WorldWideScience

Sample records for satellite solar arrays

  1. Solar array experiments on the Sphinx satellite

    Science.gov (United States)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  2. Thermally-induced structural motions of satellite solar arrays

    Science.gov (United States)

    Johnston, John Dennis

    1999-11-01

    Satellites have experienced attitude disturbances resulting from thermally. induced structural motions of flexible appendages since the early days of the space program. Thermally-induced structural motions are typically initiated during orbital eclipse transitions when a satellite exits from or enters into the Earth's shadow. The accompanying rapid changes in thermal loading may lead to time-varying temperature differences through the cross-section of appendages resulting in differential thermal expansion and corresponding structural deformations. Since the total angular momentum of the system must be conserved, motions of flexible appendages such as booms and solar arrays result in rigid body rotations of the entire satellite. These potentially large attitude disturbances may violate satellite pointing and jitter requirements. This research investigates thermally-induced structural motions of rigid panel solar arrays (solar panels) through analytical and experimental studies. Orbital eclipse transition heating and thermal analyses were completed to study solar panel thermal behavior and provide results for input to dynamics analyses. A hybrid coordinate dynamical model was utilized to study the planar dynamics of a simple satellite consisting of a rigid hub with a cantilevered flexible solar panel undergoing thermally-induced structural motions. Laboratory experimental studies were carried out to gain new insight into thermal-structural behavior and to validate analytical models. The experimental studies investigated the thermal-structural performance of honeycomb sandwich panels and satellite solar panel hardware subject to simulated eclipse transition heating. Results from the analytical and experimental studies illustrate the importance of the through-the-thickness temperature difference and its time derivatives as well as the ratio of the characteristic thermal and structural response times in solar panel thermally-induced structural motions. The thermal

  3. Next Generation Solar Array Technologies for Small Satellites

    OpenAIRE

    Fosness, E.; Guerrero, J.; Mayberry, C; Carpenter, B; Goldstein, D.

    2002-01-01

    Recent advances in Shape Memory Alloy (SMA), Elastic Memory Composites (EMC), and ultra- light composites along with thin-film Copper-Indium- Diselinide (CIS) photovoltaics have offered the potential to provide solar array systems for small satellites that are significantly lighter than the current state of the practice. The Air Force Research Laboratory (AFRL), National Aeronautics and Space Administration (NASA) Langley, Defense Advanced Research Projects Agency (DARPA), and Lockheed Martin...

  4. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  5. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...

  6. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  7. Effects of plasma sheath on solar power satellite array

    Science.gov (United States)

    Parker, L. W.

    1979-01-01

    The structure of the plasma sheath and equilibrium voltage distribution of a high-power solar array governs various kinds of plasma-interaction phenomena and array losses. Sheath effects of a linearly-connected array are investigated for GEO. Although the array may be large, the thin-sheath-limit analysis may be invalid, necessitating numerical methods. Three-dimensional computer calculations show that potential barriers and over-lapping sheaths can occur, i.e., structures not predictable under the thin-sheath-limit analysis, but nevertheless controlling the distribution of plasma currents impacting on the array.

  8. Evaluation of solar cells and arrays for potential solar power satellite applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Almgren, D.W.; Csigi, K.; Gaudet, A.D.

    1978-03-31

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  9. Evaluation of solar cells and arrays for potential solar power satellite applications

    Science.gov (United States)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  10. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    Science.gov (United States)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  11. Development of Space Qualified Microlens Arrays for Solar Cells Used on Satellite Power Systems

    Directory of Open Access Journals (Sweden)

    Ömer Faruk Keser

    2017-08-01

    Full Text Available The power system, one of the main systems of satellite, provides energy required for the satellite. Solar cells are also the most used energy source in the power system. The third generation multi-junction solar cells are known as the ones with highest performance. One of the methods to increase the performance of the solar cells is anti-reflective surface coatings with the Micro Lens Array-MLA. It's expected that satellite technologies has high power efficiency and low mass. The space environment has many effects like atomic oxygen, radiation and thermal cycles. Researches for increasing the solar cells performance shows that MLA coated solar cell has increased light absorption performance and less cell heating with very low additional mass. However, it is established that few studies on MLA coatings of solar cells are not applicable on space platforms. In this study, the process of development of MLA which is convenient to space power systems is investigated in a methodological way. In this context, a method which is developed based on MLA coatings of multi-junction solar cells for satellite power systems is presented.

  12. Development of a New, High-Power Solar Array for Telecommunication Satellites

    Directory of Open Access Journals (Sweden)

    Zimmermann C.G.

    2017-01-01

    Full Text Available Airbus is currently developing the Next Generation Solar Array (NGSA for telecommunication satellites. It is based on a hybrid array concept which combines a conventional rigid panel array with lightweight, semi-rigid lateral panels. The main figures of merit power/mass and power/volume can be doubled through this concept. Mechanically, the semi-rigid panels are the key new element. Through acoustic testing as well as sine vibration testing in air and in vacuum it was verified that these panels are suitable as cell support in stowed configuration. With the help of finite element modelling it is demonstrated that the semi-rigid panels are compatible with a free deployment. Electrically, the new array is to be equipped with a new generation of 4 junction solar cells with efficiencies above 30%. The increased radiation dose due to electric orbit raising has to be taken into account to arrive at the optimum shielding while still minimizing the array mass. By adjusting the ratio of rigid to semi-rigid panels and through the choice of solar cell type and mass, the NGSA can be tailored in a wide range to needs of a given platform. This is illustrated for the solar array to be flown on the new Airbus platform Eurostar Neo.

  13. Development of a solar array drive mechanism for micro-satellite platforms

    Science.gov (United States)

    Galatis, Giorgos; Guo, Jian; Buursink, Jeroen

    2017-10-01

    Photovoltaic solar array (PVSA) systems are the most widely used method for spacecraft power generation. However, in many satellite missions, the optimum orientation of the PVSA system is not always compatible with that of the payload orientation. Many methods, have been examined in the past to overcome this problem. Up to date, the most widely used active method for large costly satellites is the Solar Array Drive Mechanism (SADM). The SADM serves as the interface between the satellite body and the PVSA subsystem, enabling the decoupling of their spatial orientation. Nonetheless, there exists a research and development gap for such systems regarding low cost micro-satellites. During the literature study of this paper, individual orbital parameters of various micro-satellites have been extracted and compared to the rotational freedom of the corresponding SADMs used. The findings demonstrated that the implemented SADMs are over designed. It is therefore concluded that these components are not tailored made for each spacecraft mission individually, but rather, exhibit a generic design to full fill a majority of mission profiles and requirements. Motivated by the above analysis, the cardinal objective of the current research is to develop a low cost mechanism that will be precisely tailored for the use of a low Earth orbit (LEO) micro-satellite platform orbiting in altitudes of 500 - 1000km . The design of the mechanism may vary from the existing miniaturized SADMs. For example, the preliminary analysis of the current research suggests, that the conventional use of the slip ring system as the electronic transfer unit can be replaced by a seMI Orientation Unit (MIOU). Systems engineering tools for concept generation and selection have been used. In addition, simulation and mathematical modelling have been implemented on component and system level, to accurately predict the behaviour of the system under various modes of operation. The production and system testing of

  14. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  15. Study on Damage Detection for a Satellite Solar Array Panel Using Optical Fiber Sensors

    Science.gov (United States)

    Sekine, Kazushi; Takeya, Hajime; Seko, Hiromi; Kobayashi, Yuki; Takahashi, Masato; Utsunomiya, Shin

    2012-07-01

    It is important to reveal the relation between on-orbit failures of solar cells and the influence of thermal strain of solar array panel because it may be a factor of them. In this study, structural health monitoring based on the strain measuring of solar array panel using fiber bragg grating (FBG) sensors is proposed. In this paper, we manufactured the specimen of substrate with FBG sensors embedded in adhesive layer between carbon fiber reinforced plastics (CFRP) faceskin and aluminum honeycomb core and measured the strain of faceskin near the middle of honeycomb cell during cooling. In consequence, measurement results of the strain agreed with finite element method (FEM) analysis results of it. Moreover, we manufactured the specimen of panel that a cover glass was bonded instead of a solar cell and measured the strain also. As a result, the possibility of damage detection by the present health monitoring was shown.

  16. ASPEC: Solar power satellite

    Science.gov (United States)

    1991-01-01

    The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  17. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  18. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  19. Plasma sheath effects and voltage distributions of large high-power satellite solar arrays

    Science.gov (United States)

    Parker, L. W.

    1979-01-01

    Knowledge of the floating voltage configuration of a large array in orbit is needed in order to estimate various plasma-interaction effects. The equilibrium configuration of array voltages relative to space depends on the sheath structure. The latter dependence for an exposed array is examined in the light of two finite-sheath effects. One effect is that electron currents may be seriously underestimated. The other is that a potential barrier for electrons can occur, restricting electron currents. A conducting surface is assumed on the basis of a conductivity argument. Finite-sheath effects are investigated. The results of assuming thin-sheath and thick-sheath limits on the floating configuration of a linearly connected array are studied. Sheath thickness and parasitic power leakage are estimated. Numerically computed fields using a 3-D code are displayed in the thick-sheath limit.

  20. Solar array welding developement

    Science.gov (United States)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  1. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators

    Science.gov (United States)

    da Fonseca, Ijar M.; Rade, Domingos A.; Goes, Luiz C. S.; de Paula Sales, Thiago

    2017-10-01

    The primary purpose of this paper is to provide insight into control-structure interaction for satellites comprising flexible appendages and internal moving components. The physical model considered herein aiming to attend such purpose is a rigid-flexible satellite consisting of a rigid platform containing two rotating flexible solar panels. The solar panels rotation is assumed to be in a sun-synchronous configuration mode. The panels contain surface-bonded piezoelectric patches that can be used either as sensors for the elastic displacements or as actuators to counteract the vibration motion. It is assumed that in the normal mode operation the satellite platform points towards the Earth while the solar arrays rotate so as to follow the Sun. The vehicle moves in a low Earth polar orbit. The technique used to obtain the mathematical model combines the Lagrangian formulation with the Finite Elements Method used to describe the dynamics of the solar panel. The gravity-gradient torque as well as the torque due to the interaction of the Earth magnetic field and the satellite internal residual magnetic moment is included as environmental perturbations. The actuators are three reaction wheels for attitude control and piezoelectric actuators to control the flexible motion of the solar arrays. Computer simulations are performed using the MATLAB® software package. The following on-orbit satellite operating configurations are object of analysis: i) Satellite pointing towards the Earth (Earth acquisition maneuver) by considering the initial conditions in the elastic displacement equal to zero, aiming the assessment of the flexible modes excitation by the referred maneuver; ii) the satellite pointing towards the Earth with the assumption of an initial condition different from zero for the flexible motion such that the attitude alterations are checked against the elastic motion disturbance; and iii) attitude acquisition accomplished by taking into account initial conditions

  2. Arsene GaAs solar array

    Science.gov (United States)

    Brambilla, L.; Caon, A.; Contini, R.; Daccolti, G.; Rossi, E.; Verzeni, G.; Bollani, B.; Flores, C.; Paletta, F.; Passoni, D.

    1993-01-01

    The GaAs solar array of ARSENE, a radioamateur spin stabilized spacecraft, is presented. The solar array uses typical Liquid Phase Epitaxy (LPE) solar cells and consists of six body mounted solar panels; each panel comprises an aluminum honeycomb substrate with aluminum skins insulated on the active area. For the qualification and acceptance of the ARSENE solar array, an engineering solar panel was submitted to the qualification tests including thermal vacuum, thermal shocks. The flight units are submitted to the thermal vacuum test. The final acceptance tests include rotational, acoustic and vibration tests performed at satellite level. Predicted power output, GaAs solar cell manufacturing, solar panel assembly and testing are discussed.

  3. Lightweight Solar Power for Small Satellites

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    The innovation targets small satellites or CubeSats for which conventional deployable arrays are not feasible due to their size, weight and complexity. This novel solar cell array includes a thin and flexible photovoltaic cell applied to an inflatable structure to create a high surface area array for collecting solar energy in a lightweight, simple and deployable structure. The inflatable array, with its high functional surface area, eliminates the need and the mechanisms required to point the system toward the sun. The power density achievable in these small arrays is similar to that of conventional high-power deployable/pointable arrays used on large satellites or space vehicles. Although inflatable solar arrays have been previously considered by others, the arrays involved the use of traditional rigid solar cells. Researchers are currently working with thin film photovoltaics from various suppliers so that the NASA innovation is not limited to any particular solar cell technology. NASA has built prototypes and tested functionality before and after inflation. As shown in the current-voltage currents below, deployment does not damage the cell performance.

  4. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  5. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  6. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  7. Solar array construction

    Science.gov (United States)

    Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.

  8. The International Telecommunications Satellite (INTELSAT) Solar Array Coupon (ISAC) atomic oxgyen flight experiment: Techniques, results and summary

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1993-01-01

    Techniques and results of the ISAC flight experiment are presented, and comparisons between flight tests results and ground based testing are made. The ISAC flight experiment, one component of a larger INTELSAT 6 rescue program, tested solar array configurations and individual silver connects in ground based facilities and during STS-41 (Space Shuttle Discovery). In addition to the INTELSAT specimens, several materials, for which little or no flight data exist, were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, polymeric materials, and inorganic materials were exposed to an oxygen atom fluence of 1.2 x 10(exp 20) atoms. Many of the samples were selected to support Space Station Freedom design and decision-making.

  9. Fixed solar array designs for GPS space vehicles

    Science.gov (United States)

    Malachesky, P. A.; Simburger, E. J.; Zwibel, H. S.

    A risk reduction approach for the Global Positioning Satellite (GPS) replenishment satellite block which uses fixed rather than tracking solar arrays is described. This design study was carried out as a result of reliability and electromagnetic interference (EMI) concerns with solar array drive power and transfer systems (SADPT). Fixed solar array designs eliminate the need for a SADPT, but result in larger arrays than tracking arrays in order to maintain acceptable end-of-life (EOL) performance. The weight increase due to the larger array is partially compensated for by the elimination of the SADPT. If advanced solar arrays and/or lightweight array designs are used, fixed array designs can lead to weight savings over baseline silicon cell-based designs.

  10. The ADM-AEOLUS Solar Array

    Science.gov (United States)

    Riva, S.; Ferrando, E.; Contini, R.; Blok, R.; Heijden, R. vd; Caon, A.; Labruyere, G.; Strobl, G.; Koestler, W.; Zimmermann, W.

    2008-09-01

    ADM Aeolus is an Earth Explorer Core Mission of the European Space Agency (ESA). The satellite is provided with a deployable solar array fully equipped with European state of the art Triple Junction (TJ) GaAs solar cells.The structural part and mechanisms of the ADM Aeolus Solar Array (SA) is a derivate of the Dutch Space FRED solar array concept. This FRED type solar array has already been used on Jules Verne (Automated Transfer Vehicle) and Giove-A. Both satellites has been successfully launched and the Solar Arrays are working nominally.The ADM Aeolus spacecraft (S/C) is powered by two deployable wings. Each of them composed by three panels and with a panel size of 1.1×2.2 m2, so that the total area is about 14.5 m2;. European TJ solar cells (27% efficiency class) embodying an integral protection diode were selected to meet the power budget, necessary for the installed payload. The principal one is an Atmospheric LAser Doppler INstrument (ALADIN), a novel system whose development is a strategic goal for ESA.This SA program is a challenging development in terms of solar cell qualification because of the extensive characterisation and qualification campaign performed for the cell and the integral diode components. Especially for protection diode a long duration high temperature test was performed in order to simulate and cover all lifetime stresses.Main drivers for PVA design are the power requirement at the end of life and the requested protection against atomic oxygen erosion.This paper describes : The results achieved during the qualification phase, from bare cell level to the coupon level, The design activity, mainly focused on the prediction of EOL performances, The acceptance phase at panel levels, which has verified the suitability of the design assumption and manufacturing workmanship.

  11. Solar array manufacturing industry simulation

    Science.gov (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.

    1980-01-01

    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  12. Solar Array Verification Analysis Tool (SAVANT) Developed

    Science.gov (United States)

    Bailey, Sheila G.; Long, KIenwyn J.; Curtis, Henry B.; Gardner, Barbara; Davis, Victoria; Messenger, Scott; Walters, Robert

    1999-01-01

    Modeling solar cell performance for a specific radiation environment to obtain the end-of-life photovoltaic array performance has become both increasingly important and, with the rapid advent of new types of cell technology, more difficult. For large constellations of satellites, a few percent difference in the lifetime prediction can have an enormous economic impact. The tool described here automates the assessment of solar array on-orbit end-of-life performance and assists in the development and design of ground test protocols for different solar cell designs. Once established, these protocols can be used to calculate on-orbit end-of-life performance from ground test results. The Solar Array Verification Analysis Tool (SAVANT) utilizes the radiation environment from the Environment Work Bench (EWB) model developed by the NASA Lewis Research Center s Photovoltaic and Space Environmental Effects Branch in conjunction with Maxwell Technologies. It then modifies and combines this information with the displacement damage model proposed by Summers et al. (ref. 1) of the Naval Research Laboratory to determine solar cell performance during the course of a given mission. The resulting predictions can then be compared with flight data. The Environment WorkBench (ref. 2) uses the NASA AE8 (electron) and AP8 (proton) models of the radiation belts to calculate the trapped radiation flux. These fluxes are integrated over the defined spacecraft orbit for the duration of the mission to obtain the total omnidirectional fluence spectra. Components such as the solar cell coverglass, adhesive, and antireflective coatings can slow and attenuate the particle fluence reaching the solar cell. In SAVANT, a continuous slowing down approximation is used to model this effect.

  13. Retrieval of Mir Solar Array

    Science.gov (United States)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  14. The high performance solar array GSR3

    Science.gov (United States)

    Mamode, A.; Bartevian, J.; Bastard, J. L.; Auffray, P.; Plagne, A.

    A foldout solar array for communication satellites was developed. A wing composed of 4 panels of 1.6 x 1.5 m and a Y-shaped yoke, and a wing with 3 panels of 2.4 x 2.4 m were made. End of life performance goal is greater than 35 W/kg with BSR 180 micron solar cells, and 50 W/kg using 50 micron BSFR cells. Analysis shows that all identified requirements can be covered with current skin made of open weave very high modulus carbon fiber; reinforcements of unidirectional carbon fiber; honeycomb in current section; hold-down inserts made of wound carbon fibers; titanium hinge fitting; and Kapton foil (25 or 50 micron thickness). Tests confirm performance predictions.

  15. Susceptibility of Solar Arrays to Micrometeoroid and Space Debris Impact

    Science.gov (United States)

    Schimmerohn, Martin; Rott, Martin; Gerhard, Andreas; Schafer, Frank; D'Accolti, Gianfelice

    2014-08-01

    The susceptibility of solar arrays to micrometeoroid and space debris impact was studied in a comprehensive study to clarify 1) whether, 2) in which manner and 3) under which conditions GEO telecom satellite solar arrays are affected by hypervelocity impact events. Impact induced discharges have been generated in highly instrumented impact experiments using a two- staged light gas guns and a plasma dynamic accelerator. The discharges were found to be temporary and without consequences for the functioning of the power generating network of state-of-the-art solar arrays designs. Permanently sustained destructive discharges have been generated for current-voltage characteristics that are significantly exceeding current ESD safe levels. The highest risk of impact induced failure of GEO solar arrays is posed by micrometeoroids and space debris hitting transfer harness cable bundles on its rear side.

  16. Advanced Rainbow Solar Photovoltaic Arrays

    Science.gov (United States)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  17. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  18. Wireless power transmission: The key to solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Nansen, R.H. [Solar Space Industries, Ocean Shores, WA (United States)

    1995-12-31

    In the years following the OPEC oil embargo of 1973--74, the US aggressively researched alternative energy options. Among those studied was the concept of Solar Power Satellites -- generating electricity in space from solar energy on giant satellites and sending the energy to the earth with wireless power transmission. Much has happened in the fifteen years since the studies were terminated. Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. All of this will reduce the cost by one to two orders of magnitude so development can now be undertaken by industry instead of relying on a massive government program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan for Solar Power Satellites is to build a Ground Test Installation that will duplicate, in small scale on the earth, all aspects of the power generating and power transmission systems for the Solar Power Satellite concept except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation function and verified by testing using the NASA Space Station and Space Shuttle. Solar Space Industries` concept is to built a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array, furnished by an interested utility, to a phased-array wireless power transmitter based on the subarray developed by William Brown and The Center for Space Power. Power will be transmitted over a 1 1/4 mile range to a receiving antenna (rectenna) and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are; beam control, stability, steering, efficiency, reliability, cost, and safety.

  19. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-05-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  20. Future Satellite Observations of Solar Irradiance

    Science.gov (United States)

    Cahalan, R. F.; Rottman, G.; Woods, T.; Lawrence, G.; Harder, J.; McClintock, W.; Kopp, G.

    2003-01-01

    Required solar irradiance measurements for climate studies include those now being made by the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) onboard the SORCE satellite, part of the Earth Observing System fleet of NASA satellites. Equivalent or better measures of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI, 200 to 2000 nm) are planned for the post-2010 satellites of the National Polar-orbiting Operational Environmental Satellite System ("OESS). The design life of SORCE is 5 years, so a "Solar Irradiance Gap Filler" EOS mission is being planned for launch in the 2007 time frame, to include the same TSI and SSI measurements. Besides avoiding any gap, overlap of the data sources is also necessary for determination of possible multi-decadal trends in solar irradiance. We discuss these requirements and the impacts of data gaps, and data overlaps, that may occur in the monitoring of the critical solar radiative forcing.

  1. SAC-B GaAs solar array

    Science.gov (United States)

    Brambilla, L.; Caon, A.; Contini, R.; D'Accolti, G.; Rossi, E.; Verzeni, G.; Flores, C.; Paletta, F.; Pedrazzoli, G.; Grattarola, M.

    1993-10-01

    This paper describes the electrical and mechanical design of the GaAs solar array of SAC-B, an Argentinian scientific satellite, planned for launch in 1995 into a 550-km circular orbit by Pegasus vehicle. The solar array is made up of four deployable wings, embodying approximately 1000 LPE GaAs solar cells, (30 x 41 sq mm), capable of providing about 215 W at 28 V at EOL. The mechanical structure of each panel comprises an aluminum honeycomb structure with carbon fiber skins; the active facesheet is covered with an insulating layer of kapton/fiberglass. Each panel is attached via a pair of hinges to the spacecraft body while a restraint/release mechanism holds the other panel edge to the spacecraft. Different considerations have been taken into account for the electrical and mechanical design of the solar array: geometrical constraints of the Pegasus static envelope and the satellite for the panel dimensioning, mission degradation factors, minimization of the magnetic moment, and realiability requirements. Several environmental tests (including thermal vacuum and vibration) are foreseen at panel and/or satellite level to verify performances during the mission.

  2. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  3. Thin Flexible IMM Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin, flexible, and highly efficient solar arrays are needed that package compactly for launch and deploy into large, structurally stable high power generators....

  4. Multijunction Ultralight Solar Cells and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  5. Science with the Expanded Owens Valley Solar Array

    Science.gov (United States)

    Nita, Gelu M.; Gary, Dale E.; Fleishman, Gregory D.; Chen, Bin; White, Stephen M.; Hurford, Gordon J.; McTiernan, James; Hickish, Jack; Yu, Sijie; Nelin, Kjell B.

    2017-08-01

    The Expanded Owens Valley Solar Array (EOVSA) is a solar-dedicated radio array that makes images and spectra of the full Sun on a daily basis. Our main science goals are to understand the basic physics of solar activity, such as how the Sun releases stored magnetic energy on timescales of seconds, and how that solar activity, in the form of solar flares and coronal mass ejections, influences the Earth and near-Earth space environment, through disruptions of communication and navigation systems, and effects on satellites and systems on the ground. The array, which is composed out of thirteen 2.1 m dishes and two 27 m dishes (used only for calibration), has a footprint of 1.1 km EW x 1.2 km NS and it is capable of producing, every second, microwave images at two polarizations and 500 science channels spanning the 1-18 GHz frequency range. Such ability to make multi-frequency images of the Sun in this broad range of frequencies, with a frequency dependent resolution ranging from ˜53” at 1 GHz to ˜3”at 18 GHz, is unique in the world. Here we present an overview of the EOVSA instrument and a first set of science-quality active region and solar flare images produced from data taken during April 2017.This research is supported by NSF grant AST-1615807 and NASA grant NNX14AK66G to New Jersey Institute of Technology.

  6. Impact of Solar Array Designs on High Voltage Operations

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone

  7. Hubble Space Telescope (HST) Solar Array Damper

    Science.gov (United States)

    Maly, J. R.; Pendleton, S. C.; Salmanoff, J.; Blount, G. J.; Mathews, K.

    1999-01-01

    This paper describes the design of a solar array damper that will be built into each of two new solar arrays to be installed on the Hubble Space Telescope (HST) during Servicing Mission 3. On this mission, currently scheduled for August, 2000, two "rigid" solar array wings will replace the "flexible" wings currently providing power for HST. Dynamic interaction of these wings with the telescope spacecraft can affect the Pointing Control System. The damper, which is integral to the mast of the solar array, suppresses the fundamental bending modes of the deployed wings at 1.2 Hz (in-plane) and 1.6 Hz (out-of-plane). With the flight version of the damper, modal damping of 2.3% of critical is expected over the temperature range of -4 C to 23 C with a peak damping level of 3.9%. The unique damper design is a combination of a titanium spring and viscoelastic-shear-lap dashpot. The damper was designed using a system finite element model of the solar array wing and measured viscoelastic material properties. Direct complex stiffness (DCS) testing was performed to characterize the frequency- and temperature-dependent behavior of the damping prior to fixed-base modal testing of the wing at NASA/Goddard Space Flight Center (NASA/GSFC).

  8. Solar power satellites - Heat engine or solar cells

    Science.gov (United States)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  9. Modular High-Energy Systems for Solar Power Satellites

    Science.gov (United States)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  10. The Expanded Owens Valley Solar Array

    Science.gov (United States)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.

    2011-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.

  11. A new concept of space solar power satellite

    Science.gov (United States)

    Li, Xun; Duan, Baoyan; Song, Liwei; Yang, Yang; Zhang, Yiqun; Wang, Dongxu

    2017-07-01

    Space solar power satellite (SSPS) is a tremendous energy system that collects and converts solar power to electric power in space, and then transmits the electric power to earth wirelessly. In this paper, a novel SSPS concept based on ε-near-zero (ENZ) metamaterial is proposed. A spherical condenser made of ENZ metamaterial is developed, by using the refractive property of the ENZ metamaterial sunlight can be captured and redirected to its center. To make the geometric concentration ratio of the PV array reasonable, a hemispherical one located at the center is used to collect and convert the normal-incidence sunlight to DC power, then through a phased array transmitting antenna the DC power is beamed down to the rectenna on the ground. Detailed design of the proposed concept is presented.

  12. A New European High Fidelity Solar Array Simulator for Near Earth and Deep Space Applications

    Directory of Open Access Journals (Sweden)

    Thorvardarson Hjalti Pall

    2017-01-01

    Full Text Available Following an intensive design, development, and testing effort of almost 3 years, Rovsing with ESA assistance succeeded in the development of a new European high fidelity Solar Array Simulator (SAS for near Earth and deep space applications. ESA now has a versatile, highly modular and efficient SAS at its disposition that serves at simulating modern high power solar arrays for Earth observation, science or telecom satellites as well as for future deep space missions.

  13. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  14. Method of fabricating a solar cell array

    Science.gov (United States)

    Lazzery, Angelo G.; Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

  15. Solar panels offer array of hope.

    Science.gov (United States)

    Baillie, Jonathan

    2009-01-01

    The installation of what is believed to be the largest array of solar thermal panels currently in use at a UK NHS hospital has taken place at an ideal time for the facility in question, Harlow's Princess Alexandra Hospital, with the hospital's gas bill alone having risen by 153% over the past nine months thanks to soaring energy prices, and the estates department keen to mitigate the effects in any way possible. Jonathan Baillie reports.

  16. Solar Array Mast Imagery Discussion for ISIW

    Science.gov (United States)

    Kilgo, Gary

    2017-01-01

    SAW Mast inspection background: In 2012, NASA's Flight Safety Office requested the Micro Meteoroid and Orbital Debris (MMOD) office determine the probability of damage to the Solar Array Wing (SAW) mast based on the exposure over the life time of the ISS program. As part of the risk mitigation of the potential MMOD strikes. ISS Program office along with the Image Science and Analysis Group (ISAG) began developing methods for imaging the structural components of the Mast.

  17. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  18. Solar power satellites - Technical, social and political implications

    Science.gov (United States)

    Knelman, F. H.

    Solar power satellite systems (SPS) are examined, together with their environmental and social impacts and the energy policies necessary for their construction. The energy source, the sun, is acceptable to advocates of decentralized technologies, while the conversion system is fitted to large institutions. However, large-scale power plants are subject to persistent malfunctions, and the approximately 50 sq km SPS solar array is projected to suffer from at least recurring cell contact failures. The power could also be generated by heat engines for transmission by either laser or microwaves. Numerous feasibility and cost-benefit studies are still required, including defining the transmission beam's effects on the atmosphere, ionosphere, and human health. Furthermore, the resource allocations, capital costs, insurance, and institutional problems still need clarification, as do the design, logistics, and development of an entire new, much larger launch system based on Shuttle technology. Finally, the military defensibility of the SPS power station is questioned.

  19. Early commercial demonstration of space solar power using ultra-lightweight arrays

    Science.gov (United States)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  20. The ARA Mark 3 solar array design and development

    Science.gov (United States)

    vanHassel, Rob H. A.

    1996-01-01

    The ARA (Advanced Rigid Array) Mark3 solar array of Fokker Space BV is currently in its final stages of qualification (wing tests to be completed in March, 1996; unit/part tests in April, 1996). With regard to its predecessor, the ARA Mark2, the design has not only been improved in terms of mechanical and electrical performance, but also with regard to production cost and throughput time. This 'state of the art' array is designed to fit the needs of a wide variety of geostationary telecommunications satellites and is qualified for launch on the complete range of medium/large size commercial launchers (Ariane IV & V, Atlas, Delta, Proton, Long March, H2). The first mission to fly the new ARA Mk3 array is Hot Bird 2 (customer: Eutelsat, prime contractor: Matra Marconi Space; launch: mid-1996). In this configuration, its end of life (EOL) power-to-mass ratio is 42 W/kg, with an operational life of more than 12 years. The main mechanisms on a solar array are typically found in the deployment system and in the hold down and release system. During the design and development phase of these mechanisms, extensive engineering and qualification tests have been performed. This paper presents the key design features of these mechanisms and the improvements that were made with regard to their predecessors. It also describes the qualification philosophy on unit/part and wing level. Finally, some of the development items that turned out to be critical, as well as the lessons learned from them, are discussed.

  1. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer,

  2. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  3. Affordable High Performance Electromagnetically Clean Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an Electromagnetically Clean Solar Array (ECSA) with enhanced performance, in Watts/kg and Watts/m2, using flight proven, high efficiency solar cells. For...

  4. Spacecraft-generated plasma interaction with high voltage solar array

    Science.gov (United States)

    Parks, D. E.; Katz, I.

    1978-01-01

    Calculations are made of the effect of interactions of spacecraft-generated plasmas and high voltage solar array components on an advanced Solar Electric Propulsion system. The plasma consists of mercury ions and electrons resulting from the operation of ion thrusters and associated hollow cathode neutralizers. Because large areas of the solar array are at high potential and not completely insulated from the surrounding plasma, the array can, under some conditions, collect excessive electron currents. Results are given for the parasitic currents collected by the solar arrays and means for reducing these currents are considered.

  5. Photovoltaic solar arrays - Unlimited power for our space vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, L.G.

    1981-01-01

    Solar cell technology is reviewed with reference to the high-efficiency cells, ultra-thin cells, GaAs cells and wrap-around cells. Performance characteristics are presented noting the advantages of GaAs cells over silicon cells. A number of solar array configurations are illustrated including large flexible arrays and curved graphite panels. Attention is given to the NASA Solar Electric Propulsion Stage program which would use ion engines to propel spacecraft in interplanetary missions. Applications of solar cell technology to the Space Shuttle program are discussed, including the Power Extension Package, lightweight arrays and solar energy concentrators.

  6. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  7. ALSAT-2A solar array in orbit performances after 32 months

    Science.gov (United States)

    Larbi, N.; Attaba, Mehdi; Bouchiba, F.; Beaufume, E.

    2013-10-01

    ALSAT-2A is the second Algerian Earth observation satellite build by Astrium together with the Algerian Space Agency and the first spacecraft of AstroSat-100 family. The spacecraft design is based on the Myriade platform and its power subsystem consists of GaAs solar array, Li-ion battery, power conditioning and distribution unit and harness. The purpose of a power subsystem is to ensure reliable delivery of electrical power compatible with payload under all foreseeable operational states, environments, and during all mission phases. The power subsystem is unarguably the most critical subsystem on a satellite. Reliability, efficiency and continuous operation of the power subsystem is essential to the successful fulfillment of ALSAT-2A mission, a failure even a brief interruption in the source of power can have catastrophic consequences for the spacecraft. Therefore, the power subsystem and its components, specially, the solar array must be checked carefully. In this context, this paper outlines the in-orbit performances of ALSAT-2A solar array wings from the period of July 2010 to March 2013. The 32 months telemetry data related to the solar array voltage, current and temperature will be analyzed. These parameters will be discussed in function of satellite power consumption.

  8. Alignment method for solar collector arrays

    Science.gov (United States)

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  9. Genesis Solar Wind Array Collector Cataloging Status

    Science.gov (United States)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  10. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  11. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  12. European sail tower SPS [Solar Power Satellite] concept

    Energy Technology Data Exchange (ETDEWEB)

    Seboldt, W.; Leipold, M.; Hanowski, N. [Institute of Space Sensor Technology and Planetary Exploration, Cologne (Germany). German Aerospace Center; Klimke, M. [HOPE Worldwide Deutschland, Berlin (Germany)

    2001-06-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called ''System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE and U)'' a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called ''European Sail Tower SPS'' and consists mainly of deplorable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such an SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150 m x 150 m and is automatically deployed, using four diagonal lightweight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW{sub e}. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology

  13. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  14. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  15. GOES-R satellite solar panels ready for space

    Science.gov (United States)

    Wendel, JoAnna

    2014-07-01

    An array of five photovoltaic panels has been approved and is ready to be incorporated into the National Oceanic and Atmospheric Administration's (NOAA) new Geostationary Operational Environmental Satellites-R (GOES-R). GOES-R, a collaborative effort between NOAA and NASA, aims to provide more timely and accurate weather forecasts once in orbit. The satellite is scheduled to launch in early 2016.

  16. Very Large Ultra-Lightweight Affordable Smart Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft for NASA, DoD and commercial missions need higher power, higher voltage, and much lower cost solar arrays to enable a variety of very high power missions....

  17. Deployable Structural Booms for Large Deployable Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a new generation of large, high power deployable solar arrays has been identified as the most significant challenge facing the development of...

  18. Design and Analysis Tools for Deployable Solar Array Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large, lightweight, deployable solar array structures have been identified as a key enabling technology for NASA with analysis and design of these structures being...

  19. Tensioned Rollable Ultra-light Solar array System (TRUSS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRUSS is a structurally efficient solar array concept that utilizes a TRAC rollable boom and tension-stiffened structure to exceed the program requirements for very...

  20. Modular Ultra-High Power Solar Array Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on the development of a new highly-modularized and extremely-scalable solar array that...

  1. Evaluation of solar cells for potential space satellite power applications

    Science.gov (United States)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  2. Mechanical characteristics of major components of solar arrays

    Science.gov (United States)

    Pokhyl, Yu. O.; Gavryliv, R. V.; Yakovenko, L. F.; Aleksenko, E. N.; Lototskya, V. A.; van, S.; He, Sh.; Tarasov, G. V.; Rassamakin, B. M.

    We give some results of investigation of temperature influence, within 373K to 77K interval, on static and dynamic mechanical properties of structure meterials to be employed with solar arrays of space vehicles. The experimental data thus obtained can be used in further theoretical calculations for lifetime of solar arrays under conditions of influence by multiple periodical thermal loads, in the couse of orbital flight.

  3. Novel Deployment Mechanism for Conventional Solar Array Enhancement

    Directory of Open Access Journals (Sweden)

    Hodgetts Paul A.

    2017-01-01

    Full Text Available A novel mechanism is described, by which flexible blankets could be deployed from existing solar panel designs. These blankets could be covered with flexible cells, or they could be reflective films to form a concentrator array. Either way, the performance of an existing array design could be enhanced.

  4. Space Station Freedom solar array panels plasma interaction test facility

    Science.gov (United States)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  5. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    technologies make solar power a quite attractive solution for standalone power generation and applications like water pumping. SPV array fed water pumping system is fitted with manual or with auto-trackers for synchronizing with the shifting direction of the sun. In this way, solar panel captures sun rays continuously and ...

  6. In-Space Transportation for GEO Space Solar Power Satellites

    Science.gov (United States)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  7. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  8. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  9. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  10. Solar Array Structures for 300 kW-Class Spacecraft

    Science.gov (United States)

    Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy

    2013-01-01

    State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.

  11. Solar power satellite life-cycle energy recovery consideration

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, S.; Blumenberg, J. [Deutsche Aerospace AG, Munich (Germany)]|[Technical Univ. of Munich, Munich (Germany)

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  12. Solar cell array design handbook, volume 1

    Science.gov (United States)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  13. Thin Flexible IMM Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inverted Metamorphic (IMM) solar cells have achieved high efficiency at very low mass, but integration of the thin crystalline photovoltaic device into a flexible...

  14. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  15. Solar Power Satellite Development: Advances in Modularity and Mechanical Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2010-01-01

    Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described

  16. Development of an Electrostatically Clean Solar Array Panel

    Science.gov (United States)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  17. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  18. Solar/Space Environment Data (Satellites)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  19. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  20. Simulation Application for Optimization of Solar Collector Array

    Directory of Open Access Journals (Sweden)

    Igor Shesho*,

    2014-01-01

    Full Text Available Solar systems offer a comparatively low output density , so increasing the output always means a corresponding increase in the size of the collector area. Thus collector arrays are occasionally constructed (i.e. with different azimuth angles and/or slopes, which be imposed by the location and structure available to mount the collector. In this paper is developed simulation application for optimization for the solar collector array position and number of collectors in regard of maximum annual energy gain and thermal efficiency. It is analyzed solar collector array which has parallel and serial connected solar collectors with different tilt, orientation and thermal characteristics. Measurements are performed for determine the thermal performance of the system. Using the programming language INSEL it is developed simulation program for the analyzed system where optimization is done through parametric runs in the simulation program. Accent is given on the SE orientated collectors regarding their tilt and number, comparing two solutions-scenarios and the current system set situation of the in means of efficiency and total annual energy gain. The first scenario envisages a change of angle from 35 to 25 solar panels on the SE orientation, while the second scenario envisages retaining the existing angle of 35 and adding additional solar collector. Scenario 1 accounts for more than 13% energy gain on annual basis while Scenario 2 has 2% bigger thermal efficiency.

  1. Innovative Solar Tracking Concept by Rotating Prism Array

    Directory of Open Access Journals (Sweden)

    Héctor García

    2014-01-01

    Full Text Available Solar energy has become one of the most promising renewable energies and is the most widely used nowadays. In order to achieve an optimum performance, both photovoltaic and solar thermal applications are required to track the position of the sun throughout the day and year in the most effective way possible to avoid a high negative impact on the system efficiency. The present paper attempts to describe a novel semipassive solar tracking concentrator (SPSTC in which, in order to track the sun, two independent arrays of polymethyl methacrylate (PMMA prisms are implemented to refract sunlight by rotating said prisms, thus being able to redirect solar radiation as desired. The first set is responsible for eliminating one of the directional components of the solar radiation; the task is achieved by rotating the prisms within the array at a specific angle. The second set deals with another of the sunlight’s directional components, transforming its direction into a completely perpendicular pattern to the array. Having downward vertical radiation makes it possible to implement a stationary Fresnel lens to concentrate the solar radiation for any application desired. The system is designed and validated using simulation software to prove the feasibility of the concept.

  2. Applications of a Networked Array of Small Satellites for Planetary Observation

    NARCIS (Netherlands)

    Gunter, B.C.; Maessen, D.C.

    2010-01-01

    The goal of this study is to explore those applications which can best utilize a network of orbiting satellites working as a distributed computing array. The satellites are presumed to be low-cost mini- or micro-satellites orbiting Earth or some other celestial body (i.e., an asteroid, moon, etc.),

  3. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  4. Analysis and simulation tools for solar array power systems

    Science.gov (United States)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off

  5. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  6. Low-cost solar array structure development

    Science.gov (United States)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  7. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    Science.gov (United States)

    Coopersmith, Jonathan

    2010-05-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  8. Better Thermal Insulation in Solar-Array Laminators

    Science.gov (United States)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  9. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  10. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  11. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    Science.gov (United States)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  12. Surface solar radiation from geostationary satellites for renewable energy

    Science.gov (United States)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  13. Effects of solar radiation torque on satellite spin and attitude

    Science.gov (United States)

    Zanardi, Maria Cecilia; Vilhena de Moraes, Rodolpho

    An analytical solution for the system of equations describing the rotational motion of an artificial satellite under the influence of the direct solar radiation pressure is presented. Here is considered a satellite of cylinder circular shape and the method to obtain the analytical solution is the Lagrange's method of the variation of parameters. Andoyer's vaiables are used to describe the rotational motion. The analytical solution obtained shows that, due to solar radiation, all the Andoyer's angular variables have secular and periodical variations but, the modulus of the rotational angular momentum and its projection on the z-axis of the system of principal axis of inertia vary periodically only. In order to validate the range of the analytical solution, Burlirsch-Stoer's method is used to perform a numerical integration of the system of equations of motion. Considering a hypothetical satellite, a numerical application is exhibited.

  14. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    Science.gov (United States)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  15. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    Science.gov (United States)

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  16. Quenching Circuit for Solar Array Power Arcing Events

    Science.gov (United States)

    Haines, J. E.

    2005-05-01

    Geosynchronous telecommunication spacecraft power levels and thus bus voltages have been steadily increasing over recent years. As a result concerns have developed with respect to the initiation of voltage induced arcing on exposed conductors that can result in localised damage and significant electrical power loss.Such an event can typically result in either the power loss of single solar array section if the arcing has occurred on an array panel, or in some extreme cases, the loss of a full wing power if the phenomena has occurred and propagated within a Solar Array Drive Mechanism (SADM).The paper describes a proposed circuit solution, which is the subject of an international patent application. This circuit detects the initial arcing event, allows a short time without any action of the electronics so as to give a chance for any short-circuiting material to evaporate and then extinguishes the arc by transiently driving 'ON' an associated power system dump stage.

  17. Computer Modelling and Simulation of Solar PV Array Characteristics

    Science.gov (United States)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to

  18. Stray light correction of array spectroradiometers for solar UV measurements.

    Science.gov (United States)

    Nevas, Saulius; Gröbner, Julian; Egli, Luca; Blumthaler, Mario

    2014-07-01

    An approach is presented to characterize and correct stray light in spectra measured with array spectroradiometers and caused by out-of-spectral range radiation. A prerequisite for out-of-range stray light correction is knowledge of the spectral irradiance not measured by the instrument itself. A way of solving this problem for solar UV measurements is shown. The effect of out-of-range stray light is especially important for solar UV spectroradiometers typically having a spectral range narrower than that of the silicon detectors in use. Two different types of instruments used for solar UV measurements were characterized and corrected for out-of-range and in-range stray light. As a hardware solution to the out-of-range stray light problem, a bandpass filter was fitted in one array spectroradiometer. Results of test measurements using this modified instrument are also shown.

  19. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  20. Solar Array at Very High Temperatures: Ground Tests

    Science.gov (United States)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  1. Environmental testing of Block II solar cell modules. Low-Cost Solar Array Project

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J.S.

    1979-01-01

    The results of environmental tests of Block II solar modules are described. Block II was the second large scale procurement of silicon solar cell modules made by the JPL Low-Cost Solar Array Project with deliveries in 1977 and early 1978. The results of testing showed that the Block II modules were greatly improved over Block I modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.

  2. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  3. The impact of solar cell technology on planar solar array performance

    Science.gov (United States)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  4. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  5. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  6. The Damper Spring Unit of the Sentinel 1 Solar Array

    Science.gov (United States)

    Doejaaren, Frans; Ellenbroek, Marcel

    2012-01-01

    The Damper Spring Unit (DSU, see Figure 1) has been designed to provide the damping required to control the deployment speed of the spring driven solar array deployment in an ARA Mk3 or FRED based Solar Array in situations where the standard application of a damper at the root-hinge is not feasible. The unit consists of four major parts: a main bracket, an eddy current damper, a spring unit, an actuation pulley which is coupled via Kevlar cables to a synchro-pulley of a hinge. The damper slows down the deployment speed and prevents deployment shocks at deployment completion. The spring unit includes 4 springs which overcome the resistances of the damper and the specific DSU control cable loop. This means it can be added to any spring driven deployment system without major modifications of that system. Engineering models of the Sentinel 1 solar array wing have been built to identify the deployment behavior, and to help to determine the optimal pulley ratios of the solar array and to finalize the DSU design. During the functional tests, the behavior proved to be very sensitive for the alignment of the DSU. This was therefore monitored carefully during the qualification program, especially prior to the TV cold testing. During TV "Cold" testing the measured retarding torque exceeded the max. required value: 284 N-mm versus the required 247 N-mm. Although this requirement was not met, the torque balance analysis shows that the 284 N-mm can be accepted, because the spring unit can provide 1.5 times more torque than required. Some functional tests of the DSU have been performed without the eddy current damper attached. It provided input data for the ADAMS solar array wing model. Simulation of the Sentinel-1 deployment (including DSU) in ADAMS allowed the actual wing deployment tests to be limited in both complexity and number of tests. The DSU for the Sentinel-1 solar array was successfully qualified and the flight models are in production.

  7. Annual solar motion and spy satellites

    Science.gov (United States)

    Jensen, Margaret; Larson, S. L.

    2014-01-01

    A topic often taught in introductory astronomy courses is the changing position of the Sun in the sky as a function of time of day and season. The relevance and importance of this motion is explained in the context of seasons and the impact it has on human activities such as agriculture. The geometry of the observed motion in the sky is usually reduced to graphical representations and visualizations that can be difficult to render and grasp. Sometimes students are asked to observe the Sun’s changing motion and record their data, but this is a long-term project requiring several months to complete. This poster outlines an activity for introductory astronomy students that takes a modern approach to this topic, namely determining the Sun’s location in the sky on a given date through the analysis of satellite photography of the Earth.

  8. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  9. Solar Power Satellite Thermal Control Approach

    Science.gov (United States)

    Sacchi, E.; Cassisa, G.; Gottero, M.

    2004-12-01

    The concept of generating solar power in space and transmitting it to earth or any other desired destination such as a planet, moon, or to charge a space vehicle via microwaves, stems from a wide variety of human needs and necessities. It is now a well-known fact that world population increases at a very rapid rate, nearly 80 millions or more per year, and the world-wide energy demand seems to double in the course of the present century. If technology has to advance at the present rate, in phase with high living standards, energy growth must not lag behind. These estimates are based on the population growth rate in the developing countries and the simultaneous increase in per capita energy consumption in these countries, coupled with economical boost. In most of the underdeveloped countries energy needs are of small scales, faraway from the power distribution line and can be very easily satisfied by harnessing solar energy. Furthermore, the Earth temperature has increased by 0.5° to 1° F during the past century. This rise in temperature is believed to have been caused by the use of oil, coal, and natural gas (fossil fuels) for transportation and energy production. Actually, fossil fuel combustion-based power plants are the dominant sources for energy demands. Therefore, increased power production will accelerate the production of greenhouse gases (predominantly CO2). To cope with their energy needs, countries could be engaged in the use of nuclear energy, which could accelerate the diffusion of nuclear arms as a bye- product.

  10. STS-48 ESC closeup of UARS solar array (SA) and SA mechanism, pre-deploy

    Science.gov (United States)

    1991-01-01

    An extremely closeup view shows the Upper Atmosphere Research Satellite (UARS) solar array (SA) and SA mechanism prior to deploy of the satellite. UARS, grappled by the remote manipulator system (RMS) end effector (out of frame), is undergoing STS-48 pre-deployment checkout above the payload bay (PLB) of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. OV-103's vertical stabilizer can be seen in between the UARS hardware. This view demonstrates the capabilities of the Electronic Still Camera (ESC) to provide high resolution views of hardware for review by ground controllers. This ESC image was documented as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission.

  11. Solar power satellite offshore rectenna study

    Science.gov (United States)

    1980-01-01

    It was found that an offshore rectenna is feasible and cost competitive with land rectennas but that the type of rectenna which is suitable for offshore use is quite different from that specified in the present reference system. The result is a nonground plane design which minimizes the weight and greatly reduces the number of costly support towers. This preferred design is an antenna array consisting of individually encapsulated dipoles with reflectors supported on feed wires. Such a 5 GW rectenna could be built at a 50 m water depth site to withstand hurricane and icing conditions for a one time cost of 5.7 billion dollars. Subsequent units would be about 1/3 less expensive. The east coast site chosen for this study represents an extreme case of severe environmental conditions. More benign and more shallow water sites would result in lower costs. Secondary uses such as mariculture appear practical with only minor impact on the rectenna design. The potential advantages of an offshore rectenna, such as no land requirements, removal of microwave radiation from populated areas and minimal impact on the local geopolitics argue strongly that further investigation of the offshore rectenna should be vigorously pursued.

  12. Rectenna System Design. [energy conversion solar power satellites

    Science.gov (United States)

    Woodcock, G. R.; Andryczyk, R. W.

    1980-01-01

    The fundamental processes involved in the operation of the rectenna system designed for the solar power satellite system are described. The basic design choices are presented based on the desired microwave rf field concentration prior to rectification and based on the ground clearance requirements for the rectenna structure. A nonconcentrating inclined planar panel with a 2 meter minimum clearance configuration is selected as a representative of the typical rectenna.

  13. Space Weathering on Icy Satellites in the Outer Solar System

    Science.gov (United States)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  14. The solar power satellite: Looking back to look ahead

    Science.gov (United States)

    Williamson, Ray A.

    1995-01-01

    In 1981 the Office of Technology Assessment (OTA) published an assessment of the solar power satellite (SPS) concept. SPS proponents claimed that the development and deployment of SPS systems could revolutionize electrical production and sharply reduce global dependence on fossil and atomic fuels. Opponents argued that SPS would be too expensive and environmentally damaging. The OTA assessment examined a broad variety of satellite technologies that might be employed in SPS and compared projected electrical production with terrestrial solar power, advanced coal technologies, breeder reactors, and nuclear fusion. It also explored public attitudes toward the SPS concept and compared its potential environmental impacts with those of other future electrical power sources. Technology, world politics, the U.S. economy, and the state of the U.S. space program have changed dramatically since the OTA report was published. This paper examines several of the economic, environmental, and international factors that must be taken into account when assessing the advisability of investing in future solar power satellite concepts.

  15. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  16. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    Science.gov (United States)

    Johnson, Len; Fabisinski, Leo; Cunningham, Karen; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  17. Stray light correction for solar measurements using array spectrometers.

    Science.gov (United States)

    Kreuter, Axel; Blumthaler, Mario

    2009-09-01

    A stray light matrix correction method for array spectrometers is presented that is specifically tailored for solar spectral measurements. A stray light distribution function based on a single laser line measurement is approximated by an analytical function using three parameters only. This function is the basis for the stray light correction matrix. One cutoff filter is then used to adjust an offset parameter such that stray light corrected data are spectrally flat and around zero below the cutoff wavelength. This parameter also accounts for the IR contribution and has to be adjusted individually for each type of spectrum. A solid validation is given by intercomparison of calibrated solar spectra with a double-monochromator spectroradiometer. An agreement of 5% for wavelengths down to 307 nm and solar zenith angle smaller than 70 degrees is achieved.

  18. Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell

    Science.gov (United States)

    2015-01-01

    Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III–V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III–V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications. PMID:26878027

  19. Electrostatic protection of the Solar Power Satellite and rectenna

    Science.gov (United States)

    Freeman, J. W.; Few, A. A., Jr.; Reiff, P. H.; Cooke, D.; Bohannon, J.; Haymes, B.

    1979-01-01

    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure.

  20. Conformal phased array with beam forming for airborne satellite communication

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Meijerink, Arjan; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Wintels, M.

    2008-01-01

    For enhanced communication on board of aircraft novel antenna systems with broadband satellite-based capabilities are required. The installation of such systems on board of aircraft requires the development of a very low-profile aircraft antenna, which can point to satellites anywhere in the upper

  1. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  2. Impact of Solar Array Position on ISS Vehicle Charging

    Science.gov (United States)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA

  3. Solar power satellite concepts and potential related space systems

    Science.gov (United States)

    Redding, T. E.

    1977-01-01

    Recent parametric studies of alternate SPS design concepts have shown that the concept appears technically feasible. The parametric studies were based on the use of advanced technology silicon solar cells for solar energy conversion. Solar array blanket unit masses of 0.31 to 0.46 kg/sq m were investigated. Conversion efficiencies of 15 to 17 percent air mass zero (AMO at 247 K) with a concentration ratio of two were considered. The systems were sized for a ground power output of 10 GW. To the level of detail studied, no design or operational problems were encountered that did not appear amenable to solution; however, the economic viability of the SPS concepts studied is obviously dependent upon a combination of technology advancement and/or the costs of competitive sources.

  4. Dense Focal Plane Arrays for Pushbroom Satellite Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2014-01-01

    Performance of a dense focal plane array feeding an offset toroidal reflector antenna system is studied and discussed in the context of a potential application in multi-beam radiometers for ocean surveillance. We present a preliminary design of the array feed for the 5-m diameter antenna at X-ban...

  5. Solar radiation pumped solid state of lasers for Solar Power Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruiyi [New Jersey (United States)

    2000-07-01

    The Laser Solar Power Satellites (L-SPS) is the most promising way to overcome global energy and environmental and economical problems. The purpose was to use the favorable combination of solar radiation, modern lasers and the extremely promising phenomenon Optical Phase Conjugation (OPC). Direct conversion of solar energy to energy of a high-power laser beam has the advantage of high efficiency and precise energy transportation. In this paper, direct solar radiation pumping of the laser is compared with the pumping using the intermediate stage of the conversion of the solar radiation in electrical energy. Possible solid-state lasers that can be used in L-SPS are also discussed (including optical system and cooling system). [Spanish] Los Satelites de Energia Solar Laser (L-SPS) son la forma mas prometedora para contrarrestar los problemas globales de energia, ambientales y problemas economicos. El proposito fue el de usar la combinacion favorable de radiacion solar, laseres modernos y el fenomeno extremadamente prometedor de conjugacion de fase optica (OPC). La conversion directa de energia solar a energia de un rayo laser de alta potencia tiene la ventaja de la alta eficiencia y precision de la transportacion de la energia. En este documento la radiacion solar directa impulsada por el laser se compara con la impulsion usando el estado intermedio de conversion de la radiacion solar en energia electrica. Tambien se analizan los posibles laseres de estado solido que pueden usarse en L-SPS (incluyendo el sistema optico y el sistema de enfriamiento).

  6. A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.

  7. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  8. Exploring the Solar-stellar connection with the CHARA Array

    Science.gov (United States)

    Martens, Petrus C.; McAlister, Hal; White, Russel

    2015-04-01

    It is well understood that in order to better understand solar magnetism it is of key importance that we have detailed data on magnetic activity of stars that are very much like our Sun. Georgia State's University Center for High Resolution Astronomy's (CHARA) Array is a diffraction limited interferometer with a baseline of over 300 m, located on Mount Wilson. CHARA has resolved the disk of larger early-type stars and observed starspots. It has the potential of detecting spots (and eclipsing exoplanets) on nearby solar-type stars, and thus adding significant in-depth magnetic cycle information to the long time series of chromospheric data from MWO and Lowell.We will describe the main characteristics of CHARA, highlight science results, and describe our plans to contribute to the renewed effort from the NASA Heliophysics division to study the solar-stellar connection, with the goal of improving long-term solar activity forecasts.URL: http://www.chara.gsu.edu/

  9. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  10. Polarimetry of small bodies and satellites of our Solar System

    Science.gov (United States)

    Bagnulo, S.; Belskaya, I.; Cellino, A.; Kolokolova, L.

    2017-09-01

    The large majority of astronomical observations are based on intensity measurements as a function of either wavelength or time, or both. Polarimetry, a technique which measures the way in which the electromagnetic field associated to the radiation oscillates, does provide further information about the objects that have emitted or scattered the observed radiation. For instance, polarimetric measurements can provide important constraints to the characterisation of cosmic dust (be it of interstellar or cometary origin), of the surfaces of the atmosphereless bodies and of planetary atmospheres. This property has been exploited in solar system science to study asteroids, comets, rocky and giant gaseous planets, and their satellites. In this paper we present a review of the polarimetric studies of the small bodies of the Solar System.

  11. The solar power satellite - Past, present and future

    Science.gov (United States)

    Glaser, P. E.

    1980-06-01

    The potential and the problems of solar energy are discussed, covering all aspects of the necessary technology and its economic and political consequences. The concept of the solar power satellite (SPS) is introduced, noting its feasibility through the space technology of the 1990's. Proposed objectives, including consideration of finite resources, environmentally benign operations and global benefits are covered, as are technical details on power transmission (microwave beams of the 2.50 GHz frequency or the laser beams at 10 MW), and on assembly in orbit through the space transportation system. From the point of view of economic possibilities, costs are estimated at between $1500 to $4000 per kW and finally, ecological and international topics are touched upon.

  12. Electrostatic protection of the solar power satellite and rectenna. Part 1: Protection of the solar power satellite

    Science.gov (United States)

    1980-01-01

    Several features of the interactions of the Solar Power Satellite (SPS) with its space environment are examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets are calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Lastly, magnetic shielding of the satellite is considered to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. Subsequent design changes will substantially alter the basic conclusions.

  13. ParaSol - A Novel Deployable Approach for Very Large Ultra-lightweight Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High power solar arrays with capabilities of >100kW are needed for projected NASA missions. Photovoltaic arrays using deployable membranes with thin cells have...

  14. SORCE and Future Satellite Observations of Solar Irradiance

    Science.gov (United States)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  15. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    Science.gov (United States)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  16. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    Science.gov (United States)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  17. Infrared technology for satellite power conversion. [antenna arrays and bolometers

    Science.gov (United States)

    Campbell, D. P.; Gouker, M. A.; Gallagher, J. J.

    1984-01-01

    Successful fabrication of bismuth bolometers led to the observation of antenna action rom array elements. Fabrication of the best antennas arrays was made more facile with finding that increased argon flow during the dc sputtering produced more uniform bismuth films and bonding to antennas must be done with the substrate temperaure below 100 C. Higher temperatures damaged the bolometers. During the testing of the antennas, it was found that the use of a quasi-optical system provided a uniform radiation field. Groups of antennas were bonded in series and in parallel with the parallel configuration showing the greater response.

  18. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    Science.gov (United States)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  19. Fabrication of Si/SiO2 Superlattice Microwire Array Solar Cells Using Microsphere Lithography

    Directory of Open Access Journals (Sweden)

    Shigeru Yamada

    2016-01-01

    Full Text Available A fabrication process for silicon/silicon dioxide (Si/SiO2 superlattice microwire array solar cells was developed. The Si/SiO2 superlattice microwire array was fabricated using a microsphere lithography process with polystyrene particles. The solar cell shows a photovoltaic effect and an open-circuit voltage of 128 mV was obtained. The limiting factors of the solar cell performance were investigated from the careful observations of the solar cell structures. We also investigated the influence of the microwire array structure on light trapping in the solar cells.

  20. Final Technical Report, City of Brockton Solar Brightfield: Deploying a Solar Array on a Brockton Brownfield

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Lori

    2007-08-23

    The City of Brockton, Massachusetts sought to install New England’s largest solar array at a remediated brownfield site on Grove Street. The 425-kilowatt solar photovoltaic array – or “Brightfield” – was installed in an urban park setting along with interpretive displays to maximize the educational opportunities. The “Brightfield” project included 1,395 310-Watt solar panels connected in “strings” that span the otherwise unusable 3.7-acre site. The project demonstrated that it is both technically and economically feasible to install utility scale solar photovoltaics on a capped landfill site. The US Department of Energy conceived the Brightfields program in 2000, and Brockton’s Brightfield is the largest such installation nationwide. Brockton’s project demonstrated that while it was both technically and economically feasible to perform such a project, the implementation was extremely challenging due to the state policy barriers, difficulty obtaining grant funding, and level of sophistication required to perform the financing and secure required state approvals. This demonstration project can be used as a model for other communities that wish to implement “Brownfields to Brightfields” projects; 2) implementing utility scale solar creates economies of scale that can help to decrease costs of photovoltaics; 3) the project is an aesthetic, environmental, educational and economic asset for the City of Brockton.

  1. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  2. The Astro Edge solar array for the NASA SSTI Clark Spacecraft

    Science.gov (United States)

    Spence, B. R.

    1995-10-01

    The Astro Edge solar array is a new and innovative reflective low concentrator power generating system which has been selected for the CTA Incorporate/Lockheed Martin Clark spacecraft under the NASA Small Spacecraft Technology Initiative (SSTI) program. In support of this program, Astro Aerospace Corporation has produced one qualification and two flight solar array wings to support a July 1996 launch. The Astro Edge solar array was selected as a new technology to benefit future NASA, military and commercial missions by providing high specific power, high deployed stiffness, low stowed volume, low risk, and cost reduction features which meet the agency's 'better, faster, cheaper' goals. This novel array accounts for five of the thirty-six advanced technologies which the Clark spacecraft will demonstrate. A brief SSTI Astro Edge solar array program overview is presented. Completed qualification and acceptance testing is discussed. Finally, the major discriminators which make the Astro Edge solar array 'better, faster, cheaper' technology are provided.

  3. Solar Array Panels With Dust-Removal Capability

    Science.gov (United States)

    Dawson, Stephen; Mardesich, Nick; Spence, Brian; White, Steve

    2004-01-01

    It has been proposed to incorporate piezoelectric vibrational actuators into the structural supports of solar photovoltaic panels, for the purpose of occasionally inducing vibrations in the panels in order to loosen accumulated dust. Provided that the panels were tilted, the loosened dust would slide off under its own weight. Originally aimed at preventing obscuration of photovoltaic cells by dust accumulating in the Martian environment, the proposal may also offer an option for the design of solar photovoltaic panels for unattended operation at remote locations on Earth. The figure depicts a typical lightweight solar photovoltaic panel comprising a backside grid of structural spars that support a thin face sheet that, in turn, supports an array of photovoltaic cells on the front side. The backside structure includes node points where several spars intersect. According to the proposal, piezoelectric buzzers would be attached to the node points. The process of designing the panel would be an iterative one that would include computational simulation of the vibrations by use of finite- element analysis to guide the selection of the vibrational frequency of the actuators and the cross sections of the spars to maximize the agitation of dust.

  4. SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Krief, M.; Feigel, A.; Gazit, D., E-mail: menahem.krief@mail.huji.ac.il [The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel)

    2016-04-10

    A new opacity model has been developed based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of plasmas in local thermodynamic equilibrium. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried out throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge-state distributions are compared with the widely used Opacity Project (OP) code, for several elements near the radiation–convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code throughout the radiation zone. Finally, an explicit STA calculation was performed of the full AGSS09 photospheric mixture, including all heavy metals. It was shown that, due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.

  5. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    Science.gov (United States)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  6. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    Science.gov (United States)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research

  7. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    Science.gov (United States)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  8. High Efficient Universal Buck Boost Solar Array Regulator SAR Module

    Science.gov (United States)

    Kimmelmann, Stefan; Knorr, Wolfgang

    2014-08-01

    The high efficient universal Buck Boost Solar Array Regulator (SAR) module concept is applicable for a wide range of input and output voltages. The single point failure tolerant SAR module contains 3 power converters for the transfer of the SAR power to the battery dominated power bus. The converters are operating parallel in a 2 out of 3 redundancy and are driven by two different controllers. The output power of one module can be adjusted up to 1KW depending on the requirements. The maximum power point tracker (MPPT) is placed on a separate small printed circuit board and can be used if no external tracker signal is delivered. Depending on the mode and load conditions an efficiency of more than 97% is achievable. The stable control performance is achieved by implementing the magnetic current sense detection. The sensed power coil current is used in Buck and Boost control mode.

  9. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    Science.gov (United States)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  10. A METHOD FOR SELF-CALIBRATION IN SATELLITE WITH HIGH PRECISION OF SPACE LINEAR ARRAY CAMERA

    Directory of Open Access Journals (Sweden)

    W. Liu

    2016-06-01

    Full Text Available At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera’s change regulation can be mastered accurately and the camera’s attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  11. The Solar Power Satellite concept - Towards the future

    Science.gov (United States)

    Kraft, C. C., Jr.

    1979-01-01

    An evolutionary program phasing with respect to the development of a Solar Power Satellite (SPS) is considered, taking into account concept identification, concept evaluation, exploratory research, space technology projects, system development, and commercial operations. At the present time the concept evaluation phase of the program is underway. This phase is scheduled for completion in 1980. It will result in a recommendation as to whether the concept should be explored further and if so, in what manner. The recommendation will be based on technical feasibility, economic and environmental considerations, and comparisons with other potential systems of the future. It is premature to speculate on the conclusions and recommendations from the evaluation program as to whether the program should proceed to the next phase.

  12. SAVANT: Solar Array Verification and Analysis Tool Demonstrated

    Science.gov (United States)

    Chock, Ricaurte

    2000-01-01

    The photovoltaics (PV) industry is now being held to strict specifications, such as end-oflife power requirements, that force them to overengineer their products to avoid contractual penalties. Such overengineering has been the only reliable way to meet such specifications. Unfortunately, it also results in a more costly process than is probably necessary. In our conversations with the PV industry, the issue of cost has been raised again and again. Consequently, the Photovoltaics and Space Environment Effects branch at the NASA Glenn Research Center at Lewis Field has been developing a software tool to address this problem. SAVANT, Glenn's tool for solar array verification and analysis is in the technology demonstration phase. Ongoing work has proven that more efficient and less costly PV designs should be possible by using SAVANT to predict the on-orbit life-cycle performance. The ultimate goal of the SAVANT project is to provide a user-friendly computer tool to predict PV on-orbit life-cycle performance. This should greatly simplify the tasks of scaling and designing the PV power component of any given flight or mission. By being able to predict how a particular PV article will perform, designers will be able to balance mission power requirements (both beginning-of-life and end-of-life) with survivability concerns such as power degradation due to radiation and/or contamination. Recent comparisons with actual flight data from the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) mission validate this approach.

  13. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    Science.gov (United States)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  14. MarsCAT: Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster

    Science.gov (United States)

    Bering, E. A., III; Pinsky, L.; Li, L.; Jackson, D. R.; Chen, J.; Reed, H.; Moldwin, M.; Kasper, J. C.; Sheehan, J. P.; Forbes, J.; Heine, T.; Case, A. W.; Stevens, M. L.; Sibeck, D. G.

    2015-12-01

    The MarsCAT (Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster) Mission is a two 6U CubeSat mission to study the ionosphere of Mars proposed for the NASA SIMPLeX opportunity. The mission will investigate the plasma and magnetic structure of the Martian ionosphere, including transient plasma structures, magnetic field structure and dynamics, and energetic particle activity. The transit plan calls for a piggy back ride with Mars 2020 using a CAT burn for MOI, the first demonstration of CubeSat propulsion for interplanetary travel. MarsCAT will make correlated multipoint studies of the ionosphere and magnetic field of Mars. Specifically, the two spacecraft will make in situ observations of the plasma density, temperature, and convection in the ionosphere of Mars. They will also make total electron content measurements along the line of sight between the two spacecraft and simultaneous 3-axis local magnetic field measurements in two locations. Additionally, MarsCAT will demonstrate the performance of new CubeSat telemetry antennas designed at the University of Houston that are designed to be low profile, rugged, and with a higher gain than conventional monopole (whip) antennas. The two MarsCAT CubeSats will have five science instruments: a 3-axis DC magnetometer, adouble-Langmuir probe, a Faraday cup, a solid state energetic particle detector (Science Enhancement Option), and interspacecraft total electron content radio occulation experiment. The MarsCAT spacecraft will be solar powered and equipped with a CAT thruster that can provide up to 4.8 km/s of delta-V, which is sufficient to achieve Mars orbit using the Mars 2020 piggyback. They have an active attitude control system, using a sun sensor and flight-proven star tracker for determination, and momentum wheels for 3-axis attitude control.

  15. The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations

    Science.gov (United States)

    Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.

    2016-12-01

    Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.

  16. Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data

    Directory of Open Access Journals (Sweden)

    Ming-Ren Syu

    2016-04-01

    Full Text Available Knowledge about spatial and temporal variations in surface global solar radiation (GSR and evaporative water loss from the ground are important issues to many researches and applications. In this study empirical relationships suitable for Taiwan were established for GSR retrieval from geostationary satellite images using the Heliosat method for the period from 2011 - 2013. The derived GSR data has been used to generate consecutive maps of 10-day averaged pan evaporation (Epan as the basis to produce regional ET estimation using a strategy that does not require remote sensed land surface temperatures (LST. The retrieved daily GSR and the derived 10-day averaged Epan were validated against pyranometer and class-A pan measurements at selected Central Weather Bureau (CWB stations spread across various climatic regions in Taiwan. Compared with the CWB observed data the overall relative mean bias deviations (MBD% and root mean square differences (RMSD% in daily solar irradiance retrieval were about 5 and 15%, respectively. Seasonally, the largest MBD% and RMSD% of retrieved daily solar irradiance occur in spring (9.5 and 21.3% on average, while the least MBD% (-0.3% on average and RMSD% (9.7% on average occur in autumn and winter, respectively. For 10-day averaged Epan estimation, the mean MBD% and RMSD% for stations located in the coastal plain areas were 0.1 and 16.9%, respectively. However, in mountainous areas the mean MBD% and RMSD% increased to 30.2 and 34.5%, respectively. This overestimation was due mainly to the large differences in surrounding micro-environments between the mountainous and plain areas.

  17. Satellite Collectors of Solar Energy for Earth and Colonized Planet Habitats

    Science.gov (United States)

    Kusiolek, Richard

    Summary An array of 55,000 40-foot antennas can generate from the rays of the Sun enough electrical power to replace 50 The economic potential is huge. There are new industries that will only grow and there are different ways to collect solar energy, including wind power. The energy sources we rely on for the most part are finite - fossil fuels, coal, oil and natural gas are all limited in supply. The cost will only continue to rise as demand increases. The time of global economic crossover between the EU, Asia Pacific and North America is coming within less than five years. The biggest opportunity for solar energy entrepreneurs would seem to be in municipal contracting where 1500 40-foot stacking antennas can be hooked into a grid to power an entire city. The antenna can generate 45 kilowatts of energy, enough to satisfy the electrical needs 7x24 of ten to twenty homes. It is possible to design and build 35-by-80-foot pedestals that track the sun from morning until night to provide full efficiency. A normal solar cell looks in the sky for only four or five hours of direct sunlight. Fabrication of these pedestals would sell for USD 50, 000-70,000 each. The solar heat collected by the antennas can be bounced into a Stirling engine, creating electricity at a focal point. Water can be heated by running through that focal point. In addition, salt water passing through the focal point can be desalinated, and since the antenna can generate up to 2,000 degrees of heat at the focal point. The salt water passing through the focal point turns to steam, which separates the salt and allows the steam to be turned into fresh drinking water. Collector energy can be retained in betavoltaics which uses semiconductors to capture energy from radioactive materials and turn it into usable electricity for automobiles. In a new battery, the silicon wafers in the battery are etched with a network of deep pores. These pores vastly increase the exposure surface area of the silicon, allowing

  18. 600 Volt Stretched Lens Array for Solar Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ENTECH, Auburn, NASA, and others have recently developed a new space photovoltaic array called the Stretched Lens Array (SLA), offering unprecedented performance...

  19. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    Science.gov (United States)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  20. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    Science.gov (United States)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  1. Relaxing USOS Solar Array Constraints for Russian Vehicle Undocking

    Science.gov (United States)

    Menkin, Evgeny; Schrock, Mariusz; Schrock, Rita; Zaczek, Mariusz; Gomez, Susan; Lee, Roscoe; Bennet, George

    2011-01-01

    With the retirement of Space Shuttle cargo delivery capability and the ten year life extension of the International Space Station (ISS) more emphasis is being put on preservation of the service life of ISS critical components. Current restrictions on the United States Orbital Segment (USOS) Solar Array (SA) positioning during Russian Vehicle (RV) departure from ISS nadir and zenith ports cause SA to be positioned in the plume field of Service Module thrusters and lead to degradation of SAs as well as potential damage to Sun tracking Beta Gimbal Assemblies (BGA). These restrictions are imposed because of the single fault tolerant RV Motion Control System (MCS), which does not meet ISS Safety requirements for catastrophic hazards and dictates 16 degree Solar Array Rotary Joint position, which ensures that ISS and RV relative motion post separation, does lead to collision. The purpose of this paper is to describe a methodology and the analysis that was performed to determine relative motion trajectories of the ISS and separating RV for nominal and contingency cases. Analysis was performed in three phases that included ISS free drift prior to Visiting Vehicle separation, ISS and Visiting Vehicle relative motion analysis and clearance analysis. First, the ISS free drift analysis determined the worst case attitude and attitude rate excursions prior to RV separation based on a series of different configurations and mass properties. Next, the relative motion analysis calculated the separation trajectories while varying the initial conditions, such as docking mechanism performance, Visiting Vehicle MCS failure, departure port location, ISS attitude and attitude rates at the time of separation, etc. The analysis employed both orbital mechanics and rigid body rotation calculations while accounting for various atmospheric conditions and gravity gradient effects. The resulting relative motion trajectories were then used to determine the worst case separation envelopes during

  2. On Possible Arc Inception on Low Voltage Solar Array

    Science.gov (United States)

    Vayner, Boris

    2015-01-01

    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 percent of all registered failures and anomalies, and comprised the most costly losses (25 percent) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over cover-glass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in cover-glass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent

  3. Solar Heating Equipment

    Science.gov (United States)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  4. On-orbit Geometric Parameters Refinement of Mapping Satellite-1 Triple Line Array Camera

    Directory of Open Access Journals (Sweden)

    GENG Hongyi

    2016-03-01

    Full Text Available To find the model and method of on-orbit geometric refinement suitable for the triple line array camera of Mapping Satellite-1, this paper first analyzed the impact of the exterior orientation line element error on the geometric parameters refinement, then eliminated the high-frequency noise by the preprocessing of the attitude data, and compensated the low-frequency flutter of satellite platform in the course of flying by sine function and designed the constant angular error model for the lens of the triple line array camera. In addition, an interior orientation model, using directly pixel coordinates as observations, was constructed based on conventional additional parameter model and the combination of the best refinement model parameters and the solution strategy were determined by the unilateral control extrapolative location. The experiments show that the planar accuracy and vertical accuracy are about 1 GSD and 0.8 GSD by the proposed refinement plan and the rational distribution of GCPS.

  5. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    Science.gov (United States)

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  6. The History of the Development of the Rectenna. [solar power satellites

    Science.gov (United States)

    Brown, W. C.

    1980-01-01

    The history of the development of the rectenna is reviewed through its early conceptual developmental phases. Some selective aspects of the current solar power satellite rectenna development are examined.

  7. High-Performance Elastically Self-Deployed Roll-Out Solar Array (ROSA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) has developed an ultra-lightweight elastically self-deployable roll-out solar array (ROSA) structural platform that when combined with...

  8. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Trusselator technology will enable on-orbit fabrication of support structures for high-power solar arrays and large antennas, achieving order-of-magnitude...

  9. FDM-HAWK, A High Performance Compact Modular Solar Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a next generation high performance solar array with significant reduction in size and weight will result in improved NASA mission capabilities at lower...

  10. Next Generation Extremely Large Solar Array System for NASA Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed technology is a revolutionary solar array advancement that relies on a structurally optimized platform to provide unparalleled specific-performance and...

  11. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  12. 600 Volt Stretched Lens Array for Solar Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past six years, ENTECH, Auburn, NASA, and other organizations have developed a new space photovoltaic array called the Stretched Lens Array (SLA), which...

  13. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  14. Microlens array induced light absorption enhancement in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuqing [Ames Laboratory; Elshobaki, Moneim [Iowa State University; Ye, Zhuo [Ames Laboratory; Park, Joong-Mok [Ames Laboratory; Noack, Max A. [Iowa State University; Ho, Kai-Ming [Ames Laboratory; Chaudhary, Sumit [Ames Laboratory

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  15. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  16. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating.

    Science.gov (United States)

    Yu, Xuegong; Wang, Dong; Lei, Dong; Li, Genhu; Yang, Deren

    2012-06-15

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells.

  17. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  18. TiO2 nanotube arrays for quantum dots sensitized solar cells

    Science.gov (United States)

    Wen, Xin; Tao, Junchao; Sun, Yingshui; Sun, Yan; Dai, Ning

    2009-07-01

    Vertically oriented, highly ordered TiO2 nanotube arrays have attracted considerable attention because of their impressive competence in a variety of applications including solar cells, chemical sensing, photocatalysis and biomedical industry. However, only a few papers reported on the solar cells prepared by combining TiO2 nanotubes and semiconductor quantum dots (QDs) based on composite structures. This paper presents the preparation of TiO2 nanotube arrays for the solar cells based on TiO2 nanotubes and CdSe QDs. The fabrication routes of highly organized TiO2 nanotube arrays synthesized by anodization of Ti foil in electrolyte were described, the performance of TiO2 nanotube arrays on the CdSe QDs sensitized TiO2 nanotube arrays photoelectrodes was investigated, too. The work herein details the effect of fabrication variables anodization time and examines the crystalline nature of the annealed (initially amorphous) samples. The nanotubes have an average inner diameter of 50 nm and a tube thickness of 12 nm. The maximum length of the TiO2 Nanotube we achieved is 9.75 μm. In QDs-sensitized TiO2 nanotube solar cells, CdSe QDs were used as the antenna layer (an absorber material) coating on the surface of titanium foil. Application of nanotube arrays to quantum dot solar cells under sunlight is discussed and compare to the dye sensitized solar cell. The quantum dots (QDs) sensitized solar cell's efficiencies can not match dye sensitized solar cell, but it will be a novel way to utilize solar energy in the future.

  19. Thermal design, analysis and comparison on three concepts of space solar power satellite

    Science.gov (United States)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS

  20. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    Science.gov (United States)

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  1. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    Science.gov (United States)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  2. The Lightweight Integrated Solar Array and anTenna (LISA-T) Big Power for Small Spacecraft

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the

  3. Free-vibration characteristics and correlation of a Space Station split-blanket solar array

    Science.gov (United States)

    Carney, Kelly S.; Shaker, Francis J.

    1989-01-01

    Two methods for studying the free-vibration characteristics of a large split-blanket solar array in a zero-g cantilevered configuration are presented. The zero-g configuration corresponds to an on-orbit configuration of the Space Station solar array. The first method applies the equations of continuum mechanics to determine the natural frequencies of the array; the second uses the finite element method program, MSC/NASTRAN. The stiffness matrix from the NASTRAN solution was found to be erroneously grounded. The results from the two methods are compared. It is concluded that the grounding does not seriously compromise the solution to the elastic modes of the solar array. However, the correct rigid body modes need to be icluded to obtain the correct dynamic model.

  4. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome.

    Science.gov (United States)

    Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H; Liskovykh, Mikhail; Earnshaw, William C; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I; Larionov, Vladimir

    2014-10-01

    In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Reverse bias protected solar array with integrated bypass battery

    Science.gov (United States)

    Landis, Geoffrey A (Inventor)

    2012-01-01

    A method for protecting the photovoltaic cells in a photovoltaic (PV) array from reverse bias damage by utilizing a rechargeable battery for bypassing current from a shaded photovoltaic cell or group of cells, avoiding the need for a bypass diode. Further, the method mitigates the voltage degradation of a PV array caused by shaded cells.

  6. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  7. Membrane Material-Based Rigid Solar Array Design and Thermal Simulation for Stratospheric Airships

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2014-01-01

    Full Text Available In order to improve effective utilization of rigid solar array used in stratospheric airships here, the flexible connection design and light laminated design were introduced to rigid solar array. Based on the analysis of the design scheme, firstly, the equivalent coefficient of thermal conductivity was calculated by the theoretical formula. Subsequently, the temperature variation characteristics of the solar cell module were accurately modeled and simulated by using Computational Fluid Dynamics (CFD software. Compared to the results of test samples, the solar cell module described here guaranteed effective output as well as good heat insulating ability, effectively improving the feasibility of the stratospheric airship design. In addition, the simulation model can effectively simulate the temperature variation characteristics of the solar cell, which, therefore, provides technical support for the engineering application.

  8. NOAA Satellites Provide a Keen View of the Martin Luther King Solar Storm of January 2005

    Science.gov (United States)

    Wilkinson, D. C.; Allen, J. H.

    2005-05-01

    Solar active region 0720 rotated onto the east limb on January 10th and put on a pyrotechnic display uncharacteristic for this phase of the solar cycle before disappearing beyond the west limb on January 23rd. On January 15th this region released the first of five X-class solar flares. The last of those flares, January 20th, was associated with an extraordinary ion storm whose effect reached Earth's surface. This paper highlights the record of this event made by NOAA's GOES satellites via their Space Environment Monitor (SEM) subsystems that measures X-ray, energetic particles, and the magnetic field vector at the satellite. Displays of those data are supplemented by neutron monitor data to illustrate their relationship to the January 20th Ground Level Event. GOES-12 is also equipped with the Solar X-ray Imager (SXI) that produces an image of the Sun in X-ray wavelengths once per minute. Movies created from those data perfectly illustrate the cause-and-effect relationship between intense solar activity and satellite disruptions. The flares on January 17th and 20th are closely followed by noise in the SXI telescope resulting from energetic ions penetrating SXI. Ions with sufficient velocity and atomic number can penetrate satellite components and deposit charge along their path. Sufficient charge deposition can introduce erroneous information into solid-state devices. A survey of satellites that experienced problems of this type during this event will also be presented.

  9. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  10. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications.

    Science.gov (United States)

    Zhou, Keya; Guo, Zhongyi; Liu, Shutian; Lee, Jung-Ho

    2015-07-22

    Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si) and amorphous silicon (a-Si) thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells.

  11. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  12. Inflatable TORUS Solar Array Technology Program. Phase 2.

    Science.gov (United States)

    1994-01-01

    The bare housing and lid from the ITSAT program are shown in Figure 56. These are constructed from vented Nomex honeycomb , encased on either side by 6...It is packaged into a lightweight rectangular graphite composite enclosure. The enclosure remains stationary (i.e., attached to the satellite drive...dimensional and incorporated data from various sources. ** LIDD HUIGSUNLIGHT HUIGSUNLIGHT SATELLITE Figure 10. Geometry for canister thermal model. Table

  13. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    Science.gov (United States)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  14. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    Science.gov (United States)

    Motta, G. B.; Carvalho, M. V.; Zanardi, M. C.

    2013-10-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection - SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites.

  15. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us

  16. Solar array design based on shadow analysis for increasing net energy collection in a competition vehicle

    Science.gov (United States)

    Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo; Suárez-Castañeda, Nicolás; Gil-Herrera, Ana; Barrera-Velásquez, Jorge

    2015-01-01

    Photovoltaic (PV) applications such as in the architectural, automotive, and aerospace industries face design contradictions because they are expected to produce a lot of energy but are constrained by available area, surface shape, incident irradiance, shadows, and other aspects that have a negative influence on the energy produced by the solar panel. Solar competition vehicles are some of these challenging PV applications. The design of such solar arrays needs to consider efficiency evaluation in order to optimize space; it is difficult not to install solar modules in areas impacted by shadows. A design procedure for a solar array configuration based on shadow analysis for competition vehicles is presented. The principle is that shadows in moving objects can be simulated, since the vehicle, the earth and the sun are are moving in semipredictable patterns, thus net energy collection can be forecast. The case study presented is the solar array design of a vehicle that participated in the World Solar Challenge 2013. The obtained results illustrate how the employment of the procedure gives insights on important aspects to consider and also delivers qualitative and quantitative information for decision making. In addition, the experience in competition highlights some issues to be considered, modified, or improved in further vehicle designs.

  17. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    Science.gov (United States)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  18. Regional trends in surface solar radiation derived from satellite-based data sets

    Science.gov (United States)

    Trentmann, Jörg; Sanchez-Lorenzo, Arturo; Posselt, Rebekka; Krähenmann, Stefan; Müller, Richard W.; Wild, Martin; Stöckli, Reto; Ahrens, Bodo

    2013-04-01

    The monitoring of the surface solar radiation and the detection of its variability and possible changes is highly relevant for our understanding of the climate system. Clouds and aerosols are the main contributors to the observed changes in the solar energy reaching the surface. Clouds are well observed from satellites, especially during daytime, making satellite-derived data sets of the surface radiation a potentially powerful source of information to assess the spatial structure of surface solar radiation. Surface-based observations, e.g., from the BSRN and GEBA networks, have been used to assess the temporal variability and trend of the surface radiation. Due to the limited spatial distribution of the surface stations, a generalization of the trends derived from measurements at individual stations is difficult. Satellite-derived data of the surface radiation, providing up to global coverage, are available since the 1980s allowing an analysis of the regional variability of temporal changes of the surface radiation. Here, we use surface solar radiation data generated and provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF, www.cmsaf.eu) based on geostationary and polar-orbiting satellites. The ability of the satellite-derived data sets to detect trends is tested and assessed by comparison with surface reference observations in Europe. It is shown that, at least for part of the available time series, the satellite data is stable and can be used to derive trend estimates. Substantial regional differences in the trend of the surface solar radiation are detected across Europe between 1994 and 2005, with strong positive trends over Central Europe (brightening) and negative trends over the Mediterranean Sea (dimming).

  19. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  20. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  1. Design and development of a brushless, direct drive solar array reorientation system

    Science.gov (United States)

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  2. Satellite-Based Solar Resource Data Sets for India 2002-2012

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Perez, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderberg, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

  3. Teaching Photovoltaic Array Modelling and Characterization Using a Graphical User Interface and a Flash Solar Simulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....

  4. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin, E-mail: wangyl100@nenu.edu.cn; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn; Liu, Yichun, E-mail: ycliu@nenu.edu.cn

    2017-04-30

    Highlights: • The fabrication of perovskite solar cells utilizing TiO{sub 2} NR arrays. • Investigation of the interspace effect of TiO{sub 2} NR on perovskite layer. • Understanding of the balance between perovskite capping layer and pore filling. - Abstract: Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO{sub 2} nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO{sub 2}-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO{sub 2} NR arrays, causes the change of charge recombination process at the TiO{sub 2}/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO{sub 2}-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  5. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    Science.gov (United States)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  6. Solar radiation pressure model for the relay satellite of SELENE

    Science.gov (United States)

    Kubo-Oka, T.; Sengoku, A.

    1999-09-01

    A new radiation pressure model of the relay satellite of SELENE has been developed. The shape of the satellite was assumed to be a combination of a regular octagonal pillar and a column. Radiation forces acting on each part of the spacecraft were calculated independently and summed vectorially to obtain the mean acceleration of the satellite center of mass. We incorporated this new radiation pressure model into the orbit analysis software GEODYN-II and simulated the tracking data reduction process of the relay satellite. We compared two models: one is the new radiation pressure model developed in this work and the other a so-called "cannonball model" where the shape of the satellite is assumed to be a sphere. By the analysis of simulated two-way Doppler tracking data, we found that the new radiation pressure model reduces the observation residuals compared to the cannonball model. Moreover, we can decrease errors in the estimated lunar gravity field coefficients significantly by use of the new radiation pressure model.

  7. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  8. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Chu Sheng

    2011-01-01

    Full Text Available Abstract Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  9. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander

    2014-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance and tailor photoelectron emission in Schottky barrier photodetectors and solar cells. We show that the interaction between narrow-band lattice resonances (the Rayleigh anomaly) and broader-band individual......, tunable spectral response, which are able to detect photons with the energy below the semiconductor bandgap. The findings can also be used to develop solar cells with increased efficiency....

  10. A Bayesian approach for solar resource potential assessment using satellite images

    Science.gov (United States)

    Linguet, L.; Atif, J.

    2014-03-01

    The need for a more sustainable and more protective development opens new possibilities for renewable energy. Among the different renewable energy sources, the direct conversion of sunlight into electricity by solar photovoltaic (PV) technology seems to be the most promising and represents a technically viable solution to energy demands. But implantation and deployment of PV energy need solar resource data for utility planning, accommodating grid capacity, and formulating future adaptive policies. Currently, the best approach to determine the solar resource at a given site is based on the use of satellite images. However, the computation of solar resource (non-linear process) from satellite images is unfortunately not straightforward. From a signal processing point of view, it falls within non-stationary, non-linear/non-Gaussian dynamical inverse problems. In this paper, we propose a Bayesian approach combining satellite images and in situ data. We propose original observation and transition functions taking advantages of the characteristics of both the involved type of data. A simulation study of solar irradiance is carried along with this method and a French Guiana solar resource potential map for year 2010 is given.

  11. The solar panels on the GOES-L satellite are deployed

    Science.gov (United States)

    1999-01-01

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  12. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  13. Very Large Array Observations of Solar Active Regions.

    Science.gov (United States)

    1984-01-30

    solar corona with longitudinal magnetic field ponds to a longitudinal magnetic field strength of H, - strengths H, t 1800 gauss (n =03 provided that the...source of flare energy (Gold and Hoyle , 1960; Heyvaerts et al., 1977; Rust, 1972, 1976). Recent VLA observations at 6 cm wavelength (Kundu et al., 1982

  14. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.

    1977-01-01

    An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.

  15. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    Science.gov (United States)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  16. A Multibeam Dual-Band Orthogonal Linearly Polarized Antenna Array for Satellite Communication on the Move

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2015-01-01

    Full Text Available The design and simulation of a 10 × 8 multibeam dual-band orthogonal linearly polarized antenna array operating at Ku-band are presented for transmit-receive applications. By using patches with different coupling methods as elements, both perpendicular polarization in 12.25–12.75 GHz band and horizontal polarization in 14.0–14.5 GHz band are realized in a shared antenna aperture. A microstrip Rotman lens is employed as the beamforming network with 7 input ports, which can generate a corresponding number of beams to cover −30°–30° with 5 dB beamwidth along one dimension. This type of multibeam orthogonal linearly polarized planar antenna is a good candidate for satellite communication (SatCom.

  17. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  18. Maximizing Solar Energy Capture Through Multi-Azimuth PV Arrays

    Science.gov (United States)

    Dahl, T. S.

    2013-12-01

    By orienting photovoltaic (PV) arrays in multiple directions, significantly greater energy capture can be realized in high latitude locations. Conventional wisdom dictates orienting PV panels south (in the northern hemisphere), but multi-azimuth arrays can confer several advantages during the summer months: - Nearly even power production over a large part of the day (20+ hours) - Reduced issues with power quality in grid interactive systems - Support higher loads in independent, off-grid systems - Reduced energy storage (battery) requirements in off-grid systems This poster will present two multi-azimuth systems, one a grid-interactive system deployed at Summit Station, Greenland; the second an independent, off-grid system supporting a science project near Toolik Field Station, Alaska.

  19. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    Science.gov (United States)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  20. A New Physical Model to Estimate Solar Irradiance Componets on the Earth's Surface from Satellite Images

    Science.gov (United States)

    Cony, Marco, ,, Dr.; Wiesenberg, Ralf, ,, Dr.; Fernandéz, Irene; Jimenez, Marta

    2017-04-01

    The present study describes a new model designed to estimate the incident solar radiation at the Earth's surface from geostationary satellites images (AFASat). In this new physical model proposed, the effect of Rayleigh scattering, aerosols and Earth's surface topography are taken into account. Water vapor absorption is also introduced by means of its climatological effects on shortwave radiation. Cloud albedo, ground albedo and absorption are derived from brightness measurements on the assumption that they both are linearly related to the brightness. However, this simple consideration applied to individual images elements represents quite accurately the bulk effect of clouds and reflectance. AFASat model uses the Heliosat-3 method and add others environmental factors to estimate with relative precision the solar radiation that arrives at the Earth's surface. Comparisons with daily radiation measurements from ground data station located in Europe, Africa and India (BSRN) showed that the satellite estimates were, on the average, within 2% of the ground measurements for global horizontal irradiance and less than 7% for direct normal irradiance. The hourly variations monitored by the satellite also followed very closely the variations measured on the ground. This study has shown that model is sufficient for the determination of the incident solar radiation when the high spatial and temporal coverage of a geostationary satellite is used. The AFASat is highly appropriate for such those projects that required an analysis of the solar resource assessment as such as TMY report (Typical Meteorological Year).

  1. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  2. Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

  3. Variability and trends of surface solar radiation in Europe based on CM SAF satellite data records

    Science.gov (United States)

    Trentmann, Jörg; Pfeifroth, Uwe; Sanchez-Lorenzo, Arturo; Urbain, Manon; Clerbaux, Nicolas

    2017-04-01

    The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based high-quality climate data records, with a focus on the global energy and water cycle. Here, the latest releases of the CM SAF's data records of surface solar radiation, Surface Solar Radiation Data Set - Heliosat (SARAH), and CM SAF cLouds, Albedo and Radiation dataset from AVHRR data (CLARA), are analyzed and validated with reference to ground-based measurements, e.g., provided by the Baseline Surface Radiation Network (BSRN), the World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). Focus is given to the trends and the variability of the surface irradiance in Europe as derived from the surface and the satellite-based data records. Both data sources show an overall increase (i.e., brightening) after the 1980s, and indicate substantial decadal variability with periods of reduced increase (or even a decrease) and periods with a comparable high increase. Also the increase shows a pronounced spatial pattern, which is also found to be consistent between the two data sources. The good correspondence between the satellite-based data records and the surface measurements highlight the potential of the satellite data to represent the variability and changes in the surface irradiance and document the dominant role of clouds over aerosol to explain its variations. Reasons for remaining differences between the satellite- and the surface-based data records (e.g., in Southern Europe) will be discussed. To test the consistency of the CM SAF solar radiation data records we also assess the decadal variability of the solar reflected radiation at the top-of-the atmosphere (TOA) from the CM SAF climate data record based on the MVIRI / SEVIRI measurements from 1983 to 2015. This data record complements the SARAH data record in its temporal and spatial coverage; fewer and different assumptions are used in the retrieval to generate the TOA reflected solar

  4. Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space

    Science.gov (United States)

    Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.

  5. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    Science.gov (United States)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  6. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    Science.gov (United States)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  7. Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays.

    Science.gov (United States)

    DiDomenico, Leo D

    2015-11-30

    This paper introduces Microfluidic Beam Steering (MBS), which is a new technique for electronically steering light having multiple octaves of bandwidth, any polarization state and incidence from any direction of the sky without significant restrictions due to physical area, optical loss and power handling capacity. It is based on optical elements comprising both transparent solids and electronically controllable fluids to control Total Internal Reflection (TIR), refraction and/or diffraction from micro-structured surfaces within a transparent solid. A TIR-based MBS is discussed in the context of solar energy and its potential to significantly increase annual energy harvests from solar arrays situated on fixed areas like roofs. The advantages and challenges associated with analog and digital MBS systems are discussed and early-stage MBS hardware is demonstrated. Finally, an analytic model of sun-tracking is provided to formally establish the potential for MBS to increase annual solar energy harvests by approximately 45% more than conventional 0-Degree Of Freedom (0-DOF) solar arrays, 62% more than 1-DOF arrays and 233% more than 2-DOF arrays, all at 20% atmospheric aerosol scattering.

  8. Comparison between satellite and instrumental solar irradiance data at the city of Athens, Greece

    Science.gov (United States)

    Markonis, Yannis; Dimoulas, Thanos; Atalioti, Athina; Konstantinou, Charalampos; Kontini, Anna; Pipini, Magdalini-Io; Skarlatou, Eleni; Sarantopoulos, Vasilis; Tzouka, Katerina; Papalexiou, Simon; Koutsoyiannis, Demetris

    2015-04-01

    In this study, we examine and compare the statistical properties of satellite and instrumental solar irradiance data at the capital of Greece, Athens. Our aim is to determine whether satellite data are sufficient for the requirements of solar energy modelling applications. To this end we estimate the corresponding probability density functions, the auto-correlation functions and the parameters of some fitted simple stochastic models. We also investigate the effect of sample size to the variance in the temporal interpolation of daily time series. Finally, as an alternative, we examine if temperature can be used as a better predictor for the daily irradiance non-seasonal component instead of the satellite data. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  9. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)

    Science.gov (United States)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa

    2017-05-01

    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  10. Solar Power Satellite system in formation on a common geostationary orbit

    Science.gov (United States)

    Salazar, F. J. T.; Winter, O. C.

    2017-10-01

    The diurnal day-night cycle severely limits the Terrestrial solar power. To overcome this limitation, a Solar Power Satellite (SPS) system, consisting of a sunlight reflector and a microwave energy generator-transmitter in formation, is presented in this work. The microwave transmitting satellite (MTS) is placed on a common geostationary orbit (GEO) in the Earth’s equatorial plane, and the sunlight reflector uses the solar radiation pressure to achieve quasi-periodic orbits about the MTS, so that the sunlight is always redirected to the MTS, which converts the solar energy in electromagnetic power and transmits it by microwaves to an Earth-receiving antenna. Assuming the sun line direction constant at dierent seasons (i.e. autumn/spring equinoxes and winter and summer solstices), previous studies have shown the existence of a family of displaced ecliptic orbits above or below the equatorial plane of the Earth around a GEO. In this study, the position of the Sun is assumed on the ecliptic plane with a mean obliquity (inclination of Earth’s equator with respect to the ecliptic) of 23.5◦. A linear solution as an initial condition for the full equations of motions about a GEO, which yields bounded orbit for the sunlight reflector about the MTS in the Earth-satellite two-body problem with solar radiation pressure. To redirect the sunlight to the MTS, the law of reflection is satisfied by the space mirror attitude.

  11. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    Science.gov (United States)

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  12. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    Science.gov (United States)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  13. A Comprehensive Review and Analysis of Solar Photovoltaic Array Configurations under Partial Shaded Conditions

    Directory of Open Access Journals (Sweden)

    R. Ramaprabha

    2012-01-01

    Full Text Available The aim of this paper is to investigate the effects of partial shading on energy output of different Solar Photovoltaic Array (SPVA configurations and to mitigate the losses faced in Solar Photovoltaic (SPV systems by incorporating bypass diodes. Owing to the practical difficulty of conducting experiments on varied array sizes, a generalized MATLAB M-code has been developed for any required array size, configuration, shading patterns, and number of bypass diodes. The proposed model which also includes the insolation-dependent shunt resistance can provide sufficient degree of precision without increasing the computational effort. All the configurations have been analyzed and comparative study is made for different random shading patterns to determine the configuration less susceptible to power losses under partial shading. Inferences have been drawn by testing several shading scenarios.

  14. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  15. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell

    Science.gov (United States)

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300 800 nm. A large short-circuit current density of 28.8 mA/cm2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  16. Ultra-dense silicon nanowire array solar cells by nanoimprint lithography

    Science.gov (United States)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, Alexander; Pacifici, Domenico; Ha, Jong-Yoon; Krylyuk, Sergiy; Davydov, Albert

    Nanowire (NW) solar cells have been attracting increasing interest due to their potentially superior light absorption compared to thin bulk films. In order to improve light trapping, we have used nanoimprint lithography (NIL) to fabricate high-density NW arrays with deep sub-micron pitch (P) and diameter (D). We have grown dense vertical arrays of Si axial p - i - n junction NWs of D = 170 nm and P = 500 nm by vapor-liquid-solid epitaxy on seed arrays produced by NIL. The NWs were 9 µm length long with a 5 µm intrinsic section. The NW arrays were planarized using SU-8 photoresist, followed by reactive ion etching to expose the NW tips. Top n-contact was realized by sputter deposition of a transparent 200 nm IZO layer. The nanoimprinted NW array samples measured under AM 1.5 G illumination showed a peak external quantum efficiency of ~8% and internal quantum efficiency of ~90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying P confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400-650 nm spectral range is predicted for a Si NW array with an even smaller P = 250 nm, significantly outperforming a blanket Si film of the same thickness. Such pitch values are accessible to NIL and work on such arrays is in progress. National Science Foundation.

  17. MARINER 8 SPACE PROBE UNDERGOES INSTALLATION OF SOLAR ARRAYS

    Science.gov (United States)

    1971-01-01

    Technicians install solar panels aboard the mariner H spacecraft in a cleanroom facility at Cape Kennedy. The spacecraft will orbit Mars following a seven-month journey from Earth. Designed to function 90 days, the spacecraft, which will be designated Mariner 8 following launch, will provide data about the Red Planet's atmospheric and surface characteristics. Mariner Mars H will be launched aboard an Atlas-Centaur space vehicle no earlier than May 7, 1971, from Cape Kennedy's Launch Complex 36A. A second Mariner Mars spacecraft will be launched 10 days later.

  18. MARINER 8 SPACE PROBE'S SOLAR ARRAYS ARE INSTALLED

    Science.gov (United States)

    1971-01-01

    Technicians prepare to install a solar panel on the Mariner H spacecraft in preparation for its launch to Mars, no earlier than May 7, 1971. The spacecraft will be launched aboard an Atlas Centaur space vehicle from Cape Kennedy's Complex 36A, and will go into orbit around Mars at the completion of a seven-month journey from Earth. It is designed to operate 90 days and return data about the planet's atmospheric and surface characteristics. Following launch, the spacecraft will be designated Mariner 8. A second Mariner Mars spacecraft is scheduled to be launched 10 days later.

  19. Orbit Control of Fly-around Satellite with Highly Eccentric Orbit Using Solar Radiation Pressure

    Science.gov (United States)

    Yong-gang, Hou; Chang-yin, Zhao; Ming-jiang, Zhang; Rong-yu, Sun

    2017-01-01

    The method of controlling highly eccentric accompanying flight orbit using the solar wing is proposed in this paper. The formation is maintained by controlling the orbit of the accompanying satellite (follower). The accompanying satellite rotates around its inertial principal axis with a constant angular velocity. The control on the accompanying satellite is divided into the in-plane control and out-of-plane control. The in-plane control is superior to the out-of-plane control. The out-of-plane control force is applied when the in-plane error is eliminated or the in-plane control force can not be supplied due to some geometrical factors. By the sliding mode control method, the magnitude and direction of the control force required by the in-plane orbit control are calculated. Then accordingly, the expression of the solar wing orientation with respect to the satellite body in the control process is derived, so that by adjusting the orientation of the solar wing, the required control force can be obtained. Finally, the verification on this method is performed by numerical simulations, including the orbit adjustment, error elimination, and the orbit maintenance. It is shown that this method can keep the error less than 5 m, and it is feasible for the space formation flight.

  20. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scheiman, D.A.; Brinker, D.J.; Bents, D.J.; Colozza, A.J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  1. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Scheiman, D.A.; Colozza, A.J. [NYMA Setar Inc., Brookpark, OH (United States); Brinker, D.J.; Bents, D.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

    1994-12-31

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  2. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    Science.gov (United States)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  3. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    Science.gov (United States)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid

  4. Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays.

    Science.gov (United States)

    Cui, Qian; Zhao, Xiaochong; Lin, Hong; Yang, Longkai; Chen, Hong; Zhang, Yan; Li, Xin

    2017-12-07

    Organometal halide perovskite solar cells (PSCs) are nowadays regarded as a rising star in photovoltaics. In particular, PSCs incorporating oriented TiO2 nanorod (NR) arrays as the electron transport layer (ETL) have attracted significant attention owing to TiO2 NR's superior electron transport abilities and its potential in long-term stable PSCs. In addition to improve the electron-transport ability of TiO2 NRs, the tuning of the band alignments between the TiO2 NR array and the perovskite layer is also crucial for achieving efficient solar cells. This work describes a facile, one-step, solvothermal method for the preparation of tantalum (Ta) doped TiO2 NR arrays for efficient PSCs. It is shown that the trace doping with Ta tunes the electronic structure of TiO2 NRs by a synergistic effect involving the lower 5d orbitals of the doped Ta5+ ions and the reduced oxygen vacancies. The synergistic tuning of the electronic structure improves the band alignment at the TiO2 NR/perovskite interface and boosts the short-circuit current and the fill factor. By using the optimized doped TiO2 NR array as the ETL, a record efficiency of 19.11% was achieved, which is the highest among one-dimensional-array based PSCs.

  5. Recent progress in all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingyao, E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Chen, Chao; Liu, Wei [Tongji University, School of Materials Science and Engineering (China); Gao, Shanmin [Ludong University, School of Chemistry and Materials Science (China); Yang, Xiuchun, E-mail: yangxc@tongji.edu.cn [Tongji University, School of Materials Science and Engineering (China)

    2016-01-15

    All-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO{sub 2} films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO{sub 2} nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO{sub 2} nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO{sub 2} nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

  6. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  7. Singular formalism and admissible control of spacecraft with rotating flexible solar array

    Directory of Open Access Journals (Sweden)

    Lu Dongning

    2014-02-01

    Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.

  8. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  9. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  10. Design of a Solar Panel Deployment and Tracking System for Pocketqube Pico-Satellite

    OpenAIRE

    Li, Daizong; Harkness, Patrick; Walkinshaw, Tom

    2017-01-01

    Modularized small satellites will have even greater potential with better energy supply. In this paper, a PocketQube solar panel deployment and tracking system will be presented. The system is designed for a 3P PocketQubes. During the designing phase, trade-off analysis is done to meet the balance of weight, dimension and efficiency. Reliability, manufacturability, and cost are also considered from the beginning, as commercial production and launch are expected. The CAD design, dynamics analy...

  11. Deployment shock attenuation of a solar array tape hinge by means of the Martensite detwinning of NiTi Shape Memory Alloy.

    Science.gov (United States)

    Lee, Chang-Ho; Jeong, Ju-Won; Kim, Young-Jin; Lee, Jung-Ju

    2016-03-01

    This paper presents a new tape hinge for attenuating the deployment shock of a satellite solar array. This hinge uses the Martensite detwinning of Shape Memory Alloy (SMA). To attenuate the deployment shock, a NiTi SMA strip is assembled between two curved steel strips. The attenuation performance of the hinge is analyzed using a SMA detwinning constitutive equation. A prototype of the hinge is manufactured and its characteristics are measured in a bending test and in a deployment test. Finally, the deployment performance of the prototype hinge is investigated on a satellite model. It is shown that the new SMA damped tape hinge can effectively minimize the deployment shock and dynamic perturbation while also maintaining suitable deployment performance.

  12. Satellite Power System (SPS): an Overview of Prospective Organizational Structures in the Solar Satellite Field

    Science.gov (United States)

    Edler, H. G.

    1978-01-01

    A literature survey, interviews with acknowledged experts in the fields of organizational entities, space, solar energy, and the SPS concept, and an analysis of these inputs to identify the organizational alternatives and make judgments as to their feasibility to serve as patterns for a future SPS entity are presented. Selection and evaluation criteria were determined to include timeliness, reliability, and adequacy to contribute meaningfully to the U.S. supply; political feasibility (both national and international) and cost-effectiveness (including environmental and other external costs). Based on these criteria, four organizational alternatives are discussed which offer reasonable promise as potential options for SPS. These included three domestic alternatives and one international alternative.

  13. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    Science.gov (United States)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  14. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  15. Impact of Atmospheric Attenuations Time Resolutions in Solar Radiation Derived from Satellite Imagery

    Science.gov (United States)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    Accurate knowledge of solar irradiance components at the earth surface is of highly interest in many scientific and technology branches concerning meteorology, climate, agriculture and solar energy applications. In the specific case of solar energy systems the solar resource analysis with accuracy is a first step in every project since it is a required data for design, power output estimations, systems simulations and risk assessments. Solar radiation measurement availability is increasing both in spatial density and in historical archiving. However, it is still quite limited and most of the situations cannot make use of a long term ground database of high quality since solar irradiance is not generally measured where users need data. Satellite-derived solar radiation estimations are a powerful and valuable tool for solar resource assessment studies that have achieved a relatively high maturity due to years of developments and improvements. However, several sources of uncertainty are still present in satellite-derived methods. In particular, the strong influence of atmospheric attenuation information as input to the method is one of the main topics of improvement. Since solar radiation attenuation by atmospheric aerosols, and water vapor in a second place, is, after clouds, the second most important factor determining solar radiation, and particularly direct normal irradiance, the accurate knowledge of aerosol optical depth and water vapor content is relevant in the final output of satellite-derived methods. This present work, two different datasets we are used for extract atmospheric attenuation information. On the one hand the monthly mean values of the Linke turbidity factor from Meteotest database, which are twelve unique values of the Linke turbidity worldwide with a spatial resolution of 1/12º. On the other hand, daily values of AOD (Aerosol Optical Depth) at 550 nm, Angstrom alpha exponent and water vapor column were taken from a gridded database that

  16. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    In this paper, a compact 8×8 phased array antenna for mobile satellite (MSAT) devices is designed and investigated. 64-elements of 22 GHz patch antennas with coaxial-probe feeds have been used for the proposed planar design. The antenna is designed on a low-cost FR4 substrate with thickness, diel...... of simple configuration, low-cost, low-profile, and easy fabrication. Simulations have been done to validate the feasibility of the proposed phased array antenna for MSAT applications....

  17. Preliminary Feasibility Study of the Solar Observation Payloads for STSAT-CLASS Satellites

    Directory of Open Access Journals (Sweden)

    Yong-Jae Moon

    2004-12-01

    Full Text Available In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT programs. The three candidates are (1 an UV imaging telescope, (2 an UV spectrograph, and (3 an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1 high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2 we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3 in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage

  18. Fabrication of nanowire arrays over micropyramids for efficient Si solar cell

    Science.gov (United States)

    Pant, Namrata; Singh, Prashant; Srivastava, Sanjay Kumar; Shukla, Vivek Kumar

    2016-05-01

    To improve the efficiency of solar cell, trapping the sunlight and using it to its maximum limit has been the area of research for past several decades. In the present work, texturisation of silicon surface has been done to make nanowire arrays over micropyramids. Micropyramids on Si surface increases the surface area, reduce the reflectivity and hence help to enhance the solar cell performance. Additionally, with the aim to further reduce the reflectance of Si surface, nanowire arrays over micro pyramids were fabricated. For this, samples with variation in their nanotexturisation time (etching time) were prepared. Measurements like SEM and UV-Vis reflectance spectroscopy were performed on the samples to investigate the changes with etching time. It was observed that the reflectance of planar Si in the spectral range 400 to 1000 nm is ˜35%. The reflectance of microtextured (micropyramid) Si surface is significantly reduced to ˜11%. A further decrease in reflectivity was observed when nanowire arrays were grown over the micropyramids. This may be attributed to the effective light trapping caused by multiple scattering of the incident light from the nanowires over micropyramids. Hence, it may improve silicon solar cell efficiency.

  19. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-28

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  20. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  1. Advanced optical coating technology used in the development of concentrator arrays for solar space power applications

    Science.gov (United States)

    Fulton, Michael L.; O'Neill, Mark J.

    2006-08-01

    Since 1990 thin film optical coatings have taken a prominent role in the development of highly efficient solar power concentrators for future space applications. During the initial development of this coating technology, the Boeing High Technology Center explored various ways of protecting ENTECH's DC93-500 silicone Fresnel lenses from the harsh space environment. ENTECH's mini-dome lenses focused solar energy onto small high-efficiency solar cells for generating electrical power. To protect the silicone lenses from solar UV darkening, one early approach involved a cerium-doped glass cover cemented over the lens. Unfortunately, during launch simulation shock testing the glass lens covers cracked. We next explored the deposition of a UV blocking thin film coating directly to the silicone lens surface. This was a problem of immense proportions analogous to pouring concrete on to the surface of a reservoir filled with "Jell-O." Differential in coefficient of thermal expansion between the DC93-500 silicone and the deposited dielectric optical coating had to be balanced with intrinsic stress of the optical coating materials. Ion Beam Optics' work has culminated, some fifteen years later, in the current coating technology that is being incorporated in the Stretched Lens Array SquareRigger (SLASR). SLASR is designed to replace classic flat panel solar arrays with a lighter, lower cost, and more efficient (30%) concentrator arrays for future space applications. This paper will describe the coating technology and show its performance and benefits for SLASR space power systems. Results from both ground tests and space flight tests will be presented.

  2. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    Science.gov (United States)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  3. Dichotomy of some satellites of the outer Solar system

    Science.gov (United States)

    Kochemasov, G. G.

    2011-10-01

    Recently acquired by the Cas as ini' CIR a temperature map (11 -16 microns radiation) of small satellite Mimas caused a perplexity among the Cassini scientists (an interpretation of PIA12867). They expected to have a regular temperature map characteristic of a homogeneous spherical body heated by Sun. Instead, the bizarre map with two sharply divided temperature fields was produced (Fig. 1). The temperature difference between two fields is about 15 Kelvin that is rather remarkable. The warm part has typical temperature near 92 Kelvin, the cold part -about 77 Kelvin. Obviously there are two icy substances with different conductivity of heat composing two planetary segments (hemispheres). But in this result there is nothing new for explorers insisting for many years that all celestial bodies are tectonically dichotomous [1, 2, 3]. However, this new beautiful confirmat ion of the wave planetology theorem 1 (" Celes tial bodies are dichotomous ") is not s uperfluous , as many s cientis ts , es pecially in the USA, are not acquainted with the wave p lanetology. The fundamental wave 1 long 2πR warping any body aris es in them becaus e they move in elliptica l keple rian orbits with periodically changing acceleration. Having in rotating bodies (but all bodies rotate!) a stationary character and four interfering directions (ortho- and diagonal) these waves inevitably produce uplifting (+), subsiding (-), and neutral (0) tectonic blocks (Fig. 7). The uplifts and subsidences are in an opposition (the best examples are the terrestrial Eastern (+) and Western ( -) segments-hemispheres and mart ian Northern (-) and Southern (+) ones) [3]. The small icy Mimas (396 km in diameter) is no exclusion (Fig. 1). Its dichotomy is well pronounced in two temperature fields obviously reflect ing slightly different in composition icy materials composing two segments. Presence of two kinds of surface materials is also revealed by spectrometry under combination of the UV, green and IR

  4. Anti-reflective microstructure array and its performance evaluation in thin film flexible solar cells

    Science.gov (United States)

    Chen, Fei; Zhan, Xinghua; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The anti-reflective (AR) structure greatly reduces the light reflection. When it is applied on solar cells, it enables more light to be absorbed by the cells, increasing the energy of the incident light and improving the light-to-electricity conversion efficiency. In this study, the optical properties of AR microstructures are investigated followed by the performance evaluation of solar cells. The AR microstructure is arrayed in a uniform and periodic fashion. When it is applied on PMMA, only 1.0% of the light is reflected away while 2.6% of the light is reflected on glass. The angular dependence performance is also improved with AR structure with 9.4% more light absorption, which can increase the effective energy generation duration for the solar cell. The AR structure is applied to amorphous silicon thin film solar cells by nano-imprinting technology. The solar cell with AR structure gained 8.63% more power compared to the conventional solar cells.

  5. Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect.

    Science.gov (United States)

    Zhang, Kewei; Wang, Zhong Lin; Yang, Ya

    2016-11-22

    The pyro-phototronic effect is based on the coupling among photoexcitation, pyroelectricity, and semiconductor charge transport in pyroelectric materials, which can be utilized to modulate photoexcited carriers to enhance the output performance of solar cells. Herein, we have demonstrated the largely enhanced output performance of a P3HT/ZnO nanowire array photovoltaic cell (PVC) by using the pyro-phototronic effect under weak light illuminations. By applying an external cooling temperature variation, the output current and voltage of the PVC can be dramatically enhanced by 18% and 152% under indoor light illumination, respectively. This study realizes the performance enhancement of pyroelectric semiconductor materials-based solar cells via a temperature-variation-induced pyro-phototronic effect, which may have potential applications in solar energy scavenging and self-powered sensor systems.

  6. Short-term solar irradiance forecasting via satellite/model coupling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Steven D.; Rogers, Matthew A.; Haynes, John M.; Sengupta, Manajit; Heidinger, Andrew K.

    2017-12-01

    The short-term (0-3 h) prediction of solar insolation for renewable energy production is a problem well-suited to satellite-based techniques. The spatial, spectral, temporal and radiometric resolution of instrumentation hosted on the geostationary platform allows these satellites to describe the current cloud spatial distribution and optical properties. These properties relate directly to the transient properties of the downwelling solar irradiance at the surface, which come in the form of 'ramps' that pose a central challenge to energy load balancing in a spatially distributed network of solar farms. The short-term evolution of the cloud field may be approximated to first order simply as translational, but care must be taken in how the advection is handled and where the impacts are assigned. In this research, we describe how geostationary satellite observations are used with operational cloud masking and retrieval algorithms, wind field data from Numerical Weather Prediction (NWP), and radiative transfer calculations to produce short-term forecasts of solar insolation for applications in solar power generation. The scheme utilizes retrieved cloud properties to group pixels into contiguous cloud objects whose future positions are predicted using four-dimensional (space + time) model wind fields, selecting steering levels corresponding to the cloud height properties of each cloud group. The shadows associated with these clouds are adjusted for sensor viewing parallax displacement and combined with solar geometry and terrain height to determine the actual location of cloud shadows. For mid/high-level clouds at mid-latitudes and high solar zenith angles, the combined displacements from these geometric considerations are non-negligible. The cloud information is used to initialize a radiative transfer model that computes the direct and diffuse-sky solar insolation at both shadow locations and intervening clear-sky regions. Here, we describe the formulation of

  7. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.

    2007-01-01

    of spatial gradients. However, aerosol retrievals were significantly biased for the semi-arid region, and water-vapour retrievals were characterized by systematic deviations from the measurements. Hourly global solar irradiance data were retrieved with overall root mean square deviations of 11.5% (60 W m-2......Solar irradiance is a key environmental control, and accurate spatial and temporal solar irradiance data are important for a wide range of applications related to energy and carbon cycling, weather prediction, and climate change. This study presents a satellite-based scheme for the retrieval of all...... contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation...

  8. Physical model SOLARMET for determining total and direct solar radiation by meteosat satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Cogliani, E.; Maccari, A. [ENEA, Agency for New Technologies, Energy and Environment, C.R. Casaccia, Solterm-Svil, P.O. Box 117, Via Anguillarese 301-00123, S. Maria di Galeria, Rome (Italy); Ricchiazzi, P. [ICESS, Institute for Computational Earth System Science, University of California at Santa Barbara, Santa Barbara, CA 93106-3060 (United States)

    2007-06-15

    A vigorous R and D program on solar concentrating power plants has been recently funded in Italy in order to demonstrate the feasibility of these technologies. Maps of direct normal radiation (DNI) are needed for the selection of construction sites for demonstration plants. This paper describes SOLARMET, a physical model that simulates the atmospheric effect on solar radiation. The SOLARMET model may be used to determine the solar radiation, total and direct, reaching the ground, based on information provided by satellite images. Atmosphere transmissivity, ground reflection coefficient, and other essential parameters in the model were determined from SBDART, a radiative transfer model, developed at University of California. Validation of the model have been carried out at Casaccia (Rome-Italy) ENEA centre. The results obtained in the 2002 year are encouraging. The difference between measured and calculated data, during this year, either for direct or global radiation, are lower than 6% on monthly basis. (author)

  9. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    Science.gov (United States)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  10. COMPARATIVE STUDY OF MAXIMUM POWER POINT TRACKING USING LINEAR KALMAN FILTER & UNSCENTED KALMAN FILTER FOR SOLAR PHOTOVOLTAIC ARRAY ON FIELD PROGRAMMABLE GATE ARRAY

    OpenAIRE

    Ramchandani, Varun; Pamarthi, Kranthi; Chowdhury, Shubhajit Roy

    2012-01-01

    The paper proposes comparative study of Field Programmable Gate Array implementation of 2 closely related approaches to track maximum power point of a solar photovoltaic array. The current work uses 2 versions of kalman filter viz. linear kalman filter and unscented kalman filter to track maximum power point. Using either of these approach the maximum power point tracking (MPPT) becomes much faster than using the conventional Perturb & Observe approach specifically in case of sudden weather c...

  11. Evaluating the biological potential in samples returned from planetary satellites and small solar system bodies: framework for decision making

    National Research Council Canada - National Science Library

    National Research Council Staff

    1998-01-01

    ... from Planetary Satellites and Small Solar System Bodies Framework for Decision Making Task Group on Sample Return from Small Solar System Bodies Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1998 i Copyrightthe true use are Please breaks...

  12. An a priori solar radiation pressure model for the QZSS Michibiki satellite

    Science.gov (United States)

    Zhao, Qile; Chen, Guo; Guo, Jing; Liu, Jingnan; Liu, Xianglin

    2017-07-01

    It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the β angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM's D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki's precise orbits over 21 months were determined. SLR validation indicated that the systematic β -angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.

  13. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  14. The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems

    Science.gov (United States)

    Varnavas, Kosta; Sims, William Herbert; Casas, Joseph

    2015-01-01

    This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.

  15. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  16. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  17. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  18. The Effects of Solar Maximum on the Earth's Satellite Population and Space Situational Awareness

    Science.gov (United States)

    Johnson, Nicholas L.

    2012-01-01

    The rapidly approaching maximum of Solar Cycle 24 will have wide-ranging effects not only on the number and distribution of resident space objects, but also on vital aspects of space situational awareness, including conjunction assessment processes. The best known consequence of high solar activity is an increase in the density of the thermosphere, which, in turn, increases drag on the vast majority of objects in low Earth orbit. The most prominent evidence of this is seen in a dramatic increase in space object reentries. Due to the massive amounts of new debris created by the fragmentations of Fengyun-1C, Cosmos 2251 and Iridium 33 during the recent period of Solar Minimum, this effect might reach epic levels. However, space surveillance systems are also affected, both directly and indirectly, historically leading to an increase in the number of lost satellites and in the routine accuracy of the calculation of their orbits. Thus, at a time when more objects are drifting through regions containing exceptionally high-value assets, such as the International Space Station and remote sensing satellites, their position uncertainties increase. In other words, as the possibility of damaging and catastrophic collisions increases, our ability to protect space systems is degraded. Potential countermeasures include adjustments to space surveillance techniques and the resetting of collision avoidance maneuver thresholds.

  19. Solar absorption in the atmosphere - estimates from collocated surface and satellite observations over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Schaepmann-Strub, Gabriela

    2014-05-01

    Solar radiation is the primary source of energy for the Earth's climate system. While the incoming and outgoing solar fluxes at the top-of-atmosphere can be quantified with high accuracy, large uncertainties still exist in the partitioning of solar absorption between surface and atmosphere. To compute best estimates of absorbed solar radiation at the surface and within the atmosphere representative for Europe during 2000-2010, we combine ground-based observations of surface downwelling solar radiation (GEBA, BSRN) with collocated satellite-retrieved surface albedo (MODIS) and top-of-atmosphere net irradiance (CERES EBAF, 1° resolution). The combination of these datasets over European land yields best estimates of annual mean surface and atmospheric absorption of 117 ±6 Wm¯² (42 ±2 % of TOA incident irradiance) and 65 ±3 Wm¯² (23 ±1 %). The fractional atmospheric absorption of 23% represents a robust estimate largely unaffected by variations in latitude and season, thus, making it a potentially useful quantity for first order validation of regional climate models. These estimates are based on quality assessed surface data. First of all, we examine the temporal homogeneity of the monthly GEBA time series beyond 2000 and find the vast majority to be suitable for our purposes. The spatial representativeness of the GEBA and BSRN sites for their collocated 1° CERES EBAF grid cells we assess by using a satellite-derived surface solar radiation product (CM SAF) at 0.03° spatial resolution. We find representation errors of on average 3 Wm¯² or 2% (normalized by point values). Care is taken to identify and quantify uncertainties, which arise mostly from the measurements themselves, in particular surface albedo and ground-based solar radiation data. Other sources of uncertainty, like the spatial coverage by surface sites, the multiplicative combination of spatially averaged surface solar radiation and surface albedo, and the spatial representativeness of the

  20. Effect of the pn junction engineering on Si microwire-array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dalmau Mallorqui, A.; Epple, F.M.; Fan, D.; Demichel, O.; Fontcuberta i Morral, A. [Laboratoire des Materiaux Semiconducteurs, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2012-08-15

    We report on the impact of the doping concentration design on the performance of silicon microwire arrays as photovoltaic devices. We have fabricated arrays with different p- and n-doping profiles and thicknesses, obtaining mean efficiencies as high as 9.7% under AM 1.5G solar illumination. The results reveal the importance of scaling the microwire diameter with the depletion width resulting from doping concentrations. The doping of the core should be kept low in order to reduce bulk recombination. Furthermore, the thickness of the n-shell should be kept as thin as possible to limit the emitter losses. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  2. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, Brenda [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Braus, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buckner, David [ESCO Associates Inc., Boulder, CO (United States)

    2017-05-16

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency of the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.

  3. Uses Of Infrared Thermography In The Low-Cost Solar Array Program

    Science.gov (United States)

    Glazer, Stuart D.

    1982-03-01

    The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.

  4. Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications

    Science.gov (United States)

    Anttu, Nicklas; Dagytė, Vilgailė; Zeng, Xulu; Otnes, Gaute; Borgström, Magnus

    2017-05-01

    III-V semiconductor nanowires are a platform for next-generation photovoltaics. An interesting research direction is to embed a nanowire array in a transparent polymer, either to act as a stand-alone flexible solar cell, or to be stacked on top of a conventional Si bottom cell to create a tandem structure. To optimize the tandem cell performance, high energy photons should be absorbed in the nanowires whereas low energy photons should be transmitted to and absorbed in the Si cell. Here, through optical measurements on 1.95 eV bandgap GaInP nanowire arrays embedded in a polymer membrane, we identify two mechanisms that could be detrimental for the performance of the tandem cell. First, the Au particles used in the nanowire synthesis can absorb >50% of the low-energy photons, leading to a 80%. Second, after the removal of the Au particles, a 40% reflectance peak shows up due to resonant back-scattering of light from in-plane waveguide modes. To avoid the excitation of these optical modes in the nanowire array, we propose to limit the pitch of the nanowire array.

  5. Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.

  6. Open structure ZnO/CdSe core/shell nanoneedle arrays for solar cells

    Science.gov (United States)

    2012-01-01

    Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75% were also obtained. PMID:22995031

  7. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays.

    Science.gov (United States)

    Liu, Zhaoyue; Misra, Mano

    2010-03-26

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO(2) nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  8. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet......-dependent properties to minimize passivation layer removal for electrical contacting is demonstrated. Thorough electrical characterization and analysis of the cell is reported. The electrostatic potential distribution across the radial p-i-n junction GaAs NW is investigated by off-axis electron holography....

  9. Control of the Soft X-ray Polychromator on the Solar Maximum Mission Satellite

    Science.gov (United States)

    Springer, L. A.; Levay, M.; Gilbreth, C. W.; Finch, M. L.; Bentley, R. D.; Firth, J. G.

    1981-01-01

    The Soft X-ray Polychromator on the Solar Maximum Mission Satellite consists of two largely independent instruments: the Flat Crystal Spectrometer, a highly collimated scanning spectrometer mounted on a raster platform, and the Bent Crystal Spectrometer, a broadly collimated spectrometer providing high time-resolution (128 ms) spectra for the study of rapidly evolving phenomena. Each instrument is controlled by a microcomputer system built around an RCA 1802 microprocessor. This paper presents a discussion of the motivation for using a microprocessor in this application, and the design concepts that were implemented. The effectiveness of the approach as seen after several months of operation will also be discussed.

  10. Optimization technique for improved microwave transmission from multi-solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, G.D.; Kerwin, E.M.

    1982-08-01

    An optimization technique for generating antenna illumination tapers allows improved microwave transmission efficiencies from proposed solar power satellite (SPS) systems and minimizes sidelobe levels to meet preset environmental standards. The cumulative microwave power density levels from 50 optimized SPS systems are calculated at the centroids of each of the 3073 counties in the continental United States. These cumulative levels are compared with Environmental Protection Agency (EPA) measured levels of electromagnetic radiation in seven eastern cities. Effects of rectenna relocations upon the power levels/population exposure rates are also studied.

  11. Direct conversion of light to radio frequency energy. [using photoklystrons for solar power satellites

    Science.gov (United States)

    Freeman, J. W.; Simons, S.

    1981-01-01

    A description is presented of the test results obtained with the latest models of the phototron. The phototron was conceived as a replacement for the high voltage solar cell-high power klystron combination for the solar power satellite concept. Physically, the phototron is a cylindrical evacuated glass tube with a photocathode, two grids, and a reflector electrode in a planar configuration. The phototron can be operated either in a biased mode where a low voltage is used to accelerate the electron beam produced by the photocathode or in an unbiased mode referred to as self-oscillation. The device is easily modulated by light input or voltage to broadcast in AM or FM. The range of operation of the present test model phototrons is from 2 to 200 MHz.

  12. Determination of potential solar power sites in the United States based upon satellite cloud observations

    Science.gov (United States)

    Hiser, H. W.; Senn, H. V.; Bukkapatnam, S. T.; Akyuzlu, K.

    1977-01-01

    The use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on a mesoscale in the continental United States excluding Alaska is presented. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Low density cirrus clouds are less detrimental to solar energy collection than other types; and clouds in the morning and evening are less detrimental than those during midday hours of maximum insolation. Seasonal geographic distributions of cloud cover/sunshine are converted to langleys of solar radiation received at the earth's surface through relationships developed from long term measurements at six widely distributed stations.

  13. Wire-supported CdSe nanowire array photoelectrochemical solar cells.

    Science.gov (United States)

    Zhang, Luhui; Shi, Enzheng; Li, Zhen; Li, Peixu; Jia, Yi; Ji, Chunyan; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-03-14

    Previous fiber-shaped solar cells are based on polymeric materials or dye-sensitized wide band-gap oxides. Here, we show that efficient fiber solar cells can be made from semiconducting nanostructures (e.g. CdSe) with smaller band-gap as the light absorption material. We directly grow a vertical array of CdSe nanowires uniformly around a core metal wire and make the device by covering the top of nanowires with a carbon nanotube (CNT) film as the porous transparent electrode. The CdSe-CNT fiber solar cells show power conversion efficiencies of 1-2% under AM 1.5 illumination after the nanowires are infiltrated with redox electrolyte. We do not use a secondary metal wire (e.g. Pt) as in conventional fiber-shaped devices, instead, the end part of the CNT film is condensed into a conductive yarn to serve as the secondary electrode. In addition, our CdSe nanowire-based photoelectrochemical fiber solar cells maintain good flexibility and stable performance upon rotation and bending to large angles.

  14. A miniature high voltage plasma interaction flight experiment - Project MINX. [for measuring solar cell array parasitic current drain

    Science.gov (United States)

    Riley, T. J.; Triner, J. E.; Sater, B. L.; Cohen, D.; Somberg, H.

    1974-01-01

    A miniature high-voltage array was fabricated, incorporating the multi-junction edge illuminated (MJC) cell technique. The array consists of 32 2x2.2 cm MJCs, series connected, capable of 1600 V open circuit at 1 AMO and 1.2 mA short circuit. A solid state, high-voltage relay is connected across each 4-cell subgroup of the array. It was built to test plasma current drain on space systems using high voltage as might occur when a high-voltage solar array is operated from low to synchronous orbit.

  15. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  16. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  17. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.

  18. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Directory of Open Access Journals (Sweden)

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  19. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    Science.gov (United States)

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  20. Solar absorption estimated from surface radiation measurements and collocated satellite products over Europe

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Wild, Martin; Sanchez-Lorenzo, Arturo

    2013-04-01

    Anthropogenic climate change is physically speaking a perturbation of the atmospheric energy budget through the insertion of constituents such as greenhouse gases or aerosols. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the present study is the assessment of the mean state and the spatio-temporal variations in the solar energy disposition, in which we focus on obtaining an accurate partitioning of absorbed solar radiation between the surface and the atmosphere. Surface based measurements of solar radiation (GEBA, BSRN) are combined with collocated satellite-retrieved surface albedo (MODIS, CERES FSW, or CM SAF GAC-SAL) and top-of-atmosphere net incoming solar radiation (CERES EBAF) to quantify the absorbed solar radiation (ASR) at the surface and within the atmosphere over Europe for the period 2001-2005. In a first step, we examine the quality and temporal homogeneity of the monthly time series beyond 2000 provided by GEBA in order to identify a subset of sufficient quality. We find the vast majority of monthly time series to be suitable for our purposes. Using the satellite-derived CM SAF surface solar radiation product at 0.03° spatial resolution, we assess the spatial representativeness of the GEBA and BSRN sites for their collocated 1° grid cells as we intend to combine the point measurements with the coarser resolved CERES EBAF products (1° resolution), and we find spatial sampling errors of on average 3 Wm-2 or 2% (normalized by point values). Based on the combination of 134 GEBA surface solar radiation (SSR) time series with MODIS white-sky albedo and CERES EBAF top-of-atmosphere net radiation (TOAnet), we obtain a European mean partitioning (2001-2005) of absorbed solar radiation (relative to total incoming radiation) of: ASRsurf= 41% and ASRatm= 25%, together equaling

  1. Solar irradiance assessment in insular areas using Himawari-8 satellite images

    Science.gov (United States)

    Liandrat, O.; Cros, S.; Turpin, M.; Pineau, J. F.

    2016-12-01

    The high amount of surface solar irradiance (SSI) in the tropics is an advantage for a profitable PV production. It will allow many tropical islands to pursue their economic growth with a clean, affordable and locally produced energy. However, the local meteorological conditions induce a very high variability which is problematic for a safe and gainful injection into the power grid. This issue is even more critical in non-interconnected territories where network stability is an absolute necessity. Therefore, the injection of PV power is legally limited in some European oversea territories. In this context, intraday irradiance forecasting (several hours ahead) is particularly useful to mitigate the production variability by reducing the cost of power storage management. At this time scale, cloud cover evolves with a stochastic behaviour not properly represented in numerical weather prediction (NWP) models. Analysing cloud motion using images from geostationary meteorological satellites is a well-known alternative to forecasting SSI up to 6 hours ahead with a better accuracy than NWP models. In this study, we present and apply our satellite-based solar irradiance forecasting methods over two measurement sites located in the field of view of the satellite Himawari-8: Cocos (Keeling) Islands (Australia) and New Caledonia (France). In particular, we converted 4 months of images from Himawari-8 visible channel into cloud index maps. Then, we applied an algorithm computing a cloud motion vector field from a short sequence of consecutive images. Comparisons between forecasted SSI at 1 hour of time horizon and collocated pyranometric measurements show a relative RMSE between 20 and 27%. Error sources related to the tropic insular context (coastal area heterogeneity, sub-pixel scale orographic cloud appearance, convective situation…) are discussed at every implementation step for the different methods.

  2. NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Vukman V Bakić

    2011-01-01

    Full Text Available This paper deals with the numerical simulation of air around the arrays of flat plate collectors and determination of the flow field, which should provide a basis for estimating a convective heat losses, a parameter which influences their working characteristics. Heat losses are the result of the reflection on the glass, conductive losses at the collector's absorber plate, radiation of the absorber plate and convective losses on the glass. Wind velocity in the vicinity of the absorber plate depends on its position in the arrays of collectors. Results obtained in the numerical simulation of flow around collectors were used as boundary conditions in modeling of thermal-hydraulic processes inside the solar collector. A method for coupling thermal-hydraulic processes inside the collector with heat transfer from plate to tube bundle was developed, in order to find out the distribution of the temperature of the absorber plate and the efficiency of the flat plate collectors. Analyses of flow around arrays of collectors are preformed with RNG k - ε model. Three values for free-stream velocity were analysed, i.e. 1 m/s, 5 m/s and 10 m/s, as well as two values for the angle between the ground and the collector (20° and 40°. Heat transfer coefficient was determined from the theory of boundary layer. Heat transfer inside the plate cavity was analyzed assuming constant intensity of radiation.

  3. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  4. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  6. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    Science.gov (United States)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  7. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    Science.gov (United States)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  8. Influence of earth's shadow on the rotational motion of an artificial satellite perturbed by solar radiation torque

    Science.gov (United States)

    de Moraes, R. Vilhena; Zanardi, M. C.

    A semi-analytical approach is proposed to study the rotational motion of an artificial satellite under the influence of the torque due to the solar radiation pressure and taking into account the influence of Earth's shadow. The Earth's shadow is introduced in the equations for the rotational motion as a function depending on the longitude of the Sun, on the ecliptic's obliquity and on the orbital parameters of the satellite. By mapping and computing this function, we can get the periods in which the satellite is not illuminated and the torque due to the solar radiation pressure is zero. When the satellite is illuminated, a known analytical solution is used to predict the satellite's attitude. This analytical solution is expressed in terms of Andoyer's variables and depends on the physical and geometrical properties of the satellite and on the direction of the Sun radiation flux. By simulating a hypothetical circular cylindrical type satellite, an example is exhibited and the results agree quite well when compared with a numerical integration.

  9. The Use of Meteosat Second Generation Satellite Data Within A New Type of Solar Irradiance Calculation Scheme

    Science.gov (United States)

    Mueller, R. W.; Beyer, H. G.; Cros, S.; Dagestad, K. F.; Dumortier, D.; Ineichen, P.; Hammer, A.; Heinemann, D.; Kuhlemann, R.; Olseth, J. A.; Piernavieja, G.; Reise, C.; Schroedter, M.; Skartveit, A.; Wald, L.

    1-University of Oldenburg, 2-University of Appl. Sciences Magdeburg, 3-Ecole des Mines de Paris, 4-University of Bergen, 5-Ecole Nationale des Travaux Publics de l'Etat, 6-University of Geneva, 7-Instituto Tecnologico de Canarias, 8-Fraunhofer Institute for Solar Energy Systems, 9-German Aerospace Center Geostationary satellites such as Meteosat provide cloud information with a high spatial and temporal resolution. Such satellites are therefore not only useful for weather fore- casting, but also for the estimation of solar irradiance since the knowledge of the light reflected by clouds is the basis for the calculation of the transmitted light. Additionally an the knowledge of atmospheric parameters involved in scattering and absorption of the sunlight is necessary for an accurate calculation of the solar irradiance. An accurate estimation of the downward solar irradiance is not only of particular im- portance for the assessment of the radiative forcing of the climate system, but also necessary for an efficient planning and operation of solar energy systems. Currently, most of the operational calculation schemes for solar irradiance are semi- empirical. They use cloud information from the current Meteosat satellite and clima- tologies of atmospheric parameters e.g. turbidity (aerosols and water vapor). The Me- teosat Second Generation satellites (MSG, to be launched in 2002) will provide not only a higher spatial and temporal resolution, but also the potential for the retrieval of atmospheric parameters such as ozone, water vapor and with restrictions aerosols. With this more detailed knowledge about atmospheric parameters it is evident to set up a new calculation scheme based on radiative transfer models using the retrieved atmospheric parameters as input. Unfortunately the possibility of deriving aerosol in- formation from MSG data is limited. As a cosequence the use of data from additional satellite instruments ( e.g. GOME/ATSR-2) is neeeded. Within this

  10. Optimization of microwave power transmission from solar power satellites. Ph.D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Potter, S.D.

    1993-01-01

    Solar energy can be used to avoid environmental problems associated with the use of fossil fuels. Because of limitations on the availability of solar energy at the Earth`s surface, it is recommended that energy from the sun be harnessed by solar collectors in geostationary orbit, known as solar power satellites (SPS). The energy collected is transmitted to the Earth by means of microwaves. The physics of power beaming is investigated through the use of mathematical analysis and numerical computer techniques. The most widely considered microwave frequency, 2.45 GHz, constrains the design of the SPS, due to the diffraction of the beam. Therefore, transmission through other atmospheric `windows` has been considered, notably 35 and 94 GHz. Although increasing the frequency decreases the size of the main beam lobe, and thus the rectifying antenna (rectenna) needed to capture the energy, the size of the exclusion zone needed to protect populations from microwave exposure is independent of frequency for a square transmitting antenna. Rain attenuation is significant above 15 GHz. In clear air, microwave absorption may lead to atmospheric heating effects, especially at 94 GHz. It is therefore recommended that future power beaming research concentrate on minimizing beam sidelobes, and increasing the frequency from 2.45 GHz to no more than 15 GHz. Circular transmitting antennas allow for smaller exclusion zones than square antennas. Furthermore, if the amplitude of the beam is varied, or tapered, across the face of the transmitting antenna, then the exclusion zones can be made even smaller. If the frequency is increased to 9.8 GHz, a moderate beam taper is used, and the peak beam intensity is kept to a few tens of milliwatts per square centimeter, then a larger number of somewhat smaller SPS`s will be needed to supply a given amount of power. This results in a net decrease in the land area needed for rectennas and exclusion zones.

  11. A Design of Solar Proton Telescope for Next Generation Small Satellite

    Directory of Open Access Journals (Sweden)

    Jongdae Sohn

    2012-12-01

    Full Text Available The solar proton telescope (SPT is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS which is determined for next generation small satellite-1 (NEXTSat-1. The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4. The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

  12. Effect of Extended Extinction from Gold Nanopillar Arrays on the Absorbance Spectrum of a Bulk Heterojunction Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Shu-Ju Tsai

    2015-02-01

    Full Text Available We report on the effects of enhanced absorption/scattering from arrays of Au nanopillars of varied size and spacing on the spectral response of a P3HT:PCBM bulk heterojunction solar cell. Nanopillar array-patterned devices do show increased optical extinction within a narrow range of wavelengths compared to control samples without such arrays. The measured external quantum efficiency and calculated absorbance, however, both show a decrease near the corresponding wavelengths. Numerical simulations indicate that for relatively narrow nanopillars, the increased optical extinction is dominated by absorption within the nanopillars, rather than scattering, and is likely dissipated by Joule heating.

  13. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  14. Free-vibration characteristics of a large split-blanket solar array in a 1-g field

    Science.gov (United States)

    Shaker, F. J.

    1976-01-01

    Two methods for studying the free vibration characteristics of a large split blanket solar array in both a 0-g and a 1-g cantilevered configuration are presented. The 0-g configuration corresponds to an in-orbit configuration of the array; the 1-g configuration is a typical ground test configuration. The first method applies the equations of continuum mechanics to determine the mode shapes and frequencies of the array; the second method uses the Rayleigh-Ritz approach. In the Rayleigh-Ritz method the array displacements are represented by string modes and cantilevered beam modes. The results of this investigation are summarized by a series of graphs illustrating the effects of various array parameters on the mode shapes and frequencies of the system. The results of the two methods are also compared in tabular form.

  15. Orbit dynamics and geographical coverage capabilities of satellite-based solar occultation experiments for global monitoring of stratospheric constituents

    Science.gov (United States)

    Brooks, D. R.

    1980-01-01

    Orbit dynamics of the solar occultation technique for satellite measurements of the Earth's atmosphere are described. A one-year mission is simulated and the orbit and mission design implications are discussed in detail. Geographical coverage capabilities are examined parametrically for a range of orbit conditions. The hypothetical mission is used to produce a simulated one-year data base of solar occultation measurements; each occultation event is assumed to produce a single number, or 'measurement' and some statistical properties of the data set are examined. A simple model is fitted to the data to demonstrate a procedure for examining global distributions of atmospheric constitutents with the solar occultation technique.

  16. Broadband conformal phased array with optical beam forming for airborne satellite communication

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Meijerink, Arjan; Roeloffzen, C.G.H.; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Borreman, A.; Hoekman, M.; Wintels, M.

    2008-01-01

    For enhanced communication on board an aircraft, novel antenna systems with broadband satellite based capabilities are required. The technology will enhance airline operations by providing in-flight connectivity for flight crew information and will bring live TV and high speed Internet connectivity

  17. AVES: A high performance computer cluster array for the INTEGRAL satellite scientific data analysis

    Science.gov (United States)

    Federici, Memmo; Martino, Bruno Luigi; Ubertini, Pietro

    2012-07-01

    In this paper we describe a new computing system array, designed, built and now used at the Space Astrophysics and Planetary Institute (IAPS) in Rome, Italy, for the INTEGRAL Space Observatory scientific data analysis. This new system has become necessary in order to reduce the processing time of the INTEGRAL data accumulated during the more than 9 years of in-orbit operation. In order to fulfill the scientific data analysis requirements with a moderately limited investment the starting approach has been to use a `cluster' array of commercial quad-CPU computers, featuring the extremely large scientific and calibration data archive on line.

  18. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Basudev; Batabyal, Sudip K.; Pal, Amlan J. [Indian Association for the Cultivation of Science, Department of Solid State Physics, Kolkata 700032 (India)

    2007-05-23

    We fabricate dye-sensitized solar cells (DSSC) using vertically oriented, high density, and crystalline array of ZnO nanowires, which can be a suitable alternative to titanium dioxide nanoparticle films. The vertical nanowires provide fast routes or channels for electron transport to the substrate electrode. As an alternative to conventional ruthenium complex, we introduce Rose Bengal dye, which acts as a photosensitizer in the dye-sensitized solar cells. The dye energetically matches the ZnO with usual KI-I{sub 2} redox couple for dye-sensitized solar cell applications. (author)

  19. Process development for automated solar cell and module production. Task 4: automated array assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagerty, J.J.

    1980-06-30

    The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

  20. PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project

    Science.gov (United States)

    Ross, Ronald G., Jr.

    2013-01-01

    Key reliability and engineering lessons learned from the 20-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and thin film module reliability research activities are presented and analyzed. Particular emphasis is placed on lessons applicable to evolving new module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulate and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.

  1. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Masatoshi, E-mail: yoshimura@rciqe.hokudai.ac.jp; Nakai, Eiji; Fukui, Takashi [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan); Tomioka, Katsuhiro [Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Kita 13 Nishi 8, Sapporo 060–8628 (Japan); PRESTO, Japan Science and Technology Agency (JST), Honcho Kawaguchi, 332–0012 Saitama (Japan)

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  2. Habitat Size Optimization of the O'Neill - Glaser Economic Model for Space Solar Satellite Production

    Science.gov (United States)

    Curreri, Peter A.; Detweiler, Michael

    2010-01-01

    Creating large space habitats by launching all materials from Earth is prohibitively expensive. Using space resources and space based labor to build space solar power satellites can yield extraordinary profits after a few decades. The economic viability of this program depends on the use of space resources and space labor. To maximize the return on the investment, the early use of high density bolo habitats is required. Other shapes do not allow for the small initial scale required for a quick population increase in space. This study found that 5 Man Year, or 384 person bolo high density habitats will be the most economically feasible for a program started at year 2010 and will cause a profit by year 24 of the program, put over 45,000 people into space, and create a large system of space infrastructure for the further exploration and development of space.

  3. Electrostatic protection of the solar power satellite and rectenna. Part 2: Lightning protection of the rectenna

    Science.gov (United States)

    1980-01-01

    Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.

  4. Eclipse intervals for satellites in circular orbit under the effects of Earth’s oblateness and solar radiation pressure

    Directory of Open Access Journals (Sweden)

    M.N. Ismail

    2015-06-01

    Full Text Available In this work, the circumstances of eclipse for a circular satellites’ orbit are studied. The time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of satellites’ orbit are calculated. An application was done taken into account the effects of solar radiation pressure and Earth’s oblateness on the orbital elements of circular orbit satellite.

  5. Performance of 128×128 solar-blind AlGaN ultraviolet focal plane arrays

    Science.gov (United States)

    Yuan, Yongang; Zhang, Yan; Liu, Dafu; Chu, Kaihui; Wang, Ling; Li, Xiangyang

    2009-07-01

    Ozone layer intensively absorbs 240nm to 285 nm incidence, when the sunshine goes through stratospheric. There is almost no UVC (200nm-280nm) band radiation existing below stratospheric. Because the radiation target presents a strong contrast between atmosphere and background, solar-blind band radiation is very useful. Wide band gap materials, especially III-V nitride materials, have attracted extensive interest. The direct band gap of GaN and A1N is 3.4 and 6.2 eV, respectively. Since they are miscible with each other and form a complete series of AlGaN alloys, AlGaN has direct band gaps from 3.4 to 6.2 eV, corresponding to cutoff wavelengths from 365 to 200 nm. A back-illuminated hybrid FPA has been developed by Shanghai Institute of Technical Physics Chinese Academy of Science. This paper reports the performance of the 128x128 solar-blind AlGaN UV Focal Plane Arrays (FPAs). More and more a CTIA (capacitivetransimpedance) readout circuit architecture has been proven to be well suited for AlGaN detectors arrays. The bared readout circuit was first tested to find out optimal analog reference voltage. Second, this ROIC was tested in a standard 20-pin shielded dewar at 115 K to 330K. Then, a new test system was set up to obtain test UV FPA noise, swing voltage, data valid time, operating speed, dynamic range, UV response etc. The results show that 128x128 back-illuminated AlGaN PIN detector SNR is as high as 74db at the speed of above30 frame per second. Also, some noise test method is mentioned.

  6. A 1 cm space debris impact onto the Sentinel-1A solar array

    Science.gov (United States)

    Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.

    2017-08-01

    Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.

  7. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    Energy Technology Data Exchange (ETDEWEB)

    Heller, René, E-mail: rheller@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University (Canada)

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in the phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.

  8. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    Science.gov (United States)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  9. An assessment of models which use satellite data to estimate solar irradiance at the earth's surface

    Science.gov (United States)

    Raphael, C.; Hay, J. E.

    1984-05-01

    The performances of three models which use satellite data to estimate solar irradiance at the earth's surface are assessed using measured radiation data from a midlatitude location. Assessment of the models is made possible through the accurate earth location of the satellite imagery (to within + or - 2 pixels). Evaluations of the models for a variety of conditions reveal the need for revised coefficients for the Hay and Hanson (1978) model and Tarpley (1979) model and demonstrate the superior performance of the pysically-based Gautier et al. (1980) model on an hourly basis for partly cloudy and overcast conditions. However, compared to the clear-sky case all three models give poor results under partly cloudy and overcast conditions. An increase in the averaging period leads to marked decreases in the rms errors observed for the three models under all conditions, with the greatest improvement occuring for the Hay and Hanson model. Suggestions for improvements include a more accurate and explicit treatment of cloud absorption in all three models and the inclusion of the effects of aerosols under clear skies and the accurate and objective specification of a cloud threshold separating clear from partly cloudy and partly cloudy from overcast conditions in the Gautier et al. and Tarpley models.

  10. Satellite based determination of Ionospheric Conductances due to solar illumination and particle precpitation

    Science.gov (United States)

    Burke, W.; Wilson, G. R.

    2007-12-01

    The Pedersen conductance is an important parameter that determines the intensity of currents coupling the ionosphere and the magnetosphere and the rate of electromagnetic energy exchange between the two. Short of running a full ionosphere/thermosphere model, studies of ionosphere/magnetosphere coupling are forced to rely on various sets of emperical or parameterized theoretical results to determine local or global conductance. Under steady state conditions Ampere's and Ohm's laws can be combined to obtain the relationship between magnetic perturbations and electric fields measured at satellite altitudes in regions of field-aligned currents. In intervals where E and δ B are highly correlated the height integrated Pedersen conductivity can be written as ΣP = (1/μo) Δ δ BZ/ Δ EY, and be determined directly from in situ measurements. We use this approach with magnetometer and driftmeter data from two DMSP satellites (F16 and F17) to determine Pedersen conductances under quiet to mildly distrubed conditions, in regions close to the terminator where solar illumination and particle (ion and electron) precipitation play competing roles in determing ionospheric conductivities. Results from this study are compared with commonly used expressions for conductances ( Robinson and Vondrak, 1984; Robinson et al., 1987) and results of numerical simulations.

  11. Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites

    Science.gov (United States)

    Domingue, Deborah; Verbiscer, Anne

    1997-01-01

    Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface

  12. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    Science.gov (United States)

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    Science.gov (United States)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  14. Design for strong absorption in a nanowire array tandem solar cell

    Science.gov (United States)

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-08-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1-2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells.

  15. Gravitational force and torque on a solar power satellite considering the structural flexibility

    Science.gov (United States)

    Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan

    2017-11-01

    The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.

  16. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  17. Testing solar panels for small-size satellites: the UPMSAT-2 mission

    Science.gov (United States)

    Roibás-Millán, E.; Alonso-Moragón, A.; Jiménez-Mateos, A. G.; Pindado, S.

    2017-11-01

    At present, the development of small-size satellites by universities, companies and research institutions has become usual practice, and is spreading rapidly. In this kind of project cost plays a significant role. One of the main areas are the assembly, integration and test (AIT) plans, which carry an associated cost for simulating environmental conditions. For instance, in the power subsystems test and, in particular, in the testing of solar panels, the irradiance and temperature conditions might be optimum so the performance of the system can be shown next to real operational conditions. To reproduce the environmental conditions in terms of irradiance, solar simulators are usually used, which carries an associated increase in cost for testing the equipment. The aim of this paper is to present an alternative and inexpensive way to perform AIT plans on spacecraft power subsystems, from a testing campaign performed using outdoor clean-sky conditions and an isolation system to protect the panels. A post-process of the measured data is therefore needed, taking into account the conditions in which the test has been accomplished. The I–V characteristics obtained are compared with a theoretical 1-diode/2-resistor equivalent electric circuit, achieving enough precision based solely on the manufacturer’s data.

  18. Surface Solar Radiation in North America: Observations, Reanalyses, Satellite and Derived Products

    Science.gov (United States)

    Slater, A. G.

    2015-12-01

    Observations of daily surface solar/shortwave radiation data from over 4000 stations have been gathered, covering much of the lower 48 continental states of the US as well as portions of Alberta and British Columbia, Canada. The quantity of data increases almost linearly from 1998 when only several hundred stations had data. A quality control procedure utilizing threshold values along with computing the clear sky radiation envelope for individual stations was implemented to both screen bad data and rescue informative data. Over two thirds of the observations are seen as acceptable. Fifteen different surface solar radiation products are assessed relative to observations, including reanalyses (20thC, CFSRR, ERAI, JRA-55, MERRA, NARR, NCEP), derived products (CRU_NCEP, DAYMET, GLDAS, GSWP3, MsTMIP, NLDAS) and two satellite products (CERES and GOES). All except the CERES product are daily or finer in temporal resolution. The root mean square error of spatial biases is greater than 18Wm-2 for 13 of the 15 products over the summer season (June, July, August). None of the daily resolution products fulfill all three desirable criteria of low (bias, high correlation with observed cloudiness and correct distribution of clear sky radiation. Some products display vestiges of underlying algorithm issues (e.g. from MTCLIM ver4.3) or bias correction methods. A new bias correction method is introduced that preserves clear sky radiation values and better replicates cloudiness statistics. The current quantity of data over the continental US suggests a solar radiation product based on, or enhanced with, observations is feasible.

  19. PAHs in the Ices of Saturn's Satellites: Connections to the Solar Nebula and the Interstellar Medium

    Science.gov (United States)

    Cruikshank, Dale P.; Pendleton, Yvonne J.

    2015-01-01

    Aliphatic hydrocarbons and PAHs have been observed in the interstellar medium (e.g., Allamandola et al. 1985, Pendleton et al. 1994, Pendleton & Allamandola 2002, Tielens 2013, Kwok 2008, Chiar & Pendleton 2008) The inventory of organic material in the ISM was likely incorporated into the molecular cloud in which the solar nebula condensed, contributing to the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Additional organic synthesis occurred in the solar nebula (Ciesla & Sandford 2012). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn (Johnson & Lunine 2005). VIMS spectral maps of Phoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and aliphatic hydrocarbon (=CH2, -CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles ((is) approximately 5-20 micrometers size) spiral inward toward Saturn (Verbiscer et al. 2009). They encounter Iapetus and Hyperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, and in carbonaceous meteorites (Cruikshank et al. 2014). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 (is) approximately 4, which is larger than the value found in the diffuse ISM ((is) approximately 2

  20. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  1. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Science.gov (United States)

    2011-01-01

    The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs) is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene). A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. PMID:21884596

  2. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  3. Solar absorption estimated from surface radiation measurements and collocated satellite products

    Science.gov (United States)

    Hakuba, M. Z.; Wild, M.; Folini, D.; Sanchez-Lorenzo, A.; Schaepman-Strub, G.

    2012-04-01

    The Earth's climate and life-relevant processes are governed by the incoming solar radiation as part of the global energy balance. Changes in the atmospheric energy budget largely affect the global climate and hydrological cycle, but the quantification of the different energy balance components is still afflicted with large uncertainties. The overall aim of the research presented here is an improved understanding of the mean state and spatio-temporal variations of the global energy balance through reducing the uncertainties in one of its components, i.e., the absorption of solar radiation within the climate system. To quantify the solar absorption at the surface and within the atmospheric column, we combine the worldwide surface radiation measurements of the Global Energy Balance archive (GEBA) and Baseline Surface Radiation Network (BSRN) with collocated satellite-inferred surface albedo and top-of-atmosphere (TOA) radiation data (MODIS, CERES). Our analysis of the present mean state, temporal and spatial variability during the last decade (2000-2010) focuses on Europe and Asia, and will expand worldwide in a later step. We examined the quality and homogeneity of station records beyond 2000 provided by GEBA to identify a subset of station records of sufficient quality. We find the vast majority of monthly records to be suitable for our purposes. The considered GEBA sites indicate overall positive trends in Europe, and mostly negative trends over Asia during the last decade (2000-2010). To derive the surface solar absorption at the measurement sites, we intend to combine the shortwave fluxes with the collocated surface albedo from MODIS. The MODIS products include the so-called black-sky albedo (under the assumption of direct radiation only) and white-sky albedo (under diffuse isotropic conditions). The majority of GEBA sites comprises only global radiation data, which do not differentiate between direct and diffuse components. To determine solar absorption from

  4. Digital-beamforming array antenna technologies for future ocean-observing satellite missions

    DEFF Research Database (Denmark)

    Iupikov, Oleg A.; Ivashina, Marianna V.; Cappellin, Cecilia

    2016-01-01

    Existing passive microwave radiometers that are used for ocean observations are limited in spatial resolution and geographic coverage, due to the limitations of traditional antenna technologies using mechanically-scanning reflectors and horn-type feeds. Future ocean observation missions call...... for new solutions, such as digitally-beamforming array feeds (DBAFs) as well as stationary and more complex reflectors. Our studies demonstrate that DBAFs can overcome the physically fundamental limitations of traditional horn feeds, and are capable of meeting all the challenging requirements for the next...

  5. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    Science.gov (United States)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  6. Effects of Surface Modification of Nanotube Arrays on the Performance of CdS Quantum-Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Danhong Li

    2013-01-01

    Full Text Available CdS-sensitized TiO2 nanotube arrays have been fabricated using the method of successive ionic layer adsorption and reaction and used as a photoanode for quantum-dot-sensitized solar cells. Before being coated with CdS, the surface of TiO2 nanotube arrays was treated with TiCl4, nitric acid (HNO3, potassium hydroxide (KOH, and methyltrimethoxysilane (MTMS, respectively, for the purpose of reducing the interface transfer resistance of quantum-dot-sensitized solar cells. The surfaces of the modified samples represented the characteristics of superhydrophilic and hydrophobic which directly affect the power conversion efficiency of the solar cells. The results showed that surface modification resulted in the reduction of the surface tension, which played a significant role in the connectivity of CdS and TiO2 nanotube arrays. In addition, the solar cells based on CdS/TiO2 electrode treated by HNO3 achieved a maximum power conversion efficiency of 0.17%, which was 42% higher than the reference sample without any modification.

  7. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  8. Effects of Titanium Oxide Nanotube Arrays with Different Lengths on the Characteristics of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2013-01-01

    Full Text Available The self-aligned highly ordered TiO2 nanotube (TNT arrays were fabricated by potentiostatic anodization of Ti foil, and we found that the TNT-array length and diameter were dependent on the electrolyte (NH4F concentration in ethylene glycol and anodization time. The characteristics of the fabricated TNT arrays were characterized by XRD pattern, FESEM, and absorption spectrum. As the electrolyte NH4F concentration in the presence of H2O (2 vol% with anodization was changed from 0.25 to 0.75 wt% and the anodization period was increased from 1 to 5 h, the TNT-array length was changed from 9.55 to 30.2 μm and the TNT-array diameter also increased. As NH4F concentration was 0.5 wt%, the prepared TNT arrays were also used to fabricate the dye-sensitized solar cells (DSSCs. We would show that the measured photovoltaic performance of the DSSCs was dependent on the TNT-array length.

  9. Effects of ZnS layer on the performance improvement of the photosensitive ZnO nanowire arrays solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Hafiz Muhammad Asif [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Gao, Yanping; Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2016-08-01

    The impact of ZnS layer as an interface modification on the photosensitive ZnO nanowire arrays solar cells was studied. CdS, CdSe and ZnS were deposited on ZnO nanowire arrays by SILAR method. When a ZnS layer was deposited, the quantum dot barrier was indirectly become in contact with the electrolyte, which thus restrained the flow of electrons. The CdS sensitized solar cells has an efficiency of 0.55% with the deposition of the ZnS(3) layer, that is, with a deposition of three times, whereas the CdS/CdSe co-sensitized solar cells has an efficiency of 2.03% with the deposition of the ZnS(1) layer. It was also noted that as the thickness of the of ZnS layer was increased, V{sub oc}, I{sub sc} and efficiencies of both the solar cells were first increased and then decreased. In addition, the CdS/N719 solar cells has an efficiency of 0.75% with the deposition of the ZnS(2) layer. - Highlights: • The impact of ZnS layer on the photosensitive ZnO nanowire solar cells was studied. • ZnS layer restrained the flow of electrons to the electrolyte. • CdS/CdSe co-sensitized solar cells have higher efficiency than CdS solar cells. • When ZnS layer was increased, V{sub oc} and I{sub sc} firstly increased and then decreased.

  10. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Sahdan, M.Z.; Mamat, M.H.; Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Z.; Husairi, S.S. [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA -UiTM, 40450 Shah Alam, Selangor (Malaysia); Md Sin, N.D. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2013-06-15

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm{sup 2}, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm{sup 2}). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  11. GaSb on GaAs solar cells Grown using interfacial misfit arrays (Conference Presentation)

    Science.gov (United States)

    Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh Babu B.; Huffaker, Diana L.; Hubbard, Seth M.

    2017-04-01

    State of the art InGaP2/GaAs/In0.28Ga0.72As inverted metamorphic (IMM) solar cells have achieved impressive results, however, the thick metamorphic buffer needed between the lattice matched GaAs and lattice mismatched InGaAs requires significant effort and time to grow and retains a fairly high defect density. One approach to this problem is to replace the bottom InGaAs junction with an Sb-based material such as 0.73 eV GaSb or 1.0 eV Al0.2Ga0.8Sb. By using interfacial misfit (IMF) arrays, the high degree of strain (7.8%) between GaAs and GaSb can be relaxed solely by laterally propagating 90° misfit dislocations that are confined to the GaAs-GaSb interface layer. We have used molecular beam epitaxy to grow GaSb single junction solar cells homoepitaxially on GaSb and heteroepitaxially on GaAs using IMF. Under 15-sun AM1.5 illumination, the control cell achieved 5% efficiency with a WOC of 366 mV, while the IMF cell was able to reach 2.1% with WOC of 546 mV. Shunting and high non-radiative dark current were main cause of FF and efficiency loss in the IMF devices. Threading dislocations or point defects were the expected source behind the losses, leading to minority carrier lifetimes less than 1ns. Deep level transient spectroscopy (DLTS) was used to search for defects electrically and two traps were found in IMF material that were not detected in the homoepitaxial GaSb device. One of these traps had a trap density of 7 × 1015 cm-3, about one order of magnitude higher than the control cell defect at 4 × 1016 cm-3.

  12. NGSLR's Measurement of the Retro-Reflector Array Response of Various LEO to GNSS Satellites

    Science.gov (United States)

    McGarry, Jan; Clarke, Christopher; Degnan, John; Donovan, Howard; Hall, Benjamin; Hovarth, Julie; Zagwodzki, Thomas

    2012-01-01

    "NASA's Next Generation Satellite Laser Ranging System (NGSLR) has successfully demonstrated daylight and nighttime tracking this year to s atellites from LEO to GNSS orbits, using a 7-8 arcsecond beam divergence, a 43% QE Hamamatsu MCP-PMT with single photon detection, a narrow field of view (11 arcseconds), and a 1 mJ per pulse 2kHz repetition rate laser. We have compared the actual return rates we are getting against the theoretical link calculations, using the known system confi guration parameters, an estimate of the sky transmission using locall y measured visibility, and signal processing to extract the signal from the background noise. We can achieve good agreement between theory and measurement in most passes by using an estimated pOinting error. We will s.()w the results of this comparison along with our conclusio ns."

  13. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  14. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    Science.gov (United States)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  15. The Compact Lightweight Absolute Radiometer (CLARA) for Total Solar Irradiance Measurements on the NORSAT-1 Satellite

    Science.gov (United States)

    Walter, Benjamin; Finsterle, Wolfgang; Koller, Silvio; Levesque, Pierre-Luc; Pfiffner, Daniel; Schmutz, Werner

    2017-04-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar variability on the Earth's energy budget. The existence of a potential long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA was designed and built by PMOD/WRC and characterized and calibrated by PMOD/WRC as part of the "European Metrology Research Program" (EMRP) project "European Metrology for Earth Observation and Climate" (MetEOC-2) funded by the European Commission. The main goals of the CLARA experiment are to continue the TSI data record with high accuracy and precision and to facilitate monitoring with its compact and adaptable design. CLARA will be one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. The launch of NORSAT-1 is planned for March 2017. We present the design and calibration of CLARA, a new generation of Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-detector design for degradation tracking and redundancy, ii) a digital control system, iii) a new reference block and detector design to minimize size and weight of the instrument. The characterization of the CLARA instrument components provides an overview on the improvements that were achieved with the latest radiometer developments. An end-to-end calibration of CLARA against the SI-traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder (Colorado) results in a combined measurement uncertainty of 0.05% (k = 1

  16. China's First Civilian Three-line-array Stereo Mapping Satellite: ZY-3

    Directory of Open Access Journals (Sweden)

    LI Deren

    2016-02-01

    Full Text Available On January 9th,2012,China launched its first civilian three-line-array stereo mapping satellite——ZY-3.ZY-3 is equipped with 2 front and back view TDI CCD cameras having the resolution better than 3.5 m and the width better than 50 km,1 TDI CCD camera with the resolution better than 2.1 m and the width better than 50 km and 1 multispectral camera with the resolution better than 5.8 m.In order to ensure accuracy and reliability,ZY-3 adopts a large platform which is equipped with double-frequency GPS and more gyroes.ZY-3 obtains its geolocation accuracy better than 15 m without GCPs,geolocation accuracy better than 3 m and plane geolocation accuracy better than 4 m with GCPs which completely satisfies 1∶50 000 mapping precision.

  17. The Impact Rate on Solar System Satellites During the Late Heavy Bombardment

    Science.gov (United States)

    Dones, Henry C. Luke; Levison, H. F.

    2012-10-01

    Nimmo and Korycansky (2012; henceforth NK12) found that if the outer Solar System underwent a Late Heavy Bombardment (LHB) in the Nice model, the mass striking the icy satellites at speeds up to tens of km/s would have vaporized so much ice that moons such as Mimas, Enceladus, and Miranda would have been devolatilized. NK12's possible explanations of this apparent discrepancy with observations include (1) the mass influx was a factor of 10 less than that in the Nice model; (2) the mass distribution of the impactors was top-heavy, so that luck might have saved some of the moons from suffering large, vapor-removing impacts; or (3) the inner moons formed after the LHB. NK12 calculated the mass influx onto the satellites from the lunar impact rate estimated by Gomes et al. (2005) and scaling factors calculated by Zahnle et al. (1998, 2003; also see Barr and Canup 2010). Production of vapor in hypervelocity impacts was calculated from Kraus et al. (2011). We are calculating impact rates onto the giant planets and their moons in the context of the "Nice II" model (Levison et al. 2011). We find that NK12's assumed influx is an overestimate, by an amount we are quantifying. We will discuss implications for the origin of icy satellites. We thank the NASA Lunar Science Institute (http://lunarscience.nasa.gov/) for support. Barr, A.C., Canup, R.M., Nature Geoscience 3, 164-167 (2010). Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., Nature 435, 466-469 (2005). Kraus, R.G., Senft, L.E., Stewart, S.T., Icarus 214, 724-738 (2011). Levison, H.F., Morbidelli, A., Tsiganis, K., Nesvorný, D., Gomes, R., Astron. J. 142, article id. 152 (2011). Nimmo, F., Korycansky, D.G., Icarus 219, 508-510 (2012). Zahnle, K., Dones, L., Levison, H.F., Icarus 136, 202-222 (1998). Zahnle, K., Schenk, P., Levison, H.F., Dones, L., Icarus 163, 263-289 (2003).

  18. Flat-plate solar array project. Volume 8: Project analysis and integration

    Science.gov (United States)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  19. Thermal Analysis and Correlation of the Mars Odyssey Spacecraft's Solar Array During Aerobraking Operations

    Science.gov (United States)

    Dec, John A.; Gasbarre, Joseph F.; George, Benjamin E.

    2002-01-01

    The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecraft's solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecraft's velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.

  20. Current leakage for low altitude satellites. [to surrounding plasma sheath

    Science.gov (United States)

    Mccoy, J. E.; Konradi, A.; Garriott, O. K.

    1979-01-01

    Ionospheric plasma densities exceeding 1,000,000 per cu cm exist around satellites in low earth orbit. Operation of large solar arrays at high voltage may drive substantial leakage currents through this surrounding plasma. Power losses exceeding solar cell output have been observed for small arrays biased above +2,000 V. Estimates of these effects for very large power systems are developed. Recent large scale (10 meter) lab tests are reported. Estimates based on calculations of space charge limited sheath dimensions are identified as a good working model, leading to projected power losses for large arrays increasing much more slowly than for small arrays.

  1. Cost optimization of the dimensions of the antennas of a solar power satellite system

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, A.V.; Klassen, V.I.; Laskin, N.N.; Tobolev, A.K.

    1983-05-01

    The problem of the cost optimization of the dimensions of the antennas of a solar power satellite system is formulated. The optimization problem is twofold: (1) for a given power delivered to the microwave transmitting antenna (TA), to determine the dimensions Lt (the characteristic dimension of the TA) and Lr (the characteristic dimension of the rectenna) which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA, and (2) for a power delivered to the TA which is proportional to the aperture area, to determine the dimensions Lt and Lr which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA. Two possible variants of the solution of this problem are considered: (1) the case of a linear antenna (the two-dimensional problem), and (2) the case of square apertures (the three-dimensional problem). A specific example of optimization is considered, where the cost of the TA is $1000/sq m and the cost of the rectenna is $12/sq m. 11 references.

  2. Implications for the UK of solar-power satellites /s.p.s/ as an energy source

    Science.gov (United States)

    Shelton, R. M.

    1980-01-01

    The solar power satellite concept which would make the sun's radiation available on earth as a source of energy, is discussed. Attention is given to the concept currently under evaluation in the USA, and also in Europe, though to a lesser extent. The advantages and problems associated with its adoption by the UK as a major source of electrical energy are discussed. The discussion covers topics such as sizing, reference system, and construction, costs, and problem areas.

  3. Physics-Based GOES Satellite Product for Use in NREL's National Solar Radiation Database: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Habte, A.; Gotseff, P.; Weekley, A.; Lopez, A.; Molling, C.; Heidinger, A.

    2014-07-01

    The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.

  4. A Lunar Mission to Create a Constellation of Space Solar Power Satellites as a Precursor to Industrial Establishment, Resource Extraction, and Colonization

    Science.gov (United States)

    Bergsrud, C. M.; Straub, J.

    2014-06-01

    This paper provides an overview of a system of space solar power satellites (SSPSs) to service lunar science, mining and manufacturing operations. The SSPS system will provide power to enable a new paradigm of lunar and Moon-based exploration.

  5. Phase 2 of the array automated assembly task for the low-cost Silicon Solar Array Project. Third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Wihl, M.

    1978-07-01

    The results of the continuing work done on the feasibility of manufacturing photovoltaic solar modules in a future automated production facility are documented. During this quarter, the verification of metallization and junction formation were completed, and the verification of interconnection and encapsulation of cells into modules was started.

  6. How do the physical properties of ice influence the habitability of outer solar system satellites? (Invited)

    Science.gov (United States)

    Nimmo, F.

    2009-12-01

    A possible definition of a habitable environment is one that has liquid water, a range of suitable prebiotic compounds (however defined), and a source of energy. An ocean-bearing icy satellite can provide the first two quite easily, as well as giving protection from radiation. The third requirement is most readily provided by redox reactants, which may arise from hydrothermal activity, solar ultraviolet radiation, or impacts [1-4]. Reactants produced at the surface must thus be transported through the ice shell to the underlying liquid, while hydrothermal activity requires contact between hot silicates and the ocean. Large satellites, such as Ganymede, possessing denser ice phases beneath the ocean are thus less plausibly habitable. As far as ice properties are concerned, there are two key issues. The first is the ability of ice to insulate an underlying ocean, thus controlling its lifetime. This depends on whether the ice is convecting (which in turn depends on grain size, shell thickness, basal temperature etc. [5]), the extent to which the ice shell is tidally heated, and the thermal conductivity of the ice (clathrates are good insulators [6]). For instance, Enceladus is sufficiently small that its putative ocean is expected to freeze on timescales of tens of Myr [7], reducing its potential habitability. On the other hand, ice shells above ammonia-rich oceans are likely to have lower basal temperatures and thus freeze more slowly [8]. The second issue is the extent to which the ice allows communication between the surface and subsurface. Getting material from the surface to the ocean, or vice versa, is difficult because convecting ice typically has a thick, stagnant lid [9]. But there may be situations in which this stagnant lid does not occur, for instance if the ice has a low yield strength. Brittle failure might also allow communication between the ocean and the surface [9] (as appears to happen at Enceladus [10]), while melt production due to shear heating

  7. Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites

    Directory of Open Access Journals (Sweden)

    Jean-Maurice Cadet

    2017-11-01

    Full Text Available South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations’ data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy.

  8. Concept, Design, and Prototyping of XSAS: A High Power Extendable Solar Array for CubeSat Applications

    Science.gov (United States)

    Senatore, Patrick; Klesh, Andrew; Zurbuchen, Thomas H.; McKague, Darren; Cutler, James

    2010-01-01

    CubeSats have proven themselves as a reliable and cost-effective method to perform experiments in space, but they are highly constrained by their specifications and size. One such constraint is the average continuous power, about 5 W, which is available to the typical CubeSat. To improve this constraint, we have developed the eXtendable Solar Array System (XSAS), a deployable solar array prototype in a CubeSat package, which can provide an average 23 W of continuous power. The prototype served as a technology demonstrator for the high risk mechanisms needed to release, deploy, and control the solar array. Aside from this drastic power increase, it is in the integration of each mechanism, their application within the small CubeSat form-factor, and the inherent passive control benefit of the deployed geometry that make XSAS a novel design. In this paper, we discuss the requirements and design process for the XSAS system and mechanical prototype, and provide qualitative and quantitative results from numerical simulations and prototype tests. We also discuss future work, including an upcoming NASA zero-gravity flight campaign, to further improve on XSAS and prepare it for future launch opportunities.

  9. Simulation of a solar collector array consisting of two types of solar collectors, with and without convection barrier

    DEFF Research Database (Denmark)

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...

  10. Procedure to determine module distribution within a solar array to increase the net energy collection in a solar competition vehicle

    Science.gov (United States)

    Suárez-Castañeda, Nicolás.; Gil-Herrera, Ana; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    In solar vehicle competition, the available space for installation of the solar panel in the car is limited. In order to optimize space, it is difficult not to install solar modules in areas impacted by shadows, even if they cause reduction of efficiency in the overall photoelectric generation. Shadow patterns arise from the relative position of the sun to the earth, and the relative position of the vehicle towards both of them. Since vehicle, earth and sun are moving in semi-predictable patterns, computer simulations can cross and match data from such sources to forecast generation behavior. The outputs of such simulations are shadow patterns on the surface of the vehicle, indicating locations that are suitable or unsuitable to install solar cells. This paper will show the design procedure of the solar panel for a Challenger Class solar vehicle that participated in the World Solar Challenge 2013, intended to increase the net energy collection. The results obtained, illustrate how the employment of a computational tool can help in the acquisition of both qualitative and quantitative information, related to shadows position and their impact on energy collection. With data inputs such as vehicle geometry and its relative position towards the route, the tool was used to evaluate different possible configurations of solar panel module distribution and select the ones that are more convenient to the given scenario. Therefore, this analysis allows improving the solar panel design by considering important variables that were often overlooked.

  11. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    Science.gov (United States)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (< $10M) commercial launch opportunities. The Versatile Satellite Architecture and Technology (VerSAT) will address the second. Today's space missions are often large, complex and require development times typically a decade from conception to execution. In present risk-averse scenario, the huge expense of these one-of-a-kind mission architecture can only be justified if the technology required to make orders of magnitude gains is flight-proven at the time mission conception. VerSAT will complement these expensive missions which are "too large to fail" and the CUBESATs. A number of Geospace science experiments that could immediately take advantage of VerSAT have been identified. They range from the study of fundamental questions of the "ignorosphere" from a single satellite lasting a few days - a region of space that was probed once about 40 years ago, to a constellation of satellites which will disentangle the space and time ambiguity of the variability of ionospheric structures and their link to the storms in the Sun to long-term studies of the Sun-Earth system. VerSAT is a true

  13. High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays

    Science.gov (United States)

    Zhang, Shuyuan; Liu, Min; Liu, Wen; Li, Zhaofeng; Liu, Yusheng; Wang, Xiaodong; Yang, Fuhua

    2017-10-01

    Light trapping is essential to improve the performance of thin film solar cells. In this paper, we performed a parametric optimization of double-sided skewed nanopyramid arrays that act as a light trapping scheme to increase light absorption in thin-film c-Si solar cells. Our theoretical optimization reveals that the short-circuit current density in a solar cell, employing only 1 μm silicon could reach as high as 38.57 mA cm-2, which is 17% and 245% higher than that of the Yablonovitch limit and planar-film counterparts, respectively. Furthermore, we analyzed the underlying physics of the light absorption enhancement through electric field intensity profiles.

  14. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Science.gov (United States)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients

  15. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    Directory of Open Access Journals (Sweden)

    Slemzin Vladimir

    2016-01-01

    Full Text Available Aims: Knowledge of properties of the Earth’s upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the

  16. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  17. TiO2 Nanotube Arrays Composite Film as Photoanode for High-Efficiency Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2014-01-01

    Full Text Available A double-layered photoanode made of hierarchical TiO2 nanotube arrays (TNT-arrays as the overlayer and commercial-grade TiO2 nanoparticles (P25 as the underlayer is designed for dye-sensitized solar cells (DSSCs. Crystallized free-standing TNT-arrays films are prepared by two-step anodization process. For photovoltaic applications, DSSCs based on double-layered photoanodes produce a remarkably enhanced power conversion efficiency (PCE of up to 6.32% compared with the DSSCs solely composed of TNT-arrays (5.18% or nanoparticles (3.65% with a similar thickness (24 μm at a constant irradiation of 100 mW cm−2. This is mainly attributed to the fast charge transport paths and superior light-scattering ability of TNT-arrays overlayer and good electronic contact with F-doped tin oxide (FTO glass provided from P25 nanoparticles as a bonding layer.

  18. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  19. Solid State Large Area Pulsed Solar Simulator for 3-, 4- and 6-Junction Solar Cell Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ssLAPSS expands on the SOP LAPSS by upgrading the light sources to enable future solar cell technologies while maintaining all of the current, proven calibration...

  20. Simulation of a Solar Collector Array Consisting of two Types of Solar Collectors, with and Without Convection Barrier

    OpenAIRE

    Bava, Federico; Furbo, Simon; Perers, Bengt

    2015-01-01

    The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the beha...

  1. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  2. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  3. ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells.

    Science.gov (United States)

    Wu, Cuncun; Wei, Lin; Li, Yitan; Liu, Chang; Jiao, Jun; Chen, Yanxue; Mei, Liangmo

    2014-03-11

    Ordered ZnO nanosheet arrays were grown on weaved titanium wires by a low-temperature hydrothermal method. CdS nanoparticles were deposited onto the ZnO nanosheet arrays using the successive ionic layer adsorption and reaction method to make a photoanode. Nanoparticle-sensitized solar cells were assembled using these CdS/ZnO nanostructured photoanodes, and their photovoltaic performance was studied systematically. The best light-to-electricity conversion efficiency was obtained to be 2.17% under 100 mW/cm2 illumination, and a remarkable short-circuit photocurrent density of approximately 20.1 mA/cm2 was recorded, which could attribute to the relatively direct pathways for transportation of electrons provided by ZnO nanosheet arrays as well as the direct contact between ZnO and weaved titanium wires. These results indicate that CdS/ZnO nanostructures on weaved titanium wires would open a novel possibility for applications of low-cost solar cells.

  4. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  6. Big Deployables in Small Satellites

    OpenAIRE

    Davis, Bruce; Francis, William; Goff, Jonathan; Cross, Michael; Copel, Daniel

    2014-01-01

    The concept of utilizing small satellites to perform big mission objectives has grown from a distant idea to a demonstrated reality. One of the challenges in using small-satellite platforms for high-value missions is the packaging of long and large surface-area devices such as antennae, solar arrays and sensor positioning booms. One possible enabling technology is the slit-tube, or a deployable “tape-measure” boom which can be flattened and rolled into a coil achieving a high volumetric packa...

  7. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  8. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Directory of Open Access Journals (Sweden)

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  9. Theory of intense radio waves in an underdense ionosphere: application to solar power satellite transmissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M V

    1980-11-01

    The instabilities in the F-region plasma are investigated that can be created by the passage of a solar power satellite beam (2.45 Ghz frequency, at a power flux of 23 mW/cm/sup 2/) at frequencies much higher than the cut-off plasma frequency of the ionosphere. The threshold geometry and frequency and intensity scaling laws are calculated for the thermal self-focusing instability, and its saturation level is estimated. The possibility is considered of scaled experiments at HF power to detect the thermal self-focusing instability for an underdense ionosphere. Other experimental possibilities are discussed in terms of the scaling laws. (LEW)

  10. Research and development of low cost processes for integrated solar arrays. Final report, April 15, 1974--January 14, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Graham, C.D.; Kulkarni, S.; Louis, E.

    1976-05-01

    Results of a program to study process routes leading to a low cost large area integrated silicon solar array manufacture for terrestrial applications are reported. Potential processes for the production of solar-grade silicon are evaluated from thermodynamic, economic, and technical feasibility points of view. Upgrading of the present arc-furnace process is found most favorable. Experimental studies of the Si/SiF/sub 4/ transport and purification process show considerable impurity removal and reasonable transport rates. Silicon deformation experiments indicate production of silicon sheet by rolling at 1350/sup 0/C is feasible. Significant recrystallization by strain-anneal technique has been observed. Experimental recrystallization studies using an electron beam line source are discussed. A maximum recrystallization velocity of approximately 9 m/hr is calculated for silicon sheet. A comparative process rating technique based on detailed cost analysis is presented.

  11. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells.

    Science.gov (United States)

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-20

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  12. Short-term cloudiness forecasting for solar energy purposes in Greece, based on satellite-derived information

    Science.gov (United States)

    Nikitidou, E.; Zagouras, A.; Salamalikis, V.; Kazantzidis, A.

    2017-10-01

    A novel method for the short-term (15-240 min) forecasting of cloudiness in Greece is presented by taking into account that this is the main atmospheric factor responsible for the spatial and temporal distribution of surface solar irradiance. Images from the Spinning Enhanced Visible and Infrared Imager onboard the Meteosat Second Generation satellite, for a 3-year time period and with high spatial and temporal resolution (0.05°, 15 min), were processed to retrieve the cloud clearness index (CCI) and used for the training and testing of an artificial neural network (ANN). The estimated and the measured values of CCI are in good agreement and emphasis is given to the spatial distribution of the seasonal errors. The ANN was trained according to pre-classified areas that present similar cloud characteristics and could provide estimations of surface solar irradiance in synergy with models that calculate surface irradiance under clear skies.

  13. Experimental measurements of the plasma sheath around pinhole defects in a simulated high-voltage solar array

    Science.gov (United States)

    Gabriel, S. B.; Garner, C.; Kitamura, S.

    1983-01-01

    An emissive Langmuir probe was used to measure the potentials within the plasma sheath developed around a hole in a simulated solar array at voltages between 50 and 450 V. The hole sizes were larger than actual pinhole defects; the plasma density was in the 10,000 per cu cm range, which is considerably lower than the density of 1,000,000 per cu cm found at low-earth-orbit altitudes. Despite these inadequacies in the simulation, the experiments indicate that this type of probe is a useful diagnostic technique for investigating the plasma sheaths developing around pinhole defects.

  14. Solarbus Solar Array Innovative Light Weight Mechanical Architecture with Thin Lateral Panels Deployed with Shape Memory Alloy Regulator

    Science.gov (United States)

    D'Abrigeon, Laurent; Carpine, Anne; Laduree, Gregory

    2005-05-01

    The standard ALCATEL SOLAR ARRAY PLANAR CONCEPT on the TELECOM market today on flight is named SOLARBUS.This concept is:• 3 to 10 identical panels covered with Si Hi-η celltechnology.• A central mast constitute by 3 to 4 panels and 1yoke linked together by hinges and synchronizedby cables.• From 2 to 6 lateral panelsThis concept is able to fit with the customer requirements in order to have a competitive "global offer at system level" (mass to power ratio 48-50 W/Kg)But, for the near future, in line with the market trend, and based on the previous experience, an improvement of the SOLARBUS Solar Array concept in term of W/kg/€ is essential in order to maintain the competitiveness of the global ALCATEL offer at system level.In order to increase the W/Kg performance Alcatel has developed a new architecture named Lightweight Panel Structure (LPS). The objectives of this new structure are :• To decrease the kg/m2 ratio • To be compatible of all promising cells technology including Si Hi-n, GaAs, GaAs+ small reflectors. This new architecture is based on the fact that during the 3 major life phases of a Solar Array (Launch/Deployment/Deployed orbital life), the structural needs are more important for the central panels than for the lateral panels.So two different panels have been designed :• Central panels (named LPS1)• Lateral panels (named LPS2)The stowing configuration as been adapted : 2 thin lateral panels LPS2 between 2 structural central panels LPS1, and local bumpers to transfer the loads from LPS2 to LPS1.Also one of the more stringent loads applied to the panels are corresponding to deployment loads. In order to limit the mass of reinforcement of the panels, a deployment speed regulator shall be used. In the frame of the new generation of solar arrays, Alcatel has developed a new actuator based on shape memory alloy torsional rod. This light weight component is directly connected to heaters lines and is able to provide great actuation torque

  15. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    Science.gov (United States)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  16. Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer.

    Science.gov (United States)

    Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li

    2017-12-01

    In this paper, N-doped TiO2 (N-TiO2) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO2. To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO2 than un-doped TiO2. The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO2 than to un-doped TiO2. Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO2 than that on un-doped TiO2.

  17. Measurement of the Solar Neutrino Flux with an Array of Neutron Detectors in the Sudbury Neutrino Observatory

    CERN Document Server

    Jamieson, Blair

    2008-01-01

    The Sudbury Neutrino Observatory has measured the $^8$B solar neutrino flux using an array of 3He proportional counters. Results obtained using a Markov-Chain Monte-Carlo (MCMC) parameter estimation, integrating over a standard extended likelihood, yield effective neutrino fluxes of: phi_nc=5.54+0.33-0.31(stat)+0.36-0.34(syst) x 10^6 /cm^2/s, phi_cc=1.67+0.05-0.04(stat)+0.07-0.08(syst) x 10^6 /cm^2/s, and phi_es=1.77+0.24-0.21(stat)+0.09-0.10(syst) x 10^6 /cm^2/s. These measurements are in agreement with previous solar neutrino flux measurements, and with neutrino oscillation model results. Including these flux measurements in a global analysis of solar and reactor neutrino results yields an improved precision on the solar neutrino mixing angle of theta=34.4+1.3-1.2 degrees, and Delta m^2=7.59+0.19-0.21 eV^2.

  18. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front

    DEFF Research Database (Denmark)

    Uhrenfeldt, C.; Villesen, T. F.; Tetu, A.

    2015-01-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed...... on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array cause a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations...

  19. Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles

    Directory of Open Access Journals (Sweden)

    A. Bracher

    2005-01-01

    Full Text Available SCIAMACHY (Scanning Imaging Spectrometer for Atmospheric Chartography aboard the recently launched Environmental Satellite (ENVISAT of ESA is measuring solar radiance upwelling from the atmosphere and the extraterrestrial irradiance. Appropriate inversion of the ultraviolet and visible radiance measurements, observed from the atmospheric limb, yields profiles of nitrogen dioxide, NO2, in the stratosphere (SCIAMACHY-IUP NO2 profiles V1. In order to assess their accuracy, the resulting NO2 profiles have been compared with those retrieved from the space borne occultation instruments Halogen Occultation Experiment (HALOE, data version v19 and Stratospheric Aerosol and Gas Experiment II (SAGE II, data version 6.2. As the HALOE and SAGE II measurements are performed during local sunrise or sunset and because NO2 has a significant diurnal variability, the NO2 profiles derived from HALOE and SAGE II have been transformed to those predicted for the solar zenith angles of the SCIAMACHY measurement by using a 1-dimensional photochemical model. The model used to facilitate the comparison of the NO2 profiles from the different satellite sensors is described and a sensitivity ananlysis provided. Comparisons between NO2 profiles from SCIAMACHY and those from HALOE NO2 but transformed to the SCIAMACHY solar zenith angle, for collocations from July to October 2002, show good agreement (within +/-12% between the altitude range from 22 to 33km. The results from the comparison of all collocated NO2 profiles from SCIAMACHY and those from SAGE II transformed to the SCIAMACHY solar zenith angle show a systematic negative bias of 10 to 35% between 20km to 38km with a small standard deviation between 5 to 14%. These results agree with those of Newchurch and Ayoub (2004, implying that above 20km NO2 profiles from SAGE II sunset are probably somewhat high.

  20. CubeSat Power Management Controller and Solar Array Articulation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The CubeSat platform represents a valuable architecture from which to develop satellite capabilities, payloads and technologies. However, CubeSat spacecraft must be...

  1. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  2. Device architecture engineering in polymer/ZnO quantum dots/ZnO array ternary hybrid solar cells

    Science.gov (United States)

    Wu, Fan; Zhao, Yu; Zhang, Hui; Tong, Yanhua

    2015-09-01

    Hybrid solar cells (HSCs) based on pristine ZnO nanorod array (ZnO-NRA) and conjugated polymer with ordinary inverted device architecture normally perform low open-circuit voltage ( V oc) and short-circuit current density ( J sc). This paper compares three improved device architectures for preparation of efficient polymer/ZnO-NRA HSCs by incorporating ZnO quantum dots (ZnO-QDs) into device with different engineering. It is found that when growth of ZnO-QDs on ZnO nanorod surface to formation of homostructured ZnO core-shell array (ZnO-CSA) instead of pristine ZnO-NRA can significantly increase the device V oc, while blending ZnO-QDs into MEH-PPV between nanorods can significantly increase the device J sc. The best photovoltaic performance is realized in the architecture consisting of ZnO-CSA as well as blends of MEH-PPV and ZnO-QDs, in which the V oc and J sc can be significant enhanced simultaneously. The present study reports the architecture-related device performances in polymer/ZnO-NRA solar cells, which will help to guide the design of HSCs or related optoelectronic devices.

  3. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    OpenAIRE

    Ho, Kevin Ming-Jiang

    2014-01-01

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka- band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and prod...

  4. Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission

    Science.gov (United States)

    Kerslake, Thomas W.; Kraft, Thomas G.; Yim, John T.; Le, Dzu K.

    2016-01-01

    NASA is planning an Asteroid Redirect Mission (ARM) to take place in the 2020s. To enable this multi-year mission, a 40 kW class solar electric propulsion (SEP) system powered by an advanced 50 kW class solar array will be required. Powered by the SEP module (SEPM), the ARM vehicle will travel to a large near-Earth asteroid, descend to its surface, capture a multi-metric ton (t) asteroid boulder, ascend from the surface and return to the Earth-moon system to ultimately place the ARM vehicle and its captured asteroid boulder into a stable distant orbit. During the years that follow, astronauts flying in the Orion multipurpose crew vehicle (MPCV) will dock with the ARM vehicle and conduct extra-vehicular activity (EVA) operations to explore and sample the asteroid boulder. This paper will review the top structural design considerations to successfully implement this 50 kW class solar array that must meet unprecedented performance levels. These considerations include beyond state-of-the-art metrics for specific mass, specific volume, deployed area, deployed solar array wing (SAW) keep in zone (KIZ), deployed strength and deployed frequency. Analytical and design results are presented that support definition of stowed KIZ and launch restraint interface definition. An offset boom is defined to meet the deployed SAW KIZ. The resulting parametric impact of the offset boom length on spacecraft moment of inertias and deployed SAW quasistatic and dynamic load cases are also presented. Load cases include ARM spacecraft thruster plume impingement, asteroid surface operations and Orion docking operations which drive the required SAW deployed strength and damping. The authors conclude that to support NASA's ARM power needs, an advanced SAW is required with mass performance better than 125 W/kg, stowed volume better than 40 kW/cu m, a deployed area of 200 sq m (100 sq m for each of two SAWs), a deployed SAW offset distance of nominally 3-4 m, a deployed SAW quasistatic strength

  5. TRUSSELATOR - On-Orbit Fabrication of High Performance Support Structures for Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes to develop and demonstrate a process for fabricating high-performance composite truss structures on-orbit and integrating them with thin film solar cell...

  6. SOLAROSA (Stretched Optical Lens Architecture on Roll-Out Solar Array) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS), in partnership with Entech Solar (ENTECH) and Carbon-Free Energy (CFE) will focus the proposed NASA Phase 1 effort on the...

  7. Fabrication of TiO{sub 2} nanotube–nanocube array composite electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Shih-Yu [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan (China); Su, Chaochin, E-mail: f10913@ntut.edu.tw [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan (China); Kathirvel, Sasipriya [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan (China); Li, Chung-Yen [Department of Chemistry, National Central University, Chung-Li 32001, Taiwan (China); Li, Wen-Ren, E-mail: ch01@ncu.edu.tw [Department of Chemistry, National Central University, Chung-Li 32001, Taiwan (China)

    2013-02-01

    One dimensional TiO{sub 2} nanotube structure recently plays an important role in the application of dye sensitized solar cells (DSSCs) due to its faster electron transport. The fabrication of photoanode using the TiO{sub 2} nanotube structures mixed with the TiO{sub 2} nanoparticles was investigated to enhance the photovoltaic efficiency of DSSCs by increasing the surface area of electrode. In this work, self-organized and vertically-oriented TiO{sub 2} nanotube arrays (TNAs) covered with uniformly distributed TiO{sub 2} nanocubes (TNCs) were fabricated in a simple one-step anodization process. The X-ray diffraction patterns reveal that both TNAs and TNCs are in anatase phase. The scanning electron microscopy analysis demonstrates that the wall thickness and inner diameter of hexagonal close-packed TiO{sub 2} nanotubes from chemically polished Ti foils are 10–15 and 100–120 nm, respectively, and the particle size of TNCs is 60–75 nm. The DSSC fabricated by the mixed morphological TNAs with TNCs shows an enhanced photoconversion efficiency of ∼ 63% than that of TNAs alone, due to the increase of both dye adsorption and electron transportation rate. - Highlights: ► Fabrication of TiO{sub 2} nanotube arrays on Ti foils was performed using anodization process. ► Nitrogen blow influences the growth of TiO2 nanocube particles on the TiO{sub 2} nanotube arrays. ► Mixed morphological nanotube–nanocube TiO{sub 2} photoanode in dye-sensitized solar cell achieved improved efficiency of 1.98%.

  8. Hole-conductor-free perovskite solar cells with carbon counter electrodes based on ZnO nanorod arrays.

    Science.gov (United States)

    Wang, B X; Liu, T F; Zhou, Y B; Chen, X; Yuan, X B; Yang, Y Y; Liu, W P; Wang, J M; Han, H W; Tang, Y W

    2016-10-05

    A one dimensional nanostructure array has been considered as a successful charge transport material for perovskite solar cells (PSCs), because of its large internal surface area, superior charge collection efficiency and fast charge transport. Herein we demonstrate a ZnO nanorod (NR) array as the electron collector in a hole-conductor-free PSC with a carbon counter electrode (CE). A relatively low initial power conversion efficiency (PCE) of 5.6% was achieved using a 1 μm long ZnO NR array as an electron collector. However, by introduction of a thin TiO2 coating layer on the surface of ZnO via TiCl4 treatment, the PCE of the cell has been improved to the highest value of 8.24%. It is revealed that the performance enhancement of the ZnO/TiO2 NR based PSCs is largely attributed to the larger surface area, reduced electron combination, and superior electron transport properties.

  9. Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

    Directory of Open Access Journals (Sweden)

    Jung-Ho Yun

    2014-06-01

    Full Text Available Photovoltaic characteristics of dye-sensitized solar cells (DSSCs using TiO2 nanotube (TNT arrays as photoanodes were investigated. The TNT arrays were 3.3, 11.5, and 20.6 μm long with the pore diameters of 50, 78.6, and 98.7 nm, respectively. The longest TNT array of 20.6 μm in length showed enhanced photovoltaic performances of 3.87% with significantly increased photocurrent density of 8.26 mA·cm−2. This improvement is attributed to the increased amount of the adsorbed dyes and the improved electron transport property with an increase in TNT length. The initial charge generation rate was improved from 4 × 1021 s−1·cm−3 to 7 × 1021 s−1·cm−3 in DSSCs based on optical modelling analysis. The modelling analysis of optical processes inside TNT-based DSSCs using generalized transfer matrix method (GTMM revealed that the amount of dye and TNT lengths were critical factors influencing the performance of DSSCs, which is consistent with the experimental results.

  10. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    Science.gov (United States)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  11. Electrical failure on satellite's power harnesses due to small debris impacts

    OpenAIRE

    Hirai, Takayuki; Higashide, Masumi; Kurosaki, Hirohisa; Kawakita, Shirou; Mando, Yuki; Yamaguchi, Shota; Tanaka, Koji; 平井, 隆之; 東出, 真澄; 黒崎, 裕久; 川北, 史朗; 万戸, 雄輝; 山口, 翔太; 田中, 孝治

    2017-01-01

    Loss of satellite functions due to space debris collisions includes not only mechanical failures like breakup of satellite main bodies but also electric failures such as decrease in power supply from solar arrays and power harnesses. In particular, the past hypervelocity impact experiments suggest that sustained arcs and resulting ground faults on the power harnesses could be triggered by impacts of tiny space debris particles smaller than 1 mm which constantly impact on satellite surfaces. T...

  12. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  13. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    Science.gov (United States)

    Zaher, A.; N'goran, Y.; Thiery, F.; Grieu, S.; Traoré, A.

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking.

  14. Environmental Assessment for the Solar Photovoltaic Array at Eglin Air Force Base, Florida

    Science.gov (United States)

    2014-01-24

    impervious gravel layer and grass planting to cover the soil surface under the array and the 150-foot buffer around the array. The gradual slope of the...Okaloosa County. In the past, a combination of the Clean Air Act Prevention of Significant Deterioration Rule’s 250-ton-per-year threshold for new or...53 ppb b Annual mean Ozone [73 FR 16436, March 27, 2008] Primary and secondary 8-hour 0.075 ppm c Annual fourth-highest daily maximum 8-hour

  15. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  16. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar Level 1.0: 2006-2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Americas ALOS Data Node (AADN) With the Japan Aerospace Exploration Agency's (JAXA's) launch of the Advanced Land Observation Satellite (ALOS) in January 2006, a new...

  17. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the atmosphere is important. It is concluded

  18. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  19. TROPOMI, the solar backscatter satellite instrument for air quality and climate, heads towards detailed design

    NARCIS (Netherlands)

    Vries, J. de; Voors, R.; Mika, A.; Otter, G.; Valk, N.J.C. van der; Aben, I.; Hoogeveen, R.; Gloudemans, A.; Dobber, M.R.; Veefkind, P.; Levelt, P.

    2009-01-01

    The Tropospheric Monitoring Instrument (TROPOMI) is currently planned for launch on ESA's Sentinel 5 precursor satellite in the time frame of 2014. TROPOMI is an ultraviolet-to-SWIR wavelengths imaging spectrograph that uses two-dimensional detectors to register both the spectrum and the swath

  20. The Bepicolombo Mercury Planetary Orbiter (MPO Solar Array Design, Major Developments and Qualification

    Directory of Open Access Journals (Sweden)

    Loehberg A.

    2017-01-01

    The MPO solar generator is composed of one wing consisting of three panels and provides an average power output up to 1800W during the nominal 1 Earth year mission around Mercury. The wing design is characterised by temperature reduction measures. The flight wing has already passed the majority of the environmental test program.

  1. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; et al., [Unknown; Hessels, J.W.T.; Markoff, S.

    2014-01-01

    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  2. LOFAR tied-array imaging of Type III solar radio bursts

    NARCIS (Netherlands)

    Morosan, D.E.; Gallagher, P.T.; Zucca, P.; Fallows, R.; Carley, E.P.; Mann, G.; Bisi, M.M.; Kerdraon, A.; Avruch, I.M.; Bentum, Marinus Jan; Bernardi, G.; Best, P.; Bonafede, A.; Bregman, J.; Breitling, F.

    2014-01-01

    Context: The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio

  3. Dualband MW/LW Strained Layer Superlattice Focal Plane Arrays For Satellite-Based Wildfire Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Dualband focal plane arrays (FPAs) based on gallium-free Type-II strained layer superlattice (SLS) photodiodes have recently experienced significant advances. We...

  4. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    Science.gov (United States)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-01-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  5. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    Science.gov (United States)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-06-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  6. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  7. A comparison of a conventional launch system vs. externally supplied vehicles for installation and maintenance of solar power satellites

    Science.gov (United States)

    Loetzerich, Klaus

    The paper analyzes two principal approaches for the transportation system to support the operational phase of a solar power satellite (SPS) scenario that foresees the continued installation of two 10 GW stations per year equivalent to 150,000 Mg payload per year. One concept consists of conventional single stage to orbit (SSTO) vehicles, the structure of which is left in orbit and used as part of the structure of an SPS. As an alternative concept an externally supplied vehicle is being considered, the required power being supplied by a laser from the ground. A comparison of these two approaches showed, that the conventional launch system is preferable, because it is technically feasible, simpler to development, and no significant inpact to atmosphere is foreseen.

  8. Controllable preparation of TiO{sub 2} nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2015-08-30

    Graphical abstract: TiO{sub 2} nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO{sub 2} NWAs. • The formation mechanism of the TiO{sub 2} nanostructures was discussed. • The density, average diameter, and morphology of TiO{sub 2} NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO{sub 2} nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO{sub 2} nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO{sub 2} nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO{sub 2} nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO{sub 2} NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm{sup −2}, an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved.

  9. Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl

    Directory of Open Access Journals (Sweden)

    P. T. Verronen

    2007-11-01

    Full Text Available We utilise hydroxyl observations from the MLS/Aura satellite instrument to study the latitudinal extent of particle forcing in the northern polar region during the January 2005 solar proton event. MLS is the first satellite instrument to observe HOx changes during such an event. We also predict the hydroxyl changes with respect to the magnetic latitude by the Sodankylä Ion and Neutral Chemistry model, estimating the variable magnetic cutoff energies for protons using a parameterisation based on magnetosphere modelling and the planetary magnetic index Kp. In the middle and lower mesosphere, HOx species are good indicators of the changes in the atmosphere during solar proton events, because they respond rapidly to both increases and decreases in proton forcing. Also, atmospheric transport has a negligible effect on HOx because of its short chemical lifetime. The observations indicate the boundary of the proton forcing and a transition region, from none to the "full" effect, which ranges from about 57 to 64 degrees of magnetic latitude. When saturating the rigidity cutoff Kp at 6 in the model, as suggested by earlier studies using observations of cosmic radio noise absorption, the equatorward boundary of the transition region is offset by ≈2 degrees polewards compared with the data, thus the latitudinal extent of the proton forcing in the atmosphere is underestimated. However, the model predictions are in reasonable agreement with the MLS measurements when the Kp index is allowed to vary within its nominal range, i.e., from 1 to 9 in the cutoff calculation.

  10. Time of Formation and Chemical Alteration of Planetesimals, Icy Satellites, and Dwarf Planets in the Outer Solar System

    Science.gov (United States)

    Castillo-Rogez, J.; Johnson, T.; Matson, D.; Vance, S.; Choukroun, M.; Lunine, J.

    2009-05-01

    We consider various scenarios for the early chronology of outer solar system icy objects (e.g., planetesimals, satellites, dwarf planets) depending on the time at which these objects formed with respect to the production of calcium-aluminum inclusions. The latter is our time of reference for computing the amount of short-lived radioisotopes accreted in these objects. We especially focus on hydrothermal activity that could have taken place in icy planetesimals and the consequences on the early history of bigger objects depending on the time and duration of accretion, i.e. whether or not short-lived radioisotopes were still in significant abundance in planetesimals when icy satellites and dwarf planets formed. Chemical alteration as a result of 26Al-triggered differentiation has been studied in the case of meteorite parent bodies, but the consequences of such a phenomenon in the case of outer Solar system objects has not been thoroughly addressed. However, various recent observations suggest that the outer Solar system could have formed in a few My after the beginning of the Solar system. In such conditions meteorite parent bodies and icy objects (from planetesimals to large icy objects) could have had a similar early history. Early melting is accompanied by hydrothermal circulation and resulting aqueous alteration and redistribution of major elements between the rock phase and the volatile phase. This can result in partial hydration of the silicate phase, formation of salt compounds in small objects from which molecular hydrogen can easily escape, as well as leaching of long-lived radioisotopes from the rock phase. Melting can also result in the destabilization of clathrate hydrates and thus degassing of major species predicted by cosmochemical models, with implications for the diversity of compositions of planetesimals in the early outer Solar System. We consider several classes of planetesimals, characterized by their size, time of formation, initial rock mass

  11. Scattering Effects of Solar Panels on Space Station Antenna Performance

    Science.gov (United States)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  12. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  13. Evaluation of surface solar radiation trends from WRF simulations over Europe with satellite and ground-based observations

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Alexandri, Georgia; Katragkou, Eleni; Pavlidis, Vasileios; Kartsios, Stergios; Sanchez-Lorenzo, Arturo

    2017-04-01

    In this study, we evaluate the ability of WRF (Weather Research and Forecasting model) to capture the surface solar radiation (SSR) trends over Europe during the "brightening" period 1990-2008. For the needs of this work, two WRF hindcasts were implemented for the EURO-CORDEX (European Coordinated Regional Climate Downscaling Experiment) domain at a spatial resolution of 0.44o. Both simulations are driven by the ERA-interim reanalysis. Different model parameterizations are used to investigate the sensitivity of model physics on the radiation components. The simulations are evaluated against high-resolution satellite measurements from the CM SAF (Satellite Application Facilities for Climate Monitoring) and ground-based observations from the GEBA (Global Energy Balance Archive). The ability of the model to reproduce the SSR annual and seasonal patterns is discussed taking into account cloudiness, which is the main driver of the SSR patterns. Then, the SSR trends from WRF are compared against trends from the CM SAF and GEBA datasets. Our results highlight the importance of such studies in order to understand the current limitations of WRF climate simulations in predicting future trends in SSR.

  14. Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

    Directory of Open Access Journals (Sweden)

    Mikhail Pashchanka

    2013-12-01

    Full Text Available Polycrystalline CuInSe2 (CISe nanorods are promising for the fabrication of highly efficient active layers in solar cells. In this work we report on a nanocasting approach, which uses track-etched polycarbonate films as hard templates for obtaining three-dimensionally (3D arranged CISe nanorod arrays. Copper and indium ketoacidoximato complexes and selenourea were employed as molecular precursors. Arrays of parallel isolated cylindrical pores of 100 nm nominal diameter and 5 μm length were used for the infiltration of the precursor solution under inert atmosphere, followed by drying, thermal conversion into a preceramic ‘green body’, a subsequent dissolution of the template, and a final thermal treatment at 450 °C. The nanorods that where synthesised in this way have dimensions equal to the pore sizes of the template. Investigation of the CuInSe2 nanorod samples by spectroscopic and diffraction methods confirmed a high purity and crystallinity, and a stoichiometric composition of the CISe ternary semiconductor compound.

  15. Intermediate load modules for test and evaluation: Flat-Plate Solar Array Project

    Science.gov (United States)

    Bower, M. J.

    1985-01-01

    Two versions of a 36 stainless steel solar module were built. The first version was built as a commercial module for marine applications and was purchased for evaluation by JPL. Design deficiencies were identified as a result of the evaluation. The second version was built and the improvements that resulted from design changes are described. Assembly problems, electrical performance, and qualification test results are provided.

  16. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    Science.gov (United States)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  17. Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology

    Science.gov (United States)

    Thakur, Ujwal Kumar; Askar, Abdelrahman M.; Kisslinger, Ryan; Wiltshire, Benjamin D.; Kar, Piyush; Shankar, Karthik

    2017-07-01

    This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs ∼300 nm in length and ∼40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.

  18. ISS Solar Array Alpha Rotary Joint (SARJ) Bearing Failure and Recovery: Technical and Project Management Lessons Learned

    Science.gov (United States)

    DellaCorte, Christopher; Krantz, Timothy L.; Dube, Michael J.

    2011-01-01

    The photovoltaic solar panels on the International Space Station (ISS) track the Sun through continuous rotating motion enabled by large bearings on the main truss called solar array alpha rotary joints (SARJs). In late 2007, shortly after installation, the starboard SARJ had become hard to turn and had to be shut down after exceeding drive current safety limits. The port SARJ, of the same design, had been working well for over 2 years. An exhaustive failure investigation ensued that included multiple extravehicular activities to collect information and samples for engineering forensics, detailed structural and thermal analyses, and a careful review of the build records. The ultimate root cause was determined to be kinematic design vulnerability coupled with inadequate lubrication, and manufacturing flaws; this was corroborated through ground tests, metallurgical studies, and modeling. A highly successful recovery plan was developed and implemented that included replacing worn and damaged components in orbit and applying space-compatible grease to improve lubrication. Beyond the technical aspects, however, lie several key programmatic lessons learned. These lessons, such as running ground tests to intentional failure to experimentally verify failure modes, are reviewed and discussed so they can be applied to future projects to avoid such problems.

  19. Initial In-flight Results: The Total Solar Irradiance Monitor on the FY-3C Satellite, an Instrument with a Pointing System

    Science.gov (United States)

    Wang, Hongrui; Qi, Jin; Li, Huiduan; Fang, Wei

    2017-01-01

    The total solar irradiance (TSI) has been recorded daily since October 2013 by the Total Solar Irradiance Monitor (TSIM) onboard the FY-3C satellite, which is mainly designed for Earth observation. The TSIM has a pointing system to perform solar tracking using a sun sensor. The TSI is measured by two electrical substitution radiometers with traceability to the World Radiation Reference. The TSI value measured with the TSIM on 2 October 2013 is 1364.88 W m^{-2} with an uncertainty of 1.08 W m^{-2}. Short-term TSI variations recorded with the TSIM show good agreement with SOHO/VIRGO and SORCE/TIM. The data quality and accuracy of FY-3C/TSIM are much better than its predecessors on the FY-3A and FY-3B satellites, which operated in a scanning mode.

  20. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    Science.gov (United States)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  1. Spatial and temporal variations of albedo and absorbed solar radiation during 2009 - 2016 from IKOR-M satellite program

    Science.gov (United States)

    Cherviakov, Maksim; Bogdanov, Mikhail; Spiryakhina, Anastasia; Shishkina, Elena; Surkova, Yana; Kulkova, Eugenia

    2017-04-01

    This report describes Earth's radiation budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M» No 1 of this project was put into orbit in September, 2009. The IKOR-M radiometer is a satellite instrument that measures reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov State University and installed on Russian hydrometeorological satellites "Meteor-M" No 1 and No 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such measurements can be used to derive Earth's surface albedo and absorbed solar radiation. This information also can be used in different models of long-term weather forecasts and in researches of climate change trends (Sklyarov et al., 2016). Satellite "Meteor-M" No 1 and No 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2 (Bogdanov et al., 2016). The effect of aging is investigated for first IKOR

  2. A theoretical study of microwave beam absorption by a rectenna, introduction. [solar power satellites

    Science.gov (United States)

    1981-01-01

    The conditions required for a large rectenna array (i.e., reference design) to absorb nearly 100% of transmitted energy were studied. Design parameters including element spacing, and the manner in which these affect scatter were formulated. Amplitudes and directions of scatter and development of strategies for mitigation were also investigated. The effects on rectenna behavior of external factors such as weather and aircraft overflights were determined.

  3. Efficiency analysis of a solar photovoltaic array coupled with an electrolyser power unit: a case study

    OpenAIRE

    Shiroudi, Abolfazl; Deleuze, Michael; Mousavifar, Seyed Ahmad

    2017-01-01

    Hydrogen as an energy carrier is one of the most potential candidates for clean energy and can be produced by water electrolysis. The use of 10 kW photovoltaic arrays for supplying a 5 kW electrolyser which consists of 10 series-connected electrolyser stacks and a 28% alkaline (KOH) solution electrolyte has been investigated at the Taleghan renewable energies site in Iran. The hydrogen produced by the electrolyser provides energy for the 1 kW polymer electrolyte membrane fuel cell, which m...

  4. Solar Radiation at Surface for Typical Cities in the Arid and Semi-Arid Area in Xinjiang, China Based on Satellite Observation

    Science.gov (United States)

    Sihua, Fang; Haichen, Liu; Jiamin, Huang; Yunqi, Zhang; Jun, Hu; Yonghang, Chen; Yanming, Kang; Xue, Wang; Chengjie, Huang

    2017-05-01

    Xinjiang, a region of China with arid and semi-arid areas, has abundant solar incidence with 166.5×104 km2 and diverse underlying surface. The meager number of surface radiation observatories cannot meet the need for efficient exploration of solar energy. In this study we classified Xinjiang into three regions: southern Xinjiang, northern Xinjiang and Tu-Ha region and applied satellite data to provide the surface solar radiation’s temporal distribution for 10 typical cities. The study is focused on seasonal, annual and variations of all sky downward shortwave radiation flux at surface based on 24-year satellite dataset GEWEX-SRB from the WCRP/GEWEX (World Climate Research Program/Global Energy and Water Cycle Experiment) from 1984 to 2007. The results are as follows. In general, the monthly average solar radiation flux for the cities in the Tu-Ha region was the largest followed by the south Xinjiang and northern Xinjiang. The solar radiation in the most northern cities were less than 150.0 W/m2 in winter, the minimum is 138.7 W/m2, while the other cities were greater than 150.0 W/m2. The maximum of monthly solar flux for the Tu-Ha region, southern and northern Xinjiang was 400.0 W/m2.

  5. Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations

    Energy Technology Data Exchange (ETDEWEB)

    Espinar, Bella; Ramirez, Lourdes; Zarzalejo, Luis F.; Polo, Jesus; Martin, Luis [Solar Platform of Almeria (Energy Department, CIEMAT), Ctra. de Senes s/n, 04200 Tabernas (Almeria) (Spain); Drews, Anja [Energy and Semiconductor Research Laboratory, Oldenburg University, Oldenburg (Germany); Beyer, Hans Georg [University of Applied Sciences Magdeburg-Stendal (FH), Magdeburg (Germany)

    2009-01-15

    In this paper new comparison parameters are defined for assessing statistical similarity between two data sets. The new parameters are based on the commonly used Kolmogorov-Smirnov test. They allow quantifying differences between the cumulative distribution functions of each data series. These parameters are applied to global horizontal daily irradiation values from pyranometric measurements and satellite data. The test data from 38 stations distributed throughout Germany cover the time from 1995 until 2003. The results affirm that the new parameters contribute valuable information to the comparison of data sets complementing those that are found with the mean bias and root mean squared differences. (author)

  6. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    Science.gov (United States)

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  8. Observational study on the fine structure and dynamics of a solar jet. I. Energy build-up process around a satellite spot

    Science.gov (United States)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2017-10-01

    We report on a solar jet phenomenon associated with successive flares on 2014 November 10. These explosive events were involved with the satellite spots' emergence around a δ-type sunspot in the decaying active region NOAA 12205. The data for this jet were provided by the Solar Dynamics Observatory, the X-Ray Telescope aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope at Hida Observatory, Kyoto University. These abundant data enabled us to present this series of papers to discuss the entire process of the observed phenomena, including the energy storage, event trigger, and energy release. In this paper, we focus on the energy build-up and trigger phases, by analyzing the photospheric horizontal flow field around the active region by an optical flow method. The analysis shows the following results: (1) The observed explosive phenomena involved three satellite spots, the magnetic fluxes of which successively reconnected with their pre-existing ambient fields; (2) All of these satellite spots emerged in the moat region of a pivotal δ-type sunspot, especially near its convergent boundary with the neighboring supergranules or moat regions of adjacent sunspots; (3) Around the jet ejection site, the positive polarities of the satellite spot and adjacent emerging flux encountered the global magnetic field with a negative polarity in the moat region of the pivotal δ-type sunspot, and thus the polarity inversion line was formed along the convergent boundary of the photospheric horizontal flow channels.

  9. Improvement in the spatio-temporal distribution of surface solar radiation data over Belgium by merging ground-based and satellite measurements

    Science.gov (United States)

    Journée, M.; Bertrand, C.

    2010-09-01

    Appropriate information on solar resources is very important for a variety of technological areas, such as: agriculture, meteorology, forestry engineering, water resources and in particular in the designing and sizing of solar energy systems. As an example, time-and space-dependent global solar radiation on horizontal surface at the location of interest is the most critical input parameter employed in the design and prediction of the performance of a solar energy device. Solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of observed solar radiation measurements has proven to be spatially and temporally inadequate for many applications. Mapping the solar radiation by interpolation/extrapolation of measurements is possible but leads to large errors, except if the network is dense. A global coverage of solar radiation can however be inferred from space-based observations. In the present study, we evaluate the potential benefit of merging global solar radiation measurements from the Royal Meteorological Institute of Belgium (RMIB) solar measurements network with the operationally derived surface incoming global short-wave radiation products from Meteosat Second Generation (MSG) satellites imageries to improve the spatio-temporal resolution of the surface global solar radiation data over Belgium. Within the Satellite Application Facility (SAF) network supported by the European Organisation for the Exploitation of Meteorological Satellites (Eumetsat), the downwelling shortwave radiation at the surface of Belgium is operationally retrieved from MSG imageries by two decentralized SAFs: the Satellite Application Facility on Climate Monitoring (CM-SAF) and the Land Surface Analysis Satellite Application Facility (LSA-SAF). To retrieve the same parameter, the different SAFs use their own algorithms and

  10. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    Science.gov (United States)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  11. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.

    Science.gov (United States)

    Uhrenfeldt, C; Villesen, T F; Têtu, A; Johansen, B; Larsen, A Nylandsted

    2015-06-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array causes a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it is shown that this broadband enhancement is due to single particle resonances that give rise to light-trapping in the infrared spectral range and to collective resonances that ensure an efficient in-coupling of light in the ultraviolet-blue spectral range.

  12. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jingyang Wang

    2014-12-01

    Full Text Available TiO2 nanoparticles/nanorod composite arrays were prepared on the F-doped tin oxide (FTO substrate through a two-step method of hydrothermal and d.c. magnetron sputtering. The microstructure and optical properties of the samples were characterized respectively by means of X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM and UV–vis spectrometer. The results showed that the TiO2 composite nanorod arrays possess the nature of high surface area for more dye molecule absorption and the strong light scattering effects. The dye sensitized solar cells (DSSCs based on TiO2 composite nanorod arrays exhibited a 80% improvement in the overall energy conversion efficiency compared with the pure TiO2 nanorod arrays photoanode.

  13. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.

    Science.gov (United States)

    Bi, Dongqin; Boschloo, Gerrit; Schwarzmüller, Stefan; Yang, Lei; Johansson, Erik M J; Hagfeldt, Anders

    2013-12-07

    We report for the first time the use of a perovskite (CH3NH3PbI3) absorber in combination with ZnO nanorod arrays (NRAs) for solar cell applications. The perovskite material has a higher absorption coefficient than molecular dye sensitizers, gives better solar cell stability, and is therefore more suited as a sensitizer for ZnO NRAs. A solar cell efficiency of 5.0% was achieved under 1000 W m(-2) AM 1.5 G illumination for a solar cell with the structure: ZnO NRA/CH3NH3PbI3/spiro-MeOTAD/Ag. Moreover, the solar cell shows a good long-term stability. Using transient photocurrent and photovoltage measurements it was found that the electron transport time and lifetime vary with the ZnO nanorod length, a trend which is similar to that in dye-sensitized solar cells, DSCs, suggesting a similar charge transfer process in ZnO NRA/CH3NH3PbI3 solar cells as in conventional DSCs. Compared to CH3NH3PbI3/TiO2 solar cells, ZnO shows a lower performance due to more recombination losses.

  14. Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells

    Science.gov (United States)

    2012-01-01

    With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300°C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation. PMID:23186280

  15. Low cost solar array project. Quarterly progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast into polycrystalline silicon for subsequent use in fabricating solar cells. Progress is reported on the following tasks: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform supporting research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the product of semiconductor-grade silicon in a facility capable of producing 1000 MT/Yr. (WHK)

  16. Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

  17. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    Science.gov (United States)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  18. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: liyan-nwnu@163.com [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Chang, Yin [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhao, Yun [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Wang, Jian; Wang, Cheng-wei [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China)

    2016-09-15

    Oriented nickel sulfide (NiS) nanotube arrays were successfully in-situ fabricated on conductive glass substrate and used directly as counter electrode for dye-sensitized solar cells without any post-processing. Compared with Pt counter electrode, for the beneficial effect of electronic transport along the axial direction through the arrays to the substrate, oriented NiS nanotube arrays exhibit both higher electrocatalytic activity for I{sub 3}{sup −} reduction and better electrochemical stability, resulting in a significantly improved power conversion efficiency of 9.8%. Such in-situ grown oriented sulfide semiconductor nanotube arrays is expected to lead a new class structure of composites for highly efficient cathode materials. - Highlights: • In-situ synthesis strategy was proposed to construct oriented NiS nanotube arrays. • Such oriented tube nanostructure benefits the electronic transport along the axial direction of the arrays. • As CE of DSSCs, NiS nanotube arrays exhibit both higher efficiency (9.8%) and electrochemical stability than Pt.

  19. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  20. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  1. Gold Mineral Prospecting Using Phased Array Type L-Band Synthetic Aperture Radar (palsar) Satellite Remote Sensing Data, Central Gold Belt, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    The Bentong-Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR) data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  2. Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere

    Directory of Open Access Journals (Sweden)

    S. Krauss

    2012-08-01

    Full Text Available We analyzed the measured thermospheric response of an extreme solar X17.2 flare that irradiated the Earth's upper atmosphere during the so-called Halloween events in late October/early November 2003. We suggest that such events can serve as proxies for the intense electromagnetic and corpuscular radiation environment of the Sun or other stars during their early phases of evolution. We applied and compared empirical thermosphere models with satellite drag measurements from the GRACE satellites and found that the Jacchia-Bowman 2008 model can reproduce the drag measurements very well during undisturbed solar conditions but gets worse during extreme solar events. By analyzing the peak of the X17.2 flare spectra and comparing it with spectra of young solar proxies, our results indicate that the peak flare radiation flux corresponds to a hypothetical Sun-like star or the Sun at the age of approximately 2.3 Gyr. This implies that the peak extreme ultraviolet (EUV radiation is enhanced by a factor of about 2.5 times compared to today's Sun. On the assumption that the Sun emitted an EUV flux of that magnitude and by modifying the activity indices in the Jacchia-Bowman 2008 model, we obtain an average exobase temperature of 1950 K, which corresponds with previous theoretical studies related to thermospheric heating and expansion caused by the solar EUV flux.

  3. Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere

    Directory of Open Access Journals (Sweden)

    S. Krauss

    2012-08-01

    Full Text Available We analyzed the measured thermospheric response of an extreme solar X17.2 flare that irradiated the Earth's upper atmosphere during the so-called Halloween events in late October/early November 2003. We suggest that such events can serve as proxies for the intense electromagnetic and corpuscular radiation environment of the Sun or other stars during their early phases of evolution. We applied and compared empirical thermosphere models with satellite drag measurements from the GRACE satellites and found that the Jacchia-Bowman 2008 model can reproduce the drag measurements very well during undisturbed solar conditions but gets worse during extreme solar events. By analyzing the peak of the X17.2 flare spectra and comparing it with spectra of young solar proxies, our results indicate that the peak flare radiation flux corresponds to a hypothetical Sun-like star or the Sun at the age of approximately 2.3 Gyr. This implies that the peak extreme ultraviolet (EUV radiation is enhanced by a factor of about 2.5 times compared to today's Sun. On the assumption that the Sun emitted an EUV flux of that magnitude and by modifying the activity indices in the Jacchia-Bowman 2008 model, we obtain an average exobase temperature of 1950 K, which corresponds with previous theoretical studies related to thermospheric heating and expansion caused by the solar EUV flux.

  4. 1Mbps NLOS solar-blind ultraviolet communication system based on UV-LED array

    Science.gov (United States)

    Sun, Zhaotian; Zhang, Lijun; Li, Ping'an; Qin, Yu; Bai, Tingzhu

    2018-01-01

    We proposed and demonstrated a high data rate ultraviolet communication system based on a 266nm UV LED array with 50mW luminous power. The emitting source is driven by a three outputs constant-current control circuit, whose driving speed is up to 2Mbps. At the receiving side, in order to achieve the amplification for high-speed signal, a two-stage differential preamplifier is designed to make I-V conversion. The voltage-current gain is up to 140dB and bandwidth is 1.9MHz. An experiment is conducted to test the performance of the UV communication system. The effects of elevation angles and transmission distance are analyzed. It is shown that the ultraviolet communication system has high data rate of up to 921.6kbps and bit error rate of less than 10-7 in 150m, which can beat the best record created by UV-LED communication system in terms of the transmission rate.

  5. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  6. Solar/Stellar Irradiance Comparison Experiment (SOLSTICE) on the Upper Atmosphere Research Satellite (UARS)

    Science.gov (United States)

    Rottman, Gary J.; Woods, Thomas N.; London, Julius; Ayres, Thomas R.

    2003-01-01

    A final report on the operational activities related to the UARS Solar Stellar irradiance Comparison Experiment (SOLSTICE) is presented. Scientific activities of SOLSTICE has also been supported. The UARS SOLSTICE originated at the University of Colorado in 1981. One year after the UARS launch in 1991, the operations and research support activities for SOLSTICE were moved to the High Altitude Observatory (HAO) of the National Center for Atmospheric Research (NCAR). The SOLSTICE program continued at HAO with the National Science Foundation, and after four years, it was moved once again back to the University of Colorado. At the University after 1997 this subject grant was issued to further extend the operations activities from July 2001 through September 2002. Although this is a final report for one particular activity, in fact the SOLSTICE operations activity -first at the University, then at HAO, and now again at the University -has continued in a seamless fashion.

  7. P3HT:PCBM:pentacene inverted polymer solar cells with roughened Al-doped ZnO nanorod array and photoelectrochemical treatment

    Science.gov (United States)

    Lee, Hsin-Ying; Huang, Hung-Lin

    2014-05-01

    In this work, the P3HT:PCBM:pentacene (1:0.8:0.065 by weight) inverted polymer solar cells with roughened Aldoped ZnO (AZO) nanorod array were fabricated. The pentacene doping could modulate the hole mobility and the electron mobility in the active layer. The optimal hole-electron mobility balance ( µh/ µe=1.000) was achieved as the pentacene doping ratio of 0.065. The 100-nm-long AZO nanorod array were formed as the carrier collection layer and the carrier transportation layer of the inverted polymer solar cells using the combination techniques of the laser interference photolithography method and the wet etching process. Because the AZO nanorod array was prepared using the wet etching process, more defects were formed on the sidewall surface of the AZO nanorods. In this work, the photoelectrochemical (PEC) method was used to grow Zn(OH)2 and Al(OH)3 thin layer on the sidewall surface of the AZO nanorods, which could reduce the carrier recombination path in the inverted polymer solar cells. Compared with the P3HT:PCBM:pentacene (1:0.8:0.065) inverted polymer solar cells without PEC treatment, the short circuit current density and the power conversion efficiency of the inverted polymer solar cells with PEC treatment were increased from 14.56 mA/cm2 to 15.85 mA/cm2 and from 5.45% to 6.13%, respectively. The enhancement in the performance of the inverted polymer solar cells with PEC treatment could be attributed to that the PEC treatment could effectively passivate the defects on the surface of the AZO nonorods.

  8. Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays.

    Science.gov (United States)

    Lai, Fang-I; Yang, Jui-Fu; Liao, Wei-Xiang; Kuo, Shou-Yi

    2017-11-02

    This paper presents the use of nanorods of different sizes, deposited from a chemical solution, as an antireflection layer in copper-zinc-tin selenide (CZTSe) solar cells. With the aid of the nanorods, the surface reflection of the CZTSe solar cells was reduced from 7.76% to 2.97%, and a cell efficiency of 14% was obtained as a result. Omni-directional anti-reflection was verified by the angle-dependent reflection measurements. The nanorod arrays also provided the CZTSe solar cells with a hydrophobic surface, allowing it to exhibit high resistance against humidity during weatherability tests. This shows that the surface passivation brought by the nanorod layer at the surface could effectively extend the lifetime of the CZTSe solar cells. The rate of efficiency decay of the CZTSe solar cells was reduced by 46.85% from that of the device without a nanorod array at the surface, indicating that this surface layer not only provided effective resistance against reflection at the device surface, but also served as a passivation layer and humidity-resistant surface-protection layer.

  9. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.

    Science.gov (United States)

    Ho, Ping-Yi; Thiyagu, Subramani; Kao, Shao-Hsuan; Kao, Chia-Yu; Lin, Ching-Fuh

    2014-01-07

    Due to the limited diffusion length of carriers in polymer solar cells (PSCs), the path of carriers is a crucial factor that determines the device performance. Zinc oxide nanorods (NRs) as the electron transport channel can reduce electron-hole recombination and transport the electron to the electrode efficiently for poly(3-hexylthiophene) (P3HT), but have been seldom demonstrated for low-bandgap polymers. Here we successfully applied ZnO NRs, which were grown via the hydrothermal method, as a platform to enhance PSC efficiency for various low-bandgap polymers. In order to assure that the nanorod morphology functioned properly for PSCs, the growth time, the concentration, and the resulting morphology were systematically investigated in depths. Such ZnO NRs were applied to different organic systems, resulting in the increase of the PCE for PBDTTT-C/PC71BM from 4.76% to 6.07% and PBDTTT-C-T/PC71BM from 5.40% to 7.34%. Through those experiments, we established a potentially universal and efficient ZnO NRs platform for various low-bandgap polymers to achieve high efficiency of inverted PSCs.

  10. nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells

    Science.gov (United States)

    Li, Fumin; Chen, Chong; Tan, Furui; Yue, Gentian; Shen, Liang; Zhang, Weifeng

    2014-05-01

    We report that the efficiency of ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO2 nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the CdS QD-sensitized TNTs (CdS/TNTs) do not only increase the light absorption of the P3HT:PCBM layer but also reduce the charge recombination in the P3HT:PCBM layer. The dependence of device performances on cycles of CdS deposition on the TNTs was investigated. A high power conversion efficiency (PCE) of 3.52% was achieved for the inverted PSCs with 20 cyclic depositions of CdS on TNTs, which showed a 34% increase compared to the ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag device without the CdS/TNTs. The improved efficiency is attributed to the improved light absorbance and the reduced charge recombination in the active layer.

  11. Three-dimensional architecture hybrid perovskite solar cells using CdS nanorod arrays as an electron transport layer

    Science.gov (United States)

    Song, Zihang; Tong, Guoqing; Li, Huan; Li, Guopeng; Ma, Shuai; Yu, Shimeng; Liu, Qian; Jiang, Yang

    2018-01-01

    Three-dimensional (3D) architecture perovskite solar cells (PSCs) using CdS nanorod (NR) arrays as an electron transport layer were designed and prepared layer-by-layer via a physical-chemical vapor deposition (P-CVD) process. The CdS NRs not only provided a scaffold to the perovskite film, but also increased the interfacial contact between the perovskite film and electron transport layer. As an optimized result, a high power conversion efficiency of 12.46% with a short-circuit current density of 19.88 mA cm‑2, an open-circuit voltage of 1.01 V and a fill factor of 62.06% was obtained after 12 h growth of CdS NRs. It was four times the efficiency of contrast planar structure with a similar thickness. The P-CVD method assisted in achieving flat and voidless CH3NH3PbI3‑x Cl x perovskite film and binding the CdS NRs and perovskite film together. The different density of CdS NRs had obvious effects on light transmittance of 350–550 nm, the interfacial area and the difficulty of combining layers. Moreover, the efficient 1D transport paths for electrons and multiple absorption of light, which are generated in 3D architecture, were beneficial to realize a decent power conversion efficiency.

  12. Solar power satellites and the ionosphere - The effect of high power microwave beams on the ionosphere and the chemical effects due to Heavy-Lift Launch Vehicles

    Science.gov (United States)

    The effects of solar power satellites on the ionosphere are discussed, separated into two categories: (1) passive interactions, in which the ionospheric plasma influences the propagation of the power satellite beam in some way, and in some instances possibly gives rise to co-channel interference through scattering off the beam, and (2) an active inteference, in which ionospheric plasma itself is modified. Strong electron heating from the power satellite beam may produce irregularities in the ionization capable of scattering radio waves of lower frequencies, thereby increasing the potential for broad-band interference. Ionospheric modification may also result from the emission of exhaust effluents from heavy lift launch vehicles, and associated changes in ionospheric chemistry can lead to depletions in ionization at F-region heights. Interference with radio services is briefly discussed.

  13. Low-Cost Solar Array Project. Progress report 12, January-April 1979 and proceedings of the 12th Project Integration Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This report describes progress made by the Low-Cost Solar Array Project during the period January through April 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held April 4-5, 1979.

  14. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  15. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    Science.gov (United States)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  16. Low-cost, high-resolution, single-structure array telescopes for imaging of low-earth-orbit satellites

    Science.gov (United States)

    Massie, N. A.; Oster, Yale; Poe, Greg; Seppala, Lynn; Shao, Mike

    1992-01-01

    Telescopes that are designed for the unconventional imaging of near-earth satellites must follow unique design rules. The costs must be reduced substantially over those of the conventional telescope designs, and the design must accommodate a technique to circumvent atmospheric distortion of the image. Apertures of 12 m and more along with altitude-altitude mounts that provide high tracking rates are required. A novel design for such a telescope, optimized for speckle imaging, has been generated. Its mount closely resembles a radar mount, and it does not use the conventional dome. Costs for this design are projected to be considerably lower than those for the conventional designs. Results of a design study are presented with details of the electro-optical and optical designs.

  17. Enhanced Efficiency in Dye-Sensitized Solar Cells by Electron Transport and Light Scattering on Freestanding TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Won-Yeop Rho

    2017-10-01

    Full Text Available Dye-sensitized solar cells (DSSCs were fabricated with closed- or open-ended freestanding TiO2 nanotube arrays as photoelectrodes that were decorated with carbon materials and large TiO2 nanoparticles (NPs to enhance energy conversion efficiency. The energy conversion efficiency of DSSCs based on open-ended freestanding TiO2 nanotube arrays increased from 4.47% to 5.39%, compared to the DSSCs based on closed-ended freestanding TiO2 nanotube arrays. In DSSCs based on the open-ended freestanding TiO2 nanotube arrays, the energy conversion efficiency with carbon materials increased from 5.39% to 6.19% due to better electron transport, and that with a scattering layer from 5.39% to 6.24% due to more light harvesting compared to the DSSCs without carbon materials or scattering layer. Moreover, the energy conversion efficiency of DSSCs based on the open-ended freestanding TiO2 nanotube arrays with both carbon materials and scattering layer increased from 5.39% to 6.98%, which is an enhancement of 29.50%. In DSSCs based on the TiO2 nanotube arrays, the carbon materials can improve electron transport by π-π conjugation, and the large TiO2 NPs can enhance the capacity to light-harvest by scattering.

  18. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.

    Science.gov (United States)

    Liao, Wen-Pin; Wu, Jih-Jen

    2013-06-06

    A nanoarchitectural hybrid polymer solar cell, integrating the ordered and the bulk heterojunction hybrid polymer solar cells, is fabricated by infiltrating the diethylzinc/poly(3-hexylthiophene) (P3HT) solution into the interstices of the TiO2 nanorod (NR) array. An inorganic network composed of tiny ZnO nanocrystals is constructed in the in-situ-generated hybrid within the interstice of the single-crystalline TiO2 NRs. The TiO2 NR array, which possesses a longer electron lifetime and an appropriate electron-transport rate, serves not only as an electron transporter/collector extended from fluorine-doped tin oxide (FTO) electrode to sustain the efficient electron collection but also as a scaffold to hold the sufficient amount of ZnO/P3HT hybrid. The in-situ-generated ZnO/P3HT hybrid layer with superior charge separation efficiency can therefore be thickened in the presence of a TiO2 NR array for increasing the light-harvesting efficiency. A notable efficiency of 2.46% is therefore attained in the TiO2 NR-ZnO/P3HT hybrid solar cell.

  19. Room-temperature fast construction of outperformed ZnO nanoarchitectures on nanowire-array templates for dye-sensitized solar cells.

    Science.gov (United States)

    Jiang, Wei-Ting; Wu, Chun-Te; Sung, Yu-Hsiang; Wu, Jih-Jen

    2013-02-01

    A ZnO nanoarchitecture composed of nanocactus (NCs) and nanosheets (NSs) is constructed on the ZnO-nanowire (NW)-array template within 4 min by a facile room-temperature (RT) chemical bath deposition (CBD) for use in dye-sensitized solar cells (DSSCs). Compared to the ZnO NW array, the spines and shells of NCs provide larger and more fitting surface for dye adsorption. The NSs developed on the top and side walls of the NWs afford the additional surface for dye adsorption as well as for light scattering. Moreover, the RT-grown ZnO nanostructures possess an upward-shifted conduction band edge and a fast electron transport rate compared to the primary ZnO NW array. With an anode thickness of 9 μm, an efficiency of 5.14% is therefore simply attained in the D149-sensitized ZnO NC-NS DSSC.

  20. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    Science.gov (United States)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.