. To change this picture, we will analyse the seasonal cycle and daily variability of in-situ and satellite observations, and give an example of how to utilize the data in a sea ice model. We have compiled a data set of in-situ surface and 2 m air temperature observations over land ice, snow, sea ice, and from the marginal ice zone. 2523 time series of varying length from 14 data providers, with a total of more than 13 million observations, have been quality controlled and gathered in a uniform format. An overview of this data set will be presented. In addition, IST satellite observations have been processed from the Metop/AVHRR sensor and a merged analysis product has been constructed based upon the Metop/AVHRR, IASI and Modis IST observations. The satellite and in-situ observations of IST are analysed in parallel, to characterize the IST variability on diurnal and seasonal scales and its spatial patterns. The in-situ data are used to estimate sampling effects within the satellite observations and the good coverage of the satellite observations are used to complete the geographical variability. As an example of the application of satellite IST data, results will be shown from a coupled HYCOM-CICE ocean and sea ice model run, where the IST products have been ingested. The impact of using IST in models will be assessed. This work is a part of the EUSTACE project under Horizon 2020, where the ice surface temperatures form an important piece of the puzzle of creating an observationally based record of surface temperatures for all corners of the Earth, and of the ESA GlobTemperature project which aims at applying surface temperatures in models in order to

  5. Super-Eddington Stellar Winds Driven by Near-Surface Energy Deposition

    CERN Document Server

    Quataert, Eliot; Kasen, Daniel; Klion, Hannah; Paxton, Bill

    2015-01-01

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g., unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem vc ~ (Edot G)^{1/5} (where Edot is the heating rate) to the stellar escape speed near the heating region vesc(r_h). For vc > vesc(r_h) the wind kinetic power at large radii Edot_w ~ Edot. For vc < vesc(r_h), most of the energy is used to unbind the wind material and thus Edot_w < Edot. Multidimensional hydrodynamic simulations without radiation di...

  6. Correlation between dust events in Mongolia and surface wind and precipitation

    Directory of Open Access Journals (Sweden)

    Ganbat Amgalan

    2017-01-01

    Full Text Available This study presents dust event spatiotemporal distribution and regional trends, and the impact of surface wind and precipitation on dust occurrences in Mongolia. We used data collected between 2000 and 2013 from 113 meteorological stations in natural forest steppe, steppe, Gobi Desert, and mountain zones. We analyzed the relationship between dusty days, derived using the sum of days with dust storms and/or drifting dust, and days with strong winds (at a threshold wind speed of a constant 6.5 m s-1, hereafter, strong wind days and precipitation by comparing the dusty days in dust-frequent years, dust-less years, and dust-mean years. Dusty days in dust-frequent years were associated with strong wind days when the precipitation is about 10 mm and dust occurrences were suppressed by large amounts of precipitation (approximately 22 mm in dust-less years over the southeastern part of the Gobi Desert in May. We propose a potential dust index (PDI based on the correlations among dusty days, strong winds and precipitation. The PDI performed as predicted in most areas of the country in the spring season.

  7. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  8. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    OpenAIRE

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J; Sakaguchi, Koichi; LIU, Xiaohong

    2016-01-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into ac...

  9. Conceptions of Tornado Wind Speed and Land Surface Interactions among Undergraduate Students in Nebraska

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Arthurs, Leilani

    2015-01-01

    To ascertain novice conceptions of tornado wind speed and the influence of surface characteristics on tornado occurrence, 613 undergraduate students enrolled in introductory science courses at a large state university in Nebraska were surveyed. Our findings show that students lack understanding of the fundamental concepts that (1) tornadoes are…

  10. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  11. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate m

  12. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  13. Optimizing Surface Winds using QuikSCAT Measurements in the Mediterranean Sea During 2000-2006

    Science.gov (United States)

    2009-02-28

    r.com/ locate / jmarsysOptimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006 A. Birol Kara a,⁎, Alan J...flux algorithms. J. Geophys. Res. 113, C04009. doi:10.1029/2007JC004324. Large, W.G., Danabasoglu, G., Doney, S.C., McWilliams , J.C., 1997

  14. Lightning attachment to wind turbine surfaces affected by internal blade conditions

    DEFF Research Database (Denmark)

    Garolera, Anna Candela; Holboell, Joachim; Madsen, Soren Find

    2012-01-01

    on the blade surface instead of the receptor is also possible, with the risk of damages in the composite structure as a consequence. The present paper focuses on electrical fields and streamer activity in connection to conductive components inside a wind turbine blade when a downward leader is approaching...

  15. Evaporation of HD Droplets From Nonporous, Inert Surfaces in TGA Microbalance Wind Tunnels

    Science.gov (United States)

    2008-09-01

    2007 4. TITLE AND SUBTITLE Evaporation of HD Droplets from Nonporous, Inert Surfaces in TGA Microbalancc Wind Tunnels 5a. CONTRACT NUMBER DAAD13...hr (lightly swirled on a rotating plateau). Then, the glass was rinsed with dematerialized water and dried (using appropriate fat-free non-felting

  16. Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun

    2005-01-01

    The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.

  17. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Ainslie, M.A.; Colin, M.E.G.D.; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform-related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modelling

  18. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2013-01-01

    Abstract—Sea-surface scattering by wind-generated waves and bubbles is regarded to be the main nonplatform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate m

  19. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  20. The Impact of Sea-Surface Winds on Meteorological Conditions in Israel: An Initial Study

    Science.gov (United States)

    Otterman, J.; Saaroni, H.; Atlas, R.; Ardizzone, J.; Ben-Dor, E.; Druyan, L.; Jusem, C. J.; Karnieli, A.; Terry, J.

    2000-01-01

    The SSM/I (Spectral Sensor Microwave Imager) dataset is used to monitor surface wind speed and direction at four locations over the Eastern Mediterranean during December 1998 - January 1999. Time series of these data are compared to concurrent series of precipitation, surface temperature, humidity and winds at selected Israeli stations: Sde Dov (coastal), Bet Dagan (5 km. inland), Jerusalem (Judean Hills), Hafetz Haim (3 km. inland) and Sde Boker (central Negev). December 1998 and the beginning of January 1999 were dry in Israel, but significant precipitation was recorded at many stations during the second half of January (1999). SSM/I data show a surge in westerly surface winds west of Israel (32 N, 32.5 E) on 15 January, coinciding with the renewal of precipitation. We discuss the relevant circulation and pressure patterns during this transition in the context of the evolving meteorological conditions at the selected Israeli locations. The SSM/I dataset of near ocean surface winds, available for the last 12 years, is described. We analyze lagged correlation between these data and the Israeli station data and investigate possibility of predictive skill. Application of such relationships to short-term weather prediction would require real-time access to the SSM/I observations.

  1. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  2. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete;

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often...... with long periods of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models...

  3. Impact of non-uniform surface magnetic fields on stellar winds

    CERN Document Server

    Holzwarth, V R

    2005-01-01

    Observations of active stars reveal highly non-uniform surface distributions of magnetic flux. Theoretical models considering magnetised stellar winds however often presume uniform surface magnetic fields, characterised by a single magnetic field strength. The present work investigates the impact of non-uniform surface magnetic field distributions on the stellar mass and angular momentum loss rates. The approach of Weber & Davis (1967) is extended to non-equatorial latitudes to quantify the impact of latitude-dependent magnetic field distributions over a large range of stellar rotation rates and thermal wind properties. The analytically prescribed field patterns are dominated by magnetic flux concentrations at intermediate and high latitudes. The global stellar mass loss rates are found to be rather insensitive to non-uniformities of the surface magnetic field. Depending on the non-uniformity of the field distribution, the angular momentum loss rates deviate in contrast at all rotation rates between -60% ...

  4. Using Surface Pressure To Improve Tropical Cyclone /Surface Wind Retrievals From SAR

    Science.gov (United States)

    2012-03-19

    Jochen Horstmann of NATO Undersea Research Centre ( NURC ). GD and NURC have developed separate methods for estimating wind directions. The GD and NURC ...Working version of SLP retrieval code, including necessary PBL model developments, that is compatible with GD, NURC and WiSAR file formats (as well as for...installed at NURC and we have been experimenting with Horstmann to determine if it can (or should) be included as an integrated part of the NURC SAR wind

  5. Land surface thermal characterization of Asian-pacific region with Japanese geostationary satellite

    Science.gov (United States)

    Oyoshi, K.; Tamura, M.

    2010-12-01

    Land Surface Temperature (LST) is a significant indicator of energy balance at the Earth's surface. It is required for a wide variety of climate, hydrological, ecological, and biogeochemical studies. Although LST is highly variable both temporally and spatially, it is impossible for polar-orbiting satellite to detect hourly changes in LST, because the satellite is able to only collect data of the same area at most twice a day. On the other hand, geostationary satellite is able to collect hourly data and has a possibility to monitor hourly changes in LST, therefore hourly measurements of geostationary satellite enables us to characterize detailed thermal conditions of the Earth's surface and improve our understanding of the surface energy balance. Multi-functional Transport Satellite (MTSAT) is a Japanese geostationary satellite launched in 2005 and covers Asia-Pacific region. MTSAT provides hourly data with 5 bands including two thermal infrared (TIR) bands in the 10.5-12.5 micron region. In this research, we have developed a methodology to retrieve hourly LST from thermal infrared data of MTSAT. We applied Generalized Split-window (GSW) equation to estimate LST from TIR data. First, the brightness temperatures measured at sensor on MTSAT was simulated by radiative transfer code (MODTRAN), and the numerical coefficients of GSW equation were optimized based on the simulation results with non-linear minimization algorithm. The standard deviation of derived GSW equation was less than or equal to 1.09K in the case of viewing zenith angle lower than 40 degree and 1.73K in 60 degree. Then, spatial distributions of LST have been mapped optimized GSW equation with brightness temperatures of MTSAT IR1 and IR2 and emissivity map from MODIS product. Finally, these maps were validated with MODIS LST product (MOD11A1) over four Asian-pacific regions such as Bangkok, Tokyo, UlanBator and Jakarta , It is found that RMSE of these regions were 4.57K, 2.22K, 2.71K and 3.92K

  6. Mean Sea Surface (mss) Model Determination for Malaysian Seas Using Multi-Mission Satellite Altimeter

    Science.gov (United States)

    Yahaya, N. A. Z.; Musa, T. A.; Omar, K. M.; Din, A. H. M.; Omar, A. H.; Tugi, A.; Yazid, N. M.; Abdullah, N. M.; Wahab, M. I. A.

    2016-09-01

    The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  7. MEAN SEA SURFACE (MSS MODEL DETERMINATION FOR MALAYSIAN SEAS USING MULTI-MISSION SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    N. A. Z. Yahaya

    2016-09-01

    Full Text Available The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH. The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS. The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  8. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    Science.gov (United States)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  9. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    Science.gov (United States)

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  10. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    Science.gov (United States)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  11. Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing

    Science.gov (United States)

    Yang, Xin; Zhao, Chuanfeng; Guo, Jianping; Wang, Yang

    2016-04-01

    Beijing has been experiencing serious air pollution in recent years, resulting in serious impacts on the local environment and climate and on human health. In addition to individual pollution sources and weather systems, feedback between aerosols and downwelling solar radiation (DSR) and between aerosols and winds also contribute to heavy aerosol pollution. By using atmospheric visibility (VIS) to represent the relative amount of aerosol pollution during a 5 week observation around the Asia-Pacific Economic Cooperation (APEC) period (22 October to 25 November 2014) over a site in south Beijing, China, we show clear positive relationships between DSR and VIS and between winds and VIS. The sensitivities of daily DSR and surface winds to VIS are approximately 15.42 W/m2/km and 0.068 m/s/km, respectively. The strengthening contributions to atmospheric visibility by surface DSR-VIS interactions and between surface wind-aerosol interactions are estimated at approximately 15% and 12%, respectively, in south Beijing around the APEC period.

  12. Solar Wind Sputtering of Lunar Surface Materials: Role and Some Possible Implications of Potential Sputtering

    Science.gov (United States)

    Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.

    2010-01-01

    Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.

  13. Role of surface wind and vegetation cover in multi-decadal variations of dust emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2017-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82% of the continental North Africa dust emission (1340-1570 Tg year-1) in the 27-year average, the Sahel accounts for 17% with a larger seasonal and inter-annual variation (230-380 Tg year-1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R = 0.92). Over the Sahel, the dust emission is correlated with W10m (R = 0.69) but is also anti-correlated with the trend of NDVI (R = -0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R = 0.53), suggesting that Saharan/Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  14. Intercomparison of Several Ocean Surface Wind Products over the Nordic Seas

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2014-05-01

    Surface winds are one of the key parameters that control the exchange of energy between the atmosphere and oceans. Being the major source of momentum for the upper ocean, winds mainly control ocean processes and air-sea interaction especially in synoptically active regions such as the Nordic Seas (Greenland, Norwegian, Iceland, and Barents Seas). Intense formation of water masses takes place in the Nordic Seas through cooling, brine rejection, and mixing of Arctic Ocean and North Atlantic waters. Deep water produced in this region by deep convection participates in the Atlantic Meridional Overturning Circulation. Water masses formed in the Nordic Seas are also important for the maintenance of thermohaline structure of the Arctic Ocean. The Nordic Seas has always been a challenging region for Arctic Ocean modeling due to complex ocean circulation, water mass transformation, intense air-sea interaction, deep vertical convection, etc. The lack of reliable high-resolution wind products over the Polar region is another factor that has been impacting modeling of the Arctic Ocean in general and the Nordic Seas in particular. Coarse resolution atmospheric fields are often used to force the Arctic Ocean models. The major drawback of the coarse resolution wind products is their inability to resolve small- and meso-scale cyclones frequently impacting the Nordic Seas. Several gridded surface wind products derived from scatterometer wind observations have reasonably high spatial resolution to represent most of the small scale cyclones in the region. In the present model study, Cross-Calibrated Multi-Platform surface wind data (CCMP) are compared against the wind fields from traditional the NCEP/NCAR Reanalysis 2 (NCEPR), from NCEP Climate Forecast System Reanalysis (CFSR), and from the interium version (30km) of the Arctic System Reanalysis (ASR). The NCEPR is a coarse resolution product (1.9°) and still is the primary source of forcing fields for the Arctic Ocean models. The

  15. Solar wind interaction with the Reiner Gamma crustal magnetic anomaly: Connecting source magnetization to surface weathering

    Science.gov (United States)

    Poppe, Andrew R.; Fatemi, Shahab; Garrick-Bethell, Ian; Hemingway, Doug; Holmström, Mats

    2016-03-01

    Remanent magnetization has long been known to exist in the lunar crust, yet both the detailed topology and ultimate origin(s) of these fields remains uncertain. Some crustal magnetic fields coincide with surface albedo anomalies, known as lunar swirls, which are thought to be formed by differential surface weathering of the regolith underlying crustal fields due to deflection of incident solar wind protons. Here, we present results from a three-dimensional, self-consistent, plasma hybrid model of the solar wind interaction with two different possible source magnetizations for the Reiner Gamma anomaly. We characterize the plasma interaction with these fields and the resulting spatial distribution of charged-particle weathering of the surface and compare these results to optical albedo measurements of Reiner Gamma. The model results constrain the proposed source magnetizations for Reiner Gamma and suggest that vertical crustal magnetic fields are required to produce the observed "dark lanes."

  16. Simulation of rotor aerodynamics : use of the actuator surface method to model the MEXICO wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Breton, S.P.; Watters, C.S.; Masson, C. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2010-07-01

    This presentation discussed the model rotor experiments under controlled conditions (MEXICO) project. The experiments are being conducted in the largest wind tunnel in Europe in order to determine optimal yaw and pitch angles for wind turbines as well as to test the performance of blade aerodynamic profiles and rotor instrumentation. Data obtained during the experiments are used to determine velocity component points in order to develop a greater understanding of wind turbine aerodynamics and improve calculation methods. Blade element momentum (BEM) computational fluid dynamics (CFD) and vortex wake codes are used in the program, which includes an actuator surface method embedded in a customized CFD finite element method. To date, the project has validated various models with experimental data, and mapped the induced velocities upwind and downwind from rotors. Further research is being conducted to compare experimental results with other results in the literature related to blade loading, root bending moments, and detailed flow characteristics. Charts of experimental results were included. tabs., figs.

  17. Wind enhances differential air advection in surface snow at sub-meter scales

    Science.gov (United States)

    Drake, Stephen A.; Selker, John S.; Higgins, Chad W.

    2017-09-01

    Atmospheric pressure gradients and pressure fluctuations drive within-snow air movement that enhances gas mobility through interstitial pore space. The magnitude of this enhancement in relation to snow microstructure properties cannot be well predicted with current methods. In a set of field experiments, we injected a dilute mixture of 1 % carbon monoxide (CO) and nitrogen gas (N2) of known volume into the topmost layer of a snowpack and, using a distributed array of thin film sensors, measured plume evolution as a function of wind forcing. We found enhanced dispersion in the streamwise direction and also along low-resistance pathways in the presence of wind. These results suggest that atmospheric constituents contained in snow can be anisotropically mixed depending on the wind environment and snow structure, having implications for surface snow reaction rates and interpretation of firn and ice cores.

  18. Satellite image blind restoration based on surface fitting and multivariate model

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin-bing; YANG Shi-zhi; WANG Xian-hua; QIAO Yan-li

    2009-01-01

    Owing to the blurring effect from atmosphere and camera system in the satellite imaging a blind image restoration algo-rithm is proposed which includes the modulation transfer function (MTF) estimation and the image restoration. In the MTF estimation stage, based on every degradation process of satellite imaging-chain, a combined parametric model of MTF is given and used to fit the surface of normalized logarithmic amplitude spectrum of degraded image. In the image restoration stage, a maximum a posteriori (MAP) based edge-preserving image restoration method is presented which introduces multivariate Laplacian model to characterize the prior distribution of wavelet coefficients of original image. During the image restoration, in order to avoid solving high nonlinear equations, optimization transfer algorithm is adopted to decom-pose the image restoration procedure into two simple steps: Landweber iteration and wavelet thresholding denoising. In the numerical experiment, the satellite image restoration results from SPOT-5 and high resolution camera (HR) of China & Brazil earth resource satellite (CBERS-02B) ane compared, and the proposed algorithm is superior in the image edge preservation and noise inhibition.

  19. a Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery

    Science.gov (United States)

    Gong, K.; Fritsch, D.

    2016-06-01

    Photogrammetry is currently in a process of renaissance, caused by the development of dense stereo matching algorithms to provide very dense Digital Surface Models (DSMs). Moreover, satellite sensors have improved to provide sub-meter or even better Ground Sampling Distances (GSD) in recent years. Therefore, the generation of DSM from spaceborne stereo imagery becomes a vivid research area. This paper presents a comprehensive study about the DSM generation of high resolution satellite data and proposes several methods to implement the approach. The bias-compensated Rational Polynomial Coefficients (RPCs) Bundle Block Adjustment is applied to image orientation and the rectification of stereo scenes is realized based on the Project-Trajectory-Based Epipolarity (PTE) Model. Very dense DSMs are generated from WorldView-2 satellite stereo imagery using the dense image matching module of the C/C++ library LibTsgm. We carry out various tests to evaluate the quality of generated DSMs regarding robustness and precision. The results have verified that the presented pipeline of DSM generation from high resolution satellite imagery is applicable, reliable and very promising.

  20. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    Science.gov (United States)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  1. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  2. Effect of wind turbine wakes on cropland surface fluxes in the US Great Plains during a Nocturnal Low Level Jet

    Science.gov (United States)

    Rhodes, M. E.; Aitken, M.; Lundquist, J. K.; Takle, E. S.; Prueger, J. H.

    2010-12-01

    Installation of large scale wind farms is becoming a common operation in the Midwest, and wind farms frequently are situated among fields of agricultural crops. Each wind turbine is known to alter the behavior of the air mass downwind of the rotor; consequently, the rotor wakes alter the local microclimate. Quantification of the effects of wind turbine wakes on local microclimate is required to understand how large-scale wind deployment affects large-scale agriculture. This study examines the potential effect of wind turbine wakes on a corn crop in central Iowa during summer 2010. The field site consisted of one surface flux tower upwind of a row of five modern wind turbine generators, an identical surface flux station downwind of the turbine row, and a ground based LIDAR system downwind of the wind turbines. Each flux tower was instrumented with an array consisting of radiometers, a three-dimensional sonic anemometer, an open cell CO2 analyzer, a cup anemometer and wind vane, temperature and relative humidity sensors, and a tipping bucket. The LIDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL). This presentation examines wake-surface interaction on one particular night, during which the prevailing winds situated the LIDAR directly behind a wind turbine approximately 2 rotor diameters downwind of the turbine tower. As expected preliminary LIDAR results indicate that in the turbine rotor shadow there is a strong deficit of horizontal momentum. Additionally, a strong nocturnal low-level jet occurred above the turbine rotor disk. Wavelet spectral analysis indicates that oscillatory behavior, with frequencies characteristic of wind turbine wakes, is observed in the LIDAR horizontal and vertical winds and in the downwind flux station datastreams. The characterization of wake effects provided by this unique dataset will allow for better parameterization and modeling of wind turbine wake

  3. Interactions of satellite-speed helium atoms with satellite surfaces. 2: energy distributions of reflected helium atoms. [7000 m/s

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.M.; Knuth, E.L.

    1976-04-01

    Energy transfer in collisions of satellite-speed (7,000 m/s) helium atoms with a cleaned 6061-T6 satellite-type aluminum surface was investigated by use of the molecular-beam technique. The amount of energy transferred was determined from the measured energy of the molecular-beam and the measured spatial and energy distributions of the reflected atoms. Spatial distributions of helium atoms scattered from a 6061-T6 aluminum surface were measured. The scattering pattern exhibits a prominent backscattering, probably due to the gross surface roughness and/or the relative lattice softness of the aluminum surface. Energy distributions of reflected helium atoms from the same surface were measured for six different incidence angles. For each incidence angle, distributions were measured at approximately sixty scattering positions. At a given scattering position, the energy spectra of the reflected helium atoms and the background gas were obtained by use of the retarding-field energy analyzer. (auth)

  4. Surface Freshwater Storage Variations in the Orinoco Floodplains Using Multi-Satellite Observations

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2014-12-01

    Full Text Available Variations in surface water extent and storage are poorly characterized from regional to global scales. In this study, a multi-satellite approach is proposed to estimate the water stored in the floodplains of the Orinoco Basin at a monthly time-scale using remotely-sensed observations of surface water from the Global Inundation Extent Multi-Satellite (GIEMS and stages from Envisat radar altimetry. Surface water storage variations over 2003–2007 exhibit large interannual variability and a strong seasonal signal, peaking during summer, and associated with the flood pulse. The volume of surface water storage in the Orinoco Basin was highly correlated with the river discharge at Ciudad Bolivar (R = 0.95, the closest station to the mouth where discharge was estimated, although discharge lagged one month behind storage. The correlation remained high (R = 0.73 after removing seasonal effects. Mean annual variations in surface water volume represented ~170 km3, contributing to ~45% of the Gravity Recovery and Climate Experiment (GRACE-derived total water storage variations and representing ~13% of the total volume of water that flowed out of the Orinoco Basin to the Atlantic Ocean.

  5. Spatial Resolution of Core Surface Flow Models Derived From Satellite Data

    Science.gov (United States)

    Eymin, C.; Hulot, G.

    Core surface flows are usually computed from observations of the internal magnetic field and its secular variation. With observatory based secular variation models, the spatial resolution of core surface flows was mainly limited by the resolution of the secular variation model itself. This resolution dramatically improved with magnetic satellite data and for the first time the main limitation on core surface flow compu- tations comes from the hiding of the smallest length scale of the internal magnetic field by the crust. Indeed, the invisible small scale magnetic field may interact with core flows to produce large scale secular variation. This interaction cannot be taken into account during the flow computation process and may alter the computed flow models, even for large length scales. We investigate here the effects of the truncation of the internal magnetic field with known flow models using two different and inde- pendent core surface flow computation methods. In particular, we try to estimate the amplitude of the error introduced by this truncation and the spatial resolution that can be obtained with the new satellite data for core surface flows.

  6. Reconstruction of Sub-Surface Velocities from Satellite Observations Using Iterative Self-Organizing Maps

    CERN Document Server

    Chapman, Christopher

    2016-01-01

    In this letter a new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. Unlike previous attempts to reconstruct deep velocities from surface data, our method makes no assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high--resolution velocity fields at a depth of 1000m. Validation reveals extremely promising results, with a speed root mean squared error of ~2.8cm/s, a factor more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees...

  7. Toward the Estimation of Surface Soil Moisture Content Using Geostationary Satellite Data over Sparsely Vegetated Area

    Directory of Open Access Journals (Sweden)

    Pei Leng

    2015-04-01

    Full Text Available Based on a novel bare surface soil moisture (SSM retrieval model developed from the synergistic use of the diurnal cycles of land surface temperature (LST and net surface shortwave radiation (NSSR (Leng et al. 2014. “Bare Surface Soil Moisture Retrieval from the Synergistic Use of Optical and Thermal Infrared Data”. International Journal of Remote Sensing 35: 988–1003., this paper mainly investigated the model’s capability to estimate SSM using geostationary satellite observations over vegetated area. Results from the simulated data primarily indicated that the previous bare SSM retrieval model is capable of estimating SSM in the low vegetation cover condition with fractional vegetation cover (FVC ranging from 0 to 0.3. In total, the simulated data from the Common Land Model (CoLM on 151 cloud-free days at three FLUXNET sites that with different climate patterns were used to describe SSM estimates with different underlying surfaces. The results showed a strong correlation between the estimated SSM and the simulated values, with a mean Root Mean Square Error (RMSE of 0.028 m3·m−3 and a coefficient of determination (R2 of 0.869. Moreover, diurnal cycles of LST and NSSR derived from the Meteosat Second Generation (MSG satellite data on 59 cloud-free days were utilized to estimate SSM in the REMEDHUS soil moisture network (Spain. In particular, determination of the model coefficients synchronously using satellite observations and SSM measurements was explored in detail in the cases where meteorological data were not available. A preliminary validation was implemented to verify the MSG pixel average SSM in the REMEDHUS area with the average SSM calculated from the site measurements. The results revealed a significant R2 of 0.595 and an RMSE of 0.021 m3·m−3.

  8. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    Science.gov (United States)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  9. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed......; shaded and sunlit canopy and background, respectively. Given data on vegetation structure and density, the model estimates the fractions of the four components as well as the directional composite temperature in the view of a sensor, given the illumination and viewing geometry. The modeling results show...

  10. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    DEFF Research Database (Denmark)

    Lange, B.; Larsen, Søren Ejling; Højstrup, Jørgen;

    2004-01-01

    in the Danish Baltic Sea. Monin-Obukhov theory is often used for the description of the wind speed profile. From a given wind speed at one height, the profile is predicted using two parameters, Obukhov length and sea surface roughness. Different methods to estimate these parameters are discussed and compared......-Obukhov theory, a simple correction method to account for this effect has been developed and is tested in the same way. The models for the estimation of the sea surface roughness were found to lead only to small differences. For the purpose of wind resource assessment, even the assumption of a constant roughness......). The power output estimation has also been compared with the method of the resource estimation program WAsP. For the Rodsand data set the prediction error of WAsP is about 4%. For the extrapolation with Monin-Obukhov theory with different L and z(0) estimations, it is 5-9%. The simple wind profile correction...

  11. Energy transfer of surface wind-induced currents to the deep ocean via resonance with the Coriolis force

    Science.gov (United States)

    Ashkenazy, Yosef

    2017-03-01

    There are two main comparable sources of energy to the deep ocean-winds and tides. However, the identity of the most efficient mechanism that transfers wind energy to the deep ocean is still debated. Here we study, using oceanic general circulation model simulations and analytic derivations, the way that the wind directly supplies energy down to the bottom of the ocean when it is stochastic and temporally correlated or when it is periodic with a frequency that matches the Coriolis frequency. Basically, under these, commonly observed, conditions, one of the wind components resonates with the Coriolis frequency. Using reanalysis surface wind data and our simple model, we show that about one-third of the kinetic energy that is associated with wind-induced currents resides in the abyssal ocean, highlighting the importance of the resonance of the wind with the Coriolis force.

  12. L band radar backscatter dependence upon surface wind stress - A summary of new Seasat-1 and aircraft observations

    Science.gov (United States)

    Thompson, T. W.; Weissman, D. E.; Gonzalez, F. I.

    1983-01-01

    The wind-scale relationships for L band radar wavelengths near 25 cm and 20 deg angle of incidence and HH polarization are reviewed using a number of aircraft and Seasat-1 SAR observations. The dependence of the L band backscatter coefficient from the ocean upon surface wind speed and direction is stated. The wind speed coefficient is 0.5 + or - 0.1 for a wide range of wind speeds. The wind direction coefficient is near zero for lower winds and stable marine boundary layers, but may be 0.20 + or - 0.05 for moderate wind speeds and an unstable marine boundary layer. These results are interpreted in terms of existing theoretical models for radar scattering from the ocean.

  13. Towards a surface radiation climatology: Retrieval of downward irradiances from satellites

    Science.gov (United States)

    Schmetz, Johannes

    Methods are reviewed for retrieving the downward shortwave (0.3-4 μm) and longwave (4-100 μm) irradiances at the earth's surface from satellites. Emphasis is placed on elucidating the physical aspects relevant to the satellite retrieval. For the shortwave irradiance an example of a retrieval is presented. The shortwave retrieval is facilitated by a close linear coupling between the reflected radiance field at the top of the atmosphere and the surface irradiance. A linear relationship between planetary albedo and surface irradiance does also account properly for cloud absorption, since cloud absorption and albedo are linearly related. In the longwave the retrieval is more difficult since only atmospheric window radiances at the top of the atmosphere can bear information on the near-surface radiation field. For the remainder of the longwave spectrum the radiation regimes at the top of the atmosphere and at the surface are decoupled. More than 80% of the clear-sky longwave flux reaching the surface is emitted within the lowest 500 m of the atmosphere. In cloudy conditions the radiation fields at the surface and at the top of the atmosphere are entirely decoupled. Cloud contributions to the surface irradiance are important within the atmospheric window (8-13 μm) and the relative contribution increases in drier climates. Summaries are presented of various techniques devised for both the solar and longwave surface irradiances. A compilation of reported standard errors of shortwave techniques in comparison with ground measurements yields median values of about 5% and 10% for monthly and daily mean values, respectively. Standard errors for the longwave are of the order of 10-25 W m -2. Reported biases are typically of the order of 5 W m -2. For the shortwave retrieval there are fairly good prospects to obtain monthly mean estimates with the requested accuracy of about 10 W m -2 over regional scale areas. The inherent problems of the longwave still entails improvements

  14. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes

    Institute of Scientific and Technical Information of China (English)

    YongSheng Wu; Hasi Erdun; RuiPing Yin; Xin Zhang; Jie Ren; Jian Wang; XiuMin Tian; ZeKun Li; HengLu Miao

    2013-01-01

    Biological soil crusts are widely distributed in arid and semi-arid regions, whose formation and development have an important impact on the restoration process of the desert ecosystem. In order to explore the relationship between surface airflow and development characteristics of biological soil crusts, we studied surface airflow pattern and development characteristics of biological soil crusts on the fixed dune profile through field observation. Results indicate that the speed of near-surface airflow is the lowest at the foot of windward slope and the highest at the crest, showing an increasing trend from the foot to the crest. At the leeward side, although near-surface airflow increases slightly at the lower part of the slope after an initial sudden decrease at upper part of the slope, its overall trend decreases from the crest. Wind velocity variation coefficient varied at different heights over each observation site. The thickness, shear strength of biological soil crusts and percentage of fine particles at crusts layer decreased from the slope foot to the upper part, showing that biological soil crusts are less developed in high wind speed areas and well developed in low wind speed areas. It can be seen that there is a close relationship between the distribution of biological soil crusts in different parts of the dunes and changes in airflow due to geomorphologic variation.

  15. Long term sea surface temperature trends in US Affiliated Pacific Islands from satellite data, 1982-2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Monthly average NOAA satellite-derived Sea Surface Temperature (SST) values from 1982-2003 and their long-term trends are presented for sixteen US affiliated Pacific...

  16. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  17. Limiting Factors for Satellite-Based Retrievals of Surface-Level Carbon Monoxide

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Barré, J.

    2015-12-01

    CO is mostly produced in the lower troposphere by incomplete combustion of biomass and fuels. CO oxidation consumes ~75% of the tropospheric OH, which then is not available to remove CH4 and other greenhouse gases. CO oxidation also leads to the production of tropospheric O3. These critical impacts of CO on air quality and climate require accurate determination of the abundance and evolution of CO near the surface.Satellite retrievals would be well-suited to monitor surface CO globally. However, how do they compare to actual surface abundances? Some aspects to be considered include: the vertical sensitivity of retrievals (given by the averaging kernels), or how thick are the atmospheric layers that can be resolved; the vertical correlation length of CO with respect to the thickness of those layers; and the horizontal variability of CO with respect to the instrument's footprint.To investigate these questions we analyze MOPITT retrievals, DISCOVER-AQ and NOAA profiles, as well as WDCGG surface measurements. MOPITT, on board NASA's Terra satellite, has been measuring tropospheric CO since 2000, providing the longest global CO record to date. Its unique multispectral CO product offers enhanced sensitivity to CO near the surface. Vertical profiles of the lower troposphere were acquired during the DISCOVER-AQ airborne campaigns over selected regions of the USA. NOAA's airborne flask sampling program results in a multi-year, multi-seasonal record of vertical profiles from near the surface up to the mid troposphere, acquired over a number of stations, mostly in North America. Long-term, cross-calibrated surface CO data from ground stations worldwide are available through the WDCGG.Statistical analyses of the DISCOVER-AQ and NOAA profiles indicate that surface vertical correlation length varies greatly depending on geographic location. This may explain contrasting results obtained for different ground stations when comparing MOPITT and WDCGG co-located data and timeseries.

  18. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    Science.gov (United States)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  19. Satellite techniques for determining the geopotential for sea-surface elevations

    Science.gov (United States)

    Pisacane, V. L.

    1984-01-01

    Spaceborne altimetry with measurement accuracies of a few centimeters which has the potential to determine sea surface elevations necessary to compute accurate three-dimensonal geostrophic currents from traditional hydrographic observation is discussed. The limitation in this approach is the uncertainties in knowledge of the global and ocean geopotentials which produce satellite and height uncertainties about an order of magnitude larger than the goal of about 10 cm. The quantative effects of geopotential uncertainties on processing altimetry data are described. Potential near term improvements, not requiring additional spacecraft, are discussed. Even though there is substantial improvements at the longer wavelengths, the oceanographic goal will be achieved. The geopotential research mission (GRM) is described which should produce goepotential models that are capable of defining the ocean geid to 10 cm and near-Earth satellite position. The state of the art and the potential of spaceborne gravimetry is described as an alternative approach to improve our knowledge of the geopotential.

  20. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  1. Calibration of the Distributed Hydrological Model mHM using Satellite derived Land Surface Temperature

    Science.gov (United States)

    Zink, M.; Samaniego, L. E.; Cuntz, M.

    2012-12-01

    A combined investigation of the water and energy balance in hydrologic models can lead to a more accurate estimation of hydrological fluxes and state variables, such as evapotranspiration and soil moisture. Hydrologic models are usually calibrated against discharge measurements, and thus are only trained on information of few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data are a useful source of information to account for this spatial distributions. The objective of this study is to calibrate the distributed hydrological model mHM with satellite derived Land Surface Temperature (LST) fields provided by the Land Surface Analysis - Satellite Application Facility (LSA-SAF). LST is preferred to other satellite products such as soil moisture or evapotranspiration due to its higher precision. LST is obtained by solving the energy balance by assuming that the soil heat flux and the storage term are negligible on a daily time step. The evapotranspiration is determined by closing the water balance in mHM. The net radiation is calculated by using the incoming short- and longwave radiation, albedo and emissivity data provided by LSA-SAF. The Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010) is used to determine the aerodynamic resistance among other parameters. The optimization is performed within the time period 2008-2010 using three objective functions that consider 1) only discharge, 2) only LST, and 3) a combination of both. The proposed method is applied to seven major German river basins: Danube, Ems, Main, Mulde, Neckar, Saale, and Weser. The annual coefficient of correlation between LSA-SAF incoming shortwave radiation and 28 meteorological stations operated by the German Weather Service (DWD) is 0.94 (RMSE = 29 W m-2) in 2009. LSA-SAF incoming longwave radiation could be further evaluated at two eddy covariance stations with a very similar

  2. NUMERICAL STUDY OF WAVE EFFECTS ON SURFACE WIND STRESS AND SURFACE MIXING LENGTH BY THREE-DIMENSIONAL CIRCULATION MODELING

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2006-01-01

    The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A three- dimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.

  3. The Global Land Surface Satellite (GLASS Remote Sensing Data Processing System and Products

    Directory of Open Access Journals (Sweden)

    Gongqi Zhou

    2013-05-01

    Full Text Available Using remotely sensed satellite products is the most efficient way to monitor global land, water, and forest resource changes, which are believed to be the main factors for understanding global climate change and its impacts. A reliable remotely sensed product should be retrieved quantitatively through models or statistical methods. However, producing global products requires a complex computing system and massive volumes of multi-sensor and multi-temporal remotely sensed data. This manuscript describes the ground Global LAnd Surface Satellite (GLASS product generation system that can be used to generate long-sequence time series of global land surface data products based on various remotely sensed data. To ensure stabilization and efficiency in running the system, we used the methods of task management, parallelization, and multi I/O channels. An array of GLASS remote sensing products related to global land surface parameters are currently being produced and distributed by the Center for Global Change Data Processing and Analysis at Beijing Normal University in Beijing, China. These products include Leaf Area Index (LAI, land surface albedo, and broadband emissivity (BBE from the years 1981 to 2010, downward shortwave radiation (DSR and photosynthetically active radiation (PAR from the years 2008 to 2010.

  4. Satellite observations of surface temperature during the March 2015 total solar eclipse.

    Science.gov (United States)

    Good, Elizabeth

    2016-09-28

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  5. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  6. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    Science.gov (United States)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by

  7. A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas

    Science.gov (United States)

    Souri, Amir Hossein; Choi, Yunsoo; Li, Xiangshang; Kotsakis, Alexander; Jiang, Xun

    2016-06-01

    Houston is recognized for its large petrochemical industrial facilities providing abundant radicals for tropospheric ozone formation. Fortunately, maximum daily 8-h average (MDA8) surface ozone concentrations have declined in Houston (- 0.6 ± 0.3 ppbv yr- 1) during the summers (i.e., May to September) of 2000 to 2014, possibly due to the reductions in precursor emissions by effective control policies. However, it is also possible that changes in meteorological variables have affected ozone concentrations. This study focused on the impact of long-term wind patterns which have the highest impact on ozone in Houston. The analysis of long-term wind patterns can benefit surface ozone studies by 1) providing wind patterns that distinctly changed ozone levels, 2) investigating the frequency of patterns and the respective changes and 3) estimating ozone trends in specific wind patterns that local emissions are mostly involved, thus separating emissions impacts from meteorology to some extent. To this end, the 900-hPa flow patterns in summers of 2000 to 2014 were clustered in seven classes (C1-C7) by deploying an unsupervised partitioning method. We confirm the characteristics of the clusters from a backward trajectory analysis, monitoring networks, and a regional chemical transport model simulation. The results indicate that Houston has experienced a statistically significant downward trend (- 0.6 ± 0.4 day yr- 1) of the cluster of weak easterly and northeasterly days (C4), when the highest fraction of ozone exceedances (MDA8 > 70 ppbv) occurred. This suggests that the reduction in ozone precursors was not the sole reason for the decrease in ozone exceedance days (- 1.5 ± 0.6 day yr- 1). Further, to examine the efficiency of control policies intended to reduce the amount of ozone, we estimated the trend of MDA8 ozone in C4 and C5 (weak winds) days when local emissions are primarily responsible for high ambient ozone levels. Both C4 and C5 show a large reduction in the

  8. South Baltic Wind Atlas

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Hasager, Charlotte Bay

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles...... at the masts. The WRF modeling was done in a nested domain of high spatial resolution for 4 years. In addition the longterm wind statistics using the NCAR-NCEP reanalysis data were performed during 30 years to provide basis for a long-term adjustment of the results and the final WRF results include a weighting...... for the long-term trends variability in the South Baltic Sea. Observations from Earth observing satellites were used to evaluate the spatial resolution of the WRF model results near the surface. The QuikSCAT and the WRF results compared well whereas the Envisat ASAR mean wind map showed some variation...

  9. Impact of upper-level jet-generated inertia-gravity waves on surface wind and precipitation

    Directory of Open Access Journals (Sweden)

    C. Zülicke

    2007-11-01

    Full Text Available A meteorological case study for the impact of inertia-gravity waves on surface meteorology is presented. The large-scale environment from 17 to 19 December 1999 was dominated by a poleward breaking Rossby wave transporting subtropical air over the North Atlantic Ocean upward and north-eastward. The synoptic situation was characterized with an upper tropospheric jet streak passing Northern Europe. The unbalanced jet spontaneously radiated inertia-gravity waves from its exit region. Near-inertial waves appeared with a horizontal wavelength of about 200 km and an apparent period of about 12 h. These waves transported energy downwards and interacted with large-scale convection.

    This configuration is simulated with the nonhydrostatic Fifth-Generation Mesoscale Model. Together with simplified runs without orography and moisture it is demonstrated that the imbalance of the jet (detected with the cross-stream ageostrophic wind and the deep convection (quantified with the latent heat release are forcing inertia-gravity waves. This interaction is especially pronounced when the upper tropospheric jet is located above a cold front at the surface and supports deep frontal convection. Weak indication was found for triggering post-frontal convection by inertia-gravity waves.

    The realism of model simulations was studied in an extended validation study for the Baltic Sea region. It included observations from radar (DWDPI, BALTRAD, satellite (GFZGPS, weather stations (DWDMI and assimilated products (ELDAS, MESAN. The detected spatio-temporal patterns show wind pulsations and precipitation events at scales corresponding to those of inertia-gravity waves. In particular, the robust features of strong wind and enhanced precipitation near the front appeared with nearly the same amplitudes as in the model. In some datasets we found indication for periodic variations in the post-frontal region.

    These findings demonstrate the impact of upper

  10. Observation and simulation of near-surface wind and its variation with topography in Urumqi, West China

    Science.gov (United States)

    Jin, Lili; Li, Zhenjie; He, Qing; Miao, Qilong; Zhang, Huqiang; Yang, Xinghua

    2016-12-01

    Near-surface wind measurements obtained with five 100-m meteorology towers, 39 regional automatic stations, and simulations by the Weather Research and Forecasting (WRF) model were used to investigate the spatial structure of topography-driven flows in the complex urban terrain of Urumqi, China. The results showed that the wind directions were mainly northerly and southerly within the reach of 100 m above ground in the southern suburbs, urban area, and northern suburbs, which were consistent with the form of the Urumqi gorge. Strong winds were observed in southern suburbs, whereas the winds in the urban, northern suburbs, and northern rural areas were weak. Static wind occurred more frequently in the urban and northern rural areas than in the southern suburbs. In the southern suburbs, wind speed was relatively high throughout the year and did not show significant seasonal variations. The average annual wind speed in this region varied among 1.9-5.5, 1.1-3.6, 1.2-4.3, 1.2-4.3, and 1.1-3.5 m s -1 within the reach of 100 m above ground at Yannanlijiao, Shuitashan, Liyushan, Hongguangshan, and Midong, respectively. The flow characteristics comprised more airflows around the mountain, where the convergence and divergence were dominated by the terrain in eastern and southwestern Urumqi. Further analysis showed that there was a significant mountain-valley wind in spring, summer, and autumn, which occurred more frequently in spring and summer for 10-11 h in urban and northern suburbs. During daytime, there was a northerly valley wind, whereas at night there was a southerly mountain wind. The conversion time from the mountain wind to the valley wind was during 0800-1000 LST (Local Standard Time), while the conversion from the valley wind to the mountain wind was during 1900-2100 LST. The influence of the mountain-valley wind in Urumqi City was most obvious at 850 hPa, according to the WRF model.

  11. Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

    Directory of Open Access Journals (Sweden)

    N. Ghilain

    2012-08-01

    Full Text Available Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I, showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI and Fractional Vegetation Cover (FVC products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land

  12. Determination of regional surface heat fluxes over heterogeneous landscapes by integrating satellite remote sensing with boundary layer observations

    NARCIS (Netherlands)

    Ma, Y.M.

    2006-01-01

    Keywords: satellite remote sensing, surface layer observations, atmospheric boundary layer observations, land surface variables, vegetation variables, land surface heat fluxes, validation, heterogeneous landscape, GAME/Tibet

  13. Validation of Satellite-Derived Land Surface Temperature Products - Methods and Good Practice

    Science.gov (United States)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Biard, J.; Ghent, D.

    2014-12-01

    Land Surface Temperature (LST) is a key variable for surface water and energy budget calculations that can be obtained globally and operationally from satellite observations. LST is used for many applications, including weather forecasting, short-term climate prediction, extreme weather monitoring, and irrigation and water resource management. In order to maximize the usefulness of LST for research and studies it is necessary to know the uncertainty in the LST measurement. Multiple validation methods and activities are necessary to assess LST compliance with the quality specifications of operational users. This work presents four different validation methods that have been widely used to determine the uncertainties in LST products derived from satellite measurements. 1) The temperature based validation method involves comparisons with ground-based measurements of LST. The method is strongly limited by the number and quality of available field stations. 2) Scene-based comparisons involve comparing a new satellite LST product with a heritage LST product. This method is not an absolute validation and satellite LST inter-comparisons alone do not provide an independent validation measurement. 3) The radiance-based validation method does not require ground-based measurements and is usually used for large scale validation effort or for LST products with coarser spatial resolution (> 1km). 4) Time series comparisons are used to detect problems that can occur during the instrument's life, e.g. calibration drift, or unrealistic outliers due to cloud coverage. This study enumerates the sources of errors associated with each method. The four different approaches are complementary and provide different levels of information about the quality of the retrieved LST. The challenges in retrieving the LST from satellite measurements are discussed using results obtained for MODIS and VIIRS. This work contributes to the objective of the Land Product Validation (LPV) sub-group of the

  14. Surface radiation at sea validation of satellite-derived data with shipboard measurements

    Directory of Open Access Journals (Sweden)

    Hein Dieter Behr

    2009-03-01

    Full Text Available Quality-controlled and validated radiation products are the basis for their ability to serve the climate and solar energy community. Satellite-derived radiation fluxes are well preferred for this task as they cover the whole research area in time and space. In order to monitor the accuracy of these data, validation with well maintained and calibrated ground based measurements is necessary. Over sea, however, long-term accurate reference data sets from calibrated instruments recording radiation are scarce. Therefore data from research vessels operating at sea are used to perform a reasonable validation. A prerequisite is that the instruments on board are maintained as well as land borne stations. This paper focuses on the comparison of radiation data recorded on board of the German Research Vessel "Meteor" during her 13 months cruise across the Mediterranean and the Black Sea with CM-SAF products using NOAA- and MSG-data (August 2006-August 2007: surface incoming short-wave radiation (SIS and surface downward long-wave radiation (SDL. Measuring radiation fluxes at sea causes inevitable errors, e.g.shadowing of fields of view of the radiometers by parts of the ship. These ship-inherent difficulties are discussed at first. A comparison of pairs of ship-recorded and satellite-derived mean fluxes for the complete measuring period delivers a good agreement: the mean bias deviation (MBD for SIS daily means is −7.6 W/m2 with a median bias of −4 W/m2 and consistently the MBD for monthly means is −7.3 W/m2, for SDL daily means the MBD is 8.1 and 6 W/m2 median bias respectively. The MBD for monthly means is 8.2 W/m2. The variances of the daily means (ship and satellite have the same annual courses for both fluxes. No significant dependence of the bias on the total cloud cover recorded according to WMO (1969 has been found. The results of the comparison between ship-based observations and satellite retrieved surface radiation reveal the good accuracy

  15. Validation of satellite SAR offshore wind speed maps to in-situ data, microscale and mesoscale model results

    DEFF Research Database (Denmark)

    Hasager, C.B.; Astrup, Poul; Barthelmie, R.J.

    2002-01-01

    planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote SensingCentre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded...... band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. Atotal of 16 cases were analyzed for Horns Rev. For Maddalena...

  16. Comparison of SAR-derived wind speed with the wind energy simulation toolkit (WEST)

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, P.; Lafrance, G.; Bernier, M. [Quebec Univ., Quebec City, PQ (Canada). Institut National de la Recherche Scientifique-Eau, Terre et Environnement; Glazer, A.; Benoit, R.; Yu, W. [Environment Canada, Gatineau, PQ (Canada)

    2005-07-01

    Wind power increases with air density, wind speed, and the surface area of wind turbine blades. Wind speed increases with altitude and topographic effects such as lower surface roughness, and high pressure gradient forcing. A comparative evaluation of a mesoscale compressible community numerical model (MC2) and synthetic aperture radar satellites (SAR) was presented. Wind speed predictions were presented, and details of both models were reviewed. Features of the MC2 included non hydrostatic Euler equations; a 3-D Lagrangian advection; full physical processes; resolution to a few km; self-nesting capabilities; topography adjustable at start-up; and open sourcing. Inputs included climatological fields; geophysical fields; initial and boundary atmospheric conditions; and dynamical and physical simulation settings. Outputs included wind speed vectors, pressure, temperature and humidity. Wind measurements from SAR satellites is conducted by observing wind friction in water. Radar signals are related to sea waves by Bragg resonant scattering. A geophysical model function establishes a semi-empirical relationship between the radar signal and wind vector. Several sources of wind direction inputs for SAR included scatterometer data; FFT of wind streaks on SAR images; local gradient filters on SAR images; NWP data; offshore coastal buoys and masts data. It was noted that with SAR, wind patterns were well represented and wind accuracy was improved. Micro-scale resolution is available and further improvements are expected with the launch of new satellites. Results of various studies comparing the use of MC2 and SAR in coastal waters were presented. It was concluded that wind features are well resolved by SAR and MC2 methods. A fusion of both methods was recommended to improve coastal and offshore wind assessments. refs., tabs., figs.

  17. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  18. Strong winter monsoon wind causes surface cooling over India and China in the Late Miocene

    Directory of Open Access Journals (Sweden)

    H. Tang

    2015-01-01

    Full Text Available Modern Asian winter monsoon characterised by the strong northwesterly wind in East Asia and northeasterly wind in South Asia, has a great impact on the surface temperature of the Asian continent. Its outbreak can result in significant cooling of the monsoon region. However, it is still unclear whether such an impact existed and is detectable in the deep past. In this study, we use temperature reconstructions from plant and mammal fossil data together with climate model results to examine the co-evolution of surface temperature and winter monsoon in the Late Miocene (11–5 Ma, when a significant change of the Asian monsoon system occurred. We find that a stronger-than-present winter monsoon wind might have existed in the Late Miocene due to the lower Asian orography, particularly the northern Tibetan Plateau and the mountains north of it. This can lead to a pronounced cooling in southern China and northern India, which counteracts the generally warmer conditions in the Late Miocene compared to present. The Late Miocene strong winter monsoon was characterised by a marked westerly component and primarily caused by a pressure anomaly between the Tibetan Plateau and Northern Eurasia, rather than by the gradient between the Siberian High and the Aleutian Low. As a result, the close association of surface temperature with winter monsoon strength on inter-annual scale as observed at present may not have established in the Late Miocene.

  19. Errors of five-day mean surface wind and temperature conditions due to inadequate sampling

    Science.gov (United States)

    Legler, David M.

    1991-01-01

    Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.

  20. Effects of surface current-wind interaction in an eddy-rich general ocean circulation simulation of the Baltic Sea

    Science.gov (United States)

    Dietze, Heiner; Löptien, Ulrike

    2016-08-01

    Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth) are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current-wind effects inhibits the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however (e.g. off the southern coast of Sweden and Finland) the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current-wind effects drive substantial local upwelling of cold and nutrient-replete waters.

  1. A Newly Distributed Satellite-based Global Air-sea Surface Turbulent Fluxes Data Set -- GSSTF2b

    Science.gov (United States)

    Shie, C.; Nelkin, E.; Ardizzone, J.; Savtchenko, A.; Chiu, L. S.; Adler, R. F.; Lin, I.; Gao, S.

    2010-12-01

    Accurate sea surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The recently revived and produced daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2008) is currently under processing for an official distribution by NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) due by the end of this month (September, 2010). Like its predecessor product GSSTF2, GSSTF2b is expected to provide the scientific community a longer-period and useful turbulent surface flux dataset for global energy and water cycle research, as well as regional and short period data analyses. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b dataset has lately been produced using upgraded and improved input datasets such as the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for producing the GSSTF2 product were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. The newly produced GSSTF2b was found to generally agree better with available ship measurements obtained from several field experiments in 1999 than its counterpart

  2. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    Science.gov (United States)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  3. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Science.gov (United States)

    Karmouch, Rachid; Ross, Guy G.

    2010-11-01

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  4. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Karmouch, Rachid, E-mail: karmouch@emt.inrs.ca [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Ross, Guy G. [INRS-Centre Energie Materiaux Telecommunications, 1650 Boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2010-11-15

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152{sup o}, a hysteresis less than 2{sup o} and a water drop sliding angle around 0.5{sup o}. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  5. Satellite assessment of particulate matter and phytoplankton variations in the Santa Barbara Channel and its surrounding waters: Role of surface waves

    Science.gov (United States)

    Henderikx Freitas, Fernanda; Siegel, David A.; Maritorena, Stéphane; Fields, Erik

    2017-01-01

    Satellite observations of chlorophyll in coastal waters are often described in terms of changes in productivity in response to regional upwelling processes while optical backscattering coefficients are more often linked to episodic inputs of suspended sediments from storm runoff. Here we show that the surface gravity wave resuspension of sediments has a larger role in controlling backscatter than previously considered. Almost 18 years of SeaWiFS, MODIS, MERIS, and VIIRS satellite imagery of the Santa Barbara Channel, California and its surrounding waters spectrally merged with the Garver-Siegel-Maritorena bio-optical model were used to assess the controls on suspended particle distributions. Analysis revealed that chlorophyll blooms in the warmer portions of the domain occur in phase with SST minima, usually in early spring, while blooms in the cooler regions lag SST minima and occur simultaneously to the strongest equatorward winds every year, often in the summer. Tight coupling between the optical variables was seen in offshore areas, as expected for productive waters. However, values of backscatter near the coast were primarily modulated by surface waves. This relationship holds throughout all seasons and is stronger within the 100 m isobath, but often extends tens of kilometers offshore. This forcing of particle resuspension by surface waves is likely a feature ubiquitous in all coastal oceans characterized by fine sediments. The implication of surface wave processes determining suspended particle loads far beyond the surf zone has large consequences for the interpretation of satellite ocean color signals in coastal waters and potentially redefines the extent of the littoral zone.

  6. A Ka-Band Backscatter Model Function and an Algorithm for Measurement of the Wind Vector Over the Sea Surface

    NARCIS (Netherlands)

    Nekrasov, A.; Hoogeboom, P.

    2005-01-01

    A Ka-band backscatter model and an algorithm for measurement of the wind speed and direction over the sea surface by a frequency-modulated continous-wave radar demonstrator system operated in scatterometer mode have been developed. To evaluate the proposed algorithm, a simulation of the wind vector

  7. Surface mixed layer deepening through wind shear alignment in a seasonally stratified shallow sea

    Science.gov (United States)

    Lincoln, B. J.; Rippeth, T. P.; Simpson, J. H.

    2016-08-01

    Inertial oscillations are a ubiquitous feature of the surface ocean. Here we combine new observations with a numerical model to investigate the role of inertial oscillations in driving deepening of the surface mixed layer in a seasonally stratified sea. Observations of temperature and current structure, from a mooring in the Western Irish Sea, reveal episodes of strong currents (>0.3 m s-1) lasting several days, resulting in enhanced shear across the thermocline. While the episodes of strong currents are coincident with windy periods, the variance in the shear is not directly related to the wind stress. The shear varies on a subinertial time scale with the formation of shear maxima lasting several hours occurring at the local inertial period of 14.85 h. These shear maxima coincide with the orientation of the surface current being at an angle of approximately 90° to the right of the wind direction. Observations of the water column structure during windy periods reveal deepening of the surface mixed layer in a series of steps which coincide with a period of enhanced shear. During the periods of enhanced shear gradient, Richardson number estimates indicate Ri-1 ≥ 4 at the base of the surface mixed layer, implying the deepening as a result of shear instability. A one-dimensional vertical exchange model successfully reproduces the magnitude and phase of the shear spikes as well as the step-like deepening. The observations and model results therefore identify the role of wind shear alignment as a key entrainment mechanism driving surface mixed layer deepening in a shallow, seasonally stratified sea.

  8. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2016-08-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  9. Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation

    Science.gov (United States)

    Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui

    2017-05-01

    Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.

  10. Fully automated extraction and analysis of surface Urban Heat Island patterns from moderate resolution satellite images

    Science.gov (United States)

    Keramitsoglou, I.; Kiranoudis, C. T.

    2012-04-01

    Comparison of thermal patterns across different cities is hampered by the lack of an appropriate methodology to extract the patterns and characterize them. What is more, increased attention by the urban climate community has been expressed to assess the magnitude and dynamics of the surface Urban Heat Island effect and to identify environmental impacts of large cities and "megacities". Motivated by this need, we propose an innovative object-based image analysis procedure to extract thermal patterns for the quantitative analysis of satellite-derived land surface temperature maps. The spatial and thermal attributes associated with these objects are then calculated and used for the analyses of the intensity, the position and the spatial extent of SUHIs. The output eventually builds up and populates a database with comparable and consistent attributes, allowing comparisons between cities as well as urban climate studies. The methodology is demonstrated over the Greater Athens Area, Greece, with more than 3000 LST images acquired by MODIS over a decade being analyzed. The approach can be potentially applied to current and future (e.g. Sentinel-3) level-2 satellite-derived land surface temperature maps of 1km spatial resolution acquired over continental and coastal cities.

  11. The annual cycle of satellite-derived sea surface temperature in the southwestern Atlantic Ocean

    Science.gov (United States)

    Podesta, Guillermo P.; Brown, Otis B.; Evans, Robert H.

    1991-01-01

    The annual cycle of sea surface temperature (SST) in the southwestern Atlantic Ocean was estimated using four years (July 1984-July 1988) of NOAA Advanced Very High Resolution Radiometer observations. High resolution satellite observations at 1-km space and daily time resolution were grided at 100-km space and 5-day time intervals to develop an analysis dataset for determination of low frequency SST variability. The integral time scale, a measure of serial correlation, was found to vary from 40 to 60 days in the domain of interest. The existence of superannual trends in the SST data was investigated, but conclusive results could not be obtained. The annual cycle (and, in particular, the annual harmonic) explains a large proportion of the SST variability. The estimated amplitude of the cycle ranges between 5 deg and 13 deg C throughout the study area, with minima in August-September and maxima in February. The resultant climatology is compared with an arbitrary 5-day satellite SST field, and with the COADS/ICE SST climatology. It was found that the higher resolution satellite-based SST climatology resolves boundary current structure and has significantly better structural agreement with the observed field.

  12. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Science.gov (United States)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  13. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  14. Connecting the surface of the Sun to the Heliosphere : wind speed and magnetic field geometry

    Science.gov (United States)

    Pinto, Rui

    2016-07-01

    The large-scale solar wind speed distribution varies in time in response to the cyclic variations of the strength and geometry of the magnetic field of the corona. Based on this idea, semi-empirical predictive laws for the solar wind speed (such as in the widely-used WSA law) use simple parameters describing the geometry of the coronal magnetic field. In practice, such scaling laws require ad-hoc corrections and empirical fits to in-situ spacecraft data, and a predictive law based solely on physical principles is still missing. I will discuss improvements to this kind of laws based on the analysis of very large samples of wind acceleration profiles in open flux-tubes (both from MHD simulations and potential-field extrapolations), and possible strategies for corona and heliosphere model coupling. I will, furthermore present an ongoing modelling effort to determine the magnetic connectivity, paths and propagation delays of any type of disturbance (slow/fast solar wind, waves, energetic particles, ballistic propagation) between the solar surface and any point in the interplanetary space at any time. This is a key point for the exploitation of data from Solar Orbiter and Solar Probe Plus, and more generally for establishing connections between remote and in-situ spacecraft data. This is work is supported by the FP7 project #606692 (HELCATS).

  15. Near surface spatially averaged air temperature and wind speed determined by acoustic travel time tomography

    Directory of Open Access Journals (Sweden)

    Armin Raabe

    2001-03-01

    Full Text Available Acoustic travel time tomography is presented as a possibility for remote monitoring of near surface airtemperature and wind fields. This technique provides line-averaged effective sound speeds changing with temporally and spatially variable air temperature and wind vector. The effective sound speed is derived from the travel times of sound signals which propagate at defined paths between different acoustic sources and receivers. Starting with the travel time data a tomographic algorithm (Simultaneous Iterative Reconstruction Technique, SIRT is used to calculate area-averaged air temperature and wind speed. The accuracy of the experimental method and the tomographic inversion algorithm is exemplarily demonstrated for one day without remarkable differences in the horizontal temperature field, determined by independent in situ measurements at different points within the measuring field. The differences between the conventionally determined air temperature (point measurement and the air temperature determined by tomography (area-averaged measurement representative for the area of the measuring field 200m x 260m were below 0.5 K for an average of 10 minutes. The differences obtained between the wind speed measured at a meteorological mast and calculated from acoustic measurements are not higher than 0.5 ms-1 for the same averaging time. The tomographically determined area-averaged distribution of air temperature (resolution 50 m x 50 m can be used to estimate the horizontal gradient of air temperature as a pre-condition to detect horizontal turbulent fluxes of sensible heat.

  16. Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer

    Science.gov (United States)

    Shishov, E. A.; Koprov, B. M.; Koprov, V. M.

    2017-01-01

    Multipoint measurements of wind direction were carried out during the expedition of the Institute of Atmospheric Physics, Russian Academy of Sciences (IPA RAS), in Tsimlyansk in 2012. Spatial correlation functions for the transverse direction and temporal correlation functions for the longitudinal direction are plotted under stable and unstable stratification of the atmosphere. The longitudinal correlation radius is much higher than the transverse one, and radii in daytime realizations are larger than in nighttime. To determine the stratification conditions, an ultrasonic anemometer-thermometer was used. Autospectra of wind direction fluctuations were plotted. They include long segments of power dependence on the frequency. The spectral correlation coefficients of variations in the wind direction versus intersensor distance in the transverse direction are also calculated. A set of fast-response thermometers was used in the experiment. They allowed temperature mapping, i.e., plotting the time variations in the isothermal surface altitude. That analysis was also applied to visualization of the spatiotemporal variability of wind direction. The resulting data were used for planning the helicity measurements in the Tsimlyansk expedition in 2014.

  17. On alpha stable distribution of wind driven water surface wave slope

    CERN Document Server

    Joelson, Maminirina

    2008-01-01

    We propose a new formulation of the probability distribution function of wind driven water surface slope with an $\\alpha$-stable distribution probability. The mathematical formulation of the probability distribution function is given under an integral formulation. Application to represent the probability of time slope data from laboratory experiments is carried out with satisfactory results. We compare also the $\\alpha$-stable model of the water surface slopes with the Gram-Charlier development and the non-Gaussian model of Liu et al\\cite{Liu}. Discussions and conclusions are conducted on the basis of the data fit results and the model analysis comparison.

  18. Wind tunnel experiment of drag of isolated tree models in surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.

  19. Specific features of heat transfer on the external surface of smoke stacks blown by wind

    Science.gov (United States)

    Maneev, A. P.; Terekhov, V. I.

    2015-03-01

    Results of a full-scale experiment on studying heat transfer on the surface of a reinforced-concrete smoke stack blown by wind at the value of Reynolds number Re = 1.05 × 107 are presented. Comparison of the experimental results with the experimental data obtained previously by other researchers under laboratory conditions at Re cylinder in a transcritical streamlining mode. The data obtained in the present study open the possibility to estimate the average values of heat transfer coefficient on the surface of smoke stacks in a flow of atmospheric air at 4 × 106 < Re < 107.

  20. Can satellite-derived water surface changes be used to calibrate a hydrodynamic model?

    Science.gov (United States)

    Revilla-Romero, Beatriz; Beck, Hylke; Salamon, Peter; Burek, Peter; de Roo, Ad; Thielen, Jutta

    2015-04-01

    The limited availability of recent ground observational data is one of the main challenges for validation of hydrodynamic models. This is especially relevant for real-time global applications such as flood forecasting models. In this study, we aim to use remotely-sensed data from the Global Flood Detection System (GFDS) as a proxy of river discharge time series and test its value through calibration of the hydrological model LISFLOOD. This was carried out for the time period 1998-2010 at 40 sites in Africa, Europe, North America and South America by calibrating the parameters that control the flow routing and groundwater processes. We compared the performance of the calibrated simulated discharge time series that used satellite-derived data with the ground discharge time series. Furthermore, we compared it with the independent calibrated run that used ground data and also, to the non-calibrated simulated discharge time series. The non-calibrated set up used a set of parameters which values were predefined by expert-knowledge. This is currently being used by the LISFLOOD set up model embedded in the pre-operational Global Flood Awareness System (GloFAS). The results of this study showed that the satellite surface water changes from the Global Flood Detection System can be used as a proxy of river discharge data, through the demonstration of its added value for model calibration and validation. Using satellite-derived data, the skill scores obtained by the calibrated simulated model discharge improved when comparing to non-calibrated simulated time series. Calibration, post-processing and data assimilation strategies of satellite data as a proxy for streamflow data within the global hydrological model are outlined and discussed.

  1. Towards a protocol for validating satellite-based Land Surface Temperature: Application to AATSR data

    Science.gov (United States)

    Ghent, Darren; Schneider, Philipp; Remedios, John

    2013-04-01

    Land surface temperature (LST) retrieval accuracy can be challenging as a result of emissivity variability and atmospheric effects. Surface emissivities can be highly variable owing to the heterogeneity of the land; a problem which is amplified in regions of high topographic variance or for larger viewing angles. Atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. Combined, atmospheric effects and emissivity variability can result in retrieval errors of several degrees. If though these are appropriately handled satellite-derived LST products can be used to improve our ability to monitor and to understand land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. Here we present validation of an improved LST data record from the Advanced Along-Track Scanning Radiometer (AATSR) and illustrate the improvements in accuracy and precision compared with the standard ESA LST product. Validation is a critical part of developing any satellite product, although over the land heterogeneity ensures this is a challenging undertaking. A substantial amount of previous effort has gone into the area of structuring and standardizing calibration and validation approaches within the field of Earth Observation. However, no unified approach for accomplishing this for LST has yet to be practised by the LST community. Recent work has attempted to address this situation with the development of a protocol for validating LST (Schneider et al., 2012) under the auspices of ESA and the support of the wider LST community. We report here on a first application of this protocol to satellite LST data. The approach can briefly be summarised thus: in situ validation is performed where ground-based observations are available - being predominantly homogeneous sites; heterogeneous pixels are validated by way of established radiometric-based techniques (Wan and Li

  2. Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Cheng, Jie; Leng, Pei

    2017-04-01

    The collection 6 (C6) MODIS land surface temperature (LST) product is publicly available for the user community. Compared to the collection 5 (C5) MODIS LST product, the C6 MODIS LST product has been refined over bare soil pixels. Assessing the accuracy of the C6 MODIS LST product will help to facilitate the use of the LST product in various applications. In this study, we present a cross-satellite comparison to evaluate the accuracy of the C6 MODIS LST product (MOD11_L2) over bare soil surfaces under various atmospheric and surface conditions using the ASTER LST product as a reference. For comparison, the C5 MODIS LST product was also used in the analysis. The absolute biases (0.2-1.5 K) of the differences between the C6 MODIS LST and ASTER LST over bare soil surfaces are approximately two times less than those (0.6-3.8 K) of the differences between the C5 MODIS LST and ASTER LST. Furthermore, the RMSEs (0.7-2.3 K) over bare soil surfaces for the C6 MODIS LST are significantly smaller than those (0.9-4.2 K) for the C5 MODIS LST. These results indicate that the accuracy of the C6 MODIS LST product is much better than that of the C5 MODIS LST product. We recommend that the user community employs the C6 MODIS LST product in their applications.

  3. The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    LI Yan; WANG Yuan; CHU HuiYun; TANG JianPing

    2008-01-01

    There is considerable interest in the potential impact of climate change on wind energy in China. The climate change of near-surface wind energy potential in China under the background of global warming and its association with anthropogenic land-use changes are investigated by calculating the difference in surface wind speeds between the NCEP/NCAR reanalysis data and the observations since the re-analysis dataset contains the influence of large-scale climate changes due to greenhouse gases, it is less sensitive to regional surface processes associated with land types. The surface wind data in this study consist of long-tarm observations from 604 Chinese Roution Meteorological Stations and theNCEP/NCAR reanalysis data from 1960-1999. The results suggest that the observed mean wind speeds significantly weakened and the near-surface wind power trended downward due to urbanization and other land-use changes in the last 40 years. The mean wind energy weakened by -3.84 W·m-2 per decade due to the influence of anthropogenic land-use change, which is close to the observed climate change (-4.51 W·m-2/10 a).

  4. Air sea exchange of fluxes and Indian monsoon from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sundaram, S.

    Temperature (Reynolds), Sea Surface Wind Speed and Integrated water vapor (from SSMI sensor onboard DMSP satellite series), mean sea level pressure (from NCEP/NCAR reanalysis data). Evaporation zones are identified over the western tropical Indian Ocean where...

  5. Cross-validation of satellite products over France through their integration into a land surface model

    Science.gov (United States)

    Calvet, Jean-Christophe; Barbu, Alina; Carrer, Dominique; Meurey, Catherine

    2014-05-01

    Long (more than 30 years) time series of satellite-derived products over land are now available. They concern Essential Climate Variables (ECV) such as LAI, FAPAR, surface albedo, and soil moisture. The direct validation of such Climate Data Records (CDR) is not easy, as in situ observations are limited in space and time. Therefore, indirect validation has a key role. It consists in comparing the products with similar preexisting products derived from satellite observations or from land surface model (LSM) simulations. The most advanced indirect validation technique consists in integrating the products into a LSM using a data assimilation scheme. The obtained reanalysis accounts for the synergies of the various upstream products and provides statistics which can be used to monitor the quality of the assimilated observations. Meteo-France develops the ISBA-A-gs generic LSM able to represent the diurnal cycle of the surface fluxes together with the seasonal, interannual and decadal variability of the vegetation biomass. The LSM is embedded in the SURFEX modeling platform together with a simplified extended Kalman filter. These tools form a Land Data Assimilation System (LDAS). The current version of the LDAS assimilates SPOT-VGT LAI and ASCAT surface soil moisture (SSM) products over France (8km x 8km), and a passive monitoring of albedo, FAPAR and Land Surface temperature (LST) is performed (i.e., the simulated values are compared with the satellite products). The LDAS-France system is used in the European Copernicus Global Land Service (http://land.copernicus.eu/global/) to monitor the quality of upstream products. The LDAS generates statistics whose trends can be analyzed in order to detect possible drifts in the quality of the products: (1) for LAI and SSM, metrics derived from the active monitoring (i.e. assimilation) such as innovations (observations vs. model forecast), residuals (observations vs. analysis), and increments (analysis vs. model forecast) ; (2

  6. Evaluation of GISS SCM Simulated Cloud and Radiative Properties Using Both Surface and Satellite Observations

    Science.gov (United States)

    Kennedy, A. D.; Dong, X.; Xi, B.; Del Genio, A.; Wolf, A.; Minnis, P.; Khaiyer, M.; Doelling, D.; Nordeen, M.; Keyes, D.

    2009-05-01

    To evaluate the GISS SCM simulated cloud fractions, three years of surface and GOES satellite data have been collected at DOE ARM Southern Great Plains (SGP) site during 1999-2001. The GOES derived total and high cloud fractions from both 0.5° and 2.5° grid boxes are in excellent agreement with surface observations, suggesting that the ARM point observations can represent large areal observations. Compared to the ARM radar-lidar observed cloud fractions, the SCM simulated most mid-level clouds, overestimated low clouds, and underestimated total and high clouds with additional missed during the summer season. Further studies have revealed that the model simulated cloud fractions are strongly dependent on the large-scale synoptic pattern and its associated variables such as vertical motion and relative humidity. Because a significant amount of clouds over ARM SGP occur during synoptically quiescent conditions, the model has issues producing enough high cloud cover. This work suggests that alterations need to be made to the stratiform cloud scheme to better represent the sub-grid scale cloud variability in this case. The model simulated radiation budget is also evaluated with two years of collocated ARM surface radiation and CERES and GOES TOA radiation over the SGP site during March 2000-Dec. 2001. For this comparison, the model simulated surface and TOA radiation budgets agree well with surface and satellite observations (˜10 W m-2). Model simulated cloud optical depth, however, is about an order of magnitude higher than CERES/GOES retrievals, which may explain why the radiation budget is reasonable and yet total cloud fraction has a negative bias compared to observations. Further study is warranted to better understand how this impacts cloud radiative forcing.

  7. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Velocity Barb (knots) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind velocity forecasts from the National Digital Forecast Database...

  8. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Speed (knots) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind speed forecasts from the National Digital Forecast Database...

  9. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data

    Directory of Open Access Journals (Sweden)

    Ugur Avdan

    2016-01-01

    Full Text Available Land surface temperature is an important factor in many areas, such as global climate change, hydrological, geo-/biophysical, and urban land use/land cover. As the latest launched satellite from the LANDSAT family, LANDSAT 8 has opened new possibilities for understanding the events on the Earth with remote sensing. This study presents an algorithm for the automatic mapping of land surface temperature from LANDSAT 8 data. The tool was developed using the LANDSAT 8 thermal infrared sensor Band 10 data. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, for the first case, the standard deviation was 2.4°C, and for the second case, it was 2.7°C. For future studies, the tool should be refined with in situ measurements of land surface temperature.

  10. Estimating the global surface area of rivers and streams using satellite imagery

    Science.gov (United States)

    Allen, George; Pavelsky, Tamlin

    2017-04-01

    Global observational assessments of river and stream systems are based largely on gauge station data, which are fragmented and often limited to country-level statistics. This limitation severely impedes our understanding of global-scale hydrologic, geomorphic, and biogeochemical fluvial processes. In contrast, satellite remote sensing data provide a globally-consistent and spatially-continuous tool for studying rivers. Here we present a novel method estimate the total surface area of all rivers and stream globally using measurements from the recently-developed Global River Widths from Landsat (GRWL) database and field surveys. The surface area of rivers and streams is a key model parameter in global evaluations of greenhouse gas emissions from inland waters. Preliminary analysis suggests that rivers occupy a total area of 80 thousand square kilometers, or 0.58% of Earth's land surface. This result is 30% greater than the previous best estimate that is based on digital elevation models and gauge station measurements. Compared to previous regional assessments, we find that rivers and streams occupy a greater proportion of the land surface in the arctic and in the tropics, and a lower proportion of land surface in the United States and in Europe. Our results suggest that current estimates of greenhouse gas emissions from inland waters should be revised upwards to account for the greater abundance of river and stream surface area.

  11. Circumventing rain-related errors in scatterometer wind observations

    Science.gov (United States)

    Kilpatrick, Thomas J.; Xie, Shang-Ping

    2016-08-01

    Satellite scatterometer observations of surface winds over the global oceans are critical for climate research and applications like weather forecasting. However, rain-related errors remain an important limitation, largely precluding satellite study of winds in rainy areas. Here we utilize a novel technique to compute divergence and curl from satellite observations of surface winds and surface wind stress in rainy areas. This technique circumvents rain-related errors by computing line integrals around rainy patches, using valid wind vector observations that border the rainy patches. The area-averaged divergence and wind stress curl inside each rainy patch are recovered via the divergence and curl theorems. We process the 10 year Quick Scatterometer (QuikSCAT) data set and show that the line-integral method brings the QuikSCAT winds into better agreement with an atmospheric reanalysis, largely removing both the "divergence bias" and "anticyclonic curl bias" in rainy areas noted in previous studies. The corrected QuikSCAT wind stress curl reduces the North Pacific midlatitude Sverdrup transport by 20-30%. We test several methods of computing divergence and curl on winds from an atmospheric model simulation and show that the line-integral method has the smallest errors. We anticipate that scatterometer winds processed with the line-integral method will improve ocean model simulations and help illuminate the coupling between atmospheric convection and circulation.

  12. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    Science.gov (United States)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO

  13. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates

    Science.gov (United States)

    Allan, Richard; Liu, Chunlei

    2017-04-01

    The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty (Trenberth and Fasullo, 2013; Roberts et al., 2016). A combination of satellite-derived radiative fluxes at the top of atmosphere (TOA) adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis are used to estimate surface energy flux globally (Liu et al., 2015). Land surface fluxes are adjusted through a simple energy balance approach using relations at each grid point with the consideration of snowmelt to improve regional realism. The energy adjustment is redistributed over the oceans using a weighting function to avoid meridional discontinuities. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis input data and products. Zonal multiannual mean surface flux uncertainty is estimated to be less than 5 Wm-2 but much larger uncertainty is likely for regional monthly values. The meridional energy transport is calculated using the net surface heat fluxes estimated in this study and the result shows better agreement with observations in Atlantic than before. The derived turbulent fluxes (difference between the net heat flux and the CERES EBAF radiative flux at surface) also have good agreement with those from OAFLUX dataset and buoy observations. Decadal changes in the global energy budget and the hemisphere energy imbalances are quantified and present day cross-equator heat transports is re-evaluated as 0.22±0.15 PW southward by the atmosphere and 0.32±0.16 PW northward by the ocean considering the observed ocean heat sinks (Roemmich et al., 2006) . Liu et al. (2015) Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985-2012. J. Geophys. Res., Atmospheres. ISSN 2169-8996 doi: 10.1002/2015JD

  14. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  15. NUMERICAL SIMULATION OF SEA SURFACE DIRECTIONAL WAVE SPECTRA UNDER TYPHOON WIND FORCING

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Numercial simulation of sea surface directional wave spectra under typhoon wind forcing in the South China Sea (SCS) was carreid out using the WAVEWATCH-III wave model. The simulation was run for 210 h until the Typhoon Damrey (2005) approached Vietnam. The simulated data were compared with buoy observations, which were obtained in the northwest sea area of Hainan Island. The results show that the significant wave height, wave direction, wave length and frequency spetra agree well with buoy observations. The spatial characteristics of the signifciant wave height, mean wave period, mean wave length, wave age and directional spectra depend on the relative position from the typhoon center. Also, the misalignment between local wind and wave directions were investigated.

  16. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  17. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  18. Surface flow structure of the Gulf Stream from composite imagery and satellite-tracked drifters

    Directory of Open Access Journals (Sweden)

    C. P. Mullen

    1994-01-01

    Full Text Available A unique set of coutemporaneous satellite-tracked drifters and five-day composite Advanced Very High Resolution Radionmeter (AVHRR satellite imagery of the North Atlantic has been analyzed to examine the surface flow structure of the Gulf Stream. The study region was divided into two sections, greater than 37° N and less than 37° N, in order to answer the question of geographic variability. Fractal and spectral analyses methods were applied to the data. Fractal analysis of the Lagrangian trajectories showed a fractal dimension of 1.21 + 0.02 with a scaling range of 83 - 343 km. The fractal dimension of the temperature fronts of the composite imagery is similar for the two regions with D = 1.11 + 0.01 over a scaling range of 4 - 44 km. Spectral analysis also reports a fairly consistent value for the spectral slope and its scaling range. Therefore, we conclude there is no geographic variability in the data set. A suitable scaling range for this contemporaneous data set is 80 - 200 km which is consistent with the expected physical conditions in the region. Finally, we address the idea of using five-day composite imagery to infer the surface flow of the Gulf Stream. Close analyses of the composite thermal fronts and the Lagrangian drifter trajectories show that the former is not a good indicator of the latter.

  19. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  20. Estimate solar contribution to the global surface warming using the ACRIM TSI satellite composite.

    Science.gov (United States)

    Scafetta, N.; West, B. J.

    2005-12-01

    We study, by using a wavelet decomposition methodology, the solar signature on global surface temperature data using the ACRIM total solar irradiance satellite composite by Willson and Mordvinov. These data present a +0.047% per decade trend between minima during solar cycles 21-23 (1980-2002). By using the phenomenological climate sensitivity to a 22-year cycle, we estimate that the ACRIM upward trend might have contributed 10-30% of the global surface temperature warming over the period 1980-2002. Moreover, by comparing the phenomenological climate sensitivity to the 11-year solar cycle with those hypothesized by some energy balance models we conclude that the former is 1.5-3 times stronger than the latter. Finally, we study the climate sensitivity in different regions of the Earth.

  1. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    Science.gov (United States)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  2. Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA

    Directory of Open Access Journals (Sweden)

    Sonia Wharton

    2014-12-01

    Full Text Available The Weather Research and Forecasting (WRF model is used to investigate choice of land surface model (LSM on the near surface wind profile, including heights reached by multi-megawatt (MW wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil–plant–atmosphere feedbacks for the Department of Energy (DOE Southern Great Plains (SGP Atmospheric Radiation Measurement Program (ARM Central Facility in Oklahoma, USA. Surface flux and wind profile measurements were available for validation. WRF was run for three, two-week periods covering varying canopy and meteorological conditions. The LSMs predicted a wide range of energy flux and wind shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil–plant–atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear were also sensitive to LSM choice and were partially related to energy flux accuracy. The variability of LSM performance was relatively high suggesting that LSM representation of energy fluxes in WRF remains a large source of model uncertainty for simulating wind turbine inflow conditions.

  3. Satellite Detection of Smoke Aerosols Over a Snow/Ice Surface by TOMS

    Science.gov (United States)

    Hsu, N. Christina; Herman, Jay R.; Gleason, J. F.; Torres, O.; Seftor, C. J.

    1998-01-01

    The use of TOMS (Total Ozone Mapping Spectrometer) satellite data demonstrates the recently developed technique of using satellite UV radiance measurements to detect absorbing tropospheric aerosols is effective over snow/ice surfaces. Instead of the traditional single wavelength (visible or infrared) method of measuring tropospheric aerosols, this method takes advantage of the wavelength dependent reduction in the backscattered radiance due to the presence of absorbing aerosols over snow/ice surfaces. An example of the resulting aerosol distribution derived from TOMS data is shown for an August 1998 event in which smoke generated by Canadian forest fires drifts over and across Greenland. As the smoke plume moved over Greenland, the TOMS observed 380 nm reflectivity over the snow/ice surface dropped drastically from 90-100% down to 30-40%. To study the effects of this smoke plume in both the UV and visible regions of the spectrum, we compared a smoke-laden spectrum taken over Greenland by the high spectral resolution (300 to 800 nm) GOME instrument with one that is aerosol-free. We also discuss the results of modeling the darkening effects of various types of absorbing aerosols over snow/ice surfaces using a radiative transfer code. Finally, we investigated the history of such events by looking at the nearly twenty year record of TOMS aerosol index measurements and found that there is a large interannual variability in the amount of smoke aerosols observed over Greenland. This information will be available for studies of radiation and transport properties in the Arctic.

  4. Spatial heterogeneity of satellite derived land surface parameters and energy flux densities for LITFASS-area

    Directory of Open Access Journals (Sweden)

    A. Tittebrand

    2009-03-01

    Full Text Available Based on satellite data in different temporal and spatial resolution, the current use of frequency distribution functions (PDF for surface parameters and energy fluxes is one of the most promising ways to describe subgrid heterogeneity of a landscape. Objective of this study is to find typical distribution patterns of parameters (albedo, NDVI for the determination of the actual latent heat flux (L.E determined from highly resolved satellite data within pixel on coarser scale.

    Landsat ETM+, Terra MODIS and NOAA-AVHRR surface temperature and spectral reflectance were used to infer further surface parameters and radiant- and energy flux densities for LITFASS-area, a 20×20 km2 heterogeneous area in Eastern Germany, mainly characterised by the land use types forest, crop, grass and water. Based on the Penman-Monteith-approach L.E, as key quantity of the hydrological cycle, is determined for each sensor in the accordant spatial resolution with an improved parametrisation. However, using three sensors, significant discrepancies between the inferred parameters can cause flux distinctions resultant from differences of the sensor filter response functions or atmospheric correction methods. The approximation of MODIS- and AVHRR- derived surface parameters to the reference parameters of ETM (via regression lines and histogram stretching, respectively, further the use of accurate land use classifications (CORINE and a new Landsat-classification, and a consistent parametrisation for the three sensors were realized to obtain a uniform base for investigations of the spatial variability.

    The analyses for 4 scenes in 2002 and 2003 showed that for forest clear distribution-patterns for NDVI and albedo are found. Grass and crop distributions show higher variability and differ significantly to each other in NDVI but only marginal in albedo. Regarding NDVI-distribution functions NDVI was found to be the key variable for L.E-determination.

  5. High resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon

    Directory of Open Access Journals (Sweden)

    B. W. Butler

    2014-06-01

    Full Text Available A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ∼100 m; however, there are very limited observational data available for evaluating these high resolution models. This study presents high-resolution surface wind datasets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically-driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds collected on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. Wind speed did not have a simple, consistent trend with position on the slope during the downslope regime on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly downcanyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with

  6. A Simple Statistical Model to Estimate Incident Solar Radiation at the Surface from NOAA AVHRR Satellite Data

    Directory of Open Access Journals (Sweden)

    Mst. Ashrafunnahar Hena

    2013-01-01

    Full Text Available Processing of meteorological satellite image data provides a wealth of information useful in earth surface and environmental applications. Particularly, it is important for the estimation of different parameters of surface energy budget. In this work, a method has been developed to estimation of hourly incoming solar radiation on the surface of Bangladesh using NOAA-AVHRR satellite digital images. The model is based on the statistical regressions between the ground truth and satellite estimated values. Hundreds of full resolution images (1.1 km for two months of the year have been processed using ERDAS IMAGINE software. Ground solar global irradiation for one place has been estimated for two months through this application. The efficiency of this method for calculating surface insolation has been checked by estimating the relative deviation between the estimated Irradiation and measured Irradiation. The method can be used for calculation of hourly irradiation over areas in a tropical environment.

  7. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, Sonia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osuna, Jessica [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Newman, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biraud, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  8. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  9. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  10. Dust levitation as a major resurfacing process on the surface of a saturnian icy satellite, Atlas

    Science.gov (United States)

    Hirata, Naoyuki; Miyamoto, Hideaki

    2012-07-01

    A small inner satellite of Saturn, Atlas, has an enigmatic saucer-like shape explained by an accumulation of particles from A-ring of Saturn. However, its unusual smooth surface remains unexplained. Gardening through continuous particle impact events cannot be a unique explanation for the smoothness, because Prometheus does not exhibit a similar surface, though it too would have experienced a similar bombardment. Here, a detailed investigation using close-up images of Atlas reveals the surface to be (1) covered by fine particles (i.e., probably as small as several tens of micrometers); (2) mostly void of impact craters (i.e., only one has been thus far identified); and (3) continuously smooth, even between the equatorial ridge and the undulating polar region. These findings imply that some sort of crater-erasing process has been active on the surface of Atlas. From electro-static analyses, we propose that the upper-most layer of the fine particles can become electro-statically unstable and migrate as a result of dust levitation, which resulted in erasing craters on the surface of Atlas. If true, Atlas would represent the first recognized body where resurfacing is dominated by dust levitation.

  11. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  12. Procedure to detect impervious surfaces using satellite images and light detection and ranging (lidar) data

    Science.gov (United States)

    Rodríguez-Cuenca, B.; Alonso-Rodríguez, M. C.; Domenech-Tofiño, E.; Valcárcel Sanz, N.; Delgado-Hernández, J.; Peces-Morera, Juan José; Arozarena-Villar, Antonio

    2014-10-01

    The detection of impervious surfaces is an important issue in the study of urban and rural environments. Imperviousness refers to water's inability to pass through a surface. Although impervious surfaces represent a small percentage of the Earth's surface, knowledge of their locations is relevant to planning and managing human activities. Impervious structures are primarily manmade (e.g., roads and rooftops). Impervious surfaces are an environmental concern because many processes that modify the normal function of land, air, and water resources are initiated during their construction. This paper presents a novel method of identifying impervious surfaces using satellite images and light detection and ranging (LIDAR) data. The inputs for the procedure are SPOT images formed by four spectral bands (corresponding to red, green, near-infrared and mid-infrared wavelengths), a digital terrain model, and an .las file. The proposed method computes five decision indexes from the input data to classify the studied area into two categories: impervious (subdivided into buildings and roads) and non-impervious surfaces. The impervious class is divided into two subclasses because the elements forming this category (mainly roads and rooftops) have different spectral and height properties, and it is difficult to combine these elements into one group. The classification is conducted using a decision tree procedure. For every decision index, a threshold is set for which every surface is considered impervious or non-impervious. The proposed method has been applied to four different regions located in the north, center, and south of Spain, providing satisfactory results for every dataset.

  13. An Anisotropic Ocean Surface Emissivity Model Based on WindSat Polarimetric Brightness Observations

    Science.gov (United States)

    Smith, D. F.; Gasiewski, A. J.; Sandeep, S.; Weber, B. L.

    2012-12-01

    The goal of this research has been to develop a standardized fast full-Stokes ocean surface emissivity model with Jacobian for a wind-driven ocean surface applicable at arbitrary microwave frequencies, polarizations, and incidence angles. The model is based on the Ohio State University (OSU) two-scale code for surface emission developed by Johnson (2006, IEEE TGRS, 44, 560) but modified as follows: (1) the Meissner-Wentz dielectric permittivity (2012, IEEE TGRS, 50, 3004) replaces the original permittivity, (2) the Elfouhaily sea surface spectrum (1997, JGR, 102, C7,15781) replaces the Durden-Vesecky spectrum (1985, IEEE TGRS, OE-10, 445), but the Durden-Vesecky angular spreading function is retained, (3) the high-frequency portion of the Elfouhaily spectrum is multiplied by the Pierson-Moskowitz shape spectrum to correct an error in the original paper, (4) the generalized Phillips-Kitaigorodskii equilibrium range parameter for short waves is modeled as a continuous function of the friction velocity at the water surface to eliminate a discontinuous jump in the original paper. A total of five physical tuning parameters were identified, including the spectral strength and the hydrodynamic modulation factor. The short wave part of the spectrum is also allowed to have an arbitrary ratio relative to the long wave part. The foam fraction is multiplied by a variable correction factor, and also modulated to allow an anisotropic foam fraction with more foam on the leeward side of a wave. The model is being tuned against multi-year sequences of WindSat and Special Sensor Microwave/Imager (SSMI) data as analyzed by Meissner and Wentz (2012, IEEE TGRS, 50, 3004) for up to four Stokes brightnesses and in all angular harmonics up to two in twenty five wind bins from 0.5-25.5 m/s and of 1 m/s width. As a result there are 40 brightnesses per wind bin, for a total of 1000 brightnesses used to constrain the modified model. A chi-squared tuning criterion based on error standard

  14. ENSO Ocean Energetics and Observational Wind Power

    Science.gov (United States)

    Kodama, K.; Burls, N.

    2016-12-01

    The viability of wind power as a potential predictor for ENSO state has previously only been investigated in models. Here we use satellite data to obtain observational equatorial wind power which is then decomposed into climatological (ucτc), mixed-mean-perturbation (ucτ' and u'τc), and perturbation (u'τ') components to compare with the wind power/SST relationship seen in the models. The observational wind power components are also used to compare predictive skill with that of their dynamical counterparts-heat content and wind stress-which are more widely accepted and studied as ENSO predictors. The wind power decomposition reveals the u'τ' perturbation component primarily acts as a damping term. We find that the most robust relationship between wind power and SST arises from the u'τc component computed from the perturbation surface currents and climatological wind stress. u'τc is significantly correlated with the Nino 3.4 index and leads by as many as six months, capturing the role of ocean memory. The wind power decomposition highlights exactly how surface currents can weight the contribution of the winds to have more or less of an effect on the ocean state depending on the whether currents and wind stress act together or oppose each other, illustrating that not all wind anomalies are created equal.

  15. The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station

    Indian Academy of Sciences (India)

    M N Patil; R T Waghmare; T Dharmaraj; G R Chinthalu; Devendraa Siingh; G S Meena

    2016-10-01

    Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurementsof wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16◦44'N, 77◦59'E) in the south-west monsoon season. Using these observations, an attempt was made to investigatethe behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin–Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds greater than 4 m s−1; under stable regime for wind speeds less than 2 m s−1 and under neutral regime for wind speeds in the range of 2–3 m s$^{−1}$. All the three stability regimes were mixed for wind speeds 3–4 m s$^{−1}$. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.

  16. The influence of wind speed on surface layer stability and turbulent fluxes over southern Indian peninsula station

    Science.gov (United States)

    Patil, M. N.; Waghmare, R. T.; Dharmaraj, T.; Chinthalu, G. R.; Siingh, Devendraa; Meena, G. S.

    2016-09-01

    Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurements of wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16∘44'N, 77∘59'E) in the south-west monsoon season. Using these observations, an attempt was made to investigate the behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin-Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds >4 m s-1; under stable regime for wind speeds <2 m s-1 and under neutral regime for wind speeds in the range of 2-3 m s-1. All the three stability regimes were mixed for wind speeds 3-4 m s-1. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.

  17. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  18. The Wind, Temperature, and Surface Pressure on Pluto from a Pluto General Circulation Model

    Science.gov (United States)

    Zalucha, A. M.; Gulbis, A.

    2011-12-01

    A variety of methods have been used to derive Pluto's atmospheric temperature, composition, and surface pressure from spectra and stellar occultation data, while wind is less easily determined. Gravity wave dissipation has been investigated [1] in the 18 March 2007 stellar occultation dataset [2], demonstrating that wind is occurring in the form of perturbations about a mean. Rossby waves have also been proposed [2] as an explanation to the 2007 dataset; however the method was used incorrectly. General circulation models (GCMs) are a ubiquitous tool in the field of planetary atmospheres to solve for the global state of the atmosphere in a physically consistent manner, but only recently have they began to be developed for Pluto. We use a Pluto version of the Massachusetts Institute of Technology (MIT) GCM to solve for the first time for wind, temperature, and surface pressure globally in Pluto's atmosphere. The Pluto version of the MIT GCM (PGCM) uses the MIT GCM dynamical core [3] with a radiative-conductive model [4]. It includes vertical thermal conduction and non-local thermodynamic equilibrium heating and cooling by methane at 3.3 um and 7.6 um, respectively. We perform a parameter sweep with methane volume mixing ratios of 0.2, 0.6, and 1% and initial global mean surface pressures of 6-26 ubar. We ran the model from rest starting in the model year 1973. We compared the PGCM results with occultation data from the years 1988, 2002, 2006, and 2007. Model light curves were calculated from the PGCM temperature output (averaged at 90 day intervals) at the corresponding date and Pluto latitudes of each occultation. The match between data and PGCM is better than between data and the radiative-conductive equilibrium solution (i.e. no wind), but the PGCM light curves contain wave-like features while the data do not. We do not believe that this feature represents an atmospheric wave; rather, it is numerical noise known to occur in 2D GCMs. The PGCM-predicted zonal

  19. Comparisons of Wind Speed Retrievals from an Airborne Microwave Radiometer (AMPR) with Satellite-Based Observations During the OLYMPEX/RADEX Field Campaign

    Science.gov (United States)

    Lang, Timothy J.; Biswas, Sayak

    2017-01-01

    AMPR is an airborne instrument that flew aboard the NASA ER-2 during the OLYMPEX/RADEX field campaign in late 2015. This poster's goal is to explore how well the instrument can retrieve near-surface wind speed over the ocean.

  20. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Science.gov (United States)

    Bartsch, A.; Balzter, H.; George, C.

    2009-10-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  1. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  2. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Ingo [Research Institute for Global Change, JAMSTEC, Yokohama (Japan); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); Wittenberg, Andrew T. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2012-03-15

    Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role. (orig.)

  3. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  4. The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury's surface

    CERN Document Server

    Varela, J; Moncuquet, M

    2016-01-01

    The aim of this paper is to study the plasma flows on the Mercury surface for different interplanetary magnetic field orientations on the day side of the planet. We use a single fluid MHD model in spherical coordinates to simulate the interaction of the solar wind with the Hermean magnetosphere for six solar wind realistic configurations with different magnetic field orientations: Mercury-Sun, Sun-Mercury, aligned with the magnetic axis of Mercury (Northward and Southward) and with the orbital plane perpendicular to the previous cases. In the Mercury-Sun (Sun-Mercury) simulation the Hermean magnetic field is weakened in the South-East (North-East) of the magnetosphere leading to an enhancement of the flows on the South (North) hemisphere. For a Northward (Southward) orientation there is an enhancement (weakening) of the Hermean magnetic field in the nose of the bow shock so the fluxes are reduced and drifted to the poles (enhanced and drifted to the equator). If the solar wind magnetic field is in the orbital...

  5. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  6. Hall-magnetohydrodynamic surface waves in solar wind flow-structures

    Science.gov (United States)

    Miteva, Rossitsa; Zhelyazkov, Ivan; Erdélyi, Robert

    2004-02-01

    This paper investigates the parallel propagation of agnetohydrodynamic (MHD) surface waves travelling along an ideal steady plasma slab surrounded by a steady plasma environment in the framework of Hall magnetohydrodynamics. The magnitudes of the ambient magnetic field, plasma density and flow velocity inside and outside the slab are different. Two possible directions of the relative flow velocity (in a frame of reference co-moving with the ambient flow) have been studied. In contrast to the conventional MHD surface waves which are usually assumed to be pure surface or pseudo-surface waves, the Hall-MHD approach makes it necessary to treat the normal MHD slab's modes as generalized surface waves. The latter have to be considered as a superposition of two partial waves, one of which is a pure/pseudo-surface-wave whereas the other constitutive wave is a leaky one. From the two kinds of surface-wave modes that can propagate, notably sausage and kink ones, the dispersion behaviour of the kink mode turns out to be more complicated than that of the sausage mode. In general, the flow increases the waves' phase velocities comparing with their magnitudes in a static Hall-MHD plasma slab. The applicability of the results to real solar wind flow-structures is briefly discussed. EHPRG Award Lecture.

  7. Effects of Slope and Aspect Variations on Satellite Surface Temperature Retrievals and Mesoscale Analysis in Mountainous Terrain.

    Science.gov (United States)

    Lipton, Alan E.

    1992-03-01

    Surface temperature retrieval in mountainous areas is complicated by the high variability of temperatures that can occur within a single satellite field of view. Temperatures depend in part on slope orientation relative to the sun, which can vary radically over very short distances. The surface temperature detected by a satellite is biased toward the temperatures of the sub-field-of-view terrain elements that most directly face the satellite. Numerical simulations were conducted to estimate the effects of satellite viewing geometry on surface temperature retrievals for a section of central Colorado. Surface temperatures were computed using a mesoscale model with a parameterization of subgrid variations in slope and aspect angles.The simulations indicate that the slope-aspect effect can lead to local surface temperature variations up to 30°C for autumn conditions in the Colorado mountains. For realistic satellite viewing conditions, these variations can give rise to biases in retrieved surface temperatures of about 3°C. Relative biases between retrievals from two satellites with different viewing angles can be over 6°C, which could lead to confusion when merging datasets. The bias computations were limited by the resolution of the available terrain height data (90 m). The results suggest that the biases would be significantly larger if the data resolution was fine enough to represent every detail of the real Colorado terrain or if retrievals were made in mountain areas that have a larger proportion of steep slopes than the Colorado Rockies. The computed bias gradients across the Colorado domain were not large enough to significantly alter the forcing of the diurnal upslope-downslope circulations, according to simulations in which surface temperature retrievals with view-dependent biases were assimilated into time-continuous analyses. View-dependent retrieval biases may be relevant to climatological analysts that rely on remotely sensed data, given that bias

  8. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    Science.gov (United States)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  9. Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes

    Science.gov (United States)

    Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  10. Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes

    Science.gov (United States)

    Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  11. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  12. Modelling the angular effects on satellite retrieved LST at global scale using a land surface classification

    Science.gov (United States)

    Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren

    2017-04-01

    Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is

  13. Estimation of evapotranspiration over heterogeneous surfaces based on HJ1B satellite data in China

    Science.gov (United States)

    Xin, Xiaozhou; Jiao, Jingjun

    2014-05-01

    The HJ1B satellite of China is equipped with two CCD cameras with 30m resolution and one infrared multispectral camera with 300m resolution. And the revisit period of HJ1B satellite is 4 days. Compared to MODIS or TM, HJ1B data has the advantage of high spatial-temporal resolution. Methodology based on the one-source energy balance model was developed for net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) estimation from HI1B data. The core procedure is a scheme that was designed for correcting the spatial scale error over heterogeneous surfaces by taking advantage of the HJ1B data characteristics, i.e., high resolution CCD data (30m) along with thermal data (300m). First of all, a regression relationship between Ts and NDVI was built up at 300m resolution based on the data of Ts and NDVI of the selected "pure" pixels. And then the relationship function was applied at 30m resolution to derive Ts at high resolution, i.e., at the subpixel level. Furthermore, the 30m land class data was also used in the parameterization of surface energy balance and surface aerodynamic transfer, which is important since significant error may be resulted by using one land class type to represent the whole mixed pixel. By using high resolution NDVI and land class data, we are able to mitigate the spatial scale error of the mixed pixels at 300m resolution. At last, the 300m surface energy fluxes were obtained by aggregation of the 30m estimation. HJ1B data at Hai river basin in north China in 2010 were used to verify this method. The eddy-correlation system data were used as validation. The results of the method were compared with the results of a simple method that estimates the fluxes at 300m by aggregating all of the input parameters to 300m. It is shown that the method proposed in this study shows higher agreement with in-suit measurement, and the fluxes maps also show much more details of the spatial variation. By using this method, it can be

  14. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    Science.gov (United States)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  15. Assessment Of Sea Surface Salinity Obtain From SMOS And Aquarius Satellites Over Indian Ocean

    Science.gov (United States)

    Calla, O. P. N.; Dadhich, Harendra Kumar; Singhal, Shruti

    2013-12-01

    In this paper, assessment is done of Sea Surface Salinity (SSS) obtained from both SMOS and Aquarius satellites for couple of months over Indian Ocean (IO). The SSS values of the Southern Indian Ocean (SIO) are being investigated as the North Indian Ocean (NIO) is found much corrupted with the Radio Frequency Interference and even due to large variability of SSS in IO; the study area has been divided into different sub regions. The data of both the satellites at same location and of same processing level that is Level-2 have been procured and evaluated. The resolution factor is also being taken care for both onboard sensors. The resolution of SMOS L2 data products [1] is 15 X 15 Km and for Aquarius there are three different resolutions according to the BEAM's. BEAM 1 has a resolution of 76 X 94 Km, BEAM 2 has 84X120Km and BEAM3 has 96X156Km. The data have been averaged of SMOS [2] in the same way so as to match up with Aquarius resolution. By this paper we want to convince the readers that measuring SSS from space is a practical idea. SSS remote sensing now bears no more scientific perils than other remote sensing techniques did in their formative years. Advancing technology with proper resources has significantly reduced the errors.

  16. Geocenter motion due to surface mass transport from GRACE satellite data

    Science.gov (United States)

    Riva, R. E. M.; van der Wal, W.; Lavallée, D. A.; Hashemi Farahani, H.; Ditmar, P.

    2012-04-01

    Measurements of mass redistribution from satellite gravimetry are insensitive to geocenter motions. However, geocenter motions can be constrained by satellite gravity data alone if we partition mass changes between land and oceans, under the assumption that the ocean is passive (i.e., in gravitational equilibrium with the land load and the solid earth). Here, we make use of 8 years (2003-2010) of optimally filtered monthly GRACE-based solutions produced at TU Delft to determine changes in the land load and the corresponding geocenter motion, through an iterative procedure. We pay particular attention to correcting for signal leakage caused by the limited spatial resolution of GRACE. We also investigate how the choice of a model of glacial isostatic adjustment (GIA) affects the estimated geocenter motion trend due to present-day surface mass transport. Finally, we separate the contribution of ice masses from that of land hydrology and show how they have a different sensitivity to the chosen GIA model and observational time-span.

  17. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  18. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...... of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models and space borne...

  19. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    Science.gov (United States)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  20. Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction

  1. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    Science.gov (United States)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  2. Surface Wind Stresses and Triggering of Global Dust Storms on Mars

    Science.gov (United States)

    Mischna, Michael A.; Shirley, James H.

    2016-10-01

    Global dust storms on Mars occur during summer in the southern hemisphere, but their occurrence in some years and not in others has stubbornly eluded explanation. Shirley (2016, in review, and at arxiv.org/abs/1605.02707) and Mischna and Shirley (2016, in revision, and at arxiv.org/abs/1602.09137) have demonstrated the role of a so-called "coupling term acceleration" (CTA) in modifying the Mars global circulation through potential exchange of Mars' orbital and rotational momenta. The CTA has been incorporated into the MarsWRF general circulation model (GCM), which reveals distinct changes to the circulation due to the CTA, leading to conditions favorable to GDS formation in all years in which perihelion season GDS were observed, and conditions unfavorable in nearly all other years. These circulation changes reveal themselves, in part, through changes in surface wind stress, which is a strong function of near-surface wind speed. We present additional analysis of these results for the past years with perihelion season GDS (7 in total) showing commonalities in the evolution of surface stresses in the season leading up to GDS initiation. Specifically, the enhancement of surface stress during this pre-storm season, arising from the orbit-spin coupling in years with perihelion season storms, presents some common patterns. Among these are the rate and duration of increase of wind stress, and the minimum level of enhancement from the CTA that is apparently required in these years prior to initiation of a GDS. Previously we assessed changes in surface stress using a simple, dust-free model atmosphere. Here, further, we perform parallel simulations for MY 24-27 using realistic dust profiles from TES limb observations. The inclusion of dust in the GCM modifies atmospheric opacity and will alter global atmospheric temperatures leading to a markedly different atmospheric state. We find that the inclusion of dust in the atmosphere reduces the magnitude of surface stresses as

  3. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  4. Study of land surface temperature and spectral emissivity using multi-sensor satellite data

    Indian Academy of Sciences (India)

    P K Srivastava; T J Majumdar; Amit K Bhattacharya

    2010-02-01

    In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum–Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show

  5. Oceansat–2 and RAMA buoy winds: A comparison

    Indian Academy of Sciences (India)

    S Indira Rani; M Das Gupta

    2013-12-01

    Sea surface vector winds from scatterometers onboard satellites play an important role to make accurate Numerical Weather Prediction (NWP) model analysis over the data sparse oceanic region. Sea surface winds from Oceansat-2 scatterometer (OSCAT) over the Indian Ocean were validated against the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) buoy winds to establish the accuracy of OSCAT winds. The comparison of OSCAT winds against RAMA buoy winds for a period of one year (2011) shows that the wind speeds and directions derived from OSCAT agree with RAMA buoy winds. The monthly mean wind speeds from both OSCAT and RAMA buoy show maximum value during the monsoon period as expected. In the complete annual cycle (2011), the monthly mean root mean square differences in the wind speed and wind direction were less than ∼2.5 ms−1 and ∼20°, respectively. The better match between the OSCAT and RAMA buoy wind is observed during Indian summer monsoon (June–September). During monsoon 2011, the root mean square differences in wind speed and wind direction were less than 1.9 ms−1 and 11°, respectively. Collocation of scatterometer winds against equatorial and off-equatorial buoys clearly brought out the monsoon circulation features. Collocation of Advanced Scatterometer (ASCAT) winds on-board European Space Agency (ESA) MeTop satellite with respect to RAMA buoy winds during monsoon 2011 also showed that the OSCAT wind statistics are comparable with that of ASCAT over the Indian Ocean, and indicates that the accuracy of both the scatterometers over the Indian Ocean are essentially the same.

  6. Onshore and offshore wind resource evaluation in the northeastern area of the Iberian Peninsula: quality assurance of the surface wind observations

    Science.gov (United States)

    Hidalgo, A.; González-Rouco, J. F.; Jiménez, P. A.; Navarro, J.; García-Bustamante, E.; Lucio-Eceiza, E. E.; Montávez, J. P.; García, A. Y.; Prieto, L.

    2012-04-01

    Offshore wind energy is becoming increasingly important as a reliable source of electricity generation. The areas located in the vicinity of the Cantabrian and Mediterranean coasts are areas of interest in this regard. This study targets an assessment of the wind resource focused on the two coastal regions and the strip of land between them, thereby including most of the northeastern part of the Iberian Peninsula (IP) and containing the Ebro basin. The analysis of the wind resource in inland areas is crucial as the wind channeling through the existing mountains has a direct impact on the sea circulations near the coast. The thermal circulations generated by the topography near the coast also influence the offshore wind resource. This work summarizes the results of the first steps of a Quality Assurance (QA) procedure applied to the surface wind database available over the area of interest. The dataset consists of 752 stations compiled from different sources: 14 buoys distributed over the IP coast provided by Puertos del Estado (1990-2010); and 738 land sites over the area of interest provided by 8 different Spanish institutions (1933-2010) and the National Center of Atmospheric Research (NCAR; 1978-2010). It is worth noting that the variety of institutional observational protocols lead to different temporal resolutions and peculiarities that somewhat complicate the QA. The QA applied to the dataset is structured in three steps that involve the detection and suppression of: 1) manipulation errors (i.e. repetitions); 2) unrealistic values and ranges in wind module and direction; 3) abnormally low (e.g. long constant periods) and high variations (e.g. extreme values and inhomogeneities) to ensure the temporal consistency of the time series. A quality controlled observational network of wind variables with such spatial density and temporal length is not frequent and specifically for the IP is not documented in the literature. The final observed dataset will allow for a

  7. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  8. Comparisons of Monthly Mean 10 M Wind Speeds from Satellites and NWP Products Over the Global Ocean

    Science.gov (United States)

    2009-10-09

    Resolution QSCAT SSM/I NOGAPS ERA-40 NCEP Sea Winds instrument on the Quick Scatterometer Special Sensor Microwave/Imager Navy Operational...measurements with 25-point smoothing as described earlier. [25] Within the latitudes spanning the Arctic and Antarctic , no ice mask is applied in order to...ET AL.: 10 M WINDS OVER THE GLOBAL OCEAN D16109 egies that blend two or more of these products to produce improved forcing fields. [53

  9. An atmospheric energy analysis of the impact of satellite lidar winds and TIROS temperatures in global simulations

    Science.gov (United States)

    Keller, Linda M.; Johnson, Donald R.

    1992-01-01

    A study of the effects on forecast accuracy of adding wind-profiler data is conducted. An observing system simulation test is employed that assumes a sufficient concentration of aerosols to provide global wind profiles (a best case scenario). The simulated data for the series of five day forecasts are produced from a twenty day integration utilizing the ECMWF model, which is also employed to produce the verification forecast for the five day period.

  10. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negati