WorldWideScience

Sample records for satellite sea surface

  1. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  2. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  3. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  4. Theoretical algorithms for satellite-derived sea surface temperatures

    Science.gov (United States)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  5. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea. A satellite study

    Energy Technology Data Exchange (ETDEWEB)

    Tarkhova, T.I.; Permyakov, M.S.; Potalova, E.Yu.; Semykin, V.I. [V.I. Il' ichev Pacific Oceanological Institute of the Far Eastern Branch of Russian Academy of Sciences, Vladivostok (Russian Federation). Lab. of the Ocean and Atmosphere Interaction Studies

    2011-07-01

    Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summerautumn period of 2006-2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August- September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 C and wind speed lowered down to {proportional_to}7ms {sup -1} relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of {proportional_to}0.3 {sup -1} on 1 C. (orig.)

  6. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    experiments that the air-sea gas transfer coefficient for each of a wide range of gases, including carbon dioxide and .... generators with which the basin was equipped, the .... whitecaps in air-sea gas exchange; Gas Transfer at Water. Surfaces ...

  7. A global high resolution mean sea surface from multi mission satellite altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per

    1999-01-01

    Satellite altimetry from the GEOSAT and the ERS-1 geodetic missions provide altimeter data with a very dense coverage. Hence, the heights of the sea surface may be recovered very detailed. Satellite altimetry from the 35 days repeat cycle mission of the ERS satellites and, especially, from the 10...

  8. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  9. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  10. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  11. Monitoring the variability of sea level and surface circulation with satellite altimetry

    NARCIS (Netherlands)

    Volkov, Denis L. "Jr"

    2004-01-01

    Variability in the ocean plays an important role in determining global weather and climate conditions. The advent of satellite altimetry has significantly facilitated the study of the variability of sea level and surface circulation. Satellites provide high-quality regular and nearly global

  12. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  13. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  14. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the Sentinel-1 satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of high resolution sea surface winds data produced from Synthetic Aperture Radar (SAR) on board Sentinel-1A and Sentinel-1B satellites. This...

  15. Multisensor satellite data integration for sea surface wind speed and direction determination

    Science.gov (United States)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  16. Evaluation of the Precision of Satellite-Derived Sea Surface Temperature Fields

    Science.gov (United States)

    Wu, F.; Cornillon, P. C.; Guan, L.

    2016-02-01

    A great deal of attention has been focused on the temporal accuracy of satellite-derived sea surface temperature (SST) fields with little attention being given to their spatial precision. Specifically, the primary measure of the quality of SST fields has been the bias and variance of selected values minus co-located (in space and time) in situ values. Contributing values, determined by the location of the in situ values and the necessity that the satellite-derived values be cloud free, are generally widely separated in space and time hence provide little information related to the pixel-to-pixel uncertainty in the retrievals. But the main contribution to the uncertainty in satellite-derived SST retrievals relates to atmospheric contamination and because the spatial scales of atmospheric features are, in general, large compared with the pixel separation of modern infra-red sensors, the pixel-to-pixel uncertainty is often smaller than the accuracy determined from in situ match-ups. This makes selection of satellite-derived datasets for the study of submesoscale processes, for which the spatial structure of the upper ocean is significant, problematic. In this presentation we present a methodology to characterize the spatial precision of satellite-derived SST fields. The method is based on an examination of the high wavenumber tail of the 2-D spectrum of SST fields in the Sargasso Sea, a low energy region of the ocean close to the track of the MV Oleander, a container ship making weekly roundtrips between New York and Bermuda, with engine intake temperatures sampled every 75 m along track. Important spectral characteristics are the point at which the satellite-derived spectra separate from the Oleander spectra and the spectral slope following separation. In this presentation a number of high resolution 375 m to 10 km SST datasets are evaluated based on this approach.

  17. The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Stenseng, Lars

    2015-01-01

    The DTU13MSS is the latest release of the global high resolution mean sea surface (MSS) from DTU Space. The new MSS is based on multi-mission satellite altimetry from 10 different satellites. Three major advances have been made in order to release the new MSS. The time series have been extended t...

  18. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  19. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  20. Northern South China Sea Surface Circulation and its Variability Derived by Combining Satellite Altimetry and Surface Drifter Data

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2015-01-01

    Full Text Available The present study analyses the mean and seasonal mesoscale surface circulation of the Northern South China Sea (NSCS and determines the influence of El Niño/SouthernNiño/Southern Oscillation (ENSO. High resolution Eulerian velocity field is derived by combining the available satellite tracked surface drifter data with satellite altimetry during 1993 - 2012. The wind driven current is computed employing the weekly ocean surface mean wind fields derived from the scatterometers on board ERS 1/2, QuikSCAT and ASCAT. The derived mean velocity field exhibits strong boundary currents and broad zonal flow across NSCS. The anomalous field is quite strong in the southern part and the Seasonal circulation clearly depicts the monsoonal forcing. Eddy Kinetic Energy (EKE distribution and its spatial and temporal structures are determined employing Empirical Orthogonal Function (EOF analysis. The ENSO influence on NSCS surface circulation has been analyzed using monthly absolute geostrophic velocity fields during 1996 - 1999.

  1. Daily Radiation Budget of the Baltic Sea Surface from Satellite Data

    Directory of Open Access Journals (Sweden)

    Zapadka Tomasz

    2015-09-01

    Full Text Available Recently developed system for assessment of radiation budget for the Baltic Sea has been presented and verified. The system utilizes data from various sources: satellite, model and in situ measurements. It has been developed within the SatBałtyk project (Satellite Monitoring of the Baltic Sea Environment - www.satbaltyk.eu where the energy radiation budget is one of the key element. The SatBałtyk system generates daily maps of the all components of radiation budget on every day basis. We show the scheme of making daily maps, applied algorithms and empirical data collection within the system. An empirical verification of the system has been carried out based on empirical data collected on the oil rig placed on the Baltic Sea. This verification concerned all the components of the surface radiation budget. The average daily NET products are estimated with statistical error ca. 13 Wm-2. The biggest absolute statistical error is for LWd component and equals 14 Wm-2. The relative error in relation to the average annual values for whole Baltic is the biggest for SWu and reaches 25%. All estimated components have correlation coefficient above 0.91.

  2. Artificial Neural Networks to reconstruct incomplete satellite data: application to the Mediterranean Sea Surface Temperature

    Directory of Open Access Journals (Sweden)

    E. Pisoni

    2008-02-01

    Full Text Available Satellite data can be very useful in applications where extensive spatial information is needed, but sometimes missing data due to presence of clouds can affect data quality. In this study a methodology for pre-processing sea surface temperature (SST data is proposed. The methodology, that processes measures in the visible wavelength, is based on an Artificial Neural Network (ANN system. The effectiveness of the procedure has been also evaluated comparing results obtained using an interpolation method. After the methodology has been identified, a validation is performed on 3 different episodes representative of SST variability in the Mediterranean sea. The proposed technique can process SST NOAA/AVHRR data to simulate severe storm episodes by means of prognostic meteorological models.

  3. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    Science.gov (United States)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  4. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    Science.gov (United States)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  5. Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?

    Science.gov (United States)

    Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge

    2017-12-01

    In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.

  6. Exploring Machine Learning to Correct Satellite-Derived Sea Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Stéphane Saux Picart

    2018-02-01

    Full Text Available Machine learning techniques are attractive tools to establish statistical models with a high degree of non linearity. They require a large amount of data to be trained and are therefore particularly suited to analysing remote sensing data. This work is an attempt at using advanced statistical methods of machine learning to predict the bias between Sea Surface Temperature (SST derived from infrared remote sensing and ground “truth” from drifting buoy measurements. A large dataset of collocation between satellite SST and in situ SST is explored. Four regression models are used: Simple multi-linear regression, Least Square Shrinkage and Selection Operator (LASSO, Generalised Additive Model (GAM and random forest. In the case of geostationary satellites for which a large number of collocations is available, results show that the random forest model is the best model to predict the systematic errors and it is computationally fast, making it a good candidate for operational processing. It is able to explain nearly 31% of the total variance of the bias (in comparison to about 24% for the multi-linear regression model.

  7. Validation of Satellite-Derived Sea Surface Temperatures for Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2005-01-01

    Full Text Available In order to validate the Advanced Very High Resolution Radiometer (AVHRR-derived sea surface temperatures (SST of the waters around Taiwan, we generated a match-up data set of 961 pairs, which included in situ SSTs and concurrent AVHRR measurements for the period of 1998 to 2002. Availability of cloud-free images, i.e., images with more than 85% of cloud-free area in their coverage, was about 2.23% of all AVHRR images during the study period. The range of in situ SSTs was from _ to _ The satellite derived-SSTs through MCSST and NLSST algorithms were linearly related to the in situ SSTs with correlation coefficients of 0.985 and 0.98, respectively. The MCSSTs and NLSSTs had small biases of 0.009 _ and 0.256 _ with root mean square deviations of 0.64 _ and 0.801 _ respectively, therefore the AVHRR-based MCSSTs and NLSSTs had high accuracy in the seas around Taiwan.

  8. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  9. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  10. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  11. TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  12. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  13. The annual cycle of satellite derived sea surface temperature on the western South Atlantic shelf

    Directory of Open Access Journals (Sweden)

    Carlos A. D. Lentini

    2000-01-01

    Full Text Available In this article, thirteen years of weekly sea surface temperature (SST fields derived from NOAA Advanced Very High Resolution Radiometer global area coverage infrared satellite data, from January 1982 to December 1994, are used to investigate spatial and temporal variabilities of SST seasonal cycle in the Southwest Atlantic Oceano This work addresses large scale variations over the eastem South American continental shelf and slope regions limited offshore by the 1000-m isobath, between 42° and 22°S. SST time series are fit with annual and semi-annual harmonics to describe the annual variation of sea surface temperatures. The annual harmonic explains a large proportion of the SST variability. The coefficient of determination is highest (> 90% on the continental shelf, decreasing offshore. The estimated amplitude of the seasonal cycle ranges between 4° and 13°e throughout the study area, with minima in August­September and maxima in February-March. After the identification and removal of the dominant annual components ofSST variability, models such as the one presented here are an attractive tool to study interannual SST variability.Neste artigo, treze anos de imagens semanais da temperatura da superfície do mar (TSM obtidas através do sensor infravermelho Advanced Very High Resolution Radiometer a bordo dos satélites NOAA, de janeiro de 1982 a dezembro de 1994, são utlilizadas para investigar as variabilidades espacial e temporal do cicIo sazonal de TSM no Oceano Atlântico Sudoeste. Este trabalho objetiva as variações de larga escala sobre a plataforma continental e o talude leste da América do Sul limitados ao largo pela isóbata de 1000 metros, entre 42°5 e 22°S. As séries temporais de TSM são ajustadas aos .harmônicos anual e sem i-anual para descrever a variação anual das temperaturas da superfície do mar. O harmônico anual explica a maior parte da variabilidade da TSM. O coeficiente de determinação é alto (> 90

  14. Waveform identification and retracking analyses of Jason-2 altimeter satellite data for improving sea surface height estimation in Southern Java Island Waters and Java Sea, Indonesia

    Science.gov (United States)

    Nababan, Bisman; Hakim, Muhammad R.; Panjaitan, James P.

    2018-05-01

    Indonesian waters containing many small islands and shallow waters leads to a less accurate of sea surface height (SSH) estimation from satellite altimetry. Little efforts are also given for the validation of SSH estimation from the satellite in Indonesian waters. The purpose of this research was to identify and retrack waveforms of Jason-2 altimeter satellite data in southern Java island waters and Java Sea using several retrackers and performed improvement percentage analyses for new SSH estimation. The study used data of the Sensor Geophysical Data Record type D (SGDR-D) of Jason-2 satellite altimeter of the year 2010 in the southern Java island waters and 2012-2014 in Java Sea. Waveform retracking analyses were conducted using several retrackers (Offset Center of Gravity, Ice, Threshold, and Improved Threshold) and examined using a world reference undulation geoid of EGM08 and Oceanic retracker. Result showed that shape and pattern of waveforms were varied in all passes, seasons, and locations specifically along the coastal regions. In general, non-Brownish and complex waveforms were identified along coastal region specifically within the distance of 0-10 km from the shoreline. In contrary, generally Brownish waveforms were found in offshore. However, Brownish waveform can also be found within coastal region and non-Brownish waveforms within offshore region. The results were also showed that the four retrackers produced a better SSH estimation in coastal region. However, there was no dominant retracker to improve the accuracy of the SSH estimate.

  15. Global Sea Surface Temperature: A Harmonized Multi-sensor Time-series from Satellite Observations

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    This paper presents the methods used to obtain a new global sea surface temperature (SST) dataset spanning the early 1980s to the present, intended for use as a climate data record (CDR). The dataset provides skin SST (the fundamental measurement) and an estimate of the daily mean SST at depths compatible with drifting buoys (adjusting for skin and diurnal variability). The depth SST provided enables the CDR to be used with in situ records and centennial-scale SST reconstructions. The new SST timeseries is as independent as possible from in situ observations, and from 1995 onwards is harmonized to an independent satellite reference (namely, SSTs from the Advanced Along Track Scanning Radiometer (Advanced ATSR)). This maximizes the utility of our new estimates of variability and long-term trends in interrogating previous datasets tied to in situ observations. The new SSTs include full resolution (swath, level 2) data, single-sensor gridded data (level 3, 0.05 degree latitude-longitude grid) and a multi-sensor optimal analysis (level 4, same grid). All product levels are consistent. All SSTs have validated uncertainty estimates attached. The sensors used include all Advanced Very High Resolution Radiometers from NOAA-6 onwards and the ATSR series. AVHRR brightness temperatures (BTs) are calculated from counts using a new in-flight re-calibration for each sensor, ultimately linked through to the AATSR BT calibration by a new harmonization technique. Artefacts in AVHRR BTs linked to varying instrument temperature, orbital regime and solar contamination are significantly reduced. These improvements in the AVHRR BTs (level 1) translate into improved cloud detection and SST (level 2). For cloud detection, we use a Bayesian approach for all sensors. For the ATSRs, SSTs are derived with sufficient accuracy and sensitivity using dual-view coefficients. This is not the case for single-view AVHRR observations, for which a physically based retrieval is employed, using a hybrid

  16. Sea Turtle Satellite Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles captured in various fishing gear (pound nets, long haul seines, gill nets) were outfitted with satellite transmitters so that their movements, migratory...

  17. Retrieval of sea surface humidity and back radiation from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    , access = 'direct') 1039682, access = 'direct') 1039682, access = 'direct') 1039682, access = 'direct') 2079364, access = 'direct') 2079364, access = 'direef) 519841, access = 'direct') react(ll)(T19V(j),j = I, 519841) read(l2)(Tl9HG);j = 1,519841) read...( 13) (T22VG),j = 1,519841) read(14)(T37VG),j = I, 519841) read(15) (T37H(j),j = 1,519841) read(l6)(T85V(j),j = 1, 519841) Retrieval ofSea Surface Humidity and Back Radiation... read(l7)(lat(j),j = I, SI9841) read(18)(lon(j),j = I, S19841) read(19)(tim...

  18. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  19. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  20. Validation of JAXA/MODIS Sea Surface Temperature in Water around Taiwan Using the Terra and Aqua Satellites

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2010-01-01

    Full Text Available The research vessel-based Conductivity Temperature Depth profiler (CTD provides underwater measurements of the bulk sea surface temperature (SST at the depths of shallower than 5 m. The CTD observations of the seas around Taiwan provide useful data for comparison with SST of MODIS (Moderate Resolution Imaging Spectroradiometers aboard Aqua and Terra satellites archived by JAXA (Japan Aerospace Exploration Agency. We produce a high-resolution (1 km MODIS SST by using Multi-Channel SST (MCSST algorithm. There were 1516 cloud-free match-up data pairs of MODIS SST and in situ measurements during the period from 2003 - 2005. The difference of the root mean square error (RMSE of satellite observations from each platform during the day and at night was: 0.88°C in Aqua daytime, 0.71°C in Aqua nighttime, 0.71°C in Terra daytime, and 0.60°C in Terra nighttime. The total analysis of MODIS-derived SST shows good agreement with a bias of 0.03°C and RMSE of 0.75°C. The analyses indicate that the bias of Aqua daytime was always positive throughout the year and the large RMSE should be attributed to the large positive bias (0.45°C under diurnal warming. It was also found that the bias of Terra daytime was usually negative with a mean bias of -0.41°C; its large RMSE should be treated with care because of low solar radiation in the morning.

  1. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989, it deviated significantly from the model in the other months (July–September, when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  2. Seasonal dynamics of surface chlorophyll concentration and sea surface temperature, as indicator of hydrological structure of the ocean (by satellite data)

    Science.gov (United States)

    Shevyrnogov, Anatoly; Vysotskaya, Galina

    Continuous monitoring of phytopigment concentrations and sea surface temperature in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vegetation, hydrological processes largely determine phytoplank-ton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics and sea surface temperature can manifest as zones quasistationary by seasonal dynamics, quasistationary areas (QSA). In the papers of the authors (A. Shevyrnogov, G. Vysotskaya, E. Shevyrnogov, A study of the stationary and the anomalous in the ocean surface chlorophyll distribution by satellite data. International Journal of Remote Sensing, Vol. 25, No.7-8, pp. 1383-1387, April 2004 & A. P. Shevyrnogov, G. S. Vysotskaya, J. I. Gitelson, Quasistationary areas of chlorophyll concentra-tion in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of processing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary are-as, especially in areas of large oceanic streams. To study the dynamics of the ocean for the period from 1985 through 2012 we used data on the temperature of the surface layer of the ocean and chlorophyll concentration (AVHRR, SeaWiFS and MODIS). Biota of surface oceanic layer is more stable in comparison with quickly changing surface tem-perature. It gives a possibility to circumvent influence of high-frequency component (for exam-ple, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with

  3. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  4. Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results

    Science.gov (United States)

    Mutlow, C. T.; ZáVody, A. M.; Barton, I. J.; Llewellyn-Jones, D. T.

    1994-11-01

    The along-track scanning radiometer (ATSR) was launched in July 1991 on the European Space Agency's first remote sensing satellite, ERS 1. An initial analysis of ATSR data demonstrates that the sea surface temperature (SST) can be measured from space with very high accuracy. Comparison of simultaneous measurements of SST made from ATSR and from a ship-borne radiometer show that they agree to within 0.3°C. To assess data consistency, a complementary analysis of SST data from ATSR was also carried out. The ATSR global SST field was compared on a daily basis with daily SST analysis of the United Kingdom Meteorological Office (UKMO). The ATSR global field is consistently within 1.0°C of the UKMO analysis. Also, to demonstrate the benefits of along-track scanning SST determination, the ATSR SST data were compared with high-quality bulk temperature observations from drifting buoys. The likely causes of the differences between ATSR and the bulk temperature data are briefly discussed. These results provide early confidence in the quantitative benefit of ATSR's two-angle view of the Earth and its high radiometric performance and show a significant advance on the data obtained from other spaceborne sensors. It should be noted that these measurements were made at a time when the atmosphere was severely contaminated with volcanic aerosol particles, which degrade infrared measurements of the Earth's surface made from space.

  5. Detecting the influence of ocean process on the moisture supply for India summer monsoon from Satellite Sea Surface Salinity

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Liu, W. T.; Fore, A.; Hayashi, A.

    2016-02-01

    A strong contrast in the onset of Indian summer monsoon was observed by independent satellites: average rain rate over India subcontinent (IS) in June was more than doubled in 2013 than 2012 (TRMM); also observed are larger area of wet soil (Aquarius) and high water storage (GRACE). The difference in IS rainfall was contributed to the moisture inputs through west coast of India, estimated from ocean wind (OSCAT2) and water vapor (TMI). This is an interesting testbed for studying the role of ocean on terrestrial water cycle, in particular the Indian monsoon, which has tremendous social-economical impact. What is the source of extra moisture in 2013 or deficit in 2012 for the monsoon onset? Is it possible to quantify the contribution of ocean process that maybe responsible for redistributing the freshwater in favor of the summer monsoon moisture supply? This study aims to identify the influence of ocean processes on the freshwater exchange between air-sea interfaces, using Aquarius sea surface salinity (SSS). We found two areas in Indian Ocean with high correlation between IS rain rate and Aquarius SSS: one area is in the Arabian Sea adjacent to IS, another area is a horizontal patch from 60°E to 100°E centered around 10°S. On the other hand, E-P (OAflux, TRMM) shows no similar correlation patterns with IS rain. Based on the governing equation of the salt budget in the upper ocean, we define the freshwater flux, F, from the oceanic branch of the water cycle, including contributions from salinity tendency, advection, and subsurface process. The tendency and advection terms are estimated using Aquarius SSS and OSCAR ocean current. We will present results of analyzing the spatial and temporal variability of F and evidence of and hypothesis on how the oceanic processes may enhance the moisture supply for summer Indian monsoon onset in 2013 comparing with 2012. The NASA Soil Moisture Active Passive (SMAP) has been producing the global soil moisture (SM) every 2-3 days

  6. Upper ocean currents and sea surface temperatures (SST) from Satellite-tracked drifting buoys (drifters) as part of the Global Drifter Program for Hawaii region 1980/02/01 - 2009/03/31 (NODC Accession 0063296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global...

  7. Evolution of Western Mediterranean Sea Surface Temperature between 1985 and 2005: a complementary study in situ, satellite and modelling approaches

    Science.gov (United States)

    Troupin, C.; Lenartz, F.; Sirjacobs, D.; Alvera-Azcárate, A.; Barth, A.; Ouberdous, M.; Beckers, J.-M.

    2009-04-01

    In order to evaluate the variability of the sea surface temperature (SST) in the Western Mediterranean Sea between 1985 and 2005, an integrated approach combining geostatistical tools and modelling techniques has been set up. The objectives are: underline the capability of each tool to capture characteristic phenomena, compare and assess the quality of their outputs, infer an interannual trend from the results. Diva (Data Interpolating Variationnal Analysis, Brasseur et al. (1996) Deep-Sea Res.) was applied on a collection of in situ data gathered from various sources (World Ocean Database 2005, Hydrobase2, Coriolis and MedAtlas2), from which duplicates and suspect values were removed. This provided monthly gridded fields in the region of interest. Heterogeneous time data coverage was taken into account by computing and removing the annual trend, provided by Diva detrending tool. Heterogeneous correlation length was applied through an advection constraint. Statistical technique DINEOF (Data Interpolation with Empirical Orthogonal Functions, Alvera-Azc

  8. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  9. Evaluating Coral Health in La Parguera, Puerto Rico, and Southeastern Florida: Comparison of Satellite-Based Sea Surface Temperature to In Situ Observations

    Science.gov (United States)

    Gomez, A. M.; McDonald, K. C.; Shein, K. A.; Devries, S. L.; Armstrong, R.; Carlo, M.

    2017-12-01

    The third global coral bleaching event, which began in mid-2014, is a major environmental stressor that has been causing significant documented damage to coral reefs in all tropical ocean basins. This worldwide phenomenon is the longest and largest coral bleaching event on record and now finally appears to be ending. During this event, some coral colonies proved to be more resilient to increased ocean temperatures while others bleached severely. This research investigates the spatial and temporal variability of bleaching stress on coral reefs in La Parguera, Puerto Rico, and Southeastern Florida to help further understand the role of temperature and light in coral bleaching. We examine the microclimate within two coral reef systems, using in situ collections of temperature and light data from data loggers deployed throughout Cayo Enrique and Cayo Mario in La Parguera, and Lauderdale-By-The-Sea in FLorida. The in situ measurements are compared to NOAA Coral Reef Watch's 5-km sea surface temperature data as well as to the associated Light Stress Damage Product. Research outcomes include statistical analyses of in situ measurements with satellite datasets supporting enhanced interpretation of satellite-based SST and light products, and ecological niche modeling to assess where corals could potentially survive under future climate conditions. Additional understanding of the microclimate encompassing coral reefs and improved satellite SST and light data will ultimately help coral reef ecosystem managers and policy makers in prioritizing resources toward the monitoring and protection of coral reef ecosystems.

  10. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  11. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  12. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  13. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  14. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  15. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  17. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  18. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    Science.gov (United States)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater

  19. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    Science.gov (United States)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and

  20. OW NOAA GOES-POES Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains blended satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellites (GOES)...

  1. OW AVISO Sea-Surface Height & Niiler Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface height measurements collected by means of the TOPEX/Poseidon/ERS, JASON-1/Envisat, and Jason-2/Envisat satellite...

  2. GHRSST Level 2P West Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-12 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  3. GHRSST Level 2P Eastern Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-11 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  4. Intraseasonal sea surface temperature variability in Indonesian seas

    Science.gov (United States)

    Napitu, A. M.; Gordon, A. L.; Yuan, X.

    2012-12-01

    The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an The satellite-derived sea surface temperature (SST) data, 1998-mid 2012, are used to examine intraseasonal variability (ISV; 20-90 days) across the Indonesian seas. The most energetic ISV is observed in the Banda Sea and across the Indo-Australia basin with an average SST standard deviation (STD) between 0.4-0.5°C, with strongest signature during boreal winter. What physical processes force the SST ISV variability within the Indonesian seas? Ocean process, sea-air interaction, or both? To help identify the main forcing, the satellite derived outgoing longwave radiation (OLR) and wind stress data in the region are examined. The OLR shows robust intraseasonal variations and is significantly correlated with the SST, particularly for variability with periods of 30-60 days, with OLR accounting for ~60-70% of the SST variance. The OLR is also maximum during boreal winter. Conversely, the surface wind may play insignificant role in perturbing the SST at intraseasonal timescales as shown by weak correlation between wind stress and SST. We thus suspect that the surface solar flux (suggested by the OLR) is likely more dominant than the surface turbulent heat flux (indicated by the surface wind) as the main source for the ISV in the SST in Indonesian seas. Furthermore the maximum OLR phase, coupled with a period of minimum mixed layer depth, may explain the strong SST variation during boreal winter in Indonesian seas. The influence of the Madden-Julian Oscillation (MJO) on the OLR and SST variability is currently being evaluated.

  5. Air sea exchange of fluxes and Indian monsoon from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sundaram, S.

    Temperature (Reynolds), Sea Surface Wind Speed and Integrated water vapor (from SSMI sensor onboard DMSP satellite series), mean sea level pressure (from NCEP/NCAR reanalysis data). Evaporation zones are identified over the western tropical Indian Ocean where...

  6. Data Mining of Satellite-Based Measurements to Distinguish Natural From Man-Made Oil Slicks at the Sea Surface in Campeche Bay (Mexico)

    Science.gov (United States)

    Carvalho, G. D. A.; Minnett, P. J.; de Miranda, F. P.; Landau, L.; Paes, E.

    2016-02-01

    Campeche Bay, located in the Mexican portion of the Gulf of Mexico, has a well-established activity engaged with numerous oil rigs exploring and producing natural gas and oil. The associated risk of oil slicks in this region - that include oil spills (i.e. oil floating at the sea surface solely attributed to man-made activities) and oil seeps (i.e. surface footprint of the oil that naturally comes out of the seafloor reaching the surface of the ocean) - leads Pemex to be in a continuous state of alert for reducing possible negative influence on marine and coastal ecosystems. Focusing on a monitoring strategy, a multi-year dataset (2008-2012) of synthetic aperture radar (SAR) measurements from the RADARSAT-2 satellite is used to investigate the spatio-temporal distribution of the oil slicks observed at the surface of the ocean in the Campeche Bay region. The present study is an exploratory data analysis that seeks to discriminate between these two possible oil slick types: oil seeps and oil spills. Multivariate data analysis techniques (e.g. Principal Components Analysis, Clustering Analysis, Discriminant Function, etc.) are explored to design a data-learning classification algorithm to distinguish natural from man-made oil slicks. This analysis promotes a novel idea bridging geochemistry and remote sensing research to express geophysical differences between seeped and spilled oil. Here, SAR backscatter coefficients - i.e. sigma-naught (σo), beta-naught (βo), and gamma-naught (γo) - are combined with attributes referring to the geometry, shape, and dimension that describe the oil slicks. Results indicate that the synergy of combining these various characteristics is capable of distinguishing oil seeps from oil spills observed on the sea surface to a useful accuracy.

  7. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    Science.gov (United States)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; hide

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  8. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-01-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea

  9. Temporal-space characterization of satellite sea surface temperature in tourist destinations: Partido de la Costa, Pinamar and Villa Gesell, Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    E. Verón

    2017-06-01

    Full Text Available The coastal spaces are fragile and complex areas that receive strong pressure because of the many uses and activities that are developed in them. The tourism of sun and beaches is one of the main economic practices present in these spaces that value the physical-natural conditions and their environmental variables. Of all of them, the sea surface temperature (SST has been the least studied variable, especially associated to tourist destinations. The coastal zone of the province of Buenos Aires, Argentina, concentrates numerous tourist centers like the Partido de la Costa, Pinamar and Villa Gesell that attract in the summer time, a great flow of population. The objective of the present paper was to perform a descriptive and comparative analysis of SST in these parties through the use of monthly satellite images obtained by the Aqua-MODIS satellite-sensor during the period 2003-2013. The results showed a spatial and seasonal behavior of the SST differentiated for the entire study area. The SST for the warm period (January-March ranged between 21.5 - 24.5°C and for the cold (July-September between 9.4 - 11.5°C. This difference was lower in the cold period, allowing distinguishing 3 thermal zones with variations smaller than 0.5°C between them: Costa Norte, Costa Centro- Costa Sur, and Pinamar-Villa Gesell. The warm period presented more intense spatial thermal variations between the studied tourist destinations. Four thermal zones with 0.5°C differences were identified: Costa Norte, Costa Centro, Costa Sur, and Pinamar-Villa Gesell.

  10. GHRSST Level 3U Global Subskin Sea Surface Temperature from the WindSat Polarimetric Radiometer on the Coriolis satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The WindSat Polarimetric Radiometer, launched on January 6, 2003 aboard the Department of Defense Coriolis satellite, was designed to measure the ocean surface wind...

  11. Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST Using an Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Takuji Waseda

    2013-06-01

    Full Text Available We develop an assimilation method of high horizontal resolution sea surface temperature data, provided from the Moderate Resolution Imaging Spectroradiometer (MODIS-SST sensors boarded on the Aqua and Terra satellites operated by National Aeronautics and Space Administration (NASA, focusing on the reproducibility of the Kuroshio front variations south of Japan in February 2010. Major concerns associated with the development are (1 negative temperature bias due to the cloud effects, and (2 the representation of error covariance for detection of highly variable phenomena. We treat them by utilizing an advanced data assimilation method allowing use of spatiotemporally varying error covariance: the Local Ensemble Transformation Kalman Filter (LETKF. It is found that the quality control, by comparing the model forecast variable with the MODIS-SST data, is useful to remove the negative temperature bias and results in the mean negative bias within −0.4 °C. The additional assimilation of MODIS-SST enhances spatial variability of analysis SST over 50 km to 25 km scales. The ensemble spread variance is effectively utilized for excluding the erroneous temperature data from the assimilation process.

  12. Physical characteristics of satellite surfaces

    International Nuclear Information System (INIS)

    Veverka, J.; Thomas, P.; Johnson, T.V.; Matson, D.; Housen, K.

    1986-01-01

    Both exogenic and endogenic effects have been proposed to explain the major observed characteristics of satellite surfaces. The current view is that the basic properties of most surfaces result from the intrinsic composition of a body and its geologic history. Exogenic effects have, however, played a role in modifying the appearance of nearly all surfaces. The most important exogenic effect is impact cratering, one manifestation of which is the production of micrometeoroid gardened regoliths on airless bodies. On large, silicate bodies the micrometeoroid bombardment can produce an optically mature, dark agglutinate-rich soil; the nature of regoliths on predominantly icy satellites remains uncertain. Direct accumulation of infalling material does not appear to play a major role in modifying most surfaces. Solar wind radiation effects have not altered greatly the optical properties of solar system objects; magnetospheric charged particles may have modified the optical properties of some outer planet satellites (e.g., sulfur ion bombardment in the case of some of the satellites of Jupiter). Other effects, such as aeolian and liquid/solid chemical weathering, may be important on satellites with atmospheres like Titan and Triton

  13. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A platform...

  14. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  15. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  16. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  17. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  18. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  19. GHRSST Level 2P 1 m Depth Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)....

  20. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  1. Summer Arctic sea ice character from satellite microwave data

    Science.gov (United States)

    Carsey, F. D.

    1985-01-01

    It is pointed out that Arctic sea ice and its environment undergo a number of changes during the summer period. Some of these changes affect the ice cover properties and, in turn, their response to thermal and mechanical forcing throughout the year. The main objective of this investigation is related to the development of a method for estimating the areal coverage of exposed ice, melt ponds, and leads, which are the basic surface variables determining the local surface albedo. The study is based on data obtained in a field investigation conducted from Mould Bay (NWT), Nimbus 5 satellite data, and Seasat data. The investigation demonstrates that microwave data from satellites, especially microwave brightness temperature, provide good data for estimating important characteristics of summer sea ice cover.

  2. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    Science.gov (United States)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  3. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  4. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  5. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  6. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler

    2013-04-01

    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  7. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  8. Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea

    Science.gov (United States)

    Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin

    2018-03-01

    Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model

  9. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  10. ISLSCP II Sea Surface Temperature

    Data.gov (United States)

    National Aeronautics and Space Administration — Sea surface temperature (SST) is an important indicator of the state of the earth climate system as well as a key variable in the coupling between the atmosphere and...

  11. GHRSST Level 2P Global Skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by EUMETSAT (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  12. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-B satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in real-time...

  13. GHRSST Level 2P Global skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-A satellite (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  14. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  15. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  17. GHRSST Level 2P Regional 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  18. GHRSST Level 2P sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  19. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  20. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  1. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 1R (MTSAT-1R) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  2. GHRSST Level 2P Western Pacific Regional Skin Sea Surface Temperature from the Multifunctional Transport Satellite 2 (MTSAT-2) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-functional Transport Satellites (MTSAT) are a series of geostationary weather satellites operated by the Japan Meteorological Agency (JMA). MTSAT carries an...

  3. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  4. Air-sea interaction over the Indian Ocean during the two contrasting monsoon years 1987 and 1988 studied with satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schluessel, P.

    The air-sea interaction processes over the tropical Indian Ocean region are studied using sea surface temperature data from the Advanced Very High Resolution Radiometer sensor onboard the NOAA series of satellites. The columnar water-vapour content...

  5. Sea Turtle Satellite Telemetry Data in North Atlantic Ocean from 2007-10-16 to 2010-11-26 (NCEI Accession 0159216)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains satellite telemetry data for sea turtles. Movements, migratory pathways, and foraging behavior of sea turtles were tracked and surfacing...

  6. Sea surface stability parameters

    International Nuclear Information System (INIS)

    Weber, A.H.; Suich, J.E.

    1978-01-01

    A number of studies dealing with climatology of the Northwest Atlantic Ocean have been published in the last ten years. These published studies have dealt with directly measured meteorological parameters, e.g., wind speed, temperature, etc. This information has been useful because of the increased focus on the near coastal zone where man's activities are increasing in magnitude and scope, e.g., offshore power plants, petroleum production, and the subsequent environmental impacts of these activities. Atmospheric transport of passive or nonpassive material is significantly influenced by the turbulence structure of the atmosphere in the region of the atmosphere-ocean interface. This research entails identification of the suitability of standard atmospheric stability parameters which can be used to determine turbulence structure; the calculation of these parameters for the near-shore and continental shelf regions of the U.S. east coast from Cape Hatteras to Miami, Florida; and the preparation of a climatology of these parameters. In addition, a climatology for average surface stress for the same geographical region is being prepared

  7. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 1999 on board the Terra satellite platform (a...

  8. GHRSST Level 2P Global Skin Sea Surface Temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Aqua satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument (radiometer) launched by NASA in 2002 on board the Aqua satellite platform (a...

  9. GHRSST Level 2P Global Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  10. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  11. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  12. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  13. Sea Ice Drift Monitoring in the Bohai Sea Based on GF4 Satellite

    Science.gov (United States)

    Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.

    2018-04-01

    The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious ice packs in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea ice and sea ice in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea ice drift and calculate the speed and direction of sea ice drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea ice drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea ice drift and can be used for drift monitoring of sea ice in the Bohai Sea.

  14. GHRSST Level 2P Western Atlantic Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-13 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  15. GHRSST Level 2P Central Pacific Regional Skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES) Imager on the GOES-15 satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Operational Environmental Satellites (GOES) operated by the United States National Oceanic and Atmospheric Administration (NOAA) support weather...

  16. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

    Science.gov (United States)

    Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang

    2014-01-01

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420

  17. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  18. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  19. Study of sea surface temperature distribution, in Angra dos Reis Nuclear Plant region - Mission Angra 01

    International Nuclear Information System (INIS)

    Stevenson, M.R.; Steffen, C.A.; Villagra, H.M.I.

    1982-03-01

    A study of spectral and temporal variations of sea surface temperature, using data obtained from level of satellite, aircraft and surface, with the purpose of evaluate and plot the small scale variations of sea surface temperature, due to thermal discharge from a nuclear the results of the first mission called Angra 1. (maps). (C.G.C.)

  20. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  1. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    Science.gov (United States)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  2. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  3. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  4. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  5. Satellite observations of oil spills in Bohai Sea

    International Nuclear Information System (INIS)

    Wei, Y L; Tang, Z Y; Li, X F

    2014-01-01

    Several oil spills occurred at two oil platforms in Bohai Sea, China on June 4 and 17, 2011. The oil spills were subsequently imaged by different types of satellite sensors including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NOAA MODIS. In order to detect the oil spills more accurately, images of the former three sensors were used in this study. Oil spills were detected using the semi-supervised Texture-Classifying Neural Network Algorithm (TCNNA) in SAR images and gradient edge detection algorithm in HJ-1-B and MODIS images. The results show that, on June 11, the area of oil slicks is 31 km 2 and they are observed in the vicinity and to the north of the oilfield in SAR image. The coverage of the oil spill expands dramatically to 244 km 2 due to the newly released oil after June 11 in SAR image of June 14. The results on June 19 show that under a cloud-free condition, CCD and MODIS images capture the oil spills clearly while TCNNA cannot separate them from the background surface, which implies that the optical images play an important role in oil detection besides SAR images

  6. Alaska Steller Sea Lion Habitat Model Satellite Telemetry and Environmental Data, 2000-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The at-sea habitat use of Steller sea lions was modeled from location and dive behavior data obtained from the deployment of satellite-linked telemetry tags on sea...

  7. Arctic sea-level reconstruction analysis using recent satellite altimetry

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    We present a sea-level reconstruction for the Arctic Ocean using recent satellite altimetry data. The model, forced by historical tide gauge data, is based on empirical orthogonal functions (EOFs) from a calibration period; for this purpose, newly retracked satellite altimetry from ERS-1 and -2...... and Envisat has been used. Despite the limited coverage of these datasets, we have made a reconstruction up to 82 degrees north for the period 1950–2010. We place particular emphasis on determining appropriate preprocessing for the tide gauge data, and on validation of the model, including the ability...

  8. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR) on...

  9. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  10. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  11. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  12. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-A) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  13. GHRSST L3C global sub-skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on Metop satellites (currently Metop-B) (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  14. GHRSST Level 3C sub-skin Sea Surface Temperature from the Geostationary Operational Environmental Satellites (GOES 13) Imager in East position (GDS V2) produced by OSI SAF (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset for the America Region (AMERICAS) based on retrievals from the...

  15. Arctic Sea Level During the Satellite Altimetry Era

    DEFF Research Database (Denmark)

    Carret, A.; Johannessen, J. A.; Andersen, Ole Baltazar

    2017-01-01

    Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data....... However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry......-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled...

  16. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  17. Sea level reconstruction from satellite altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2012-01-01

    Ocean satellite altimetry has provided global sets of sea level data for the last two decades, allowing determination of spatial patterns in global sea level. For reconstructions going back further than this period, tide gauge data can be used as a proxy. We examine different methods of combining...... for better sensitivity analysis with respect to spatial distribution, and tide gauge data are available around the Arctic Ocean, which may be important for a later high-latitude reconstruction....... satellite altimetry and tide gauge data using optimal weighting of tide gauge data, linear regression and EOFs, including automatic quality checks of the tide gauge time series. We attempt to augment the model using various proxies such as climate indices like the NAO and PDO, and investigate alternative...

  18. Maritime NOx Emissions Over Chinese Seas Derived From Satellite Observations

    Science.gov (United States)

    Ding, J.; van der A, R. J.; Mijling, B.; Jalkanen, J.-P.; Johansson, L.; Levelt, P. F.

    2018-02-01

    By applying an inversion algorithm to NOx satellite observations from Ozone Monitoring Instrument, monthly NOx emissions for a 10 year period (2007 to 2016) over Chinese seas are presented for the first time. No effective regulations on NOx emissions have been implemented for ships in China, which is reflected in the trend analysis of maritime emissions. The maritime emissions display a continuous increase rate of about 20% per year until 2012 and slow down to 3% after that. The seasonal cycle of shipping emissions has regional variations, but all regions show lower emissions during winter. Simulations by an atmospheric chemistry transport model show a notable influence of maritime emissions on air pollution over coastal areas, especially in summer. The satellite-derived spatial distribution and the magnitude of maritime emissions over Chinese seas are in good agreement with bottom-up studies based on the Automatic Identification System of ships.

  19. Sea Surface Temperature Climate Data Record for the North Sea and Baltic Sea

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna

    2016-01-01

    A 30-yr climate data record (CDR) of sea surface temperature (SST) has been produced with daily gap-free analysis fields for the North Sea and the Baltic Sea region from 1982 to 2012 by combining the Pathfinder AVHRR satellite data record with the Along-Track Scanning Radiometer (ATSR) Reprocessing...... for Climate (ARC) dataset and with in situ observations. A dynamical bias correction scheme adjusts the Pathfinder observations toward the ARC and in situ observations. Largest Pathfinder-ARC differences are found in the summer months, when the Pathfinder observations are up to 0.4 °C colder than the ARC...... observations on average. Validation against independent in situ observations shows a very stable performance of the data record, with a mean difference of -0.06 °C compared to moored buoys and a 0.46 °C standard deviation of the differences. The mean annual biases of the SST CDR are small for all years...

  20. The Satellite Passive-Microwave Record of Sea Ice in the Ross Sea Since Late 1978

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    Satellites have provided us with a remarkable ability to monitor many aspects of the globe day-in and day-out and sea ice is one of numerous variables that by now have quite substantial satellite records. Passive-microwave data have been particularly valuable in sea ice monitoring, with a record that extends back to August 1987 on daily basis (for most of the period), to November 1970 on a less complete basis (again for most of the period), and to December 1972 on a less complete basis. For the period since November 1970, Ross Sea sea ice imagery is available at spatial resolution of approximately 25 km. This allows good depictions of the seasonal advance and retreat of the ice cover each year, along with its marked interannual variability. The Ross Sea ice extent typically reaches a minimum of approximately 0.7 x 10(exp 6) square kilometers in February, rising to a maximum of approximately 4.0 x 10(exp 6) square kilometers in September, with much variability among years for both those numbers. The Ross Sea images show clearly the day-by-day activity greatly from year to year. Animations of the data help to highlight the dynamic nature of the Ross Sea ice cover. The satellite data also allow calculation of trends in the ice cover over the period of the satellite record. Using linear least-squares fits, the Ross Sea ice extent increased at an average rate of 12,600 plus or minus 1,800 square kilometers per year between November 1978 and December 2007, with every month exhibiting increased ice extent and the rates of increase ranging from a low of 7,500 plus or minus 5,000 square kilometers per year for the February ice extents to a high of 20,300 plus or minus 6,100 kilometers per year for the October ice extents. On a yearly average basis, for 1979-2007 the Ross Sea ice extent increased at a rate of 4.8 plus or minus 1.6 % per decade. Placing the Ross Sea in the context of the Southern Ocean as a whole, over the November 1978-December 2007 period the Ross Sea had

  1. Errors of Mean Dynamic Topography and Geostrophic Current Estimates in China's Marginal Seas from GOCE and Satellite Altimetry

    DEFF Research Database (Denmark)

    Jin, Shuanggen; Feng, Guiping; Andersen, Ole Baltazar

    2014-01-01

    and geostrophic current estimates from satellite gravimetry and altimetry are investigated and evaluated in China's marginal seas. The cumulative error in MDT from GOCE is reduced from 22.75 to 9.89 cm when compared to the Gravity Recovery and Climate Experiment (GRACE) gravity field model ITG-Grace2010 results......The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China's marginal seas, such as, the newest high-resolution GOCE gravity field model GO......-CONS-GCF-2-TIM-R4 and the new Centre National d'Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 from satellite altimetry. However, errors and uncertainties of MDT and geostrophic current estimates from satellite observations are not generally quantified. In this paper, errors and uncertainties of MDT...

  2. The Pacific sea surface temperature

    International Nuclear Information System (INIS)

    Douglass, David H.

    2011-01-01

    The Pacific sea surface temperature data contains two components: N L , a signal that exhibits the familiar El Niño/La Niña phenomenon and N H , a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F S ; (2) N H is phase locked directly to F S while N L is frequently phase locked to the 2nd or 3rd subharmonic of F S . At least ten distinct subharmonic time segments of N L since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N L is the familiar El Niño/La Niña effect. ► The second N H component has a period of 1 cycle/year. ► N L can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  3. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  4. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  5. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  6. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    Science.gov (United States)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  7. Long-term changes in sea surface temperatures

    International Nuclear Information System (INIS)

    Parker, D.E.

    1994-01-01

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales

  8. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  9. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  11. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  12. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  13. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  14. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  15. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  16. North Atlantic teleconnection patterns signature on sea level from satellite altimetry

    Science.gov (United States)

    Iglesias, Isabel; Lázaro, Clara; Joana Fernandes, M.; Bastos, Luísa

    2015-04-01

    Presently, satellite altimetry record is long enough to appropriately study inter-annual signals in sea level anomaly and ocean surface circulation, allowing the association of teleconnection patterns of low-frequency variability with the response of sea level. The variability of the Atlantic Ocean at basin-scale is known to be complex in space and time, with the dominant mode occurring on annual timescales. However, interannual and decadal variability have already been documented in sea surface temperature. Both modes are believed to be linked and are known to influence sea level along coastal regions. The analysis of the sea level multiannual variability is thus essential to understand the present climate and its long-term variability. While in the open-ocean sea level anomaly from satellite altimetry currently possesses centimetre-level accuracy, satellite altimetry measurements become invalid or of lower accuracy along the coast due to the invalidity of the wet tropospheric correction (WTC) derived from on-board microwave radiometers. In order to adequately analyse long-term changes in sea level in the coastal regions, satellite altimetry measurements can be recovered by using an improved WTC computed from recent algorithms that combine wet path delays from all available observations (remote sensing scanning imaging radiometers, GNSS stations, microwave radiometers on-board satellite altimetry missions and numerical weather models). In this study, a 20-year (1993-2013) time series of multi-mission satellite altimetry (TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1/2, ENVISAT, CryoSat-2 and SARAL), are used to characterize the North Atlantic (NA) long-term variability on sea level at basin-scale and analyse its response to several atmospheric teleconnections known to operate on the NA. The altimetry record was generated using an improved coastal WTC computed from either the GNSS-derived path Delay or the Data Combination methodologies developed by University of

  17. SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites

    Science.gov (United States)

    Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

    1993-01-01

    An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

  18. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  19. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean

    Science.gov (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien

    2015-01-01

    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  20. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  1. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.

    Science.gov (United States)

    Taylor, Patrick C; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-12-27

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  2. Covariance Between Arctic Sea Ice and Clouds Within Atmospheric State Regimes at the Satellite Footprint Level

    Science.gov (United States)

    Taylor, Patrick C.; Kato, Seiji; Xu, Kuan-Man; Cai, Ming

    2015-01-01

    Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice-cloud relationship in the Arctic using a satellite footprint-level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A-Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and mid-tropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest-magnitude cloud-sea ice covariance occurs between 500m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near-surface static stability is found at larger sea ice concentrations.

  3. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  4. Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979–2012

    Directory of Open Access Journals (Sweden)

    Jihye Ahn

    2014-06-01

    Full Text Available Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to achieve better predictions by incorporating techniques that can deal with temporal variation of the relationships between sea ice concentration and climate factors. In this paper, we describe the statistical approaches by ordinary least squares (OLS regression and a time-series method for modeling sea ice concentration using satellite imagery and climate reanalysis data for the Barents and Kara Seas during 1979–2012. The OLS regression model could summarize the overall climatological characteristics in the relationships between sea ice concentration and climate variables. We also introduced autoregressive integrated moving average (ARIMA models because the sea ice concentration is such a long-range dataset that the relationships may not be explained by a single equation of the OLS regression. Temporally varying relationships between sea ice concentration and the climate factors such as skin temperature, sea surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, which considerably improved the prediction accuracies. Our method may also be worth consideration when forecasting future sea ice concentration by using the climate data provided by general circulation models (GCM.

  5. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  6. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.

    2011-07-08

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  7. Nearshore, seasonally persistent fronts in sea surface temperature on Red Sea tropical reefs

    KAUST Repository

    Blythe, J. N.; da Silva, J. C. B.; Pineda, J.

    2011-01-01

    Temperature variability was studied on tropical reefs off the coast of Saudi Arabia in the Red Sea using remote sensing from Aqua and Terra satellites. Cross-shore gradients in sea surface temperature (SST) were observed, including cold fronts (colder inshore) during winter and warm fronts (warmer inshore) during summer. Fronts persisted over synoptic and seasonal time-scales and had a periodic annual cycle over a 10-year time-series. Measurements of cross-shore SST variability were conducted at the scale of tens of kilometres, which encompassed temperature over shallow tropical reef complexes and the continental slope. Two tropical reefs that had similar reef geomorphology and offshore continental slope topography had identical cold fronts, although they were separated by 100 km along the Red Sea coast of Saudi Arabia. Satellite SST gradients across contours of topography of tropical reefs can be used as an index to flag areas potentially exposed to temperature stress. © 2011 International Council for the Exploration of the Sea.

  8. The global mean sea surface model WHU2013

    Directory of Open Access Journals (Sweden)

    Taoyong Jin

    2016-05-01

    Full Text Available The mean sea surface (MSS model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80°S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P, Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH, and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD of the differences between the models is about 5 cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  9. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  10. Gravity field modeling at the sea areas using satellite altimetry observations Case study: Gravity field modeling at the Coastal Fars

    International Nuclear Information System (INIS)

    Jomegi, A.

    2007-01-01

    Nowadays, satellite altimetry observations had made it possible to determine sea surface variations, in the global scale, to high degree of precision. Using satellite altimetry observations, Mean Sea Level (MSL) can be determined, which by Kowing Sea Surface Topography (SST), can be converted into high-resolution marine geoid. In this paper we are proposing a method for computation of the Earth's gravity field at the sea areas, which is different from usual methods. Indeed, our method is based on conversion of geoidal heights into gravity potential values at the reference ellipsoid 2 Ea,b , by using ellipsoidal Brun's formula, and forward application of solution of Fixed-Free Two Boundary Value Problem (FFTBVP), previously proposed by the authors for the geoid computations without application of Stokes formula. Numerical results of application of the proposed method at the test area of CoastalFars (at southern part of Iran) show the success of the method. Considering the low cost and high precision of satellite altimetry observations, the proposed method suggests an efficient substitution to shipborne gravity observations for gravity field molding at the sea areas

  11. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  12. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to iso...

  13. Asian Dust Storm Outbreaks: A Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2006-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.

  14. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use

  15. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  16. Three modes of interdecadal trends in sea surface temperature and sea surface height

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  17. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  18. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature dataset derived from the International...

  19. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  20. Estimation of evaporation rates over the Arabian Sea from Satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.V.; RameshBabu, V.; Rao, L.V.G.; Sastry, J.S.

    Utilizing both the SAMIR brightness temperatures of Bhaskara 2 and GOSSTCOMP charts of NOAA satellite series, the evaporation rates over the Arabian Sea for June 1982 are estimated through the bulk aerodynamic method. The spatial distribution...

  1. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  2. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  3. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  4. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-2) satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  5. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-1) satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  6. GHRSST GDS2 Level 2P Global Skin Sea Surface Temperature from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite created by the NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Joint Polar Satellite System (JPSS), starting with S-NPP launched on 28 October 2011, is the new generation of the US Polar Operational Environmental Satellites...

  7. GHRSST Level 2P Atlantic Regional Skin Sea Surface Temperature from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat Second Generation (MSG-3) satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Meteosat Second Generation (MSG-3) satellites are spin stabilized geostationary satellites operated by the European Organization for the Exploitation of...

  8. Satellite remote sensing at the Sea Empress spill - a help or potential hindrance

    International Nuclear Information System (INIS)

    Lunel, T.

    1996-01-01

    The application of satellite images in an oil spill response operation, was discussed. The oil movement and satellite imagery of the Sea Empress spill was described in detail. There were large discrepancies in the predictions by Radarsat satellite imagery and the actual oil movement, and in this instance, the satellite imagery proved to be more of a distraction than a useful tool. It was suggested that the greatest potential for satellite imagery is in detecting smaller releases of oil, such as from illegal tank washings, ballast waters from ships, or operational malfunctions at oil rigs. 4 refs., 10 figs

  9. Sea Surface Temperature Products and Research Associated with GHRSST

    Science.gov (United States)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  10. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  11. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  12. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  13. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  14. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  15. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  16. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  17. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    the modal freeboard heights of 55 cm retrieved from the laser scanner data with the 25 cm retrieved from CryoSat-2 indicates a snow layer of 30 cm, due to the theory that a laser is reflected at the air/snow interface, while the radar is reflected at the snow/ice interface. In the other area, the modal...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...... and in fjord systems. The Greenland fjords exhange freshwater between the glaciers and the ocean. Measuring a snapshot of the ice mélange in front of Kangiata Nunˆta Sermia in southwest Greenland with airborne LiDAR, gives an estimate of the ice disharge since last autuum. The total volume of 1:70 _ 1:26 GT...

  18. Mean dynamic topography over Peninsular Malaysian seas using multimission satellite altimetry

    Science.gov (United States)

    Abazu, Isaac Chidi; Din, Ami Hassan Md; Omar, Kamaludin Mohd

    2017-04-01

    The development of satellite altimeters (SALTs) has brought huge benefits, among which is the ability to more adequately sense ocean-surface topography. The radar altimeter database system was used to capture and process ENVISAT, CRYOSAT-2, SARAL, JASON-1, and JASON-2 SALT data of 5 years between 2011 and 2015. The time series of monthly multimission SALT data showed an estimated sea level trend of 1.0, 2.4, 2.4, 3.6, and 12.0 mm/year at Gelang, Port Kelang, Kukup, Cendering, and Keling. The correlation analysis for the selected tide gauge stations produced satisfying results of R-squared with 0.86, 0.89, 0.91, and 0.97 for Cendering, Sedili, Gelang, and Geting, respectively. The ITG-Grace2010s geoid model was used to compute the mean dynamic topography (MDT) and plot to a grid of 0.25 deg for the Malacca Strait and South China Sea of Peninsular Malaysia, with Keling, Port Kelang, Geting, Sedili, and Johor Bahru tide gauge stations having values determined by interpolation to be 1.14, 1.19, 1.26, 1.88, and 2.91 m, respectively. MDT is computed from the SALT with respect to Port Kelang, the north-south sea slope ranges between -0.64 and 0.29 m/50 km and -0.01 and 0.52 m/50 km along the east and west coasts of Peninsular Malaysia, respectively.

  19. Interactions of planetary magnetospheres with icy satellite surfaces

    International Nuclear Information System (INIS)

    Cheng, A.F.; Haff, P.K.; Johnson, R.E.; Lanzerotti, L.J.

    1986-01-01

    When natural satellites and ring particles are embedded within magnetospheric plasmas, the charged particles interact with the surfaces of these solid bodies. These interactions have important implications for the surface, the atmosphere of the parent body, and the magnetosphere as a whole. Significant erosion of the surface by sputtering, as well as redeposition of sputter ejecta, can occur over geologic time. The surface can also be chemically modified. Sputter ejecta can make important contributions to the atmosphere; sputtering provides a lower limit to the atmospheric column density even for arbitrarily cold satellite surfaces. Sputter ejecta escaping from the parent body can form extensive neutral clouds within the magnetosphere. Ionization and dissociation within these neutral clouds can be dominant sources of low-energy plasma. The importance of these processes is discussed for the satellites and magnetospheres of Jupiter, Saturn and Uranus

  20. Multimission satellite altimetric data validation in the Baltic Sea

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2014-01-01

    The assessment of altimetric data is crucial for investigating the regional sea level variability. Few works has been performed to validate the altimetric data [1, 2] in the Baltic Sea. The exploring of multi-mission altimetric data in the Baltic Sea has yet to be published. The number of available...

  1. Global Daily Sea Ice Concentration Reprocessing Data Set for 1978-2007 from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (NODC Accession 0068294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data constitute the reprocessed sea ice concentration data set from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF), covering the...

  2. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  3. Improved Chlorophyll-a Algorithm for the Satellite Ocean Color Data in the Northern Bering Sea and Southern Chukchi Sea

    Science.gov (United States)

    Lee, Sang Heon; Ryu, Jongseong; Park, Jung-woo; Lee, Dabin; Kwon, Jae-Il; Zhao, Jingping; Son, SeungHyun

    2018-03-01

    The Bering and Chukchi seas are an important conduit to the Arctic Ocean and are reported to be one of the most productive regions in the world's oceans in terms of high primary productivity that sustains large numbers of fishes, marine mammals, and sea birds as well as benthic animals. Climate-induced changes in primary production and production at higher trophic levels also have been observed in the northern Bering and Chukchi seas. Satellite ocean color observations could enable the monitoring of relatively long term patterns in chlorophyll-a (Chl-a) concentrations that would serve as an indicator of phytoplankton biomass. The performance of existing global and regional Chl-a algorithms for satellite ocean color data was investigated in the northeastern Bering Sea and southern Chukchi Sea using in situ optical measurements from the Healy 2007 cruise. The model-derived Chl-a data using the previous Chl-a algorithms present striking uncertainties regarding Chl-a concentrations-for example, overestimation in lower Chl-a concentrations or systematic overestimation in the northeastern Bering Sea and southern Chukchi Sea. Accordingly, a simple two band ratio (R rs(443)/R rs(555)) algorithm of Chl-a for the satellite ocean color data was devised for the northeastern Bering Sea and southern Chukchi Sea. The MODIS-derived Chl-a data from July 2002 to December 2014 were produced using the new Chl-a algorithm to investigate the seasonal and interannual variations of Chl-a in the northern Bering Sea and the southern Chukchi Sea. The seasonal distribution of Chl-a shows that the highest (spring bloom) Chl-a concentrations are in May and the lowest are in July in the overall area. Chl-a concentrations relatively decreased in June, particularly in the open ocean waters of the Bering Sea. The Chl-a concentrations start to increase again in August and become quite high in September. In October, Chl-a concentrations decreased in the western area of the Study area and the Alaskan

  4. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    Science.gov (United States)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  5. Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming

    Science.gov (United States)

    Yeh, K.; Wei, H.; Chen, L.; Liu, G.

    2010-12-01

    Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming Keh-Chia Yeha, Hsiao-Ping Weia,d, Li Chenb, and Gin-Rong Liuc a Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C. b Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan, 300, R.O.C. c Center for Space and Remote Sensing Research, National Central University, Tao-Yuan, Taiwan, 320, R.O.C. d National Science and Technology Center for Disaster Reduction, Taipei County, Taiwan, 231, R.O.C. Abstract This paper proposes an improved multi-run genetic programming (GP) and applies it to predict the rainfall using meteorological satellite data. GP is a well-known evolutionary programming and data mining method, used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. This study makes an improvement to enhance escape ability from local optimums during the optimization procedure. The GP continuously runs several times by replacing the terminal nodes at the next run with the best solution at the current run. The current novel model improves GP, obtaining a highly nonlinear mathematical equation to estimate the rainfall. In the case study, this improved GP described above combining with SSM/I satellite data is employed to establish a suitable method for estimating rainfall at sea surface during typhoon periods. These estimated rainfalls are then verified with the data from four rainfall stations located at Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu, and Green Island, which are four small islands around Taiwan. From the results, the improved GP can generate sophisticated and accurate nonlinear mathematical equation through two-run learning procedures which outperforms the traditional multiple linear regression, empirical equations and back-propagated network

  6. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  7. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  8. Report on workshop "Study of the polar atmosphere and cryosphere using satellite data with surface validation observations including unmanned one"

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanzawa

    1993-07-01

    Full Text Available The workshop was organized to discuss algorithms to derive parameters of the polar atmosphere and cryosphere using satellite data received mainly at Syowa Station (69°S, 40°E, Antarctica, i.e., the data from NOAA, MOS (Marine Observation Satellite-1,ERS (European Remote Sensing Satellite-1,JERS (Japanese Earth Resources Satellite-1 with validation data at the surface. It was held on 16 March 1993 at the National Institute of Polar Research (NIPR, total number of participants being about 40. The contents of the workshop are as follows : The present status of receipt and utilization of the satellite data of NOAA, MOS-1,ERS-1,JERS-1; The Atmosphere; Sea ice; The Cryosphere; Introduction to the satellite data analysis system at the Information Science Center at NIPR.

  9. Wintertime sea surface temperature fronts in the Taiwan Strait

    Science.gov (United States)

    Chang, Yi; Shimada, Teruhisa; Lee, Ming-An; Lu, Hsueh-Jung; Sakaida, Futoki; Kawamura, Hiroshi

    2006-12-01

    We present wintertime variations and distributions of sea surface temperature (SST) fronts in the Taiwan Strait by applying an entropy-based edge detection method to 10-year (1996-2005) satellite SST images with grid size of 0.01°. From climatological monthly mean maps of SST gradient magnitude in winter, we identify four significant SST fronts in the Taiwan Strait. The Mainland China Coastal Front is a long frontal band along the 50-m isobath near the Chinese coast. The sharp Peng-Chang Front appears along the Peng-Hu Channel and extends northward around the Chang-Yuen Ridge. The Taiwan Bank Front evolves in early winter. As the winter progresses, the front becomes broad and moves toward the Chinese coast, connecting to the Mainland China Coastal Front. The Kuroshio Front extends northeastward from the northeastern tip of Taiwan with a semicircle-shape curving along the 100-m isobath.

  10. Rain detection over land surfaces using passive microwave satellite data

    NARCIS (Netherlands)

    Bauer, P.; Burose, D.; Schulz, J.

    2002-01-01

    An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects: (1) Contributions from slowly varying parameters (surface type and

  11. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  12. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  13. The lowering of sea surface temperature in the east central Arabian sea associated with a cyclone

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.; Sastry, J.S.

    An analysis of thermal Structure in the East Central Arabian Sea associated with a moderate cyclone is presented. The heat storage and the heat budget components have been computed. Under the influence of the cyclone the Sea Surface Temperature (SST...

  14. Multivariate Regression Approach To Integrate Multiple Satellite And Tide Gauge Data For Real Time Sea Level Prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2010-01-01

    The Sea Level Thematic Assembly Center in the EUFP7 MyOcean project aims at build a sea level service for multiple satellite sea level observations at a European level for GMES marine applications. It aims to improve the sea level related products to guarantee the sustainability and the quality...

  15. Surface currents and temperature data from satellite-tracked drifters in the Chukchi and Beaufort Seas from 2011-08-07 to 2014-03-06 (NODC Accession 0126984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifters were deployed from vessels in the Chukchi Sea during the ice-free seasons of 2011-2013. Drifter positions were determined via GPS, and positions were...

  16. Reconstruction and downscaling of Eastern Mediterranean OSCAR satellite surface current data using DINEOF

    Science.gov (United States)

    Nikolaidis, Andreas; Stylianou, Stavros; Georgiou, Georgios; Hajimitsis, Diofantos; Gravanis, Elias; Akylas, Evangelos

    2015-04-01

    During the last decade, Rixen (2005) and Alvera-Azkarate (2010) presented the DINEOF (Data Interpolating Empirical Orthogonal Functions) method, a EOF-based technique to reconstruct missing data in satellite images. The application of DINEOF method, proved to provide relative success in various experimental trials (Wang and Liu, 2013; Nikolaidis et al., 2013;2014), and tends to be an effective and computationally affordable solution, on the problem of data reconstruction, for missing data from geophysical fields, such as chlorophyll-a, sea surface temperatures or salinity and geophysical fields derived from satellite data. Implementation of this method in a GIS system will provide with a more complete, integrated approach, permitting the expansion of the applicability over various aspects. This may be especially useful in studies where various data of different kind, have to be examined. For this purpose, in this study we have implemented and present a GIS toolbox that aims to automate the usage of the algorithm, incorporating the DINEOF codes provided by GHER (GeoHydrodynamics and Environment Research Group of University of Liege) into the ArcGIS®. ArcGIS® is a well known standard on Geographical Information Systems, used over the years for various remote sensing procedures, in sea and land environment alike. A case-study of filling the missing satellite derived current data in the Eastern Mediterranean Sea area, for a monthly period is analyzed, as an example for the effectiveness and simplicity of the usage of this toolbox. The specific study focuses to OSCAR satellite data (http://www.oscar.noaa.gov/) collected by NOAA/NESDIS Operational Surface Current Processing and Data Center, from the respective products of OSCAR Project Office Earth and Space Research organization, that provides free online access to unfiltered (1/3 degree) resolution. All the 5-day mean products data coverage were successfully reconstructed. KEY WORDS: Remote Sensing, Cyprus

  17. Sea-level trend in the South China Sea observed from 20 years of along-track satellite altimetric data

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Xu, Qing; Andersen, Ole Baltazar

    2014-01-01

    The sea-level trend in the South China Sea (SCS) is investigated based on 20 years of along-track data from TOPEX and Jason-1/2 satellite altimetry. The average sea-level rise over all the regions in the study area is observed to have a rate of 5.1 ± 0.8 mm year-1 for the period from 1993 to 2012....... The steric sea level contributes 45% to the observed sea-level trend. These results are consistent with previous studies. In addition, the results demonstrate that the maximum sea-level rise rate of 8.4 mm year-1 is occurring off the east coast of Vietnam and eastern part of SCS. During 2010-2011, the La...... Niña event was highly correlated with the dramatic sea-level rise in the SCS; La Niña events were also associated with the maximum rate of sea rise off the east coast of Vietnam, which occurred during 1993 and 2012. We also evaluated the trends in the geophysical (e.g. dynamical atmospheric correction...

  18. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  19. Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

    National Research Council Canada - National Science Library

    Gentemann, Chelle L; Wick, Gary A; Cummings, James; Bayler, Eric

    2004-01-01

    ...) sensors and to then demonstrate the impact of these improved sea surface temperatures (SSTs) on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting...

  20. Assimilation of Sea Surface Temperature in a doubly, two-way nested primitive equation model of the Ligurian Sea

    Science.gov (United States)

    Barth, A.; Alvera-Azcarate, A.; Rixen, M.; Beckers, J.-M.; Testut, C.-E.; Brankart, J.-M.; Brasseur, P.

    2003-04-01

    The GHER 3D primitive equation model is implemented with three different resolutions: a low resolution model (1/4^o) covering the whole Mediterranean Sea, an intermediate resolution model (1/20^o) of the Liguro-Provençal basin and a high resolution model (1/60^o) simulating the fine mesoscale structures in the Ligurian Sea. Boundary conditions and the averaged fields (feedback) are exchanged between two successive nesting levels. The model of the Ligurian Sea is also coupled with the assimilation package SESAM. It allows to assimilate satellite data and in situ observations using the local adaptative SEEK (Singular Evolutive Extended Kalman) filter. Instead of evolving the error space by the numerically expensive Lyapunov equation, a simplified algebraic equation depending on the misfit between observation and model forecast is used. Starting from the 1st January 1998 the low and intermediate resolution models are spun up for 18 months. The initial conditions for the Ligurian Sea are interpolated from the intermediate resolution model. The three models are then integrated until August 1999. During this period AVHRR Sea Surface Temperature of the Ligurian Sea is assimilated. The results are validated by using CTD and XBT profiles of the SIRENA cruise from the SACLANT Center. The overall objective of this study is pre-operational. It should help to identify limitations and weaknesses of forecasting methods and to suggest improvements of existing operational models.

  1. Face to Face Seismic Rays, Satellites and Sea Winds

    Indian Academy of Sciences (India)

    and determine important environmental and geological events. ... Government in the Department of Ocean Development (DOD). Here he ... It is comprised of about 24 active satellites in medium Earth orbit, control and monitoring stations. .... They were nice human beings but their classroom teachings consisted of facilitating ...

  2. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan

    2017-01-01

    in a given model in the high frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean......State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors...... geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multi-sensor oceanographic time-series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04, DTU15...

  3. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  4. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  5. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  6. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  7. Satellite observations and modeling of oil spill trajectories in the Bohai Sea

    DEFF Research Database (Denmark)

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang

    2013-01-01

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil...

  8. Winds observed in the Northern European seas with wind lidars, meteorological masts and satellite

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, D.; Peña, Alfredo

    2013-01-01

    Ocean winds have been observed in the Baltic, Irish and North Seas from a combination of groundbased lidars, tall offshore meteorological masts and satellites remote sensing in recent years. In the FP7 project NORSEWInD (2008-2012) the project partners joined forces to ensure collection of these ...

  9. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  10. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  11. Comparison of Satellite-Derived Phytoplankton Size Classes Using In-Situ Measurements in the South China Sea

    Directory of Open Access Journals (Sweden)

    Shuibo Hu

    2018-03-01

    Full Text Available Ocean colour remote sensing is used as a tool to detect phytoplankton size classes (PSCs. In this study, the Medium Resolution Imaging Spectrometer (MERIS, Moderate Resolution Imaging Spectroradiometer (MODIS, and Sea-viewing Wide Field-of-view Sensor (SeaWiFS phytoplankton size classes (PSCs products were compared with in-situ High Performance Liquid Chromatography (HPLC data for the South China Sea (SCS, collected from August 2006 to September 2011. Four algorithms were evaluated to determine their ability to detect three phytoplankton size classes. Chlorophyll-a (Chl-a and absorption spectra of phytoplankton (aph(λ were also measured to help understand PSC’s algorithm performance. Results show that the three abundance-based approaches performed better than the inherent optical property (IOP-based approach in the SCS. The size detection of microplankton and picoplankton was generally better than that of nanoplankton. A three-component model was recommended to produce maps of surface PSCs in the SCS. For the IOP-based approach, satellite retrievals of inherent optical properties and the PSCs algorithm both have impacts on inversion accuracy. However, for abundance-based approaches, the selection of the PSCs algorithm seems to be more critical, owing to low uncertainty in satellite Chl-a input data

  12. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  13. Stratospheric Impact of Varying Sea Surface Temperatures

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  14. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  15. Estimación de la temperatura superficial del mar desde datos satelitales NOAA-AVHRR: validación de algoritmos aplicados a la costa norte de Chile Sea surface temperature estimation from NOAA-AVHRR satellite data: validation of algorithms applied to the northern coast of Chile

    Directory of Open Access Journals (Sweden)

    Juan C Parra

    2011-01-01

    Full Text Available Se aplicaron y compararon tres algoritmos del tipo Split-Window (SW, que permitieron estimar la temperatura superficial del mar desde datos aportados por el sensor Advanced Very High Resolution Radiometer (AVHRR, a bordo de la serie de satélites de la National Oceanic and Atmospheric Administration (NOAA. La validación de los algoritmos fue lograda por comparación con mediciones in situ de temperatura del mar provenientes de una boya hidrográfica, ubicada frente a la costa norte de Chile (21°21'S, 70°6'W; Región de Tarapacá, a 3 km de la costa aproximadamente. Los mejores resultados se obtuvieron por aplicación del algoritmo propuesto por Sobrino & Raissouni (2000. En efecto, diferencias entre la temperatura medida in situ y la estimada por SW, permitieron evidenciar una media y desviación estándar de 0,3° y 0,8°K, respectivamente.The present article applies and compares three split-window (SW algorithms, which allowed the estimation of sea surface temperature using data obtained from the Advanced Very High Resolution Radiometer (AVHRR on board the National Oceanic and Atmospheric Administration (NOAA series of satellites. The algorithms were validated by comparison with in situ measurements of sea temperature obtained from a hydrographical buoy located off the coast of northern Chile (21°21'S, 70°6'W; Tarapacá Región, approximately 3 km from the coast. The best results were obtained by the application of the algorithm proposed by Sobrino & Raissouni (2000. The mean and standard deviation of the differences between the temperatures measured in situ and those estimated by SW were 0.3° and 0.8°K, respectively.

  16. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  17. Surface ages of mid-size saturnian satellites

    Science.gov (United States)

    Di Sisto, Romina P.; Zanardi, Macarena

    2016-01-01

    The observations of the surfaces of the mid-sized saturnian satellites made by Cassini-Huygens mission have shown a variety of features that allows study of the processes that took place and are taking place on those worlds. Research of the saturnian satellite surfaces has clear implications not only for Saturn's history and Saturn's surroundings, but also for the Solar System. Crater counting from high definition images is very important and could serve for the determination of the age of the surfaces. In a recent paper, we have calculated the production of craters on the mid-sized saturnian satellites by Centaur objects considering the current configuration of the Solar System. Also, we have compared our results with crater counts from Cassini images by other authors and we have noted that the number of observed small craters is less than our calculated theoretical number. In this paper we estimate the age of the surface for each observed terrain on each mid-sized satellite of Saturn. All the surfaces analyzed appear to be old with the exception of Enceladus. However, we have noticed that since there are less observed small craters than calculated (except on Iapetus), this results in younger ages than expected. This could be the result of efficient endogenous or exogenous process(es) for erasing small craters and/or crater saturation at those sizes. The size limit from which the observed number of smaller craters is less than the calculated is different for each satellite, possibly indicating processes that are unique to each, but other potential common explanations for this paucity of small craters would be crater saturation and/or deposition of E-ring particles. These processes are also suggested by the findings that the smaller craters are being preferentially removed, and the erasure process is gradual. On Enceladus, only mid and high latitude plains have remnants of old terrains; the other regions could be young. In particular, the regions near the South

  18. Multi-mission mean sea surface and geoid models for ocean monitoring within the GOCINA project

    Science.gov (United States)

    Andersen, O. B.; Knudsen, P.; Anne, V. L.

    2004-05-01

    A major goal of the EU project GOCINA (Geoid and Ocean Circulation In the North Atlantic) is to develop tools for ocean monitoring using satellite altimetry combined with satellite gravimetry. Furthermore, the project will determine an accurate geoid in the region between Greenland and the UK and, hereby, create a platform for validation of future GOCE Level 2 data and higher order scientific products. The central quantity bridging the geoid and the ocean circulation is the mean dynamic topography, which is the difference between the mean sea surface and the geoid. The mean dynamic topography provides the absolute reference surface for the ocean circulation. The improved determination of the mean circulation will advance the understanding of the role of the ocean mass and heat transport in climate change. To calculate the best possible synthetic mean dynamic topographies a new mean sea surface (KMS03) has been derived from nine years of altimetric data (1993-2001). The regional geoid has furthermore being updated using GRACE and gravimetric data from a recent airborne survey. New synthetic mean dynamic topography models have been computed from the best available geoid models (EGM96, GRACE, GOCINA) and the present mean sea surface models (i.e. CLS01, GSFC00, KMS03). These models will be compared with state of the art hydrodynamic mean dynamic topography models in the North Atlantic GOCINA area. An extended comparison in the Artic Ocean will also be presented to demonstrate the impact of improved geoid and mean sea surface modeling. Particularly using the GRACE derived geoid models, and the KMS03 mean sea surface.

  19. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  20. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer

    Directory of Open Access Journals (Sweden)

    C. Wegner

    2013-02-01

    Full Text Available Sediment transport dynamics were studied during ice-free conditions under different atmospheric circulation regimes on the Laptev Sea shelf (Siberian Arctic. To study the interannual variability of suspended particulate matter (SPM dynamics and their coupling with the variability in surface river water distribution on the Laptev Sea shelf, detailed oceanographic, optical (turbidity and Ocean Color satellite data, and hydrochemical (nutrients, SPM, stable oxygen isotopes process studies were carried out continuously during the summers of 2007 and 2008. Thus, for the first time SPM and nutrient variations on the Laptev Sea shelf under different atmospheric forcing and the implications for the turbidity and transparency of the water column can be presented.

    The data indicate a clear link between different surface distributions of riverine waters and the SPM transport dynamics within the entire water column. The summer of 2007 was dominated by shoreward winds and an eastward transport of riverine surface waters. The surface SPM concentration on the southeastern inner shelf was elevated, which led to decreased transmissivity and increased light absorption. Surface SPM concentrations in the central and northern Laptev Sea were comparatively low. However, the SPM transport and concentration within the bottom nepheloid layer increased considerably on the entire eastern shelf. The summer of 2008 was dominated by offshore winds and northward transport of the river plume. The surface SPM transport was enhanced and extended onto the mid-shelf, whereas the bottom SPM transport and concentration was diminished. This study suggests that the SPM concentration and transport, in both the surface and bottom nepheloid layers, are associated with the distribution of riverine surface waters which are linked to the atmospheric circulation patterns over the Laptev Sea and the adjacent Arctic Ocean during the open water season. A continuing trend toward

  1. Combining airborne and satellite remote sensing programs to repress illegal oil discharges in restricted sea areas

    International Nuclear Information System (INIS)

    Price, M.

    2005-01-01

    An airborne surveillance program has been conducted over the Belgian part of the North Sea since 1991. The role of the program is to detect infringements on the Marpol Convention via remote sensing, and to take legal action against polluters through the use of recorded observations. Although Belgium has a restricted sea area of about 3,500 km with no fixed offshore oil installations, a pollution risk is constantly present due to 2 dense traffic separation schemes close to the shoreline. The Belgian marine areas and adjacent waters are regularly scanned with a Side Looking Airborne Radar (SLAR) on board a remote sensing aircraft. This paper describes an evaluation trial that the Belgian Management Unit of the North Sea Mathematical Models (MUMM) joined in 2004, together with various agencies from the United Kingdom, Germany and the Netherlands. The trial consists of a cost-sharing satellite service for oil detection with ENVISAT ASAR data. The trial was co-funded by the European Space Agency (ESA) and run by Kongsberg Satellite Services. MUMM's objective was to evaluate the effectiveness and operational character of satellite services for detecting oil spills at sea. The results of the 3 month trial have indicated that aerial remote sensing for the detection of illegal oil discharges at sea increases the chances of catching polluters more efficiently, with improved chances of evidence collecting. It was concluded that when various services are integrated and strict operational conditions are met, satellite services may prove to be valuable in restricted, very densely navigated national waters that are easily reached by airborne means. 12 refs., 8 tabs., 3 figs

  2. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    Science.gov (United States)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea

  3. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  4. Satellite retrieved cloud optical thickness sensitive to surface wind speed in the subarctic marine boundary layer

    International Nuclear Information System (INIS)

    Glantz, Paul

    2010-01-01

    The optical and microphysical properties of low level marine clouds, presented over the Norwegian Sea and Barents Sea, have been investigated for the period 2000-2006. The air masses were transported for more or less seven days over the warmer North Atlantic before they arrived at the area investigated. The main focus in this study is on investigating the relationship between cloud optical thickness (COT) and surface wind speed (U 10m ) using satellite retrievals in combination with operational meteorological data. A relatively strong correlation (R 2 = 0.97) is obtained for wind speeds up to 12 m s -1 , in air masses that were probably to a major degree influenced by wind shears and to a minor degree by buoyancy. The relationship (U 2.5 ) is also in between those most commonly found in the literature for water vapor (∼U 1 ) and sea salt (∼U 3.4 ). The present results highlight the magnitude of marine sea-spray influence on COT and their global climatic importance.

  5. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R; Pandya, R; Mathur, K.M.; Charyulu, R; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  6. Optimal Estimation of Sea Surface Temperature from AMSR-E

    Directory of Open Access Journals (Sweden)

    Pia Nielsen-Englyst

    2018-02-01

    Full Text Available The Optimal Estimation (OE technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI to retrieve subskin Sea Surface Temperature (SST from AQUA’s Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E. A comprehensive matchup database with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most consistent. The corresponding mean uncertainty is estimated to 0.48 K including the in situ and sampling uncertainties. An independent validation against Argo observations from 2009 to 2011 shows an average difference of 0.01 K, a standard deviation of 0.50 K and a mean uncertainty of 0.47 K, when considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can thus be used to obtain very good retrieval results. In general, the results from the OE retrieval are very encouraging and demonstrate that passive microwave

  7. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    DEFF Research Database (Denmark)

    Chang, Rui; Rong, Zhu; Badger, Merete

    2015-01-01

    offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR) and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS). The wind roses from...... (SD) of 2.09 m/s (1.83 m/s) and correlation coefficient of R 0.75 (0.80). When the offshore winds (i.e., winds directed from land to sea) are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean...

  8. A new 25 years Arctic Sea level record from ESA satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Cheng, Yongcun; Knudsen, Per

    The Arctic is an extremely challenging region for the use of remote sensing for ocean studies. One is the fact that despite 25 years of altimetry only very limited sea level observations exists in the interior of the Arctic Ocean. However, with Cryosat-2 SAR altimetry the situation is changing...... the ESA GOCE mission we are now able to derive a mean dynamic topography of the Arctic Ocean with unprecedented accuracy to constrain the ocean circulation. We present both a new estimation of the mean ocean circulation and new estimates of large scale sea level changes based on satellite data and perform...

  9. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    Science.gov (United States)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  10. Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry

    KAUST Repository

    Braun, Camrin D.

    2015-10-27

    Populations of mobulid rays are declining globally through a combination of directed fisheries and indirect anthropogenic threats. Understanding the movement ecology of these rays remains an important priority for devising appropriate conservation measures throughout the world’s oceans. We sought to determine manta movements across several temporal and spatial scales with a focus on quantifying site fidelity and seasonality in the northern Farasan Banks, Red Sea. We fitted manta rays with acoustic transmitters (n = 9) and pop-up satellite archival transmitting (PSAT) tags (n = 9), including four with GPS capability (Fastloc), during spring 2011 and 2012. We deployed an extensive array of acoustic receivers (n = 67) to record movements of tagged mantas in the study area. All acoustically tagged individuals traveled frequently among high-use receiver locations and reefs and demonstrated fidelity to specific sites within the array. Estimated and realized satellite tag data indicated regional movements <200 km from the tagging location, largely coastal residency, and high surface occupation. GPS-tagged individuals regularly moved within the coastal reef matrix up to ~70 km to the south but continued to return to the tagging area near the high-occupancy sites identified in the acoustic array. We also tested the accuracy of several geolocation models to determine the best approach to analyze our light-based satellite tag data. We documented significant errors in light-based movement estimates that should be considered when interpreting tracks derived from light-level geolocation, especially for animals with restricted movements through a homogenous temperature field. Despite some error in satellite tag positions, combining results from PSAT and acoustic tags in this study yielded a comprehensive representation of manta spatial ecology across several scales, and such approaches will, in the future, inform the design of appropriate management strategies for manta

  11. Operational Satellite-based Surface Oil Analyses (Invited)

    Science.gov (United States)

    Streett, D.; Warren, C.

    2010-12-01

    During the Deepwater Horizon spill, NOAA imagery analysts in the Satellite Analysis Branch (SAB) issued more than 300 near-real-time satellite-based oil spill analyses. These analyses were used by the oil spill response community for planning, issuing surface oil trajectories and tasking assets (e.g., oil containment booms, skimmers, overflights). SAB analysts used both Synthetic Aperture Radar (SAR) and high resolution visible/near IR multispectral satellite imagery as well as a variety of ancillary datasets. Satellite imagery used included ENVISAT ASAR (ESA), TerraSAR-X (DLR), Cosmo-Skymed (ASI), ALOS (JAXA), Radarsat (MDA), ENVISAT MERIS (ESA), SPOT (SPOT Image Corp.), Aster (NASA), MODIS (NASA), and AVHRR (NOAA). Ancillary datasets included ocean current information, wind information, location of natural oil seeps and a variety of in situ oil observations. The analyses were available as jpegs, pdfs, shapefiles and through Google, KML files and also available on a variety of websites including Geoplatform and ERMA. From the very first analysis issued just 5 hours after the rig sank through the final analysis issued in August, the complete archive is still publicly available on the NOAA/NESDIS website http://www.ssd.noaa.gov/PS/MPS/deepwater.html SAB personnel also served as the Deepwater Horizon International Disaster Charter Project Manager (at the official request of the USGS). The Project Manager’s primary responsibility was to acquire and oversee the processing and dissemination of satellite data generously donated by numerous private companies and nations in support of the oil spill response including some of the imagery described above. SAB has begun to address a number of goals that will improve our routine oil spill response as well as help assure that we are ready for the next spill of national significance. We hope to (1) secure a steady, abundant and timely stream of suitable satellite imagery even in the absence of large-scale emergencies such as

  12. 1994 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  13. 1993 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the NOAA...

  14. Performance evaluation of sea surface simulation methods for target detection

    Science.gov (United States)

    Xia, Renjie; Wu, Xin; Yang, Chen; Han, Yiping; Zhang, Jianqi

    2017-11-01

    With the fast development of sea surface target detection by optoelectronic sensors, machine learning has been adopted to improve the detection performance. Many features can be learned from training images by machines automatically. However, field images of sea surface target are not sufficient as training data. 3D scene simulation is a promising method to address this problem. For ocean scene simulation, sea surface height field generation is the key point to achieve high fidelity. In this paper, two spectra-based height field generation methods are evaluated. Comparison between the linear superposition and linear filter method is made quantitatively with a statistical model. 3D ocean scene simulating results show the different features between the methods, which can give reference for synthesizing sea surface target images with different ocean conditions.

  15. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  16. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A

    different parameters shows that the sea surface temperature and air temperature are positively and significantly correlated over the study area. A similar relationship is found between wind speed and cloudiness amount. Wind speed and cloudiness...

  17. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  18. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  19. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  20. Early Winter Sea Ice Dynamics in the Ross Sea from In Situ and Satellite Observations

    Science.gov (United States)

    Maksym, T.; Ackley, S. F.; Stammerjohn, S. E.; Tison, J. L.; Hoeppner, K.

    2017-12-01

    The Ross Sea sea ice cover is one of the few regions of the cryosphere that have been expanding in recent decades. However, 2017 saw a significantly delayed autumn ice advance and record low early winter sea ice extent. Understanding the causes and impacts of this variability has been hampered by a lack of in situ observations. A winter cruise into the Ross Sea in April-June 2017 provided some of the only in situ winter observations of sea ice processes in this region in almost 20 years. We present a first look at data from arrays of drifting buoys deployed in the ice pack and outflow from these polynyas, supplemented by a suite of high-resolution synthetic aperture radar (SAR) data. Additional observations included high-resolution sonar imagery of ice deformation features from an autonomous underwater vehicle, shipboard visual observations of sea ice properties, and in situ measurements of snow and thickness and structural properties. These data show that the delay in ice advance led to a thin, highly dynamic sea ice pack, with substantial ice production and export from the Ross Ice Shelf and Terra Nova Bay polynyas. Despite these high rates of ice production, the pack ice remained thin due to rapid export and northward drift. Compared to the only prior winter observations made in 1995 and 1998, the ice was thinner, with less ridging and snow cover, reflecting a younger ice cover. Granular ice was less prevalent than in these prior cruises, particularly in the outer pack, likely due to less snow ice formation and less pancake ice formation at the advancing ice edge. Despite rapid basal ice growth, the buoy data suggest that deformation may be the dominant mechanism for sea ice thickening in the pack once an initial ice cover forms.

  1. The Mean Sea Surface DTU10mss - Comparison With Gps And Tide Gauges

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Bondo, Torsten

    2010-01-01

    Satellite altimetry and the Global Position System (GPS) are conveniently given in the same reference frame and can therefore be used to construct a vertical reference surface for offshore navigation. Here a new Mean Sea Surface DTU10MSS is presented with a vertical accuracy better than 10 cm...... in most areas of the world confirmed by extensive comparison with GPS leveled tide gauges around Britain and Norway. It is proposed that this model is used as a global vertical reference. This paper briefly outlines the update of the previous DTU model to DTU10MSS and presents comparisons on GPS positions...

  2. ATSR sea surface temperature data in a global analysis with TOPEX/POSEIDON altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Knudsen, Thomas

    1996-01-01

    Along Track Scanning Radiometer (ATSR) data from the ERS 1 satellite mission are used in a global analysis of the surface temperature of the oceans. The data are the low resolution 0.5 degrees by 0.5 degrees average temperatures and cover about 24 months. At global scales a significant seasonal...... variability is found. On each of the hemispheres the surface temperatures reach their maximum after summer heating. The seasonal sea level variability, as observed from TOPEX/POSEIDON, reaches its maximum 1.1-1.4 months later....

  3. NOAA NDBC SOS, 2008-present, sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  4. Effects of the surface waves on air-sea interactions of the sea spray

    NARCIS (Netherlands)

    Francius, M.J.; Eijk, A.M.J. van

    2006-01-01

    Aerosols are important to a large number of processes in the marine boundary layer. On a micro-meteorological scale, they influence the heat and moisture budgets near the sea surface. Since the ocean acts both as a source and a sink for aerosols, the sea spray droplets may transfer water vapour and

  5. Zooplankton incidence in abnormally high sea surface temperature in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Zooplankton in an abnormally high sea surface temperature (33.1 to 33.8 degrees C) and alternate bands of slick formation were studied in the Eastern Arabian Sea during 26 and 29 April 1981. The phenomenon which may be due to intense diurnal heating...

  6. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  7. Sea level variability in the Arctic Ocean observed by satellite altimetry

    OpenAIRE

    Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N.

    2012-01-01

    We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data...

  8. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    Science.gov (United States)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  9. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  10. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  11. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  12. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  13. Satellite monitoring temperature conditions spawning area of the Northeast Arctic cod in the Norwegian Sea and assessment its abundance

    Science.gov (United States)

    Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail

    2013-04-01

    In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating

  14. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  15. Black Sea impact on its west-coast land surface temperature

    Science.gov (United States)

    Cheval, Sorin; Constantin, Sorin

    2018-03-01

    This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.

  16. Satellite observation of bio-optical indicators related to North-Western Black Sea coastal zone changes

    Science.gov (United States)

    Zoran, Maria

    Satellite remote sensing provides a means for locating, identifying and mapping certain coastal zone features and assessing of spatio-temporal changes.The Romanian coastal zone of the Black Sea is a mosaic of complex, interacting ecosystems, exposed to dramatic changes due to natural and anthropogenic causes (increase in the nutrient and pollutant load of rivers input, industrial and municipal wastewater pollution along the coast, and dumping on the open sea). This study focuses on the assessment of coastal zone land cover changes based on the fusion of satellite remote sensing data.The evaluation of coastal zone landscapes is based upon different sub-functions which refer to landscape features such as water, soil, land-use, buildings, groundwater, biotope types. Mixed pixels result when the sensor's instantaneous field-of-view includes more than one land cover class on the ground. Based on different satellite data (Landsat TM, ETM, SAR ERS, IKONOS, Quickbird, and MODIS) was performed object recognition for North-Western Black Sea coastal zone. Preliminary results show significant coastline position changes of North Western Black Sea during the period of 1987-2007 and urban growth of Constantza town. Also the change in the position of the coastline is examined and linked to the urban expansion in order to determine if the changes are natural or anthropogenic. A distinction is made between landfill/sedimentation processes on the one hand and dredging/erosion processes on the other. Waves play an important role for shoreline configuration. Wave pattern could induce erosion and sedimentation. A quasi-linear model was used to model the rate of shoreline change. The vectors of shoreline were used to compare with wave spectra model in order to examine the accuracy of the coastal erosion model. The shoreline rate modeled from vectors data of SAR ERS-1 has a good correlation with a quasi-linear model. Wave refraction patterns are a good index for shoreline erosion. A coast

  17. Expansion of the South China Sea basin: Constraints from magnetic anomaly stripes, sea floor topography, satellite gravity and submarine geothermics

    Directory of Open Access Journals (Sweden)

    Xuezhong Yu

    2017-01-01

    Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub

  18. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    in the context of operational mapping and monitoring of the springtime evolution of LSW plume in the ECS. The results were very encouraging and showed interesting features in surface CDOM and salinity fields in the vicinity of the Yangtze River estuary and its offshore domains, when a regional atmospheric correction (SSMM was employed instead of the standard (global SeaWiFS algorithm (SAC which revealed large errors around the edges of clouds/aerosols while masking out the nearshore areas. Nevertheless, there was good consistency between these two atmospheric correction algorithms over the relatively clear regions with a mean difference of 0.009 in aCDOM (400 (m−1 and 0.096 in salinity (psu. This study suggests the possible utilization of satellite remote sensing to assess CDOM and salinity and thus provides great potential in advancing our knowledge of the shelf-slope evolution and migration of the LSW plume properties in the ECS.

  19. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery

    Directory of Open Access Journals (Sweden)

    Lizhang Zhou

    2017-06-01

    Full Text Available Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere and ocean, and therefore regional and global weather and climate. With various satellite microwave sensors, sea surface wind can be measured with large spatial coverage in almost all-weather conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval models for different types of microwave instruments. In this paper, a new sea surface wind direction retrieval method from synthetic aperture radar (SAR imagery is developed. In the method, local gradients are computed in frequency domain by combining the operation of smoothing and computing local gradients in one step to simplify the process and avoid the difference approximation. This improved local gradients (ILG method is compared with the traditional two-dimensional fast Fourier transform (2D FFT method and local gradients (LG method, using interpolating wind directions from the European Centre for Medium-Range Weather Forecast (ECMWF reanalysis data and the Cross-Calibrated Multi-Platform (CCMP wind vector product. The sensitivities to the salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method shows a better performance of retrieval wind directions than the other two methods.

  20. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    temperature anomalies for the above regions respectively. An analysis has shown that most of the short duration anomalies (i.e., anomalies with periods less than 4 months) are driven by the surface heat fluxes. The medium duration anomalies (i.e., anomalies...

  1. Assimilation of satellite data to increase the reliability of the wave predictions in the Black Sea

    Science.gov (United States)

    Rusu, Liliana; Raileanu, Alina

    2015-04-01

    In order to improve the wave predictions provided in the Black Sea by a wave modelling system based on the SWAN (Simulating Waves Nearshore) spectral model, a technique for assimilating the satellite data has been implemented and evaluated. For this purpose, an approach based on the Optimal Interpolation method has been considered and its results are discussed in the present work. As a first step, SWAN model simulations have been carried out for a 5-year interval (2004-2008). The assimilation is made in terms of the significant wave height (Hs) for each 24 hours considering data coming from 4 satellites (ERS-2, JASON-1, JASON-2, GEOSAT Follow-On). Subsequently, data provided by two other satellites (ENVISAT and TOPEX) are used for validations. To assess the improvement brought in the model predictions by the assimilation scheme, a comparison has been performed between the model results with and without assimilation. The statistical parameters evaluated are: bias, mean absolute error, RMS error, scatter index, correlation coefficient and symmetric slope. The results show that the data assimilation procedure induces a significant improvement of the statistical parameters (lower values for bias, errors and scatter index and values closer to the unity of the correlation coefficient and for the symmetric slope). It was found also that an important factor in improving the wave predictions is represented by the value of the correlation length accounted for the Hs prediction errors (Lmax). Previous studies indicate for this length a value around four degrees in the vicinity of 45 degrees latitude (which corresponds also to the basin of the Black Sea). This value was first considered in the assimilation technique. On the other hand, taking also into account the fact that in the Black Sea the wind-sea waves are dominant, lower values for the parameter Lmax were tested as well and it seems that the most appropriate value for this parameter is between three and four degrees

  2. AQUA AMSR-E Sea Surface Temperature

    Science.gov (United States)

    Gentemann, C. L.

    2011-12-01

    NASA's AQUA satellite carries the JAXA's Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). The AQUA satellite was launched in May 2002 into a polar, sun-synchronous orbit at an altitude of 705 km, with a LECT of 1:30 AM/PM. AMSR-E has 12 channels corresponding to 6 frequencies; all except 23.8 GHz measure both vertical and horizontal polarizations. Geophysical retrievals of SST, wind speed, water vapor, cloud liquid water, and rain rates are calculated using a multi-stage linear regression algorithm derived through comprehensive radiative transfer model simulations. SST retrievals are prevented by rain, sun glint, near land emissions, and radio frequency interference due to geostationary satellite broadcasts. Since only a small number of retrievals are unsuccessful, almost complete global coverage is available daily. At high latitudes, where cloud cover regularly prevents infrared observations of SSTs, the microwave observations of SST provide a significant improvement to measurement capabilities. Validation of the datasets through comparison to the global drifting buoy networks yields mean biases of -0.02 K and standard deviations of 0.50 K. AMSR-E SSTs have been widely used for numerical weather prediction, ocean modeling, fisheries, and oceanographic research.

  3. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  4. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    Science.gov (United States)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  5. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  6. Constraining the parameters of the EAP sea ice rheology from satellite observations and discrete element model

    Science.gov (United States)

    Tsamados, Michel; Heorton, Harry; Feltham, Daniel; Muir, Alan; Baker, Steven

    2016-04-01

    The new elastic-plastic anisotropic (EAP) rheology that explicitly accounts for the sub-continuum anisotropy of the sea ice cover has been implemented into the latest version of the Los Alamos sea ice model CICE. The EAP rheology is widely used in the climate modeling scientific community (i.e. CPOM stand alone, RASM high resolution regional ice-ocean model, MetOffice fully coupled model). Early results from sensitivity studies (Tsamados et al, 2013) have shown the potential for an improved representation of the observed main sea ice characteristics with a substantial change of the spatial distribution of ice thickness and ice drift relative to model runs with the reference visco-plastic (VP) rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. Observations from high resolution satellite SAR imagery as well as numerical simulation results from a discrete element model (DEM, see Wilchinsky, 2010) have shown that these individual floes can organize under external wind and thermal forcing to form an emergent isotropic sea ice state (via thermodynamic healing, thermal cracking) or an anisotropic sea ice state (via Coulombic failure lines due to shear rupture). In this work we use for the first time in the context of sea ice research a mathematical metric, the Tensorial Minkowski functionals (Schroeder-Turk, 2010), to measure quantitatively the degree of anisotropy and alignment of the sea ice at different scales. We apply the methodology on the GlobICE Envisat satellite deformation product (www.globice.info), on a prototype modified version of GlobICE applied on Sentinel-1 Synthetic Aperture Radar (SAR) imagery and on the DEM ice floe aggregates. By comparing these independent measurements of the sea ice anisotropy as well as its temporal evolution against the EAP model we are able to constrain the

  7. Torrential precipitations on the Spanish east coast: The role of the Mediterranean sea surface temperature

    Science.gov (United States)

    Millán, M.; Estrela, M. J.; Caselles, V.

    Floods constitute one of the most important natural risks on the Spanish Mediterranean coast. Although it is very difficult to avoid them, a correct understanding of their principal cause, which is torrential rain, can facilitate their prediction and in this way avoid, at least partially, their catastrophic effects (both loss of human lives and material damage). The work presented here is part of a more extensive study underway in the CEAM (Centro de Estudios Ambientales del Mediterráneo). Its objective is the analysis of the conditions that produce torrential precipitations. These can be explained by the hypothesis of the Back Door Front, a mechanism which on its own permits the development of a potentially unstable mass above the Mediterranean sea. Among the different factors that are valued in this hypothesis, the Sea Surface Temperature is considered to play an important role. It is studied by means of satellite images since this is the only technique that permits a synoptic view of this parameter. NOAH satellite images have been used, applying the split-window operative technique. This work presents initial results that confirm the importance of the Sea Surface Temperature (SST) as a moisture source in the Mediterranean cyclogenesis.

  8. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  9. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    Science.gov (United States)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  10. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    Science.gov (United States)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven

    2017-11-01

    State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.

  11. GLOBAL CHANGES IN THE SEA ICE COVER AND ASSOCIATED SURFACE TEMPERATURE CHANGES

    Directory of Open Access Journals (Sweden)

    J. C. Comiso

    2016-06-01

    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  12. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  13. Local validation of MODIS sensor sea surface temperature on western Mediterranean shallow waters

    Directory of Open Access Journals (Sweden)

    E. Durá

    2014-06-01

    Full Text Available The sea surface temperature (SST estimated from MODIS Aqua products (daytime and nighttime 11 μm and night 4 μm has been correlated with field data taken at three depths (15, 50, 100 cm in a Western Mediterranean coastal area. The comparison has allowed us to analyze the uncertainty in the estimation of this parameter in coastal waters using low spatial resolution satellite images. The results show that the daytime SST_11 μm product obtains fittest statistical values: RMSE (root mean square error and r2 (Pearson’s correlation coefficient of 1°C and 0.96, respectively, for 50 cm depth.

  14. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  15. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  16. Improving SMOS Sea Surface Salinity in the Western Mediterranean Sea through Multivariate and Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Estrella Olmedo

    2018-03-01

    Full Text Available A new methodology using a combination of debiased non-Bayesian retrieval, DINEOF (Data Interpolating Empirical Orthogonal Functions and multifractal fusion has been used to obtain Soil Moisture and Ocean Salinity (SMOS Sea Surface Salinity (SSS fields over the North Atlantic Ocean and the Mediterranean Sea. The debiased non-Bayesian retrieval mitigates the systematic errors produced by the contamination of the land over the sea. In addition, this retrieval improves the coverage by means of multiyear statistical filtering criteria. This methodology allows obtaining SMOS SSS fields in the Mediterranean Sea. However, the resulting SSS suffers from a seasonal (and other time-dependent bias. This time-dependent bias has been characterized by means of specific Empirical Orthogonal Functions (EOFs. Finally, high resolution Sea Surface Temperature (OSTIA SST maps have been used for improving the spatial and temporal resolution of the SMOS SSS maps. The presented methodology practically reduces the error of the SMOS SSS in the Mediterranean Sea by half. As a result, the SSS dynamics described by the new SMOS maps in the Algerian Basin and the Balearic Front agrees with the one described by in situ SSS, and the mesoscale structures described by SMOS in the Alboran Sea and in the Gulf of Lion coincide with the ones described by the high resolution remotely-sensed SST images (AVHRR.

  17. Comparison of satellite altimetry sea level anomalies and hydrographic observations in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Francisco Mir Calafat

    2012-08-01

    Full Text Available Steric sea level (SSL computed from hydrographic observations in the Mediterranean Sea is compared against altimetric sea level anomalies (SLA at seasonal and inter-annual time scales for the period 1993-2008. SSL (referenced to 300 m is computed using two data sets: in situ profiles and gridded products obtained from interpolated observations. The impact of expendable/mechanical bathythermograph (XBT/MBT biases affecting some of the in situ profiles is investigated by comparing both corrected and uncorrected data. For the period 2003-2008 the mass component is estimated from GRACE observations and subtracted from SLA. The analysis of the spatio-temporal distribution of profiles shows that the number of profiles with data below 300 m is a small percentage of the total and that their spatial coverage of the Mediterranean basin is very limited. This is an important handicap for regions where the contribution of the deep layers to SSL is significant. Overall, SSL and SLA are shown to be consistent in the Mediterranean at seasonal time scales, although the annual amplitude of the SSL from in situ profiles and interpolated data is considerably smaller than that of the SLA. The agreement at inter-annual time scales is less good. At some particular locations SSL computed from individual profiles is more correlated with SLA than the gridded products. At basin and sub-basin scales, however, interpolated and in situ observations provide similar results in terms of their correlation with observed SLA. The XBT/MBT bias corrections have little effect on the SSL at the time scales considered in this study.

  18. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  19. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  20. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  1. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    Science.gov (United States)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  2. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  3. Laboratory Reference Spectroscopy of Icy Satellite Candidate Surface Materials (Invited)

    Science.gov (United States)

    Dalton, J. B.; Jamieson, C. S.; Shirley, J. H.; Pitman, K. M.; Kariya, M.; Crandall, P.

    2013-12-01

    The bulk of our knowledge of icy satellite composition continues to be derived from ultraviolet, visible and infrared remote sensing observations. Interpretation of remote sensing observations relies on availability of laboratory reference spectra of candidate surface materials. These are compared directly to observations, or incorporated into models to generate synthetic spectra representing mixtures of the candidate materials. Spectral measurements for the study of icy satellites must be taken under appropriate conditions (cf. Dalton, 2010; also http://mos.seti.org/icyworldspectra.html for a database of compounds) of temperature (typically 50 to 150 K), pressure (from 10-9 to 10-3 Torr), viewing geometry, (i.e., reflectance), and optical depth (must manifest near infrared bands but avoid saturation in the mid-infrared fundamentals). The Planetary Ice Characterization Laboratory (PICL) is being developed at JPL to provide robust reference spectra for icy satellite surface materials. These include sulfate hydrates, hydrated and hydroxylated minerals, and both organic and inorganic volatile ices. Spectral measurements are performed using an Analytical Spectral Devices FR3 portable grating spectrometer from .35 to 2.5 microns, and a Thermo-Nicolet 6500 Fourier-Transform InfraRed (FTIR) spectrometer from 1.25 to 20 microns. These are interfaced with the Basic Extraterrestrial Environment Simulation Testbed (BEEST), a vacuum chamber capable of pressures below 10-9 Torr with a closed loop liquid helium cryostat with custom heating element capable of temperatures from 30-800 Kelvins. To generate optical constants (real and imaginary index of refraction) for use in nonlinear mixing models (i.e., Hapke, 1981 and Shkuratov, 1999), samples are ground and sieved to six different size fractions or deposited at varying rates to provide a range of grain sizes for optical constants calculations based on subtractive Kramers-Kronig combined with Hapke forward modeling (Dalton and

  4. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    Science.gov (United States)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in

  5. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  6. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions...

  7. SEA SURFACE TEMPERATURE and Other Data from MULTIPLE SHIPS From Sea of Japan from 19930101 to 19930630 (NODC Accession 9300173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The sea surface temperature data in this accession was collected in Sea of Japan. Data in this accession was collected over a six month period from thermistor. The...

  8. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  9. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2016-04-01

    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  10. Sea surface temperature and Ekman transport in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    E. H.

    2002-12-01

    Full Text Available   The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905. Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport of colder northern waters and inflow from the Oman Sea. The monthly SST mainly obtained from the 10 10 grided data of Levitus atlas and Hormuz Cruis Experiment for 1997.   Analyses show a NW to SE Ekman transport due to wind stress and significant interannual variability of SST on sea surface in the Persian Gulf. The seasonal variation of SST shows a continental pattern due to severe interaction between the land and sea. But these variations somehow moderates because of Ekman transport in Persian Gulf.

  11. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    Science.gov (United States)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  12. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2009-01-01

    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high...

  13. Loki Patera as the Surface of a Magma Sea

    Science.gov (United States)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  14. Characterization of Dust Properties during ACE-Asia and PRIDE: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Lau, William K. M. (Technical Monitor); Tsay, Si-Chee; Hsu, N. Christina; Herman, Jay R.; Ji, Q. Jack

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentration over particular pathways around the globe. For example, the ACE-Asia (Aerosol Characterization Experiment-Asia) was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). The PRIDE (Puerto RIco Dust Experiment, July 2000) was designed to measure the properties of Saharan dust transported across the Atlantic Ocean to the Caribbean. Dust particles typically originate in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of dust aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the ocean. During ACE-Asia and PRIDE we had measured aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from ground-based remote sensing. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. We will present the results and discuss their implications in regional climatic effects.

  15. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches

    Directory of Open Access Journals (Sweden)

    Stefan Kern

    2016-05-01

    Full Text Available Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow freeboard and snow depth, which we use to compute snow depth on sea ice from Ice, Cloud, and land Elevation Satellite (ICESat total freeboard observations. We compare ICESat snow depth for early winter and spring of the years 2004 through 2006 with the Advanced Scanning Microwave Radiometer aboard EOS (AMSR-E snow depth product. We find ICESat snow depths agree more closely with ship-based visual and air-borne snow radar observations than AMSR-E snow depths. We obtain average modal and mean ICESat snow depths, which exceed AMSR-E snow depths by 5–10 cm in winter and 10–15 cm in spring. We observe an increase in ICESat snow depth from winter to spring for most Antarctic regions in accordance with ground-based observations, in contrast to AMSR-E snow depths, which we find to stay constant or to decrease. We suggest satellite laser altimetry as an alternative method to derive snow depth on Antarctic sea ice, which is independent of snow physical properties.

  16. All-weather Land Surface Temperature Estimation from Satellite Data

    Science.gov (United States)

    Zhou, J.; Zhang, X.

    2017-12-01

    Satellite remote sensing, including the thermal infrared (TIR) and passive microwave (MW), provides the possibility to observe LST at large scales. For better modeling the land surface processes with high temporal resolutions, all-weather LST from satellite data is desirable. However, estimation of all-weather LST faces great challenges. On the one hand, TIR remote sensing is limited to clear-sky situations; this drawback reduces its usefulness under cloudy conditions considerably, especially in regions with frequent and/or permanent clouds. On the other hand, MW remote sensing suffers from much greater thermal sampling depth (TSD) and coarser spatial resolution than TIR; thus, MW LST is generally lower than TIR LST, especially at daytime. Two case studies addressing the challenges mentioned previously are presented here. The first study is for the development of a novel thermal sampling depth correction method (TSDC) to estimate the MW LST over barren land; this second study is for the development of a feasible method to merge the TIR and MW LSTs by addressing the coarse resolution of the latter one. In the first study, the core of the TSDC method is a new formulation of the passive microwave radiation balance equation, which allows linking bulk MW radiation to the soil temperature at a specific depth, i.e. the representative temperature: this temperature is then converted to LST through an adapted soil heat conduction equation. The TSDC method is applied to the 6.9 GHz channel in vertical polarization of AMSR-E. Evaluation shows that LST estimated by the TSDC method agrees well with the MODIS LST. Validation is based on in-situ LSTs measured at the Gobabeb site in western Namibia. The results demonstrate the high accuracy of the TSDC method: it yields a root-mean squared error (RMSE) of 2 K and ignorable systematic error over barren land. In the second study, the method consists of two core processes: (1) estimation of MW LST from MW brightness temperature and (2

  17. Anomalous sea surface structures as an object of statistical topography

    Science.gov (United States)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  18. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...

  19. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  20. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2012-04-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave

  1. HIMAWARI-8 Geostationary Satellite Observation of the Internal Solitary Waves in the South China Sea

    Science.gov (United States)

    Gao, Q.; Dong, D.; Yang, X.; Husi, L.; Shang, H.

    2018-04-01

    The new generation geostationary meteorological satellite, Himawari-8 (H-8), was launched in 2015. Its main payload, the Advanced Himawari Imager (AHI), can observe the earth with 10-minute interval and as high as 500-m spatial resolution. This makes the H-8 satellite an ideal data source for marine and atmospheric phenomena monitoring. In this study, the propagation of internal solitary waves (ISWs) in the South China Sea is investigated using AHI imagery time series for the first time. Three ISWs cases were studied at 3:30-8:00 UTC on 30 May, 2016. In all, 28 ISWs were detected and tracked between the time series image pairs. The propagation direction and phase speeds of these ISWs are calculated and analyzed. The observation results show that the properties of ISW propagation not stable and maintains nonlinear during its lifetime. The resultant ISW speeds agree well with the theoretical values estimated from the Taylor-Goldstein equation using Argo dataset. This study has demonstrated that the new generation geostationary satellite can be a useful tool to monitor and investigate the oceanic internal waves.

  2. IR-BASED SATELLITE PRODUCTS FOR THE MONITORING OF ATMOSPHERIC WATER VAPOR OVER THE BLACK SEA

    Directory of Open Access Journals (Sweden)

    VELEA LILIANA

    2016-03-01

    Full Text Available The amount of precipitable water (TPW in the atmospheric column is one of the important information used weather forecasting. Some of the studies involving the use of TPW relate to issues like lightning warning system in airports, tornadic events, data assimilation in numerical weather prediction models for short-range forecast, TPW associated with intense rain episodes. Most of the available studies on TPW focus on properties and products at global scale, with the drawback that regional characteristics – due to local processes acting as modulating factors - may be lost. For the Black Sea area, studies on the climatological features of atmospheric moisture are available from sparse or not readily available observational databases or from global reanalysis. These studies show that, although a basin of relatively small dimensions, the Black Sea presents features that may significantly impact on the atmospheric circulation and its general characteristics. Satellite observations provide new opportunities for extending the knowledge on this area and for monitoring atmospheric properties at various scales. In particular, observations in infrared (IR spectrum are suitable for studies on small-scale basins, due to the finer spatial sampling and reliable information in the coastal areas. As a first step toward the characterization of atmospheric moisture over the Black Sea from satellite-based information, we investigate three datasets of IR-based products which contain information on the total amount of moisture and on its vertical distribution, available in the area of interest. The aim is to provide a comparison of these data with regard to main climatological features of moisture in this area and to highlight particular strengths and limits of each of them, which may be helpful in the choice of the most suitable dataset for a certain application.

  3. Seasonal variability of thermal fronts in the northern South China Sea from satellite data

    Science.gov (United States)

    Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping

    The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.

  4. Arctic sea level change over the past 2 decades from GRACE gradiometry and multi-mission satellite altimetry

    DEFF Research Database (Denmark)

    Andersen, O. B.; Stenseng, L.; Sørensen, C. S.

    2014-01-01

    The Arctic is still an extremely challenging region for theuse of remote sensing for sea level studies. Despite the availability of 20 years of altimetry, only very limited sea level observations exist in the interior of the Arctic Ocean. However, with Cryosat-2 SAR altimetry the situation...... gradiometer observations from the ESA GOCE mission, we are now able to derive a mean dynamic topography of the Arctic Ocean with unprecedented accuracy to constrain the Arctic Ocean circulation controlling sea level variations in the Arctic. We present both a new estimation of the mean ocean circulation...... and new estimates of large scale sea level changes based on satellite data and perform an estimation of the fresh waterstorage increase over the last decade using temporal gravity changes from the GRACE satellite....

  5. Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2018-02-01

    Full Text Available An ice-free Arctic summer would have pronounced impacts on global climate, coastal habitats, national security, and the shipping industry. Rapid and accelerated Arctic sea ice loss has placed the reality of an ice-free Arctic summer even closer to the present day. Accurate projection of the first Arctic ice-free summer year is extremely important for business planning and climate change mitigation, but the projection can be affected by many factors. Using an inter-calibrated satellite sea ice product, this article examines the sensitivity of decadal trends of Arctic sea ice extent and statistical projections of the first occurrence of an ice-free Arctic summer. The projection based on the linear trend of the last 20 years of data places the first Arctic ice-free summer year at 2036, 12 years earlier compared to that of the trend over the last 30 years. The results from a sensitivity analysis of six commonly used curve-fitting models show that the projected timings of the first Arctic ice-free summer year tend to be earlier for exponential, Gompertz, quadratic, and linear with lag fittings, and later for linear and log fittings. Projections of the first Arctic ice-free summer year by all six statistical models appear to converge to the 2037 ± 6 timeframe, with a spread of 17 years, and the earliest first ice-free Arctic summer year at 2031.

  6. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    Directory of Open Access Journals (Sweden)

    P R Renosh

    Full Text Available Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a, and the Sea Surface Temperature (SST, rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.

  7. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    .98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity in the context of operational mapping and monitoring of the springtime evolution of LSW plume in the ECS. The results were very encouraging and showed interesting features in surface CDOM and salinity fields in the vicinity of the Yangtze River estuary and its offshore domains, when a regional atmospheric correction (SSMM was employed instead of the standard (global SeaWiFS algorithm (SAC which revealed large errors around the edges of clouds/aerosols while masking out the nearshore areas. Nevertheless, there was good consistency between these two atmospheric correction algorithms over the relatively clear regions with a mean difference of 0.009 in aCDOM (400 (m−1 and 0.096 in salinity (psu. This study suggests the possible utilization of satellite remote sensing to assess CDOM and salinity and thus provides great potential in advancing our knowledge of the shelf-slope evolution and migration of the LSW plume properties in the ECS.

  8. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  9. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  10. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  11. Arctic sea ice albedo - A comparison of two satellite-derived data sets

    Science.gov (United States)

    Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.

    1993-01-01

    Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.

  12. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  13. Studying the Surfaces of the Icy Galilean Satellites With JIMO

    Science.gov (United States)

    Prockter, L.; Schenk, P.; Pappalardo, R.

    2003-12-01

    The Geology subgroup of the Jupiter Icy Moons Orbiter (JIMO) Science Definition Team (SDT) has been working with colleagues within the planetary science community to determine the key outstanding science goals that could be met by the JIMO mission. Geological studies of the Galilean satellites will benefit from the spacecraft's long orbital periods around each satellite, lasting from one to several months. This mission plan allows us to select the optimal viewing conditions to complete global compositional and morphologic mapping at high resolution, and to target geologic features of key scientific interest at very high resolution. Community input to this planning process suggests two major science objectives, along with corresponding measurements proposed to meet them. Objective 1: Determine the origins of surface features and their implications for geological history and evolution. This encompasses investigations of magmatism (intrusion, extrusion, and diapirism), tectonism (isostatic compensation, and styles of faulting, flexure and folding), impact cratering (morphology and distribution), and gradation (erosion and deposition) processes (impact gardening, sputtering, mass wasting and frosts). Suggested measurements to meet this goal include (1) two dimensional global topographic mapping sufficient to discriminate features at a spatial scale of 10 m, and with better than or equal to 1 m relative vertical accuracy, (2) nested images of selected target areas at a range of resolutions down to the submeter pixel scale, (3) global (albedo) mapping at better than or equal to 10 m/pixel, and (4) multispectral global mapping in at least 3 colors at better than or equal to 100 m/pixel, with some subsets at better than 30 m/pixel. Objective 2. Identify and characterize potential landing sites for future missions. A primary component to the success of future landed missions is full characterization of potential sites in terms of their relative age, geological interest, and

  14. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  15. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  16. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  17. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  18. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  19. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  20. Sea Surface Height, Absolute, Aviso, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Absolute Sea Surface Height is the Sea Surface Height Deviation plus the long term mean dynamic height. This is Science Quality data.

  1. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  2. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  3. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  4. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  5. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  6. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  7. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  8. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  9. THRESHOLD DETERMINATION FOR LOCAL INSTANTANEOUS SEA SURFACE HEIGHT DERIVATION WITH ICEBRIDGE DATA IN BEAUFORT SEA

    Directory of Open Access Journals (Sweden)

    C. Zhu

    2018-05-01

    Full Text Available The NASA Operation IceBridge (OIB mission is the largest program in the Earth’s polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA’s ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and −0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.

  10. The Carbon Dioxide System in the Baltic Sea Surface Waters

    Energy Technology Data Exchange (ETDEWEB)

    Wesslander, Karin

    2011-05-15

    The concentration of carbon dioxide (CO{sub 2}) in the atmosphere is steadily increasing because of human activities such as fossil fuel burning. To understand how this is affecting the planet, several pieces of knowledge of the CO{sub 2} system have to be investigated. One piece is how the coastal seas, which are used by people and influenced by industrialization, are functioning. In this thesis, the CO{sub 2} system in the Baltic Sea surface water has been investigated using observations from the last century to the present. The Baltic Sea is characterized of a restricted water exchange with the open ocean and a large inflow of river water. The CO{sub 2} system, including parameters such as pH and partial pressure of CO{sub 2} (pCO{sub 2}), has large seasonal and inter-annual variability in the Baltic Sea. These parameters are affected by several processes, such as air-sea gas exchange, physical mixing, and biological processes. Inorganic carbon is assimilated in the primary production and pCO{sub 2} declines to approx150 muatm in summer. In winter, pCO{sub 2} levels increase because of prevailing mineralization and mixing processes. The wind-mixed surface layer deepens to the halocline (approx60 m) and brings CO{sub 2}- enriched water to the surface. Winter pCO{sub 2} may be as high as 600 muatm in the surface water. The CO{sub 2} system is also exposed to short-term variations caused by the daily biological cycle and physical events such as upwelling. A cruise was made in the central Baltic Sea to make synoptic measurements of oceanographic, chemical, and meteorological parameters with high temporal resolution. Large short-term variations were found in pCO{sub 2} and oxygen (O{sub 2}), which were highly correlated. The diurnal variation of pCO{sub 2} was up to 40 muatm. The CO{sub 2} system in the Baltic Sea changed as the industrialization increased around 1950, which was demonstrated using a coupled physical-biogeochemical model of the CO{sub 2} system

  11. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  12. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982–2012. These data indicate significant annual warming (from 0.24 °C decade−1 west of the Strait of Gibraltar to 0.51 °C decade−1 over the Black Sea and significant spatial variation in annual average SST (from 15 °C over the Black Sea to 21 °C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6 °C century−1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  13. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  14. Sea surface microlayer in a changing ocean – A perspective

    Directory of Open Access Journals (Sweden)

    Oliver Wurl

    2017-06-01

    Full Text Available The sea surface microlayer (SML is the boundary interface between the atmosphere and ocean, covering about 70% of the Earth’s surface. With an operationally defined thickness between 1 and 1000 μm, the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global biogeochemical and climate-related processes. The redeveloped SML paradigm pushes the SML into a new and wider context that is relevant to many ocean and climate sciences.

  15. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-01-01

    due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report

  16. Long term persistence in the sea surface temperature fluctuations

    OpenAIRE

    Monetti, Roberto A.; Havlin, Shlomo; Bunde, Armin

    2002-01-01

    We study the temporal correlations in the sea surface temperature (SST) fluctuations around the seasonal mean values in the Atlantic and Pacific oceans. We apply a method that systematically overcome possible trends in the data. We find that the SST persistence, characterized by the correlation $C(s)$ of temperature fluctuations separated by a time period $s$, displays two different regimes. In the short-time regime which extends up to roughly 10 months, the temperature fluctuations display a...

  17. Sea surface temperature trends in the coastal ocean

    OpenAIRE

    Amos, C.L.; Al-Rashidi, Thamer B.; Rakha, Karim; El-Gamily, Hamdy; Nicholls, R.J.

    2013-01-01

    Sea surface temperature (SST) trends in the coastal zone are shown to be increasing at rates that exceed the global trends by up to an order of magnitude. This paper compiles some of the evidence of the trends published in the literature. The evidence suggests that urbanization in the coastal hinterland is having a direct effect on SST through increased temperatures of river and lake waters, as well as through heated run-off and thermal effluent discharges from coastal infrastructure. These l...

  18. Interannual variability of north Atlantic Sea surface temperatures

    International Nuclear Information System (INIS)

    Bhatt, U.S.; Battisiti, D.S.; Alexander, M.A.

    1994-01-01

    In the midlatitude north Atlantic Ocean the pattern of sea surface temperature anomalies (ssta) is characterized by a north-south dipole. Bjerknes was the first to propose that the banded structure was associated with the interannual variability. Recently, these patterns have been studied more extensively. In this study the quantitative aspects of these patterns are examined through the use of a mixed-layer model (MLM)

  19. Surface combatant readiness to confront a sea control navy

    OpenAIRE

    Wissel, Nicholas E.

    2008-01-01

    This thesis proposes to correct the shortfalls in the US Surface Combatants ability to counter a Sea-Control Navy. The concept counters this threat using unmanned aerial systems, decoys, and a layered defense. We analyze the performance with a Filtering Model of Salvo Warfare that is an extension of the Hughes Salvo Equations. The model incorporates the diluting effect of decoys upon enemy salvos and accounts for the historical reality of leakers. We conclude that in the absence of air suppor...

  20. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    Nutrients showed enrichment in the surface microlayer compared to those in sub-surface water and there was a decreasing trend in the enrichment factor from nearshore to offshore in Northern Arabian Sea. The nutrient concentrations were correlated...

  1. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations

    Science.gov (United States)

    Khon, Vyacheslav C.; Mokhov, Igor I.; Semenov, Vladimir A.

    2017-02-01

    Rapid Arctic sea ice decline over the last few decades opens new perspectives for Arctic marine navigation. Further warming in the Arctic will promote the Northern Sea Route (NSR) as an alternative to the conventional Suez or Panama Canal routes for intercontinental shipping. Here we use both satellite data and CMIP5 ensemble of climate models to estimate the NSR transit window allowing intercontinental navigation between Atlantic and Pacific regions. To this end, we introduce a novel approach to calculate start and end dates of the navigation season along the NSR. We show that modern climate models are able to reproduce the mean time of the NSR transit window and its trend over the last few decades. The selected models demonstrate that the rate of increase of the NSR navigation season will slow down over the next few decades with the RCP4.5 scenario. By the end of the 21st century ensemble-mean estimates show an increase of the NSR transit window by about 4 and 6.5 months according to RCP4.5 and 8.5, respectively. Estimated trends for the end date of the navigation season are found to be stronger compared to those for the start date.

  2. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    Science.gov (United States)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  3. Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    G. Spreen

    2017-07-01

    Full Text Available A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous–plastic (VP sea-ice rheology are compared with synthetic aperture radar (SAR satellite observations (RGPS, RADARSAT Geophysical Processor System for the time period 1996–2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous–plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  4. Climatology of the oceanography in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters: Observations from satellite remote sensing

    Science.gov (United States)

    Pan, X.; Wong, G. T.; Tai, J.; Ho, T.

    2013-12-01

    By using the observations from multiple satellite sensors, the climatology of the oceanography, including the surface wind vector, sea surface temperature (SST), surface chlorophyll a concentration (Chl_a), and vertically integrated net primary production (PPeu), in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters is evaluated. Regional and sub-regional mechanisms in driving the coastal processes, which influence the spatial and temporal distributional patterns in water component, are assessed. Seasonal vertical convective mixing by wind and surface heating/cooling is the primary force in driving the annual changes in SST and Chl_a in the open South China Sea (SCS), in which highly negative correlation coefficients between Chl_a and SST and moderately positive correlation coefficients between Chl_a and wind speed are found. Together, the seasonal variations in SST and wind speed account for about 80% of the seasonal variation in Chl_a. In the NoSoCS as a whole, however, the contribution is reduced to about 40%, primarily due to the effect of the Pearl River plume. A tongue of water extending eastward from the mouth of the River into the middle shelf with positive correlation coefficients between Chl_a and SST and around zero or slightly negative correlation coefficients between Chl_a and wind is the most striking feature in the NoSoCS. The westward and eastward propagations of the Pearl River plume are both very small during the northeast monsoonal season, driven primarily by the Coriolis effect. The abrupt increase in the areal coverage of the River plume, which is much more pronounced in the eastward propagation, between June and August can be attributed to the prevailing southwest monsoon as well as the annual peak of the river flow. Coastal upwelling is another sub-regional phenomenon in the NoSoCS. The upwelling at the shelf edge off the Taiwan Bank may be characterized by its elevated Chl_a. Its areal coverage and average Chl_a do not vary

  5. Development and evaluation of an empirical diurnal sea surface temperature model

    Science.gov (United States)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with

  6. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    Science.gov (United States)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  7. Comparison of the Retrieval of Sea Surface Salinity Using Different Instrument Configurations of MICAP

    Directory of Open Access Journals (Sweden)

    Lanjie Zhang

    2018-04-01

    Full Text Available The Microwave Imager Combined Active/Passive (MICAP has been designed to simultaneously retrieve sea surface salinity (SSS, sea surface temperature (SST and wind speed (WS, and its performance has also been preliminarily analyzed. To determine the influence of the first guess values uncertainties on the retrieved parameters of MICAP, the retrieval accuracies of SSS, SST, and WS are estimated at various noise levels. The results suggest that the errors on the retrieved SSS have not increased dues poorly known initial values of SST and WS, since the MICAP can simultaneously acquire SST information and correct ocean surface roughness. The main objective of this paper is to obtain the simplified instrument configuration of MICAP without loss of the SSS, SST, and WS retrieval accuracies. Comparisons are conducted between three different instrument configurations in retrieval mode, based on the simulation measurements of MICAP. The retrieval results tend to prove that, without the 23.8 GHz channel, the errors on the retrieved SSS, SST, and WS for MICAP could also satisfy the accuracy requirements well globally during only one satellite pass. By contrast, without the 1.26 GHz scatterometer, there are relatively large increases in the SSS, SST, and WS errors at middle/low latitudes.

  8. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    Science.gov (United States)

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable. Published by Elsevier Ltd.

  9. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  10. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    Science.gov (United States)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  11. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  12. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.

    Science.gov (United States)

    Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Zvi, Arie Ben; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

    2014-07-01

    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(−1) (western wadis: 7–15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  14. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  15. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  16. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  17. Sea surface temperature contributes to marine crocodylomorph evolution.

    Science.gov (United States)

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-08-18

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals.

  18. Estimating Advective Near-surface Currents from Ocean Color Satellite Images

    Science.gov (United States)

    2015-01-01

    on the SuomiNational Polar-Orbiting Partner- ship (S- NPP ) satellite. The GOCI is the world’s first geostationary orbit satellite sensor over the...radiance Lwn at several wave - lengths. These spectral Lwn channels are used to derive several in- water bio-optical properties (Lee, Carder, & Arnone...the same surface flow, it is the inter-product similarities, instead of the differences, that are more likely to stand for the surface advection. If

  19. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    Science.gov (United States)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  20. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea

    Science.gov (United States)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San

    2018-06-01

    In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.

  1. Relative abundance of 'Bacillus' spp., surfactant-associated bacterium present in a natural sea slick observed by satellite SAR imagery over the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Kathryn Lynn Howe

    2018-01-01

    Full Text Available The damping of short gravity-capillary waves (Bragg waves due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar satellite imagery. Surfactants are produced by natural life processes of many marine organisms, including bacteria, phytoplankton, seaweed, and zooplankton. In this work, samples were collected in the Gulf of Mexico during a research cruise on the R/V 'F.G. Walton Smith' to evaluate the relative abundance of 'Bacillus' spp., surfactant-associated bacteria, in the sea surface microlayer compared to the subsurface water at 0.2 m depth. A method to reduce potential contamination of microlayer samples during their collection on polycarbonate filters was implemented and advanced, including increasing the number of successive samples per location and changing sample storage procedures. By using DNA analysis (real-time polymerase chain reaction to target 'Bacillus' spp., we found that in the slick areas, these surfactant-associated bacteria tended to reside mostly in subsurface waters, lending support to the concept that the surfactants they may produce move to the surface where they accumulate under calm conditions and enrich the sea surface microlayer.

  2. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  3. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    DEFF Research Database (Denmark)

    Passaro, Marcello; Kildegaard Rose, Stine; Andersen, Ole B.

    2018-01-01

    ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also......Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans...... the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean...

  4. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    Science.gov (United States)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  5. Water vapour flux divergence over the Arabian Sea during 1987 summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; RameshKumar, M.R.

    the AS or the southern Indian Ocean. Another question which remains unanswered is whether all the NFD over AS is utilized only for precipitation over the Indian subcontinent or part of it is utilized for precipitation over the other southeast Asian countries. Only a... detailed and systematic surface and upper air data collection programme over the tropical Indian Ocean can throw light on the above questions. WATER VAPOUR FLUX DIVERGENCE OVER THE ARABIAN SEA 207 500 60’ 700 80” 500 60” 70” 500 60’ 70” 60” 700 Fig. 7...

  6. From Space to the Rocky Intertidal: Using NASA MODIS Sea Surface Temperature and NOAA Water Temperature to Predict Intertidal Logger Temperature

    Directory of Open Access Journals (Sweden)

    Jessica R. P. Sutton

    2017-02-01

    Full Text Available The development of satellite-derived datasets has greatly facilitated large-scale ecological studies, as in situ observations are spatially sparse and expensive undertakings. We tested the efficacy of using satellite sea surface temperature (SST collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS and local water temperature collected from NOAA buoys and onshore stations to estimate submerged intertidal mussel logger temperatures. Daily SST and local water temperatures were compared to mussel logger temperatures at five study sites located along the Oregon coastline. We found that satellite-derived SSTs and local water temperatures were similarly correlated to the submerged mussel logger temperatures. This finding suggests that satellite-derived SSTs may be used in conjunction with local water temperatures to understand the temporal and spatial variation of mussel logger temperatures. While there are limitations to using satellite-derived temperature for ecological studies, including issues with temporal and spatial resolution, our results are promising.

  7. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than 9°C is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  8. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    Science.gov (United States)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  9. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  10. Cell surface of sea urchin micromeres and primary mesenchyme

    International Nuclear Information System (INIS)

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by 125 I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM

  11. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    Science.gov (United States)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  12. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009

    Directory of Open Access Journals (Sweden)

    Andreas Lehmann

    2012-06-01

    Full Text Available A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990-2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10-25%, the Swedish coast of the Bothnian Bay (16%, the southern tip of Gotland (up to 15%, and the Finnish coast of the Gulf of Finland (up to 15%. Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%, the Polish coast and the west coast of Rügen (10-15%; otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period. Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990-2009.

  13. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus; Cescatti, Alessandro; Gitelson, Anatoly A.

    2013-01-01

    variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based

  14. FEASIBILITY STUDY OF LANDSAT-8 IMAGERY FOR RETRIEVING SEA SURFACE TEMPERATURE (CASE STUDY PERSIAN GULF

    Directory of Open Access Journals (Sweden)

    F. Bayat

    2016-06-01

    Full Text Available Sea surface temperature (SST is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1 the Operational Land Imager (OLI with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2 the Thermal Infrared Sensor (TIRS with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA. The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band

  15. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  16. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    Science.gov (United States)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  17. Some aspects of floating ice related to sea surface operations in the Barents sea

    International Nuclear Information System (INIS)

    Loeset, S.

    1993-01-01

    The present work highlights some aspects of floating ice related to sea surface operations in the Barents sea. The thesis consists of eight papers which fall into two main categories; one part deals with numerical modeling of the temperature distribution and ablation of icebergs (three papers), and the other part studies the behavior of broken ice, focusing on both laboratory experiments and numerical modeling. The temperature distribution within an iceberg affects the mechanical strength of the ice and is therefore crucial in engineering applications when estimating loads from impinging icebergs on offshore structures. A numerical model which simulates the temperature distribution and ablation of icebergs has been developed. The model shows that the depth of the thermal disturbance and slope of the temperature gradient of an iceberg depend on the boundary conditions and the time at sea. By about 12 m into the ice, the temperature is virtually free of any thermal boundary influence. Oil spill response techniques are vulnerable to the presence of sea ice. Deflecting ice upstream of a spill site by means of a flexible boom will facilitate the application of conventional oil spill recovery systems such as oil skimmers and booms. Experiments with such an ice deflecting boom were conducted in an ice tank to determine the loads on the boom and to study the ice-free wake. The study indicated the technical feasibility of the ice boom concept as an operational tool for oil spill cleanups. A two-dimensional discrete element model has been developed. This model simulates the dynamics and interaction forces between distinct ice floes in a broken ice field. The numerical model was applied to estimate the loads on a boom used for ice management. 121 refs., 70 figs., 10 tabs

  18. NOAA Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature, near-surface atmospheric properties, and heat fluxes....

  19. Comparison between remotely-sensed sea-surface temperature (AVHRR and in situ records in San Matías Gulf (Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Gabriela N Williams

    2014-03-01

    Full Text Available In situ records of sea surface temperature collected between 2005 and 2009 were used to compare, for the first time, the temperature estimated by the Multichannel algorithms (MCSST of the Advanced Very High Resolution Radiometer (AVHRR sensors in San Matías Gulf, in the north of the Argentinean Patagonian Continental Shelf (between 40°47'-42°13'S. Match-ups between in situ records and satellite sea surface temperature (SST were analyzed. In situ records came from fixed stations and oceanographic cruises, while satellite data came from different NOAA satellites. The fitting of temperature data to a Standard Major Axis (SMA type II regression model indicated that a high proportion of the total variance (0.53< r² <0.99 was explained by this model showing a high correlation between in situ data and satellite estimations. The mean differences between satellite and in situ data for the full data set were 1.64 ± 1.49°C. Looking separately into in situ data from different sources and day and night estimates from different NOAA satellites, the differences were between 0.30 ± 0.60°C and 2.60 ± 1.50°C. In this paper we discuss possible reasons for the above-mentioned performance of the MCSST algorithms in the study area.

  20. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection

    Directory of Open Access Journals (Sweden)

    Sanggyun Lee

    2016-08-01

    Full Text Available Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM-bird data collected over two days during the CryoSat Validation experiment (CryoVex field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE = 0.29 m compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m. Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011–2013 and rebounded in 2014.

  1. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  2. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    Science.gov (United States)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  3. "Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS

    Science.gov (United States)

    Park, J.; Johnson, J. T.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.

  4. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Directory of Open Access Journals (Sweden)

    J. Boutin

    2013-02-01

    Full Text Available The sea surface salinity (SSS measured from space by the Soil Moisture and Ocean Salinity (SMOS mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days, 100 × 100 km2 in the open ocean and estimated by comparison to ARGO (Array for Real-Time Geostrophic Oceanography SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The averaged negative SSS bias (−0.1 observed in the tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS observations concomitant with rain events, as detected from SSM/Is (Special Sensor Microwave Imager rain rates, are removed from the SMOS–ARGO comparisons. The SMOS freshening is linearly correlated to SSM/Is rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with ARGO measurements concomitant with rain events collocated with SMOS measurements under no rain, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.

  5. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  6. The physical characteristics of the surface of the satellites and rings of giant planets

    Science.gov (United States)

    Vidmachenko, A. P.; Morozhenko, O. V.

    2017-10-01

    The book gives the main results of the study of the optical characteristics of the field diffusely reflected radiation and physical characteristics of the surface of the satellites of giant planets and their rings. The publication is intended for teachers of higher educational institutions, students - graduate students and professionals who specialize in experimental physics and astrophysics and solar system surfaces.

  7. Monitoring Multidecadal satellite earth observation of soil moisture products through land surface reanalysis

    NARCIS (Netherlands)

    Albergel, C.; Dorigo, W.; Balsamo, G.; Sabatar, J; de Rosnay, P.; Isaksen, I; Brocca, L; de Jeu, R.A.M.; Wagner, W.

    2013-01-01

    Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim), is used to monitor at a global scale the consistency of a new microwave based multi-satellite surface soil moisture date set

  8. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    Science.gov (United States)

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  10. The sea surface microlayer: biology, chemistry and anthropogenic enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J T

    1982-01-01

    Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters. The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 10/sup 2/-10/sup 4/, 1-10/sup 2/, and 1-10, respectively. The trophic relationships or intergrated functioning of these neustonic communities have not been examined. Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex. The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 10/sup 2/-10/sup 4/ greater than those in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear.

  11. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    OpenAIRE

    Zhao, X.; Huang, S.

    2010-01-01

    This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed ...

  12. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  13. Impact study of the Argo array definition in the Mediterranean Sea based on satellite altimetry gridded data

    Science.gov (United States)

    Sanchez-Roman, Antonio; Ruiz, Simón; Pascual, Ananda; Guinehut, Stéphanie; Mourre, Baptiste

    2016-04-01

    The existing Argo network provides essential data in near real time to constrain monitoring and forecasting centers and strongly complements the observations of the ocean surface from space. The comparison of Sea Level Anomalies (SLA) provided by satellite altimeters with in-situ Dynamic Heights Anomalies (DHA) derived from the temperature and salinity profiles of Argo floats contribute to better characterize the error budget associated with the altimeter observations. In this work, performed in the frame of the E-AIMS FP7 European Project, we focus on the Argo observing system in the Mediterranean Sea and its impact on SLA fields provided by satellite altimetry measurements in the basin. Namely, we focus on the sensitivity of specific SLA gridded merged products provided by AVISO in the Mediterranean to the reference depth (400 or 900 dbar) selected in the computation of the Argo Dynamic Height (DH) as an integration of the Argo T/S profiles through the water column. This reference depth will have impact on the number of valid Argo profiles and therefore on their temporal sampling and the coverage by the network used to compare with altimeter data. To compare both datasets, altimeter grids and synthetic climatologies used to compute DHA were spatially and temporally interpolated at the position and time of each in-situ Argo profile by a mapping method based on an optimal interpolation scheme. The analysis was conducted in the entire Mediterranean Sea and different sub-regions of the basin. The second part of this work is devoted to investigate which configuration in terms of spatial sampling of the Argo array in the Mediterranean will properly reproduce the mesoscale dynamics in this basin, which is comprehensively captured by new standards of specific altimeter products for this region. To do that, several Observing System Simulation Experiments (OSSEs) were conducted assuming that altimetry data computed from AVISO specific reanalysis gridded merged product for

  14. Surface kinetic temperature mapping using satellite spectral data in ...

    African Journals Online (AJOL)

    The result revealed that despite the limited topographic differences of the rift lakes and their proximity, the surface kinetic temperature difference is high, mainly due to groundwater and surface water fluxes. From thermal signature analysis two hot springs below the lake bed of Ziway were discovered. The various hot springs ...

  15. A Case Study of Offshore Advection of Boundary Layer Rolls over a Stably Stratified Sea Surface

    Directory of Open Access Journals (Sweden)

    Nina Svensson

    2017-01-01

    Full Text Available Streaky structures of narrow (8-9 km high wind belts have been observed from SAR images above the Baltic Sea during stably stratified conditions with offshore winds from the southern parts of Sweden. Case studies using the WRF model and in situ aircraft observations indicate that the streaks originate from boundary layer rolls generated over the convective air above Swedish mainland, also supported by visual satellite images showing the typical signature cloud streets. The simulations indicate that the rolls are advected and maintained at least 30–80 km off the coast, in agreement with the streaks observed by the SAR images. During evening when the convective conditions over land diminish, the streaky structures over the sea are still seen in the horizontal wind field; however, the vertical component is close to zero. Thus advected feature from a land surface can affect the wind field considerably for long times and over large areas in coastal regions. Although boundary layer rolls are a well-studied feature, no previous study has presented results concerning their persistence during situations with advection to a strongly stratified boundary layer. Such conditions are commonly encountered during spring in coastal regions at high latitudes.

  16. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  17. AATSR - Precise Sea-Surface Temperature for Climate Monitoring and for Operational Applications

    Science.gov (United States)

    Llewellyn-Jones, David; Corlett, Gary; Donlon, Craig; Stark, John

    The Advanced Along-Track Scanning Radiometer (AATSR) is an imaging radiometer specifi- cally designed to measure Sea-Surface Temperature (SST) to the demanding levels of accuracy and stability required for climate research. AATSR, which has been operating continuously on ESA's Envisat Satellite since its launch in 2002, achieves the required levels of accuracy on account of its unique dual view, whereby each terrestrial scene is viewed twice, once at nadir and then through an inclined path which uses a different atmospheric path-length, thereby providing a direct observation of atmospheric effects, leading to an exceptionally accurate atmospheric correction. This feature is accompanied by an advanced calibration system combined with excellent optical and thermal designs. Recent rigorous and extensive comparisons with in situ data have shown that, for most of the global oceans, AATSR can achieve and accuracy of around 0.2o C with high stability, which has qualified them for use in climate analysis schemes. Because AATSR is the third sensor in a near-continuous series which started with the launch of ATSR-1 on ERS-1 satellite in 1991, there is a time-series of 16+ years of climate standard SSTs which have recently been re-processed and are now becoming available to the World-wide user community from data centres in Europe. SST data from AATSR have been included in the suite of operational SST products generated by the GODAE/GHRSST Pilot Project, on a timescale needed by operational users and in a format which allows easy ingestion and error estimates for data from AATSR and most of the other sensors currently providing SST measurements from space. Within the GODAE/GHRSST data-products, AATSR SST data are generally regarded as the benchmark for accuracy and are used to provide bias corrections for data from the other sensors, which often have superior coverage, thus exploiting synergistically the complementary qualities if the different data-sets. The UK Met Office

  18. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  19. Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M. -A.; Khodri, M.; Mignot, J.

    2013-01-01

    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and long......-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling...... and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades....

  20. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  1. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  2. Characterization of Dust Properties Near Source Region During ACE-Asia: A Column Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, S. -C.; Ji, Q.; Chu, A.; Hsu, C.; Holben, B.; Campbell, J.; Welton, E. J.; Shu, P. K.

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the ACE-Asia was conducted from March-May 2001 in the vicinity of the Taklimakan and Gobi deserts, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  3. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  4. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas...... of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, Ltd....... analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect...

  5. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  6. Remote sensing of surface currents in the Fraser River plume with the SeaSonde HF radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.; Hardy, J.S.; Tinis, S.E.

    1994-09-01

    The SeaSonde 12.5-MHz radar system was deployed to measure surface currents in the Juan de Fuca Strait in July 1992. Reliable data were obtained from the two radars installed, and successful trials were conducted with the Infosat satellite link to transmit data from the remote site. Data recovery from the SeaSonde was generally good, with maximum ranges varying from 15 km to over 30 km. Sea echo return strength at both radars was correlated with wind, consistent with lower Bragg scattering at lower wind speeds. A simple surface current forecasting algorithm, based on decomposing the signal into tidal and residual bands, was examined. It was found that tides account for the greatest portion of currents in the study area, and could be forecasted out to 48 h with 1-2 d of input data. The nonpredictable, fluctuating part of the current signal was isolated and its statistics were calculated. The algorithm tests showed that the SeaSonde data can be used to measure and predict the slowly varying tidal and mean flow velocities, as well as the random part of the signal, both of which are important in oil spill modelling. Surface flow patterns and time-series data from the SeaSonde measurements, and from a three-dimensional hydrodynamic model, were compared from an oil spill modelling perspective. In general, surface flow patterns from the model were smoother than those observed. The differences were most noticeable in the cross-channel direction. The radar data indicate that a flow-dependent eddy viscosity formulation, with coefficients calibrated to reproduce the features observed with the radar, would improve agreement and yield a good model for data assimilation. 21 refs., 478 figs., 3 tabs

  7. Information About Dynamics of the Sea Surface as a Means to Improve Safety of the Unmanned Vessel at Sea

    Directory of Open Access Journals (Sweden)

    Przyborski Marek

    2016-12-01

    Full Text Available One of the fundamental states of the sea surface is its heave. Despite of years of the intense scientific inquiry, no clear understanding of the influence of this aspect on the dynamics of the sea environment has emerged. The separation of two nearby fluid elements which one may observed for example as a free floating of small objects on the sea surface (rescuers on the rough sea or small research vessels is caused by the interaction of different components. On the other hand one may say that the heave of the sea is also a summary interaction of a few components describing the dynamics of the sea. Therefore it is the most important aspect, which influenced the dispersion phenomenon. This observation has important consequences for many different problems as for example conducting Search and Rescue missions and using unmanned ships. We would like to present results of our experiment focused on finding the answer to question about nature of the heave of the sea and its influence on safety of Unmanned Surface Vessels (USV.

  8. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A; Sugimori, Y.; Kubota, M.

    -T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C. 1. Introduction Satellite derived surface-level meteorological parameters are considered to be a better alternative to sparse ship... Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science...

  9. Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery

    Science.gov (United States)

    Weeks, Scarla J.; Currie, Bronwen; Bakun, Andrew; Peard, Kathleen R.

    2004-02-01

    Conventional wisdom has held that eruptions of toxic hydrogen sulphide that occur from time to time in the ocean off southwestern Africa were rather isolated near-coastal features, limited both in extent and in ecosystem-scale consequences. Now, however, it has become possible to identify sulphide outbreaks by satellite remote sensing. This new capability appears to lead to a complete revision of the conventional view, with some eruption episodes being observed to affect areas of ocean surface exceeding 20,000 km 2. The occurrences are also seen to be more frequent and longer lasting than previously supposed. Example sequences of Sea-viewing Wide Field of View (SeaWiFS) images are presented to indicate general classes of eruption types that are observed and to support discussion of potential eruption mechanisms. Certain methodological problems in interpreting effects on local productivity are outlined. Spatial configurations of eruptions indicate that simple upward advection in the upwelling process may not be a sufficient explanation for the range of eruption characteristics experienced. Eruptions seem often to be coincident with one of two contrasting types of atmospheric weather situation: either (1) increased intensity of wind driven coastal upwelling, or (2) indications of passage of a low pressure weather cell (e.g. interruption of coastal upwelling, sudden warming of the sea surface, rainfall in the hinterland). Such a pattern may imply that related lowering of hydrostatic pressure at depth may tend to trigger incipient eruptions. It also suggests an episodic mechanism driven by the buoyancy introduced by the effervescence of gases trapped by hydrostatic pressure within the sea-floor sediments. Connotations of these phenomena to the local ecology and to that of the entire Benguela Current regional ecosystem would appear to be major. Their relevance to the valuable but extremely variable fishery resource populations of the region, which have undergone drastic

  10. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    The results of study comparing the spectral diffuse attenuation coefficients Kd(Lambda) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical...

  11. Revealing climate modes in steric sea levels: lessons learned from satellite geodesy, objective analyses and ocean reanalyses

    Science.gov (United States)

    Pfeffer, J.; Tregoning, P.; Purcell, A. P.

    2017-12-01

    Due to increased greenhouse gases emissions, the oceans are accumulating heat. In response to the ocean circulation and atmospheric forcing, the heat is irregularly redistributed within the oceans, causing sea level to rise at variable rates in space and time. These rates of steric expansion are extremely difficult to assess because of the sparsity of in-situ hydrographic observations available within the course of the 20th century. We compare here three methods to reconstruct the steric sea levels over the past 13, 25 and 58 years based on satellite geodesy, objective analyses and ocean reanalyses. The interannual to decadal variability of each dataset is explored with a model merging six climate indices representative of the natural variability of the ocean and climate system. Consistent regional patterns are identified for the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) in all datasets at all timescales. Despite the short time coverage (13 years), the combination of satellite geodetic data (altimetry and GRACE) also reveals significant steric responses to the North Pacific Gyre Oscillation (NPGO), Indian Dipole (IOD) and Indian ocean basinwide (IOBM) mode. The richer information content in the ocean reanalyses allows us to recover the regional fingerprints of the PDO, ENSO, NPGO, IOD and IOBM, but also of the Atlantic Multidecadal Oscillation (AMO) acting over longer time scales (40 to 60 years). Therefore, ocean reanalyses, coupled with climate mode analyses, constitute innovative and promising tools to investigate the mechanisms triggering the variability of sea level rise over the past decades.

  12. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    Science.gov (United States)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  13. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  14. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  15. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    Science.gov (United States)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    Baldwin in the preparation of their publication "Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements". The remainder of this report is drawn from these publications and presentations.

  16. An analytical model for the description of the full-polarimetric sea surface Doppler signature

    NARCIS (Netherlands)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2015-01-01

    This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler

  17. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NARCIS (Netherlands)

    Schwenger, F.; Eijk, A.M.J. van

    2017-01-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping

  18. The GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP)

    Science.gov (United States)

    Donlon, C.; Ghrsst-Pp Science Team

    2003-04-01

    This paper summarises Development and Implementation Plan of the GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). The aim of the GHRSST-PP is to coordinate a new generation of global, multi-sensor, high-resolution (better than 10 km and 12 hours) SST products for the benefit of the operational and scientific community and for those with a potential interest in the products of GODAE. The GHRSST-PP project will deliver a demonstration system that integrates data from existing international satellite and in situ data sources using state-of-the-art communications and analysis tools. Primary GHRSST-PP products will be generated by fusing infrared and microwave satellite data obtained from sensors in near polar, geostationary and low earth orbits, constrained by in situ observations. Surface skin SST, sub-surface SST and SST at depth will be produced as both merged and analysed data products. Merged data products have a common grid but all input data retaining their error statistics whereas analysed data products use all data to derive a best estimate data source having one set of error statistics. Merged SST fields will not be interpolated thereby preserving the integrity of the source data as much as possible. Products will be first produced and validated using in situ observations for regional areas by regional data assembly centres (RDAC) and sent to a global data analysis centre (GDAC) for integration with other data to provide global coverage. GDAC and RDAC will be connected together with other data using a virtual dynamic distributed database (DDD). The GDAC will merge and analyse RDAC data together with other data (from the GTS and space agencies) to provide global coverage every 12 hours in real time. In all cases data products will be accurate to better than 0.5 K validated using data collected at globally distributed diagnostic data set (DDS) sites. A user information service (UIS) will work together with user applications and services

  19. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    Science.gov (United States)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  20. Intercomparison of the Extended Reconstructed Sea Surface Temperature v4 and v3b Datasets

    Science.gov (United States)

    Wang, Jinping; Chen, Xianyao

    2018-04-01

    Version 4 (v4) of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset is compared with its precedent, the widely used version 3b (v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature (SST) anomaly (SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend (around -0.032°C per decade) before the 1940s, an upward trend (around 0.014°C per decade) during the period of 1950-2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.

  1. A comparison of visual observations of surface oil with Synthetic Aperture Radar imagery of the Sea Empress oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.

    2001-06-15

    A comparison has been made between the visual observations of surface oil and four satellite-borne Synthetic Aperture Radar (SAR) images taken during the Sea Empress oil spill in February 1996. Whilst the basic oil slick imaging capabilities of SAR are well documented, to be of use at the time of a major oil spill, the imagery must be able to provide information on the thickness of oil. This analysis suggests that, under certain environmental conditions, this is possible. The optimum wind speed for the identification of heavy surface oil is around 5-6 m s{sup -1}. At this wind speed, light and medium sheen is not evident in the imagery and there is a distinction between the backscatter reductions due to heavy sheen and thick brown/black oil. At higher wind speeds, even thick oil slicks readily mix into the water column and their SAR signature weakens. In light winds, pattern recognition is very important to the identification of oil sticks. The images are more sensitive to the presence of sheen within the sheltered waters of Milford Haven than in the open coastal waters, indicating a possible relationship between sheen visibility in satellite-borne SAR and sea state. (author)

  2. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    K. Laß

    2013-08-01

    Full Text Available The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE, southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  3. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)

    Science.gov (United States)

    Laß, K.; Bange, H. W.; Friedrichs, G.

    2013-08-01

    The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  4. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  5. Synthesis of results obtained within the framework of international satellite land surface climatology projects. Final report

    International Nuclear Information System (INIS)

    Bolle, H.J.; Katergiannakis, U.; Billing, H.; Koslowsky, D.; Langer, I.; Tonn, W.

    1993-01-01

    In large-scale field experiments, methods were validated with whose aid characteristics of the terrestrial surfaces can be derived from satellite data; these characteristics are required for the exploration of the global change. The report gives an overview. The following topics are treated: Problems of calibration of satellite sensors; the geographical matching of ground observations to the satellite measurements; necessary corrections; dimensional integration of the data up to the dimensions of raster grids of global climate models. The report discusses in detail in what manner the remote exploration data can be connected with information on the terrestrial surfaces, in particular with energy balances. Few experiments only have been executed up to now within the framework of land surface climatology; however, they contributed a great deal to the better understanding of linking satellite data with terrestrial surface processes. If one wants to apply the elaborated methods globally wants, one needs, however, complex algorithms as well as - at least for the time being - constant quality control in the different landscape regions of the earth. (orig.) [de

  6. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO₂

    NARCIS (Netherlands)

    Zhou, Yipin; Brunner, D.; Spurr, R.J.D.; Boersma, K.F.; Sneep, M.; Popp, C.; Buchmann, B.

    2010-01-01

    Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the

  7. Quantification of Surface Suspended Sediments along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements: Louisiana, USA

    Science.gov (United States)

    Myint, S. W.; Walker, N. D.

    2002-01-01

    The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.

  8. Nimbus Satellite Data Rescue Project for Sea Ice Extent: Data Processing

    Science.gov (United States)

    Campbell, G. G.; Sandler, M.; Moses, J. F.; Gallaher, D. W.

    2011-12-01

    Early Nimbus satellites collected both visible and infrared observations of the Earth at high resolution. Nimbus I operated in September, 1964. Nimbus II operated from April to November 1966 and Nimbus III operated from May 1969 to November 1969. We will discuss our procedures to recover this data into a modern digital archive useful for scientific analysis. The Advanced Videocon Camera System data was transmitted as an analog signal proportional to the brightness detected by a video camera. This was archived on black and white film. At NSIDC we are scanning and digitizing the film images using equipment derived from the motion picture industry. The High Resolution Infrared Radiance data was originally recorded in 36 bit words on 7 track digital tapes. The HRIR data were recently recovered from the tapes and TAP (tape file format from 1966) files were placed in EOSDIS archives for online access. The most interesting parts of the recovery project were the additional processing required to rectify and navigate the raw digital files. One of the artifacts we needed to identify and remove were fiducial marks representing latitude and longitude lines added to the film for users in the 1960's. The IR data recording inserted an artificial random jitter in the alignment of individual scan lines. We will describe our procedures to navigate, remap, detect noise and remove artifacts in the data. Beyond cleaning up the HRIR swath data or the AVCS picture data, we are remapping the data into standard grids for comparisons in time. A first run of all the Nimbus 2 HRIR data into EASE grids in NetCDF format has been completed. This turned up interesting problems of overlaps and missing data issues. Some of these processes require extensive computer resources and we have established methods for using the 'Elastic Compute Cloud' facility at Amazon.com to run the many processes in parallel. In addition we have set up procedures at the University of Colorado to monitor the ongoing

  9. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  10. OW NASA SeaWIFS Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)...

  11. Coincident Retrieval of Ocean Surface Roughness and Salinity Using Airborne and Satellite Microwave Radiometry and Reflectometry Measurements during the Carolina Offshore (Caro) Experiment.

    Science.gov (United States)

    Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.

    2017-12-01

    The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms

  12. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  13. Linking Regional Winter Sea Ice Thickness and Surface Roughness to Spring Melt Pond Fraction on Landfast Arctic Sea Ice

    Directory of Open Access Journals (Sweden)

    Sasha Nasonova

    2017-12-01

    Full Text Available The Arctic sea ice cover has decreased strongly in extent, thickness, volume and age in recent decades. The melt season presents a significant challenge for sea ice forecasting due to uncertainty associated with the role of surface melt ponds in ice decay at regional scales. This study quantifies the relationships of spring melt pond fraction (fp with both winter sea ice roughness and thickness, for landfast first-year sea ice (FYI and multiyear sea ice (MYI. In 2015, airborne measurements of winter sea ice thickness and roughness, as well as high-resolution optical data of melt pond covered sea ice, were collected along two ~5.2 km long profiles over FYI- and MYI-dominated regions in the Canadian Arctic. Statistics of winter sea ice thickness and roughness were compared to spring fp using three data aggregation approaches, termed object and hybrid-object (based on image segments, and regularly spaced grid-cells. The hybrid-based aggregation approach showed strongest associations because it considers the morphology of the ice as well as footprints of the sensors used to measure winter sea ice thickness and roughness. Using the hybrid-based data aggregation approach it was found that winter sea ice thickness and roughness are related to spring fp. A stronger negative correlation was observed between FYI thickness and fp (Spearman rs = −0.85 compared to FYI roughness and fp (rs = −0.52. The association between MYI thickness and fp was also negative (rs = −0.56, whereas there was no association between MYI roughness and fp. 47% of spring fp variation for FYI and MYI can be explained by mean thickness. Thin sea ice is characterized by low surface roughness allowing for widespread ponding in the spring (high fp whereas thick sea ice has undergone dynamic thickening and roughening with topographic features constraining melt water into deeper channels (low fp. This work provides an important contribution towards the parameterizations of fp in

  14. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  15. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data

    Science.gov (United States)

    Zhang, Yuanzhi; Huang, Zhaojun; Fu, Dongyang; Tsou, Jin Yeu; Jiang, Tingchen; Liang, X. San; Lu, Xia

    2018-05-01

    Continually supplied with nutrients, phytoplankton maintains high productivity under ideal illumination and temperature conditions. Data in the south part of Cheju Island in the East China Sea (ECS), which has experienced a spring bloom since the 2000s, were acquired during a research cruise in the spring of 2007. Compared with in-situ measurements, MODIS chlorophyll-a measurements showed high stability in this area. Excluding some invalid stations data, the relationships between nutrients and chlorophyll-a concentrations in the study area were examined and compared with the results in 2015. A high positive correlation between silicate and chlorophyll-a concentration was identified, and a regression relationship was proposed. MODIS chlorophyll-a measurements and sea surface temperature were utilized to determine surface silicate distribution. The silicate concentration retrieved from MODIS exhibited good agreement with in-situ measurements with R2 of 0.803, root mean square error (RMSE) of 0.326 μmol/L (8.23%), and mean absolute error (MAE) of 0.925 μmol/L (23.38%). The study provides a new solution to identify nutrient distributions using satellite data such as MODIS for water bodies, but the method still needs to be refined to determine the relationship of chlorophyll-a and nutrients during other seasons to monitor water quality in this and other areas.

  16. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  17. Seasonal sea surface temperature contrast between the Holocene and last glacial period in the western Arabian Sea (Ocean Drilling Project Site 723A): Modulated by monsoon upwelling

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Malmgren, B.A.

    Annual, summer, and winter sea surface temperatures (SSTs) in the western Arabian Sea were reconstructed through the last 22 kyr using artificial neural networks (ANNs) based on quantitative analyses of planktic foraminifera. Down-core SST estimates...

  18. Influence of Sea Surface Roughness on the Electromagnetic Wave Propagation in the Duct Environment

    Directory of Open Access Journals (Sweden)

    X. Zhao

    2010-12-01

    Full Text Available This paper deals with a study of the influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. The problem of electromagnetic wave propagation is modeled by using the parabolic equation method. The roughness of the sea surface is computed by modifying the smooth surface Fresnel reflection coefficient to account for the reduction in the specular reflection due to the roughness resulting from sea wind speed. The propagation model is solved by the mixed Fourier split-step algorithm. Numerical experiments indicate that wind-driven roughened sea surface has an impact on the electromagnetic wave propagation in the duct environment, and the strength is intensified along with the increment of sea wind speeds and/or the operating frequencies. In a fixed duct environment, however, proper disposition of the transmitter could reduce these impacts.

  19. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  20. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño

    Science.gov (United States)

    Ma, Jinfeng; Zhan, Haigang; Du, Yan

    2011-04-01

    Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.

  1. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset (four day latency) and...

  2. GHRSST Level 4 RTO Terra MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  3. GHRSST Level 4 RTO Terra MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  4. GHRSST Level 4 ODYSSEA North-Western Europe Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  5. NOAA Climate Data Record (CDR) of Sea Surface Temperature (SST) from AVHRR Pathfinder, Version 5.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.2 Sea Surface Temperature data set (PFV52) is a collection of global, twice-daily 4km sea surface temperature data produced in a...

  6. GHRSST Level 4 RTO Aqua MODIS-AMSRE Night North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  7. GHRSST Level 4 RTO Aqua MODIS-AMSRE Day North America Regional Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the JPL Physical...

  8. GHRSST Level 4 CMC0.1deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  9. GHRSST Level 4 REMO_OI_SST_5km Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis by the...

  10. GHRSST Level 4 CMC0.2deg Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature (SST) analysis produced daily on an operational basis at the Canadian...

  11. GHRSST Level 4 MW_IR_OI Global Foundation Sea Surface Temperature analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.81 degree grid at Remote Sensing...

  12. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    Science.gov (United States)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  13. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  14. Sea surface salinity variability in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B; Murty, V.S.N.; Heffner, D.M.

    (EIO: 5 degrees S- 5 degrees N, 90 degrees-95 degrees E) and Southeastern Arabian Sea (SEAS: 5 degrees-9 degrees N, 72 degrees-76 degrees E) and to compare with the HYbrid Coordinate Ocean Model (HYCOM) simulated SSS for the period from January 2002...

  15. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  16. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    events. The above results suggest the sea surface wind stress from satellite is widely useful.

  17. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    International Nuclear Information System (INIS)

    Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)

  18. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  19. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  20. Uncertainties in Steric Sea Level Change Estimation During the Satellite Altimeter Era: Concepts and Practices

    Science.gov (United States)

    MacIntosh, C. R.; Merchant, C. J.; von Schuckmann, K.

    2017-01-01

    This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However, tracking these steric changes still remains a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community "recipes" for quantifying the error covariances in observations and from sparse sampling and for estimating and propagating uncertainty across spatio-temporal scales.

  1. Satellite tracking of harbour seals on Horns Reef - Use of the Horns Reef wind farm area and the North Sea

    International Nuclear Information System (INIS)

    Tougaard, J.; Tougaard, S.; Jensen, Thyge; Ebbesen, I.; Teilmann, J.

    2003-03-01

    Ten harbour seals (Phoca vitulina) caught on the Danish Wadden Sea island Roemoe were equipped with satellite linked time depth recorders. The animals were caught on three separate occasions (Jan. 4th, Feb. 18th and May 6th, 2002). The transmitters worked between 49 and 100 days, relaying positional and dive information back via the ARGOS satellite service until beginning of July. Background for the studies is the construction of the Worlds largest off shore wind farm on Horns Reef. Based on previous studies using VHF-transmitters, it was expected that the seals would spend considerable time on Horns Reef. The VHF-telemetry studies showed that the preferred direction for seals leaving the Danish Wadden Sea is NW from Graedyb tidal area outside Esbjerg, the direction directly towards the wind farm area. The previously used VHF-transmitters had a limited detection range and it was decided to equip a number of seals from the same area as before with satellite transmitters. This allows for positioning of the seals in the entire North Sea as well as providing dive summary information, as a transmitter with a depth transducer was chosen for the study. Positional information revealed that animals move about more extensively than previously believed. Substantial variation between animals was observed and each seal seemed to have adopted its own foraging strategy. Some animals travelled to the centre of the North Sea on foraging trips and spent considerable time close to the bottom at 30-70 meters depth. Other seals remained in the German Bight and yet others spent considerable time on and around Horns Reef. The area of Horns reef wind farm constitutes a negligible fraction of the total area visited by the tagged seals. The reef as a whole however, appears to be important to the seals both for foraging and as transit area to other feeding grounds further off shore. The resolution in positional information is not sufficiently high to allow for a detailed study of the effects

  2. Satellite tracking of harbour seals on Horns Reef - Use of the Horns Reef wind farm area and the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Tougaard, J.; Tougaard, S.; Jensen, Thyge [Fisheries and Maritime Museum Esbjerg (Denmark); Ebbesen, I. [Univ. of Sourthern Denmark, Inst. of Biology, Odense (Denmark); Teilmann, J. [NationL Environmental Res. Inst., Roskidle (Denmark)

    2003-03-15

    Ten harbour seals (Phoca vitulina) caught on the Danish Wadden Sea island Roemoe were equipped with satellite linked time depth recorders. The animals were caught on three separate occasions (Jan. 4th, Feb. 18th and May 6th, 2002). The transmitters worked between 49 and 100 days, relaying positional and dive information back via the ARGOS satellite service until beginning of July. Background for the studies is the construction of the Worlds largest off shore wind farm on Horns Reef. Based on previous studies using VHF-transmitters, it was expected that the seals would spend considerable time on Horns Reef. The VHF-telemetry studies showed that the preferred direction for seals leaving the Danish Wadden Sea is NW from Graedyb tidal area outside Esbjerg, the direction directly towards the wind farm area. The previously used VHF-transmitters had a limited detection range and it was decided to equip a number of seals from the same area as before with satellite transmitters. This allows for positioning of the seals in the entire North Sea as well as providing dive summary information, as a transmitter with a depth transducer was chosen for the study. Positional information revealed that animals move about more extensively than previously believed. Substantial variation between animals was observed and each seal seemed to have adopted its own foraging strategy. Some animals travelled to the centre of the North Sea on foraging trips and spent considerable time close to the bottom at 30-70 meters depth. Other seals remained in the German Bight and yet others spent considerable time on and around Horns Reef. The area of Horns reef wind farm constitutes a negligible fraction of the total area visited by the tagged seals. The reef as a whole however, appears to be important to the seals both for foraging and as transit area to other feeding grounds further off shore. The resolution in positional information is not sufficiently high to allow for a detailed study of the effects

  3. Influence of surface condition on the corrosion resistance of copper alloy condenser tubes in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Nagata, K; Yamauchi, S

    1979-07-01

    Investigation was made on the influence of various surface conditions of aluminum brass tube. The corrosion behavior of aluminum brass tube, with nine kinds of surface conditions, was studied in stagnant 0.1N NaHCo/sub 3/ solution and flowing sea water (natural, Fe/sup + +/ containing and S/sup - -/ containing water). Surface treatments investigated contained bright annealing, special annealing to form carbon film, hot oxidizing and pickling. Anodic polarization measurements in 0.1N NaHCO/sub 3/ solution showed that the oxidized surface was superior and that the pickled surface was inferior. However, relation between these characteristics and corrosion resistance in sea water has not been established. Electrochemical characteristics in flowing sea water were dependent on the surface conditions in the very beginning of immersion time; nobler corrosion potential for the surface with carbon film, higher polarization resistance for the bright annealed and the oxidized surface, and faster decrease of polarization resistance in S/sup - -/ containing sea water for the pickled surface. However, these differences disappeared in the immersion time of only 2 to 7 days. It was revealed, by the statistical analysis on the corrosion depth in corrosion test in flowing sea water and in jet impingement test, that the corrosion behavior was not influenced by surface conditions, but was significantly influenced by quality of sea water and sponge ball cleaning. Sulfide ion of 0.05 ppm caused severe pitting corrosion, and sponge ball cleaning of 5 chances a week caused erosion corrosion. From above results, it was concluded that surface conditions of aluminum brass were not important to sea water corrosion, and that quality of sea water and operating condition such as sponge ball cleaning were more significant.

  4. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  5. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    Science.gov (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  6. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  7. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin

    2018-05-01

    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  8. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  9. Satellite skill in detecting extreme episodes in near-surface air quality

    Science.gov (United States)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X

  10. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  11. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  12. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    Science.gov (United States)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  13. On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    The north Indian Ocean becomes the warmest area of the world oceans prior to the onset of southwest monsoon in June. During this period a zonal band of high sea surface temperature (SST), the ``thermal equator'' (TE), moves over this region...

  14. Sea surface temperature control of taxon specific phytoplankton production along an oligotrophic gradient in the Mediterranean Sea

    NARCIS (Netherlands)

    van de Poll, W.H.V.; Boute, P.G.; Rozema, P.D.; Buma, A.; Kulk, G.; Rijkenberg, M.J.

    2015-01-01

    The current study aimed to assess changes in phytoplankton composition and productivity along an oligotrophic gradient in relation to changes in sea surface temperature (SST). Phytoplankton pigments, nutrients, and physical water column properties were studied along a longitudinal transect in the

  15. Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (U

    NARCIS (Netherlands)

    Rodrigo-Gámiz, M.; Martínez-Ruiz, F.; Rampen, S.W.; Schouten, S.; Sinninghe Damsté, J.S.

    2014-01-01

    A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e., the U-37(K) index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative

  16. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model

    Directory of Open Access Journals (Sweden)

    R. Cherian

    2012-02-01

    Full Text Available In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB and Arabian Sea (AS regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5 general circulation model extended by Hamburg Aerosol Module (HAM. By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement

  17. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  18. Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Bhat, S.R.; Dwivedi, R.M.; Nayak, S.R.

    monotis, Prorocentrum lima on the macroalgae of artificial and natural reefs in the Northern Tyrrhenian Sea • Italy Ostreopsis ovata, Coolia monotis, Prorocentrum lima, Prorocentrum sp., Amphidinium sp. have been detected on the Tuscany coast, Tyrrhenian... Sea, on macroalgae on the artificial reefs of Marina di Massa and Versilia, and on the natural reefs of Livorno. The same dinoflagellates have been found on the islands of the Tuscany archipelago: Elba, Giannutri, Giglio [1, 2]. During these blooms...

  19. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  20. Detection of Small Sea-Surface Targets with a Search Lidar

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Bekman, H.H.P.T.; Putten, F.J.M.; Cohen, L.A.

    2007-01-01

    Naval operations in the littoral have to deal with the threat of small sea-surface targets. These targets have a low radar cross-section and low velocity, which makes them hard to detect by radar in the presence of sea clutter. Typical threats include periscopes, jet skies, FIAC’s, and speedboats.