WorldWideScience

Sample records for satellite radio telemetry

  1. Habitats used by black and surf scoters in eastern North America as determined by satellite radio telemetry

    Science.gov (United States)

    Perry, M.C.; Kidwell, D.M.; Wells-Berlin, A. M.; Lohnes, E.J.R.; Olsen, Glenn H.; Osenton, P.C.

    2005-01-01

    Satellite radio telemetry was used to determine the movements and habitats of black scoters (Melanitta nigra) and surf scoters (Melanitta perspicillata) in eastern North America. A total of 21 surf scoters were instrumented during five years (2001-05) and 32 black scoters were instrumented during three years (2002-04) with implanted PTT 100 satellite transmitters (39 g) with external antenna. Nesting habitat of black scoters was more open than surf scoters (44% vs. 11%), whereas nesting habitat for surf scoters was located in more forested areas (66% vs. 20%). Locations of black scoters in breeding areas on average were at significantly higher latitude and lower elevations than sites used by surf scoters. Satellite telemetry determined that James Bay was the major molting area for male black and surf scoters, although some males molted along the coast of Labrador-Newfoundland. Black scoters instrumented on the Restigouche River, which is a major staging area, were widely distributed along the Atlantic Coast from Cape Cod to Georgia during winter. Major wintering areas for black scoters were Cape Cod (Martha's Vineyard and Nantucket Island), Long Island, and New Jersey. In these northern marine wintering areas, black scoters were located farther from shore (4.2 km) and in deeper water (8.3 m) than black scoters in more southern estuarine areas, where distance from shore was 3.1 km and water depth was 5.2 m. Surf scoters instrumented in Chesapeake Bay in late winter showed a strong tendency to return to the Bay the following winter after they had migrated to and from breeding areas. In Chesapeake Bay, black scoters and surf scoters were located mostly in mesohaline areas that had similar water depths (5.1 m vs. 7.5 m) and distances from shore (3.0 km vs. 2.9 km). Distance from shore and depth of water increased over time during the winter for both species. Updated information from the ARGOS Systems aboard the NOAA satellites on scoter movements was made accessible on

  2. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  3. Automatic Satellite Telemetry Analysis for SSA using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, R.; Mao, J.

    In April 2016, General Hyten, commander of Air Force Space Command, announced the Space Enterprise Vision (SEV) (http://www.af.mil/News/Article-Display/Article/719941/hyten-announces-space-enterprise-vision/). The SEV addresses increasing threats to space-related systems. The vision includes an integrated approach across all mission areas (communications, positioning, navigation and timing, missile warning, and weather data) and emphasizes improved access to data across the entire enterprise and the ability to protect space-related assets and capabilities. "The future space enterprise will maintain our nation's ability to deliver critical space effects throughout all phases of conflict," Hyten said. Satellite telemetry is going to become available to a new audience. While that telemetry information should be valuable for achieving Space Situational Awareness (SSA), these new satellite telemetry data consumers will not know how to utilize it. We were tasked with applying AI techniques to build an infrastructure to process satellite telemetry into higher abstraction level symbolic space situational awareness and to initially populate that infrastructure with useful data analysis methods. We are working with two organizations, Montana State University (MSU) and the Air Force Academy, both of whom control satellites and therefore currently analyze satellite telemetry to assess the health and circumstances of their satellites. The design which has resulted from our knowledge elicitation and cognitive task analysis is a hybrid approach which combines symbolic processing techniques of Case-Based Reasoning (CBR) and Behavior Transition Networks (BTNs) with current Machine Learning approaches. BTNs are used to represent the process and associated formulas to check telemetry values against anticipated problems and issues. CBR is used to represent and retrieve BTNs that represent an investigative process that should be applied to the telemetry in certain circumstances

  4. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    Science.gov (United States)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  5. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro

    2012-10-06

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  6. The integrated satellite-acoustic telemetry (iSAT) system for tracking marine megafauna

    KAUST Repository

    De la Torre, Pedro; Berumen, Michael L.; Salama, Khaled N.; Smith, E. Lloyd

    2012-01-01

    This document describes the integrated satellite-acoustic telemetry (iSAT) system: an autonomous modular system for tracking the movements of large pelagic fish using acoustic telemetry and satellite communications. The sensor platform is described along with the propulsion and navigation systems. An application for tracking the whale shark (Rhincodon typus) in the Red Sea is included along with a discussion of the technical difficulties that such a system faces.

  7. An Automatic and Real-time Restoration of Gamma Dose Data by Radio Telemetry

    International Nuclear Information System (INIS)

    Lee, Wan No; Kim, Hee Reyoung; Chung, Kun Ho; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo; Kim, Young Soo

    2006-01-01

    On-line gamma monitoring system based on a high pressurized ionization chamber has been used for determining airborne doses surrounding HANARO research reactor at KAERI (Korea Atomic Energy Research Institute). It is composed of a network of six monitoring stations and an on-line computer system. It has been operated by radio telemetry with a radio frequency of 468.8 MHz, which is able to transmit the real-time dose data measured from a remote ion chamber to the central computer for ten seconds-to seconds. Although radio telemetry has several advantages such as an effective and economical transmission, there is one main problem that data loss happen because each monitoring post only stores 300 radiation data points, which covers the previous sequential data of 50 minutes from the present in the case of a recording interval time of 10 seconds It is possible to restore the lost data by an off-line process such as a floppy disk or portable memory disk but it is ineffective method at the real-time monitoring system. Restoration, storage, and display of the current data as well as the lost data are also difficult in the present system. In this paper, an automatic and real-time restoration method by radio telemetry will be introduced

  8. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    Science.gov (United States)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  9. Translocation and radio-telemetry monitoring of pygmy marmoset, Cebuella pygmaea (Spix, 1823, in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    CAR. Dias

    Full Text Available Two groups of pygmy marmoset (Cebuella pygmaea were rescued along the left bank of the Madeira River during the formation of Santo Antônio Hydroelectric Dam reservoir in the state of Rondônia, Northern Brazil. Reintroduction of both groups occurred in areas of open Tropical rainforest located within the project´s Permanent Preservation Area. A post-release monitoring was conducted for three months using radio-telemetry. Individuals of each group remained together and settled in stable home ranges near their respective release sites. The mortality rate of translocated animals was about 7%. This seems to be the first report documenting the complete group translocation of C. pygmaea and the first to successfully employ radio-telemetry techniques in monitoring this species. This study demonstrated the feasibility of translocation and the use of radio-telemetry in monitoring C. pygmaea.

  10. Satellite telemetry of Afrotropical ducks: methodological details and ...

    African Journals Online (AJOL)

    Despite widespread and increasing use of solarpowered satellite transmitters to tag wild birds, there are few published articles that detail how transmitters should be attached to different species and even fewer assessments of the overall field success of telemetry projects. The scarcity of this information makes it difficult to ...

  11. Preliminary PANSAT ground station software design and use of an expert system to analyze telemetry

    Science.gov (United States)

    Lawrence, Gregory W.

    1994-03-01

    The Petite Amateur Navy Satellite (PANSAT) is a communications satellite designed to be used by civilian amateur radio operators. A master ground station is being built at the Naval Postgraduate School. This computer system performs satellite commands, displays telemetry, trouble-shoots problems, and passes messages. The system also controls an open loop tracking antenna. This paper concentrates on the telemetry display, decoding, and interpretation through artificial intelligence (AI). The telemetry is displayed in an easily interpretable format, so that any user can understand the current health of the satellite and be cued as to any problems and possible solutions. Only the master ground station has the ability to receive all telemetry and send commands to the spacecraft; civilian ham users do not have access to this information. The telemetry data is decommutated and analyzed before it is displayed to the user, so that the raw data will not have to be interpreted by ground users. The analysis will use CLIPS imbedded in the code, and derive its inputs from telemetry decommutation. The program is an expert system using a forward chaining set of rules based on the expected operation and parameters of the satellite. By building the rules during the construction and design of the satellite, the telemetry can be well understood and interpreted after the satellite is launched and the designers may no longer be available to provide input to the problem.

  12. Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data

    National Research Council Canada - National Science Library

    Smith, Jason E

    2005-01-01

    .... While there are a multitude of ways to determine a satellite's orientation, very little research has been done on determining if the attitude of a satellite can be determined directly from telemetry...

  13. Alaska northern fur seal adult male satellite telemetry data, 2009-2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of satellite-linked telemetry data collected to investigate winter migration patterns and foraging strategies of adult male northern fur...

  14. GTAG: architecture and design of miniature transmitter with position logging for radio telemetry

    Science.gov (United States)

    Řeřucha, Šimon; Bartonička, Tomáš; Jedlička, Petr

    2011-10-01

    The radio telemetry is a well-known technique used within zoological research to exploit the behaviour of animal species. A usage of GPS for a frequent and precise position recording gives interesting possibility for a further enhancement of this method. We present our proposal of an architecture and design concepts of telemetry transmitter with GPS module, called GTAG, that is suited for study of the Egyptian fruit bat (Rousettus aegyptiacus). The model group we study set particular constrains, especially the weight limit (9 g) and prevention of any power resources recharging technique. We discuss the aspect of physical realization and the energyconsumption issues. We have developed a reference implementation that has been already deployed during telemetry sessions and we evaluate the experience and compare the estimated performance of our device to a real data.

  15. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    Science.gov (United States)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  16. 106-17 Telemetry Standards Chapter 1

    Science.gov (United States)

    2017-07-01

    Telemetry Standards, RCC Standard 106-17 Chapter 1, July 2017 1-1 CHAPTER 1 Introduction The Telemetry Standards address the here-to-date...for Federal Radio Frequency Management . Copies of that manual may be obtained from: Executive Secretary, Interdepartmental Radio Advisory Committee

  17. Alaska Steller Sea Lion Habitat Model Satellite Telemetry and Environmental Data, 2000-2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The at-sea habitat use of Steller sea lions was modeled from location and dive behavior data obtained from the deployment of satellite-linked telemetry tags on sea...

  18. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  19. GPS radio collar 3D performance as influenced by forest structure and topography

    Science.gov (United States)

    R. Scott Gamo; Mark A. Rumble; Fred Lindzey; Matt Stefanich

    2000-01-01

    Global Positioning System (GPS) telemetry enables biologists to obtain accurate and systematic locations of animals. Vegetation can block signals from satellites to GPS radio collars. Therefore, a vegetation dependent bias to telemetry data may occur which if quantified, could be accounted for. We evaluated the performance of GPS collars in 6 structural stage...

  20. Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry

    DEFF Research Database (Denmark)

    H. G. Klaassen, Raymond; Strandberg, Roine; Hake, Mikael

    2010-01-01

    level, for example by analysing ring recoveries. Here we study loop migration of individual marsh harriersCircus aeruginosus tracked by satellite telemetry. We show that despite a generally narrow migration corridor the harriers travelled in a distinct clockwise loop through Africa and southern Europe...

  1. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  2. Review of research methodologies for tigers: telemetry.

    Science.gov (United States)

    Miller, Clayton S; Hebblewhite, Mark; Goodrich, John M; Miquelle, Dale G

    2010-12-01

    Over the past half century, wildlife research has relied on technological advances to gain additional insight into the secretive lives of animals. This revolution started in the 1960s with the development of radio telemetry and continues today with the use of Global Positioning System (GPS)-based research techniques. In the present paper we review the history of radio telemetry from its origins with grizzly bears in Yellowstone to its early applications in tiger research and conservation in Asia. We address the different types of data that are available using radio telemetry as opposed to using other research techniques, such as behavioral observations, camera trapping, DNA analysis and scat analysis. In the late 1990s, the rapid development of GPS collar technology revolutionized wildlife research. This new technology has enabled researchers to dramatically improve their ability to gather data on animal movements and ecology. Despite the ecological and conservation benefits of radio telemetry, there have been few telemetry studies of tigers in the wild, and most have been on the Bengal or Amur subspecies. We close with an assessment of the current tiger conservation efforts using GPS technology and discuss how this new information can help to preserve tigers for future generations. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  3. A history of telemetry in fishery research: Chapter 2

    Science.gov (United States)

    Hockersmith, Eric; Beeman, John W.; Adams, Noah S.; Beeman, John W.; Eiler, John H.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  4. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cjpace@indiana.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  5. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    International Nuclear Information System (INIS)

    Pace, Cameron; Salim, Samir

    2014-01-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  6. Rays in the northern Gulf of Mexico: Aerial Survey and Satellite Telemetry 2008-2012 (NCEI Accession 0129495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains distribution and abundance data for rays in the Gulf of Mexico collected through aerial surveys and satellite telemetry. Aerial survey data...

  7. Satellite telemetry: A new tool for wildlife research and management

    Science.gov (United States)

    Fancy, Steven G.; Pank, Larry F.; Douglas, David C.; Curby, Catherine H.; Garner, Gerald W.; Amstrup, Steven C.; Regelin, Wayne L.

    1998-01-01

    The U.S. Fish and Wildlife Service and the Alaska Department of Fish and Game have cooperated since 1984 to develop and evaluate satellite telemetry as a means of overcoming the high costs and logistical problems of conventional VHF (very high frequency) radiotelemetry systems. Detailed locational and behavioral data on caribou (Rangifer tarandus), polar bears (Ursus maritimus), and other large mammals in Alaska have been obtained using the Argos Data Collection and Location System (DCLS). The Argos system, a cooperative project of the Centre National d'Études Spatiales of France, the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration, is designed to acquire environmental data on a routine basis from anywhere on earth. Transmitters weighing 1.6-2.0 kg and functioning approximately 12-18 months operated on a frequency of 401.650 MHz. Signals from the transmitters were received by Argos DCLS instruments aboard two Tiros-N weather satellites in sun-synchronous, nearpolar orbits. Data from the satellites were received at tracking stations, transferred to processing centers in Maryland and France, and made available to users via computer tape, printouts, or telephone links.During 1985 and 1986, more than 25,000 locations and an additional 28,000 sets of sensor data (transmitter temperature and short-term and long-term indices of animal activity) were acquired for caribou and polar bears. Locations were calculated from the Doppler shift in the transmitted signal as the satellite approached and then moved away from the transmitter. The mean locational error for transmitters at known locations (n - 1,265) was 829 m; 90% of the calculated locations were within 1,700 m of the true location. Caribou transmitters provided a mean of 3.1 (+5.0. SD) locations per day during 6h of daily operation, and polar bear transmitters provided 1.7 (+6.9SD) locations during 12h of operation every third day. During the first 6 months of

  8. Software defined radio (SDR) architecture for concurrent multi-satellite communications

    Science.gov (United States)

    Maheshwarappa, Mamatha R.

    SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a

  9. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    Science.gov (United States)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  10. iSAT: The Integrated Satellite and Acoustic Telemetry system for tracking marine megafauna

    KAUST Repository

    De La Torre, Pedro R.

    2014-05-01

    In this dissertation an innovative technology to study whale sharks, Rhincodon typus is presented. The Integrated Satellite and Acoustic Telemetry project (iSAT) combines underwater acoustic telemetry, autonomous navigation and radio frequency communications into a standalone system. The whale shark, a resident of the Saudi Arabian Red Sea, is the target of the study. The technology presented is designed to help close current gaps in the knowledge of whale shark biology; these are gaps that prohibit the design of optimal conservation strategies. Unfortunately, the various existing tracking technologies each have limitations and are unable to solve all the unanswered questions. Whale shark populations are increasingly threatened by anthropogenic activities such as targeted and indirect fishing pressure, creating an urgent need for better management practices. This dissertation addresses the current state-of-the-art of relevant technologies, including autonomous surface vehicles (ASVs), sensors for research in the ocean and remote monitoring of wild fauna (biotelemetry). iSAT contains components of all of these technologies, but the primary achievement of this dissertation is the development of iSAT’s Acoustic Tracking System (ATS). Underwater, the most efficient way of transmitting energy through long distances is sound. An electronic tag is attached to an animal and works as its acoustic identifier. iSAT’s hydrophone array detects the presence and direction of the acoustic signal generated by the tag. The expected performance, range, and capacity to tell the direction to the tag are explained and compared to the actual measured values. The first operational iSAT ATS is demonstrated. This work represents significant advancement towards a fully autonomous iSAT system. Developments on the power electronics, navigation, renewable energy harvesting, and other modules are included in this research. With the recent integration of digital acquisition systems, i

  11. Northern Pintail Telemetry [ds231

    Data.gov (United States)

    California Natural Resource Agency — Using radio-telemetry, female northern pintail (Anas acuta) survival, distribution, and movements during late August-March in Central California were determined...

  12. Challenges and prospects in the telemetry of insects

    NARCIS (Netherlands)

    Kissling, W.D.; Pattemore, D.E.; Hagen, M.

    2014-01-01

    Radio telemetry has been widely used to study the space use and movement behaviour of vertebrates, but transmitter sizes have only recently become small enough to allow tracking of insects under natural field conditions. Here, we review the available literature on insect telemetry using active

  13. Refraction of Radio Waves on the Radio-Occultation Satellite-to-Satellite Paths as a Characteristic of the Atmospheric State

    Science.gov (United States)

    Matyugov, S. S.; Yakovlev, O. I.; Pavelyev, A. G.; Pavelyev, A. A.; Anufriev, V. A.

    2017-10-01

    We present the results of analyzing the radio-wave refractive characteristics measured on the radio-occultation paths between the GPS navigation satellites and the FORMOSAT-3 research satellites in the central region of the European territory of Russia in 2007-2013. The diurnal, seasonal, and annual variations in the refraction angle at altitudes of 2 to 25 km are discussed. It is shown that the refraction angle can be used as an independent characteristic of the atmospheric state and its long-term variation trends. Diurnal and nocturnal variations in the refraction angle in the winter and summer seasons are analyzed. Trends in the atmospheric refraction variations over seven years are discussed.

  14. Sea Turtle Satellite Telemetry Data in North Atlantic Ocean from 2007-10-16 to 2010-11-26 (NCEI Accession 0159216)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains satellite telemetry data for sea turtles. Movements, migratory pathways, and foraging behavior of sea turtles were tracked and surfacing...

  15. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  16. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure

  17. X-36 on Ground after Radio and Telemetry Tests

    Science.gov (United States)

    1996-01-01

    A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  18. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    SSC16-XI-03 HF Radio Astronomy from a Small Satellite Frank C. Robey1, Mary Knapp2, Alan J. Fenn1, Mark Silver1, Kerry Johnson1 Frank J. Lind3...frequency end of the electromagnetic spectrum (below 15 MHz) is one of the least explored windows in observational astronomy . Observations at these...pdf. [Accessed: 17-Oct-2015]. 3. G. Hallinan, “The Owens Valley LWA,” in Exascale Radio Astronomy , 2014, vol. 2. 4. C. J. Lonsdale, R. J. Cappallo

  19. Group telemetry analysis using the World Wide Web

    Energy Technology Data Exchange (ETDEWEB)

    Kalibjian, J.

    1996-12-31

    Today it is not uncommon to have large contractor teams involved in the design and deployment of even small satellite systems. The larger (and more geographically remote) the team members, the more difficult it becomes to efficiently manage the disbursement of telemetry data for evaluation and analysis. Further complications are introduced if some of the telemetry data is sensitive. An application is described which can facilitate telemetry data sharing utilizing the National Information Infrastructure (Internet).

  20. An Advanced Commanding and Telemetry System

    Science.gov (United States)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  1. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Directory of Open Access Journals (Sweden)

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  2. Solar radio proxies for improved satellite orbit prediction

    Science.gov (United States)

    Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean

    2017-12-01

    Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.

  3. Solar radio proxies for improved satellite orbit prediction

    Directory of Open Access Journals (Sweden)

    Yaya Philippe

    2017-01-01

    Full Text Available Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model performs better with (past and predicted values of the 30 cm radio flux than with the 10.7 flux.

  4. XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1

    Science.gov (United States)

    Rice, Kevin; Kizzort, Brad

    2008-01-01

    These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.

  5. Remote sensing of the ionosphere using satellite radio beacons

    International Nuclear Information System (INIS)

    Davies, Kenneth

    1991-01-01

    Since the launch of Sputnik I in 1957, satellite radio beacons have been used to measure the total electron content of the ionosphere. A review of the role of satellite beacons in studies of the vertical and spatial structure of the total electron content and on the occurrence of plasma irregularities, both of which affect transionospheric radio signals, is presented. Measurements of Faraday rotation and time of flight give information on the topside of the ionosphere and on the protonosphere. Morphological studies show that the slab thickness of the ionosphere depends on the solar index but is approximately independent of geographical location. Scintillation of amplitude, phase, polarization, and angle provide information on plasma irregularity occurrence in space and time. (author). 23 refs., 16 figs ., 4 tabs

  6. Collision risk in white-tailed eagles. Modelling kernel-based collision risk using satellite telemetry data in Smoela wind-power plant

    Energy Technology Data Exchange (ETDEWEB)

    May, Roel; Nygaard, Torgeir; Dahl, Espen Lie; Reitan, Ole; Bevanger, Kjetil

    2011-05-15

    Large soaring birds of prey, such as the white-tailed eagle, are recognized to be perhaps the most vulnerable bird group regarding risk of collisions with turbines in wind-power plants. Their mortalities have called for methods capable of modelling collision risks in connection with the planning of new wind-power developments. The so-called 'Band model' estimates collision risk based on the number of birds flying through the rotor swept zone and the probability of being hit by the passing rotor blades. In the calculations for the expected collision mortality a correction factor for avoidance behaviour is included. The overarching objective of this study was to use satellite telemetry data and recorded mortality to back-calculate the correction factor for white-tailed eagles. The Smoela wind-power plant consists of 68 turbines, over an area of approximately 18 km2. Since autumn 2006 the number of collisions has been recorded on a weekly basis. The analyses were based on satellite telemetry data from 28 white-tailed eagles equipped with backpack transmitters since 2005. The correction factor (i.e. 'avoidance rate') including uncertainty levels used within the Band collision risk model for white-tailed eagles was 99% (94-100%) for spring and 100% for the other seasons. The year-round estimate, irrespective of season, was 98% (95-99%). Although the year-round estimate was similar, the correction factor for spring was higher than the correction factor of 95% derived earlier from vantage point data. The satellite telemetry data may provide an alternative way to provide insight into relative risk among seasons, and help identify periods or areas with increased risk either in a pre- or post construction situation. (Author)

  7. Problem of spiral galaxies and satellite radio sources

    International Nuclear Information System (INIS)

    Arp, H.; Carpenter, R.; Gulkis, S.; Klein, M.

    1976-01-01

    A detailed comparison is made between the results of this program and the results of previous investigators. In particular, attention is called to the potentially important implications of an investigation by Tovmasyan, who searched a large number of spirals and found evidence that a small percentage of them apparently have radio satellites located up to 20' from the central galaxy. 15 sources were measured selected from Tovmasyan's list of 43 satellite sources. Results confirm his positions and relative flux densities for each of the sources

  8. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  9. X-36 Carried Aloft by Helicopter during Radio and Telemetry Tests

    Science.gov (United States)

    1996-01-01

    A Bell UH-1 helicopter lifts the X-36 Tailless Fighter Agility Research Aircraft off the ground for radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and

  10. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    International Nuclear Information System (INIS)

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations

  11. Disturbances in VHF/UHF telemetry links as a possible effect of the 2003 Hokkaido Tokachi-oki earthquake

    Directory of Open Access Journals (Sweden)

    H. Nagamoto

    2008-08-01

    Full Text Available The data on radio telemetry links (for water information at VHF/UHF in Hokkaido are used to investigate the rate of disturbances on radio links (or connection failure and its association with a huge earthquake, Tokachi-oki earthquake on 26 September 2003. Especially, the telemetry links at the Tokachi region closest to the earthquake epicenter, showed a significant increase in disturbances on radio links two weeks to a few days before the earthquake on the basis of analysis during a long interval from 1 June 2002 to 3 November 2007 (over 5 years. We suggest that these severe disturbances in VHF/UHF telemetry links are attributed to the generation of seismogenic VHF/UHF radio noises (emissions. Based on this idea, we have estimated that the intensity of these seismogenic emissions is on the order of 10–19 dB μV/m. Finally, the present result was compared with other physical parameters already obtained for this earthquake.

  12. TELEMETRY AND TELECOMMAND SYSTEM OF LOW-EARTH-ORBIT MICROSATELLITE, KITSAT-1 AND 2

    Directory of Open Access Journals (Sweden)

    Sungheon Kim

    1996-06-01

    Full Text Available The telecommand system of KITSAT micorsatellite receives commands from ground stations or on-board computers. It decodes, validates and delivers commands to sub-system. The telemetry system is to collect, process and format satellite housekeeping and mission data for use by on-board computer and ground station. It is crucial for the telemetry and telecommand system to have high reliability since the spacecraft operation is mostly based on the function of this system. The telemetry and telecommand(TTC systems for KITSAT-1 and 2 had been developed under the consideratin of the space environment of Low-Earth-Orbit and the limited mass, volume and power of micorsatellite. Since both satellites were launched in August 1992 and September 1993 respectively, the have shown to be working successfully as well as the TTC systems on-board both satellites.

  13. ''Meteor'' radio/television satellites for study of earth's natural resources

    Energy Technology Data Exchange (ETDEWEB)

    Selivanov, A S; Tuchin, Yu M

    1981-01-01

    Two types of wide sweep multi-zonal scanning devices are included in the Meteor units, including radio-transmitting, and memory units. Data is transmitted within the wave range assigned to meteorologic earth satellites.

  14. The design of visualization telemetry system based on camera module of the commercial smartphone

    Science.gov (United States)

    Wang, Chao; Ye, Zhao; Wu, Bin; Yin, Huan; Cao, Qipeng; Zhu, Jun

    2017-09-01

    Satellite telemetry is the vital indicators to estimate the performance of the satellite. The telemetry data, the threshold range and the variation tendency collected during the whole operational life of the satellite, can guide and evaluate the subsequent design of the satellite in the future. The rotational parts on the satellite (e.g. solar arrays, antennas and oscillating mirrors) affect collecting the solar energy and the other functions of the satellite. Visualization telemetries (pictures, video) are captured to interpret the status of the satellite qualitatively in real time as an important supplement for troubleshooting. The mature technology of commercial off-the-shelf (COTS) products have obvious advantages in terms of the design of construction, electronics, interfaces and image processing. Also considering the weight, power consumption, and cost, it can be directly used in our application or can be adopted for secondary development. In this paper, characteristic simulations of solar arrays radiation in orbit are presented, and a suitable camera module of certain commercial smartphone is adopted after the precise calculation and the product selection process. Considering the advantages of the COTS devices, which can solve both the fundamental and complicated satellite problems, this technique proposed is innovative to the project implementation in the future.

  15. A strategy for recovering continuous behavioral telemetry data from Pacific walruses

    Science.gov (United States)

    Fischbach, Anthony S.; Jay, Chadwick V.

    2016-01-01

    Tracking animal behavior and movement with telemetry sensors can offer substantial insights required for conservation. Yet, the value of data collected by animal-borne telemetry systems is limited by bandwidth constraints. To understand the response of Pacific walruses (Odobenus rosmarus divergens) to rapid changes in sea ice availability, we required continuous geospatial chronologies of foraging behavior. Satellite telemetry offered the only practical means to systematically collect such data; however, data transmission constraints of satellite data-collection systems limited the data volume that could be acquired. Although algorithms exist for reducing sensor data volumes for efficient transmission, none could meet our requirements. Consequently, we developed an algorithm for classifying hourly foraging behavior status aboard a tag with limited processing power. We found a 98% correspondence of our algorithm's classification with a test classification based on time–depth data recovered and characterized through multivariate analysis in a separate study. We then applied our algorithm within a telemetry system that relied on remotely deployed satellite tags. Data collected by these tags from Pacific walruses across their range during 2007–2015 demonstrated the consistency of foraging behavior collected by this strategy with data collected by data logging tags; and demonstrated the ability to collect geospatial behavioral chronologies with minimal missing data where recovery of data logging tags is precluded. Our strategy for developing a telemetry system may be applicable to any study requiring intelligent algorithms to continuously monitor behavior, and then compress those data into meaningful information that can be efficiently transmitted.

  16. Mechano-Magnetic Telemetry for Underground Water Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Orfeo

    2018-06-01

    Full Text Available This study reports on the theory of operation, design principles, and results from laboratory and field tests of a magnetic telemetry system for communication with underground infrastructure sensors using rotating permanent magnets as the sources and compact magnetometers as the receivers. Many cities seek ways to monitor underground water pipes with centrally managed Internet of Things (IoT systems. This requires the development of numerous reliable low-cost wireless sensors, such as moisture sensors and flow meters, which can transmit information from subterranean pipes to surface-mounted receivers. Traditional megahertz radio communication systems are often unable to penetrate through multiple feet of earthen and manmade materials and have impractically large energy requirements which preclude the use of long-life batteries, require complex (and expensive built-in energy harvesting systems, or long leads that run antennas near to the surface. Low-power magnetic signaling systems do not suffer from this drawback: low-frequency electromagnetic waves readily penetrate through several feet of earth and water. Traditional magnetic telemetry systems that use energy-inefficient large induction coils and antennas as sources and receivers are not practical for underground IoT-type sensing applications. However, rotating a permanent magnet creates a completely reversing oscillating magnetic field. The recent proliferation of strong rare-earth permanent magnets and high-sensitivity magnetometers enables alternative magnetic telemetry system concepts with significantly more compact formats and lower energy consumption. The system used in this study represents a novel combination of megahertz radio and magnetic signaling techniques for the purposes of underground infrastructure monitoring. In this study, two subterranean infrastructure sensors exploit this phenomenon to transmit information to an aboveground radio-networked magnetometer receiver. A flow

  17. Sea Turtle Radio Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio transmitters attached to sea turtles captured in various fishing gear enabled us to track and measure surfacing time of each turtle. Determining location of...

  18. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  19. Evaluation of Scat Deposition Transects versus Radio Telemetry for Developing a Species Distribution Model for a Rare Desert Carnivore, the Kit Fox.

    Science.gov (United States)

    Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P

    2015-01-01

    Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be

  20. Site use by dark-bellied brent geese Branta bernicla bernicla on the Russian tundra as recorded by satellite telemetry: implications for East Atlantic flyway conservation

    NARCIS (Netherlands)

    Green, M.; Alerstam, T.; Clausen, P.; Drent, R.; Ebbinge, B.S.

    2002-01-01

    In 1999, seven dark-bellied brent geese Branta bemicla bemicla were followed during spring migration from western Europe to Arctic Russia using satellite telemetry. For six of the birds we were also able to monitor their summer stay at the Taimyr Peninsula, and for five birds part of their autumn

  1. Site use by dark-bellied brent geese Branta bernicla bernicla on the Russian tundra as recorded by satellite telemetry : implications for East Atlantic Flyway conservation

    NARCIS (Netherlands)

    Green, M; Alerstam, T; Clausen, P; Drent, R; Ebbinge, BS

    In 1999, seven dark-bellied brent geese Branta bemicla bemicla were followed during spring migration from western Europe to Arctic Russia using satellite telemetry. For six of the birds we were also able to monitor their summer stay at the Taymyr Peninsula, and for five birds part of their autumn

  2. Telemetry location error in a forested habitat

    Science.gov (United States)

    Chu, D.S.; Hoover, B.A.; Fuller, M.R.; Geissler, P.H.; Amlaner, Charles J.

    1989-01-01

    The error associated with locations estimated by radio-telemetry triangulation can be large and variable in a hardwood forest. We assessed the magnitude and cause of telemetry location errors in a mature hardwood forest by using a 4-element Yagi antenna and compass bearings toward four transmitters, from 21 receiving sites. The distance error from the azimuth intersection to known transmitter locations ranged from 0 to 9251 meters. Ninety-five percent of the estimated locations were within 16 to 1963 meters, and 50% were within 99 to 416 meters of actual locations. Angles with 20o of parallel had larger distance errors than other angles. While angle appeared most important, greater distances and the amount of vegetation between receivers and transmitters also contributed to distance error.

  3. Assigning delivered prey to visited habitat : the potential of combining video monitoring at nest and radio telemetry tested on female Eurasian kestrels (Falco tinnunculus)

    OpenAIRE

    Christensen, Mikkel Emil

    2012-01-01

    In this study I used a combination of video monitoring and high intensity radio telemetry to assign specific prey items to habitat visited by female Eurasian kestrels (Falco tinnunculus) during the breeding season of 2011 in Trysil, eastern Norway. I used the combined dataset comprising 63 locations reliably paired with prey items taken by five female kestrels to investigate: (1) The probability of a prey item belonging to family Cricetidae and genus Microtus in four observed and four map-der...

  4. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  5. Tracking anguillid eels: five decades of telemetry-based research

    DEFF Research Database (Denmark)

    Beguer-Pon, Melanie; Dodson, Julian J.; Castonguay, Martin

    2018-01-01

    anguillid species have been tracked in three main geographical locations: Western Europe, the north-eastern part of North America and Australasia. Telemetry has proven to be an effective method for determining patterns of yellow eel movements in continental waters. It has also been used extensively...... satellite tags have provided indications of spawning areas, extensive vertical migrations and initial clues about the orientation mechanisms at sea. Telemetry studies have also revealed apparent evidence of predation by marine mammals and fish at sea, suggesting a significant natural source of mortality...

  6. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  7. Intraperitoneal implantation of life-long telemetry transmitters in otariids

    Directory of Open Access Journals (Sweden)

    Haulena Martin

    2008-12-01

    Full Text Available Abstract Background Pinnipeds, including many endangered and declining species, are inaccessible and difficult to monitor for extended periods using externally attached telemetry devices that are shed during the annual molt. Archival satellite transmitters were implanted intraperitoneally into four rehabilitated California sea lions (Zalophus californianus and 15 wild juvenile Steller sea lions (Eumetopias jubatus to determine the viability of this surgical technique for the deployment of long-term telemetry devices in otariids. The life history transmitters record information throughout the life of the host and transmit data to orbiting satellites after extrusion following death of the host. Results Surgeries were performed under isoflurane anesthesia and single (n = 4 or dual (n = 15 transmitters were inserted into the ventrocaudal abdominal cavity via an 8.5 to 12 cm incision along the ventral midline between the umbilicus and pubic symphysis or preputial opening. Surgeries lasted 90 minutes (SD = 8 for the 19 sea lions. All animals recovered well and were released into the wild after extended monitoring periods from 27 to 69 days at two captive animal facilities. Minimum post-implant survival was determined via post-release tracking using externally attached satellite transmitters or via opportunistic re-sighting for mean durations of 73.7 days (SE = 9.0, Z. californianus and 223.6 days (SE = 71.5, E. jubatus. Conclusion The low morbidity and zero mortality encountered during captive observation and post-release tracking periods confirm the viability of this surgical technique for the implantation of long-term telemetry devices in otariids.

  8. Effects of plant phenology and vertical height on accuracy of radio-telemetry locations

    Science.gov (United States)

    Grovenburg, Troy W.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Lehman, Chad P.; Brinkman, Todd J.; Robling, Kevin A.; Rupp, Susan P.; Jenks, Jonathan A.

    2013-01-01

    The use of very high frequency (VHF) radio-telemetry remains wide-spread in studies of wildlife ecology and management. However, few studies have evaluated the influence of vegetative obstruction on accuracy in differing habitats with varying transmitter types and heights. Using adult and fawn collars at varying heights above the ground (0, 33, 66 and 100 cm) to simulate activities (bedded, feeding and standing) and ages (neonate, juvenile and adult) of deer Odocoileus spp., we collected 5,767 bearings and estimated 1,424 locations (28-30 for each of 48 subsamples) in three habitat types (pasture, grassland and forest), during two stages of vegetative growth (spring and late summer). Bearing error was approximately twice as large at a distance of 900 m for fawn (9.9°) than for adult deer collars (4.9°). Of 12 models developed to explain the variation in location error, the analysis of covariance model (HT*D + C*D + HT*TBA + C*TBA) containing interactions of height of collar above ground (HT), collar type (C), vertical height of understory vegetation (D) and tree basal area (TBA) was the best model (wi = 0.92) and explained ∼ 71% of the variation in location error. Location error was greater for both collar types at 0 and 33 cm above the ground compared to 66 and 100 cm above the ground; however, location error was less for adult than fawn collars. Vegetation metrics influenced location error, which increased with greater vertical height of understory vegetation and tree basal area. Further, interaction of vegetation metrics and categorical variables indicated significant effects on location error. Our results indicate that researchers need to consider study objectives, life history of the study animal, signal strength of collar (collar type), distance from transmitter to receiver, topographical changes in elevation, habitat composition and season when designing telemetry protocols. Bearing distances in forested habitat should be decreased (approximately 23

  9. Satellite telemetry reveals higher fishing mortality rates than previously estimated, suggesting overfishing of an apex marine predator.

    Science.gov (United States)

    Byrne, Michael E; Cortés, Enric; Vaudo, Jeremy J; Harvey, Guy C McN; Sampson, Mark; Wetherbee, Bradley M; Shivji, Mahmood

    2017-08-16

    Overfishing is a primary cause of population declines for many shark species of conservation concern. However, means of obtaining information on fishery interactions and mortality, necessary for the development of successful conservation strategies, are often fisheries-dependent and of questionable quality for many species of commercially exploited pelagic sharks. We used satellite telemetry as a fisheries-independent tool to document fisheries interactions, and quantify fishing mortality of the highly migratory shortfin mako shark ( Isurus oxyrinchus ) in the western North Atlantic Ocean. Forty satellite-tagged shortfin mako sharks tracked over 3 years entered the Exclusive Economic Zones of 19 countries and were harvested in fisheries of five countries, with 30% of tagged sharks harvested. Our tagging-derived estimates of instantaneous fishing mortality rates ( F = 0.19-0.56) were 10-fold higher than previous estimates from fisheries-dependent data (approx. 0.015-0.024), suggesting data used in stock assessments may considerably underestimate fishing mortality. Additionally, our estimates of F were greater than those associated with maximum sustainable yield, suggesting a state of overfishing. This information has direct application to evaluations of stock status and for effective management of populations, and thus satellite tagging studies have potential to provide more accurate estimates of fishing mortality and survival than traditional fisheries-dependent methodology. © 2017 The Author(s).

  10. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 2.3 GHz satellite digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  11. Telemetry Boards Interpret Rocket, Airplane Engine Data

    Science.gov (United States)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  12. Sea Turtle Satellite Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles captured in various fishing gear (pound nets, long haul seines, gill nets) were outfitted with satellite transmitters so that their movements, migratory...

  13. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  14. In-Flight Fault Diagnosis for Autonomous Aircraft Via Low-Rate Telemetry Channel

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2012-01-01

    An in-flight diagnosis system that is able to detect faults on an unmanned aircraft using real-time telemetry data could provide operator assistance to warn about imminent risks due to faults. However, limited bandwidth of the air-ground radio-link makes diagnosis difficult. Loss of information a...

  15. Animal movement constraints improve resource selection inference in the presence of telemetry error

    Science.gov (United States)

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  16. Telemetry of Aerial Radiological Measurements

    International Nuclear Information System (INIS)

    Clark, H. W. Jr.

    2002-01-01

    Telemetry has been added to National Nuclear Security Administration's (NNSA's) Aerial Measuring System (AMS) Incident Response aircraft to accelerate availability of aerial radiological mapping data. Rapid aerial radiological mapping is promptly performed by AMS Incident Response aircraft in the event of a major radiological dispersal. The AMS airplane flies the entire potentially affected area, plus a generous margin, to provide a quick look at the extent and severity of the event. The primary result of the AMS Incident Response over flight is a map of estimated exposure rate on the ground along the flight path. Formerly, it was necessary to wait for the airplane to land before the map could be seen. Now, while the flight is still in progress, data are relayed via satellite directly from the aircraft to an operations center, where they are displayed and disseminated. This permits more timely utilization of results by decision makers and redirection of the mission to optimize its value. The current telemetry capability can cover all of North America. Extension to a global capability is under consideration

  17. On-Demand Telemetry

    Data.gov (United States)

    National Aeronautics and Space Administration — AFRC has previously investigated the use of Network Based Telemetry. We will be building on that research to enable On-Demand Telemetry. On-Demand Telemetry is a way...

  18. Software Defined Multiband EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of Phase 2 is to build a reliable, lightweight, programmable, multi-mode, miniaturized EVA Software Defined Radio (SDR) that supports data telemetry,...

  19. Observations of inner plasmasphere irregularities with a satellite-beacon radio-interferometer array

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Hoogeveen, G.; Carlos, R.C.; Wu, G.; Fejer, B.G.; Kelley, M.C.

    1996-01-01

    A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥10 13 m -2 ) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (f>3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200 endash 2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase oscillations originate in radio refraction due to geomagnetically aligned plasma density perturbations in the inner plasmasphere. The motion of the phase perturbations across the array plane is caused by EXB drift of the plasma medium in which the irregularities are embedded. We review the statistics of 2.5 years of around-the-clock data on the local time, magnetic disturbance, seasonal, and line-of-sight variations of these observed irregularities. We compare the irregularities close-quote inferred electrodynamic drifts to what is known about midlatitude plasma drift from incoherent scatter. Finally, we show in detail how the observation of these irregularities provides a unique and complementary monitor of inner plasmasphere irregularity incidence and zonal drift.copyright 1996 American Geophysical Union

  20. An integrative pharmacological approach to radio telemetry and blood sampling in pharmaceutical drug discovery and safety assessment.

    Science.gov (United States)

    Litwin, Dennis C; Lengel, David J; Kamendi, Harriet W; Bialecki, Russell A

    2011-01-18

    A successful integration of the automated blood sampling (ABS) and telemetry (ABST) system is described. The new ABST system facilitates concomitant collection of physiological variables with blood and urine samples for determination of drug concentrations and other biochemical measures in the same rat without handling artifact. Integration was achieved by designing a 13 inch circular receiving antenna that operates as a plug-in replacement for the existing pair of DSI's orthogonal antennas which is compatible with the rotating cage and open floor design of the BASi Culex® ABS system. The circular receiving antenna's electrical configuration consists of a pair of electrically orthogonal half-toroids that reinforce reception of a dipole transmitter operating within the coil's interior while reducing both external noise pickup and interference from other adjacent dipole transmitters. For validation, measured baclofen concentration (ABST vs. satellite (μM): 69.6 ± 23.8 vs. 76.6 ± 19.5, p = NS) and mean arterial pressure (ABST vs. traditional DSI telemetry (mm Hg): 150 ± 5 vs.147 ± 4, p = NS) variables were quantitatively and qualitatively similar between rats housed in the ABST system and traditional home cage approaches. The ABST system offers unique advantages over traditional between-group study paradigms that include improved data quality and significantly reduced animal use. The superior within-group model facilitates assessment of multiple physiological and biochemical responses to test compounds in the same animal. The ABST also provides opportunities to evaluate temporal relations between parameters and to investigate anomalous outlier events because drug concentrations, physiological and biochemical measures for each animal are available for comparisons.

  1. Protected transitional solution to transformational satellite communications

    Science.gov (United States)

    Brand, Jerry C.

    2005-06-01

    As the Warfighter progresses into the next generation battlefield, transformational communications become evident as an enabling technology. Satellite communications become even more vital as the battles range over greater non-contiguous spaces. While current satellite communications provide suitable beyond line-of-sight communications and the Transformational Communications Architecture (TCA) sets the stage for sound information exchange, a realizable transition must occur to ensure successful succession to this higher level. This paper addresses the need for a planned escalation to the next generation satellite communications architecture and offers near-term alternatives. Commercial satellite systems continue to enable the Warfighter to reach back to needed information resources, providing a large majority of available bandwidth. Four areas of concentration for transition include encrypted Telemetry, Tracking and Control (or Command) (TT&C), encrypted and covered data, satellite attack detection and protection, and operational mobility. Solution methodologies include directly embedding COMSEC devices in the satellites and terminals, and supplementing existing terminals with suitable equipment and software. Future satellites planned for near-term launches can be adapted to include commercial grade and higher-level secure equipment. Alternately, the expected use of programmable modems (Software Defined Radios (SDR)) enables incorporation of powerful cipher methods approaching military standards as well as waveforms suitable for on-the-move operation. Minimal equipment and software additions on the satellites can provide reasonable attack detection and protection methods in concert with the planned satellite usage. Network management suite modifications enable cohesive incorporation of these protection schemes. Such transitional ideas offer a smooth and planned transition as the TCA takes life.

  2. Telemetry Standards

    National Research Council Canada - National Science Library

    1999-01-01

    The Telemetry Group has prepared this document to foster the compatibility of telemetry transmitting, receiving, and signal processing equipment at the member ranges under the cognizance of the RCC...

  3. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  4. Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment

    International Nuclear Information System (INIS)

    Davies, K.

    1980-01-01

    In May 1974 a new era in satellite radio beacon studies of the ionosphere opened with the ATS-6 Radio Beacon Experiment. The history of radio beacon studies up to that time is reviewed briefly and the particular features of the ATS-6 beacon are discussed together with the basic theory required to interpret the measurements. The main emphasis is on the ATS-6 beacon experiment but other beacon data are discussed which provide the necessary background. The diurnal and seasonal variations of the total electron content and the plasmaspheric content are presented for the U.S.A. and Europe. In winter the plasmaspheric content over the Western Hemisphere maximizes at night while in Europe and the Pacific it appears to peak near noon. This is thought to be caused by flow of plasma from the local and conjugate ionospheres. Night maxima of total electron content are found showing that they do not arise from depletions of the plasmaspheric content. The plasmaspheric content is highly sensitive to solar-terrestrial disturbance, it reaches a minimum on the third day of a storm and may take between 10 and 20 days of partial filling and emptying to recover. Travelling disturbances in U.S.A., Europe, and India show similarities of speeds but not of direction. Beacon observations of micropulsations in total content, tropospheric fluctuations and Fresnel diffraction by intense ionospheric irregularities are discussed together with radio wave scintillations and some applications of beacon radio data to communications and navigation. (orig.)

  5. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    Science.gov (United States)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  6. Identification of high-risk areas for harbour porpoise Phocoena phocoena bycatch using remote electronic monitoring and satellite telemetry data

    DEFF Research Database (Denmark)

    Kindt-Larsen, Lotte; Berg, Casper Willestofte; Tougaard, J.

    2016-01-01

    grounds, quantify fishing effort and document harbour porpoise bycatch. Movement data from 66 harbour porpoises equipped with satellite transmitters from 1997 to 2012 were used to model population density. A simple model was constructed to investigate the relationship between the response (number...... telemetry or REM data allow for identification of areas of potential high and low bycatch risk, and better predictions are obtained when combining the 2 sources of data. The final model can thus be used as a tool to identify areas of bycatch risk...... and lower risk of porpoise bycatch. From May 2010 to April 2011, 4 commercial gillnet vessels were equipped with remote electronic monitoring (REM) systems. The REM system recorded time, GPS position and closed-circuit television (CCTV) footage of all gillnet hauls. REM data were used to identify fishing...

  7. A semi-implantable multichannel telemetry system for continuous electrical, mechanical and hemodynamical recordings in animal cardiac research.

    Science.gov (United States)

    Kong, Wei; Huang, Jian; Rollins, Dennis L; Ideker, Raymond E; Smith, William M

    2007-03-01

    We have developed an eight-channel telemetry system for studying experimental models of chronic cardiovascular disease. The system is an extension of a previous device that has been miniaturized, reduced in power consumption and provided with increased functionality. We added sensors for ventricular dimension, and coronary artery blood flow and arterial blood pressure that are suitable for use with the system. The telemetry system consists of a front end, a backpack and a host PC. The front end is a watertight stainless steel case with all sensor electronics sealed inside; it acquires dimension, flow, pressure and five cardiac electrograms from selected locations on the heart. The backpack includes a control unit, Bluetooth radio, and batteries. The control unit digitizes eight channels of data from the front end and forwards them to the host PC via Bluetooth link. The host PC has a receiving Bluetooth radio and Labview programs to store and display data. The whole system was successfully tested on the bench and in an animal model. This telemetry system will greatly enhance the ability to study events leading to spontaneous sudden cardiac arrest.

  8. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  9. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  10. STAR: FPGA-based software defined satellite transponder

    Science.gov (United States)

    Davalle, Daniele; Cassettari, Riccardo; Saponara, Sergio; Fanucci, Luca; Cucchi, Luca; Bigongiari, Franco; Errico, Walter

    2013-05-01

    This paper presents STAR, a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites, developed in collaboration with INTECS and SITAEL companies. With respect to state-of-the-art EO transponders, STAR includes the possibility of scientific data transfer thanks to the 40 Mbps downlink data-rate. This feature represents an important optimization in terms of hardware mass, which is important for EO small satellites. Furthermore, in-flight re-configurability of communication parameters via telecommand is important for in-orbit link optimization, which is especially useful for low orbit satellites where visibility can be as short as few hundreds of seconds. STAR exploits the principles of digital radio to minimize the analog section of the transceiver. 70MHz intermediate frequency (IF) is the interface with an external S/X band radio-frequency front-end. The system is composed of a dedicated configurable high-speed digital signal processing part, the Signal Processor (SP), described in technology-independent VHDL working with a clock frequency of 184.32MHz and a low speed control part, the Control Processor (CP), based on the 32-bit Gaisler LEON3 processor clocked at 32 MHz, with SpaceWire and CAN interfaces. The quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss which is less than 0.5 dB at BER = 10-5 for the RX chain. The IF ports require 8-bit precision. The system prototype is fitted on the Xilinx Virtex 6 VLX75T-FF484 FPGA of which a space-qualified version has been announced. The total device occupation is 82 %.

  11. Field tests of acoustic telemetry for a portable coastal observatory

    Science.gov (United States)

    Martini, M.; Butman, B.; Ware, J.; Frye, D.

    2006-01-01

    Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.

  12. Bio-WiTel: A Low-Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.

    Science.gov (United States)

    Srivastava, Abhishek; Sankar K, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh Keshava; Saraf, Vivek; Ananthapadmanabhan, Jayachandran; Sharma, Dinesh Kumar; Baghini, Maryam Shojaei

    2018-03-01

    This paper presents a low-power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401-406 MHz frequency band of medical device radiocommunication (MedRadio) spectrum. In this paper, necessary design considerations for telemetry system for short-range (upto 3 m) communication of biosignals are presented. These considerations help greatly in making important design decisions, which eventually lead to a simple, low power, robust, and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply, whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kb/s. The measured bit error rate (BER) of RX is less than for a data rate of 200 kb/s. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram and photoplethysmogram signals at a data rate of 57.6 kb/s with a measured BER of <10 for a maximum distance of 3 m.

  13. The U.S. Animal Telemetry Network: A Plan for Implementation

    Science.gov (United States)

    Weise, M. J.; Simmons, S. E.

    2016-02-01

    The U.S. is a global leader in animal telemetry, with tremendous animal telemetry infrastructure and considerable technical expertise in telemetry operations. However, these research assets are often owned and operated independently by multiple agencies and institutions with limited to no connectivity. This prevents the scientific community from efficiently coordinating data and thereby best serving societal needs. In this talk we will describe how the U.S. Animal Telemetry Network (ATN), under the auspices of the U.S. Integrated Ocean Observing System (IOOS), will provide a mechanism to facilitate and empower an alliance among federal, industry, academic, state, local, tribal, and non-federal organizations. Animal telemetry technology is now considered mature and operational, and these observing data and products are ready to be integrated into the U.S. IOOS. The ATN data management approach involves receiving, handling, and distributing diverse data types from archival, satellite, and acoustic tag platforms that originate from a variety of individual researchers and large programs using consistent metadata standards and best practices. The core of the ATN data management system will be a quasi-centralized national ATN Data Assembly Center that will receive and distribute data and data products to U.S. IOOS RAs and other partner organizations. The integration of biological resources into ocean observation will address U.S. IOOS needs regarding societal benefits by, for example, aiming to improve predictions of climate change, to more effectively protect and restore healthy coastal ecosystems, and to enable the sustained use of ocean and coastal resources. We will describe the plan for how the ATN will maximize the benefit of existing investments by providing a mechanism for sustained operations and consistent delivery of animal telemetry data across the U.S. and in conjunction with international ocean observing systems.

  14. Incorporating temporal variation in seabird telemetry data: time variant kernel density models

    Science.gov (United States)

    Gilbert, Andrew; Adams, Evan M.; Anderson, Carl; Berlin, Alicia; Bowman, Timothy D.; Connelly, Emily; Gilliland, Scott; Gray, Carrie E.; Lepage, Christine; Meattey, Dustin; Montevecchi, William; Osenkowski, Jason; Savoy, Lucas; Stenhouse, Iain; Williams, Kathryn

    2015-01-01

    A key component of the Mid-Atlantic Baseline Studies project was tracking the individual movements of focal marine bird species (Red-throated Loon [Gavia stellata], Northern Gannet [Morus bassanus], and Surf Scoter [Melanitta perspicillata]) through the use of satellite telemetry. This element of the project was a collaborative effort with the Department of Energy (DOE), Bureau of Ocean Energy Management (BOEM), the U.S. Fish and Wildlife Service (USFWS), and Sea Duck Joint Venture (SDJV), among other organizations. Satellite telemetry is an effective and informative tool for understanding individual animal movement patterns, allowing researchers to mark an individual once, and thereafter follow the movements of the animal in space and time. Aggregating telemetry data from multiple individuals can provide information about the spatial use and temporal movements of populations. Tracking data is three dimensional, with the first two dimensions, X and Y, ordered along the third dimension, time. GIS software has many capabilities to store, analyze and visualize the location information, but little or no support for visualizing the temporal data, and tools for processing temporal data are lacking. We explored several ways of analyzing the movement patterns using the spatiotemporal data provided by satellite tags. Here, we present the results of one promising method: time-variant kernel density analysis (Keating and Cherry, 2009). The goal of this chapter is to demonstrate new methods in spatial analysis to visualize and interpret tracking data for a large number of individual birds across time in the mid-Atlantic study area and beyond. In this chapter, we placed greater emphasis on analytical methods than on the behavior and ecology of the animals tracked. For more detailed examinations of the ecology and wintering habitat use of the focal species in the midAtlantic, see Chapters 20-22.

  15. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended. In the case of.

  16. Acoustic Telemetry Studies of Juvenile Chinook Salmon Survival at the Lower Columbia Projects in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, Richard L.; Skalski, John R.; McComas, Roy L.

    2008-02-01

    The Portland District of the U.S. Army Corps of Engineers contracted with the Pacific Northwest National Laboratory (PNNL) to conduct three studies using acoustic telemetry to estimate detection probabilities and survival of juvenile Chinook salmon at three hydropower projects on the lower Columbia River. The primary goals were to estimate detection and survival probabilities based on sampling with JSATS equipment, assess the feasibility of using JSATS for survival studies, and estimate sample sizes needed to obtain a desired level of precision in future studies. The 2006 JSATS arrays usually performed as well or better than radio telemetry arrays in the JDA and TDA tailwaters, and underperformed radio arrays in the BON tailwater, particularly in spring. Most of the probabilities of detection on at least one of all arrays in a tailwater exceeded 80% for each method, which was sufficient to provide confidence in survival estimates. The probability of detection on one of three arrays includes survival and detection probabilities because fish may die or pass all three arrays undetected but alive.

  17. Interpreting behavioural data from Radio-Acoustic Positioning ...

    African Journals Online (AJOL)

    To detect behavioural patterns of individually tagged squid Loligo vulgaris reynaudii in a Radio-Acoustic Positioning Telemetry (RAPT) buoy array, trajectories reflecting the four dimensions of latitude, longitude, depth and time were plotted from data collected during field experiments in South Africa. Finding a continuous ...

  18. Telemetry Standards, RCC Standard 106-17. Chapter 3. Frequency Division Multiplexing Telemetry Standards

    Science.gov (United States)

    2017-07-01

    Standard 106-17 Chapter 3, July 2017 3-5 Table 3-4. Constant-Bandwidth FM Subcarrier Channels Frequency Criteria\\Channels: A B C D E F G H Deviation ...Telemetry Standards , RCC Standard 106-17 Chapter 3, July 2017 3-i CHAPTER 3 Frequency Division Multiplexing Telemetry Standards Acronyms...Frequency Division Multiplexing Telemetry Standards ................................ 3-1 3.1 General

  19. European Telecommunications Satellite II (EUTELSAT II)

    Science.gov (United States)

    Laemmel, G.; Brittinger, P.

    1991-01-01

    EUTELSAT II is a regional public telecommunications system for Europe. The services which will be provided are telephone and television. The satellites will be placed at a geostationary orbit within the arcs of 6 degrees east to 19 degrees east or 26 degrees to 36 degrees east. The designed lifetime is 7 years. After separation of the satellites from the launch vehicles, telemetry, telecommand, and ranging will be performed within the S-band frequencies. After positioning of the satellite at its final geostationary orbit, the Ku-band telecommunication equipment will be activated. From this time on, all satellite control operations will be performed in Ku-band. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas at Goldstone and Canberra as prime support for the transfer and drift orbits. Maximum support will consist of a 7-day period, plus 14 days of contingency support. Information is given in tabular form for DSN support, frequency assignments, telemetry, command, and tracking support responsibility.

  20. 75 FR 45058 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Science.gov (United States)

    2010-08-02

    .... SUMMARY: In this document, the Commission amends its rules to enable the deployment of mobile broadband... interference to satellite radio users, aeronautical mobile telemetry (AMT) operations, and the Deep Space... satellite-based service and are not used to transmit local programming or advertising. DATES: Effective...

  1. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-01-01

    Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from

  2. Migration and wintering sites of Pelagic Cormorants determined by satellite telemetry

    Science.gov (United States)

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    Factors affecting winter survival may be key determinants of status and population trends of seabirds, but connections between breeding sites and wintering areas of most populations are poorly known. Pelagic Cormorants (Phalacrocorax pelagicus; N= 6) surgically implanted with satellite transmitters migrated from a breeding colony on Middleton Island, northern Gulf of Alaska, to wintering sites in southeast Alaska and northern British Columbia. Winter locations averaged 920 km (range = 600-1190 km) from the breeding site. Migration flights in fall and spring lasted ???5 d in four instances. After reaching wintering areas, cormorants settled in narrowly circumscribed inshore locations (~10-km radius) and remained there throughout the nonbreeding period (September- March). Two juveniles tagged at the breeding colony as fledglings remained at their wintering sites for the duration of the tracking interval (14 and 22 mo, respectively). Most cormorants used multiple sites within their winter ranges for roosting and foraging. Band recoveries show that Pelagic Cormorants in southern British Columbia and Washington disperse locally in winter, rather than migrating like the cormorants in our study. Radio-tagging and monitoring cormorants and other seabirds from known breeding sites are vital for understanding migratory connectivity and improving conservation strategies for local populations. ?? 2011 The Authors. Journal of Field Ornithology ?? 2011 Association of Field Ornithologists.

  3. Performance and retention of lightweight satellite radio tags applied to the ears of polar bears (Ursus maritimus)

    Science.gov (United States)

    Wiig, Øystein; Born, Erik W.; Laidre, Kristin L.; Dietz, Rune; Jensen, Mikkel Villum; Durner, George M.; Pagano, Anthony M.; Regehr, Eric V.; St. Martin, Michelle; Atkinson, Stephen N.; Dyck, Markus

    2017-01-01

    BackgroundSatellite telemetry studies provide information that is critical to the conservation and management of species affected by ecological change. Here we report on the performance and retention of two types (SPOT-227 and SPOT-305A) of ear-mounted Argos-linked satellite transmitters (i.e., platform transmitter terminal, or PTT) deployed on free-ranging polar bears in Eastern Greenland, Baffin Bay, Kane Basin, the southern Beaufort Sea, and the Chukchi Sea during 2007–2013.ResultsTransmissions from 142 out of 145 PTTs deployed on polar bears were received for an average of 69.3 days. The average functional longevity, defined as the number of days they transmitted while still attached to polar bears, for SPOT-227 was 56.8 days and for SPOT-305A was 48.6 days. Thirty-four of the 142 (24%) PTTs showed signs of being detached before they stopped transmitting, indicating that tag loss was an important aspect of tag failure. Furthermore, 10 of 26 (38%) bears that were re-observed following application of a PTT had a split ear pinna, suggesting that some transmitters were detached by force. All six PTTs that were still on bears upon recapture had lost the antenna, which indicates that antenna breakage was a significant contributor to PTT failure. Finally, only nine of the 142 (6%) PTTs—three of which were still attached to bears—had a final voltage reading close to the value indicating battery exhaustion. This suggests that battery exhaustion was not a major factor in tag performance.ConclusionsThe average functional longevity of approximately 2 months for ear-mounted PTTs (this study) is poor compared to PTT collars fitted to adult female polar bears, which can last for several years. Early failure of the ear-mounted PTTs appeared to be caused primarily by detachment from the ear or antenna breakage. We suggest that much smaller and lighter ear-mounted transmitters are necessary to reduce the risk of tissue irritation, tissue damage, and tag detachment, and

  4. The Biolink Implantable Telemetry System

    Science.gov (United States)

    Betancourt-Zamora, Rafael J.

    1999-01-01

    Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS

  5. 106-17 Telemetry Standards Front Matter

    Science.gov (United States)

    2017-07-01

    Frequency Division Multiplexing Telemetry Standards CHAPTER 4: Pulse Code Modulation Standards CHAPTER 5: Digitized Audio Telemetry Standard CHAPTER 6...Transfer Standard Chapter 9, Appendix 9-A Appendix I, Telemetry Attributes Transfer Standard Cover Sheet Chapter 9, Appendix 9-B Telemetry Standards...Derived Parameter Specification Chapter 9, Appendix 9-E Appendix Q, Extended Binary Golay Code Chapter 7, Appendix 7-A Appendix R, Low-Density Parity

  6. Small Satellite Transceiver for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NAL Research Corporation proposes to develop a small, light-weight, low-cost transceivers capable of establishing satellite communications links for telemetry and...

  7. Dialing long distance : communications to northern operations like the MGP require sophisticated satellite networks for voice, data

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    2006-04-15

    Telecommunications will play a major role in the construction of the Mackenzie Gas Project due to the remoteness of its location and the volume of communication data required to support the number of people involved and the amount of construction activity. While suppliers for communications tools have not yet been identified, initial telecommunications plans call for the installation of communication equipment at all camps, major facility sites and construction locations. Equipment will be housed in self-contained, climate-controlled buildings called telecommunication service modules (TSMs), which will be connected to each other as well as to existing public communications networks. The infrastructure will support telephone and fax systems; Internet and electronic mail services; multiple channel very high frequency radios; air-to-ground communication at airstrips and helipads; ship-to-shore at barge landings; closed circuit television; satellite community antenna television; CBC radio broadcast; public address systems; security systems; and supervisory control and data acquisition (SCADA) systems. An Internet Protocol (IP) network with a voice telephone system will be implemented along with a geostationary orbit satellite network. Satellite servers and real-time data services will be used. Car kits that allow call and battery-operated self-contained telemetry devices designed to communicate via a satellite system have been commissioned for the project that are capable of providing cost-efficient and reliable asset tracking and fleet management in remote regions and assisting in deployment requirements. It was concluded that many of today's mega-projects are the driving factors behind new telecommunications solutions in remote areas. 1 fig.

  8. Introduction to international radio regulations

    Energy Technology Data Exchange (ETDEWEB)

    Struzak, R

    2003-12-15

    These notes introduce the ITU Radio Regulations and related UN and WTO agreements that specify how terrestrial and satellite radio should be used in all countries over the planet. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on these regulations. The paper also discusses few problems related to the use of the radio frequencies and satellite orbits. The notes are extracted from a book under preparation, in which these issues are discussed in more detail. (author)

  9. Introduction to international radio regulations

    International Nuclear Information System (INIS)

    Struzak, R.

    2003-01-01

    These notes introduce the ITU Radio Regulations and related UN and WTO agreements that specify how terrestrial and satellite radio should be used in all countries over the planet. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on these regulations. The paper also discusses few problems related to the use of the radio frequencies and satellite orbits. The notes are extracted from a book under preparation, in which these issues are discussed in more detail. (author)

  10. Real time prediction and correction of ADCS problems in LEO satellites using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Yassin Mounir Yassin

    2017-06-01

    Full Text Available This approach is concerned with adapting the operations of attitude determination and control subsystem (ADCS of low earth orbit LEO satellites through analyzing the telemetry readings received by mission control center, and then responding to ADCS off-nominal situations. This can be achieved by sending corrective operational Tele-commands within real time. Our approach is related to the fuzzy membership of off-nominal telemetry readings of corrective actions through a set of fuzzy rules based on understanding the ADCS modes resulted from the satellite telemetry readings. Response in real time gives us a chance to avoid risky situations. The approach is tested on the EgyptSat-1 engineering model, which is our method to simulate the results.

  11. Modeling influences on winter distribution of caribou in northwestern Alaska through use of satellite telemetry

    Directory of Open Access Journals (Sweden)

    Kyle Joly

    2011-09-01

    Full Text Available I hypothesize that the distribution of barren-ground caribou (Rangifer tarandus granti is affected by multiple, interrelated factors. These factors include, but are not limited to, terrain and snow characteristics as well as predation pressure and habitat. To test this hypothesis, I attributed caribou locations derived from satellite telemetry over a 6 year period with terrain (elevation, slope, aspect, and ruggedness, habitat characteristics, and moose density - potentially an index of wolf predation pressure. These locations were compared to random locations, attributed using the same data layers, using logistic regression techniques to develop resource selection functions (RSFs. I found that caribou moved significantly less during mid-winter than early- or late-winter and that cows moved significantly more in April than bulls due to their earlier departure on their spring migration. Distribution was different between cows and bulls. Terrain variables were important factors but were scale-dependent. Cows avoided forested areas, highlighting the importance of tundra habitats, and selected for dwarf shrub, with relatively high lichen cover, and sedge habitat types. Bulls selected for dryas, coniferous forest and dwarf shrub habitats but against lowland sedge, upland shrub and burned tundra. Cow distribution was negatively correlated with moose density at the scale of the Seward Peninsula. My results support the hypothesis that caribou distribution during winter in northwest Alaska is affected by multiple, interrelated factors. These results may be useful for researchers to track and/or model changes in future patterns of range use over winter.

  12. Snake mortality associated with late season radio-transmitter implantation

    Science.gov (United States)

    D. Craig Rudolph; Shirley J. Burgdorf; Richard R. Schaefer; Richard N. Conner; Robert T. Zappalorth

    1998-01-01

    Radio-telemetry is an increasingly used procedure to obtain data on the biology of free-living snakes (Reinert 1992, 1994). In Texas and Louisiana we have been using the surgical technique of Weatherhead and Anderka (1984) to implant transmitters in timber rattlesnakes (Crotalus horridus) and Louisiana pine snakes (Pituophis melanoleucus...

  13. Satellite tracking of threatened species

    Science.gov (United States)

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  14. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    Science.gov (United States)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  15. Effects of satellite transmitters on captive and wild mallards

    Science.gov (United States)

    Kesler, Dylan C.; Raedeke, Andrew H.; Foggia, Jennifer R.; Beatty, William S.; Webb, Elisabeth B.; Humburg, Dale D.; Naylor, Luke W.

    2014-01-01

    Satellite telemetry has become a leading method for studying large-scale movements and survival in birds, yet few have addressed potential effects of the larger and heavier tracking equipment on study subjects. We simultaneously evaluated effects of satellite telemetry equipment on captive and wild mallards (Anas platyrhynchos) to assess impacts on behavior, body mass, and movement. We randomly assigned 55 captive ducks to one of 3 treatment groups, including a standard body harness group, a modified harness group, and a control group. Ducks in the control group were not fitted with equipment, whereas individuals in the other 2 groups were fitted with dummy transmitters attached with a Teflon ribbon harness or with a similar harness constructed of nylon cord. At the conclusion of the 14-week captive study, mean body mass of birds in the control group was 40–105 g (95% CI) greater than birds with standard harnesses, and 28–99 g (95% CI) greater than birds with modified harnesses. Further, results of focal behavior observations indicated ducks with transmitters were less likely to be in water than control birds. We also tested whether movements of wild birds marked with a similar Teflon harness satellite transmitter aligned with population movements reported by on-the-ground observers who indexed local abundances of mid-continent mallards throughout the non-breeding period. Results indicated birds marked with satellite transmitters moved concurrently with the larger unmarked population. Our results have broad implications for field research and suggest that investigators should consider potential for physiological and behavioral effects brought about by tracking equipment. Nonetheless, results from wild ducks indicate satellite telemetry has the potential to provide useful movement data.

  16. Radio-telemetric evidence of migration in the gregarious but not the solitary morph of the Mormon cricket (Anabrus simplex: Orthoptera: Tettigoniidae)

    Science.gov (United States)

    Lorch, Patrick D.; Gwynne, D. T.

    The Mormon cricket, Anabrus simplex, is one of just a few species of katydids (or bushcrickets, Orthoptera: Tettigoniidae) that, like migratory locusts, appear to have solitary and migratory morphs. Using radio telemetry we studied movements of individuals of two morphs of this flightless species. Individuals within each migratory band had similar rates of movements along similar directional headings whereas solitary individuals moved little and showed little evidence of directionality in movement. Our results also add to other recent radio-telemetry studies showing that flightless insects of 1-2g in mass can be tracked successfully using these methods.

  17. High performance VLSI telemetry data systems

    Science.gov (United States)

    Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.

    1990-01-01

    NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.

  18. XTCE. XML Telemetry and Command Exchange Tutorial

    Science.gov (United States)

    Rice, Kevin; Kizzort, Brad; Simon, Jerry

    2010-01-01

    An XML Telemetry Command Exchange (XTCE) tutoral oriented towards packets or minor frames is shown. The contents include: 1) The Basics; 2) Describing Telemetry; 3) Describing the Telemetry Format; 4) Commanding; 5) Forgotten Elements; 6) Implementing XTCE; and 7) GovSat.

  19. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  20. A description and assessment of the Atlantic salmon (salmo salar) fall pre-smolt migration in relation to the Tobique narrows hydroelectric facility, Tobique River, New Brunswick using radio telemetry

    International Nuclear Information System (INIS)

    Jones, R.A.; Flanagan, J.J.

    2007-01-01

    Atlantic salmon (salmo salar) smolts typically migrate to the ocean in the spring following 2 to 4 years in freshwater. However, in some rivers, migration can also begin in the fall for a small component of the population of known as pre-smolts. These fish do not complete their migration to the ocean in the fall, but rather remain in freshwater, closer to the marine environment, until the following spring when they complete their migration. This report presented the results of a collaborative research project between New Brunswick Power Commission, Fisheries and Oceans Canada, Atlantic Salmon Federation, University of New Brunswick and the Tobique Salmon Protective Association that utilized radio telemetry to study the spatial and temporal movements of fall migrating, wild Atlantic salmon pre-smolts in the upstream and downstream vicinities of the Tobique Narrows Dam. In order to provide an estimation of the fall pre-smolt population migrating from the Tobique River, rotary screw traps were used along with a mark recapture method. It was hoped that the results from this radio tagging experiment would facilitate the establishment of an effective downstream fish passage and/or collection strategies for juvenile salmon. The report described the study area; Tobique Narrows Dam; catches and estimates; radio tagging; fixed radio receivers; and searches. Results were presented for catches and estimates; migration to Arthurette; migration to Tobique Narrows Dam; operating conditions at Tobique Narrows Dam; estimated numbers of pre-smolts up river and down river of the Tobique Narrows Dam; and migration to Beechwood Dam. Recommendations and considerations for future evaluations or research were also presented. 29 refs., 8 tabs., 18 figs., 3 appendices

  1. Low-Cost Telemetry System for Small/Micro Satellites

    Science.gov (United States)

    Sims, William; Varnavas, Kosta

    2012-01-01

    A Software Defined Radio (SDR) concept uses a minimum amount of analog/radio frequency components to up/downconvert the RF signal to/from a digital format. Once in the digital domain, all other processing (filtering, modulation, demodulation, etc.) is done in software. The project will leverage existing designs and enhance capabilities in the commercial sector to provide a path to a radiation-hardened SDR transponder. The SDR transponder would incorporate baseline technologies dealing with improved Forward Error Correcting (FEC) codes to be deployed to all Near Earth Network (NEN) ground stations. By incorporating this FEC, at least a tenfold increase in data throughput can be achieved. A family of transponder products can be implemented using common platform architecture, allowing new products to be more quickly introduced into the market. Software can be reused across products, reducing software/hardware costs dramatically. New features and capabilities, such as encoding and decoding algorithms, filters, and bit synchronizers, can be added to the existing infrastructure without requiring major new capital expenditures, allowing implementation of advanced features in the communication systems. As new telecommunication technologies emerge, incorporating them into the SDR fabric will be easily accomplished with little or no requirements for new hardware. There are no preferred flight platforms for the SDR technology, so it can be used on any type of orbital or sub-orbital platform, all within a fully radiation hardened design.

  2. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  3. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2001-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  4. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2003-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  5. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2002-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  6. Telemetry data and movement patterns for sea turtles tagged near Cape Lookout, North Carolina from 2007-05-11 to 2015-05-15 (NCEI Accession 0162439)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains patterns of catch rates, species and size composition. Acoustic and satellite telemetry were used to evaluate residency, movements, and dive...

  7. Direct broadcast satellite-radio market, legal, regulatory, and business considerations

    Science.gov (United States)

    Sood, Des R.

    1991-01-01

    A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.

  8. Direct broadcast satellite-radio market, legal, regulatory, and business considerations

    Science.gov (United States)

    Sood, Des R.

    1991-03-01

    A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.

  9. 78 FR 28749 - Private Land Mobile Radio Stations Below 800 MHz

    Science.gov (United States)

    2013-05-16

    ... these proposals, with the exception of those issues relating to Wireless Medical Telemetry Services... accomplished in the PLMR bands below 800 MHz. A trunked radio system employs technology that can search two or... prohibited by Sec. 1.935). We also take this opportunity to correct the 800 MHz band trunking rules to set...

  10. Comparison of high-definition oscillometry -- a non-invasive technology for arterial blood pressure measurement -- with a direct invasive method using radio-telemetry in awake healthy cats.

    Science.gov (United States)

    Martel, Eric; Egner, Beate; Brown, Scott A; King, Jonathan N; Laveissiere, Arnaud; Champeroux, Pascal; Richard, Serge

    2013-12-01

    This study compared indirect blood pressure measurements using a non-invasive method, high-definition oscillometry (HDO), with direct measurements using a radio-telemetry device in awake cats. Paired measurements partitioned to five sub-ranges were collected in six cats using both methods. The results were analysed for assessment of correlation and agreement between the two methods, taking into account all pressure ranges, and with data separated in three sub-groups, low, normal and high ranges of systolic (SBP) and diastolic (DBP) blood pressure. SBP data displayed a mean correlation coefficient of 0.92 ± 0.02 that was reduced for low SBP. The agreement level evaluated from the whole data set was high and slightly reduced for low SBP values. The mean correlation coefficient of DBP was lower than for SBP (ie, 0.81 ± 0.02). The bias for DBP between the two methods was 22.3 ± 1.6 mmHg, suggesting that HDO produced lower values than telemetry. These results suggest that HDO met the validation criteria defined by the American College of Veterinary Internal Medicine consensus panel and provided a faithful measurement of SBP in conscious cats. For DBP, results suggest that HDO tended to underestimate DBP. This finding is clearly inconsistent with the good agreement reported in dogs, but is similar to outcomes achieved in marmosets and cynomolgus monkeys, suggesting that this is not related to HDO but is species related. The data support that the HDO is the first and only validated non-invasive blood pressure device and, as such, it is the only non-invasive reference technique that should be used in future validation studies.

  11. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  12. Miniaturized Blood Pressure Telemetry System with RFID Interface

    Directory of Open Access Journals (Sweden)

    Michele Caldara

    2016-08-01

    Full Text Available This work deals with the development and characterization of a potentially implantable blood pressure telemetry system, based on an active Radio-Frequency IDentification (RFID tag, International Organization for Standardization (ISO 15693 compliant. This approach aims to continuously measure the average, systolic and diastolic blood pressure of the small/medium animals. The measured pressure wave undergoes embedded processing and results are stored onboard in a non-volatile memory, providing the data under interrogation by an external RFID reader. In order to extend battery lifetime, RFID energy harvesting has been investigated. The paper presents the experimental characterization in a laboratory and preliminary in-vivo tests. The device is a prototype mainly intended, in a future engineered version, for monitoring freely moving test animals for pharmaceutical research and drug safety assessment purposes, but it could have multiple uses in environmental and industrial applications.

  13. Embedded parallel processing based ground control systems for small satellite telemetry

    Science.gov (United States)

    Forman, Michael L.; Hazra, Tushar K.; Troendly, Gregory M.; Nickum, William G.

    1994-01-01

    The use of networked terminals which utilize embedded processing techniques results in totally integrated, flexible, high speed, reliable, and scalable systems suitable for telemetry and data processing applications such as mission operations centers (MOC). Synergies of these terminals, coupled with the capability of terminal to receive incoming data, allow the viewing of any defined display by any terminal from the start of data acquisition. There is no single point of failure (other than with network input) such as exists with configurations where all input data goes through a single front end processor and then to a serial string of workstations. Missions dedicated to NASA's ozone measurements program utilize the methodologies which are discussed, and result in a multimission configuration of low cost, scalable hardware and software which can be run by one flight operations team with low risk.

  14. Equatorial hydrology studies by satellite telemetry

    International Nuclear Information System (INIS)

    Clegg, B.; Koranda, J.; Robison, W.; Holladay, G.

    1980-01-01

    We are using a geostationary satellite functioning as a transponder to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Enewetak and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely measure net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water-flux model predicted wet season plant-transpiration rates nearly equal to the 6- to 7-mm/d evaporation-pan rate, which decreases to 2 to 3 mm/d for the dry season. From the microclimate data we estimated a 1:3 and 1:20 137 Cs dry-matter concentration ratio, which was later confirmed by radioisotopic analysis. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose

  15. Radio-tracking manatees from land and space: tag design, implementation, and lessons learned from long-term study

    Science.gov (United States)

    Deutsch, C.J.; Bonde, R.K.; Reid, J.P.

    1998-01-01

    West Indian manatees (Trichechus manatus) were tracked along the Atlantic coast of Florida and Georgia (N = 83 manatees, n = 439 tag deployments, 1986-1996) and in eastern Puerto Rico (N = 8, n = 43, 1992-1996) using conventional and satellite-based radio-telemetry systems. A floating radio-tag, attached by a flexible tether to a padded belt around the base of the tail, enabled us to track manatees in saltwater environments. The tag incorporated VHF (very high frequency) and ultrasonic transmitters for field tracking and tag recovery, and an Argos satellite-monitored transmitter for remote tracking. We located each animal in the field about twice per week, received more than 60 000 good-quality Argos locations, and recovered tags in over 90% of deployments. The tag was designed to detach from the belt when entangled to prevent injury or drowning, and this often led to premature termination of tracking bouts. We had considerable success, however, in retagging belted manatees without recapture (97% of 392 retagging events). Most individuals were radio-tagged more than once (median = 3.0, maximum = 43) for a median total duration of 7.5 months (maximum = 6.8 yr). Data obtained through Argos have been valuable in addressing questions relating to long-distance movements, site fidelity, and identification of high-use areas. Fine-scale analyses of manatee habitat use and movements may require restricting the data set to the highest location quality or developing new analytical techniques to incorporate locational error. Field tracking provided useful ancillary data on life-history parameters, but sample sizes were small and survival estimates imprecise. Modification of the existing tag design to include Global Positioning System (GPS) functionality, with its finer spatial and temporal resolution, will offer new opportunities to address critical research and management problems facing this endangered species.

  16. Multi-satellite climatologies of fundamental atmospheric variables from Radio Occulation and their validation

    International Nuclear Information System (INIS)

    Pirscher, B.

    2010-01-01

    Monitoring of global climate change requires high quality observations not only on the Earths surface but also in the free atmosphere. Global Positioning System (GPS) Radio Occultation (RO) observations are known to have the potential to deliver very accurate, precise, and long-term stable measurements between about 8 km and 30 km altitude.This thesis investigates the suitability of RO observations to serve as climate benchmark record by validating the consistency of RO data provided by different satellites. The main focus lies on systematic differences of RO climatologies, originating from different data processing, data quality, spatio-temporal sampling, and particular orbit characteristics. Data of six RO satellite missions (including one multi-satellite constellation) are analyzed. Largest disagreements of RO climatologies are observed when comparing data provided by different processing centers. Mean absolute temperature differences between 8 km and 30 km altitude amount to 0.5 K, while climate time series of temperature changes agree much closer.Utilizing RO data from the same data center and considering space-temporal sampling yields remarkable consistency of temperature climatologies with mean differences being smaller than 0.1 K. Disagreements are found to be largest at 35 km, where they exceed 0.2 K. This results from different data quality and its utilization within the processing scheme. Climatologies, which are derived from data with the same quality agree to within 0.02 K also at high altitudes. The measurements local time, which depends on the satellites orbit, has a minor but clearly understandable influence on differences in RO climatologies. The results underline the utility of RO data for long-term monitoring of the global climate. (author) [de

  17. Impact of tropospheric scintillation in the Ku/K bands on the communications between two LEO satellites in a radio occultation geometry

    DEFF Research Database (Denmark)

    Martini, Enrica; Freni, A.; Facheris, L.

    2006-01-01

    A theoretical analysis of the impact of clear-air tropospheric scintillation on a radio occultation link between two low Earth orbit satellites in K- and Ku-bands is presented, with particular reference to differential approaches for the measure of the total content of water vapor. The troposphere...

  18. Systems For Telemetry And Telecontrol - Practical Applications

    International Nuclear Information System (INIS)

    Stankovski, Mile J.; Kolemishevska-Gugulovska, Tatjana; Stanojkovski, Ratko

    2003-01-01

    This paper present practical aspects in application of telemetry and tele control using new aspect of electronics, signal processing, telecommunications, and of course theory of control systems. In the paper some aspects during the design of telemetry and tele control systems are presented. Also it is presented one real system of telemetry and tele control in water distribution, level measurement in four tanks on the different locations. (Author)

  19. Test Telemetry And Command System (TTACS)

    Science.gov (United States)

    Fogel, Alvin J.

    1994-01-01

    The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for

  20. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  1. Development and field testing of satellite-linked fluorometers for marine mammals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset includes telemetry data related to the development and testing of an animal-borne satellite-linked fluorometer tag, used on northern fur seals and...

  2. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  3. Retained satellite information influences performance of GPS devices in a forested ecosystem

    Science.gov (United States)

    Katie M. Moriarty; Clinton W. Epps

    2015-01-01

    Global Positioning System (GPS) units used in animal telemetry often suffer from nonrandom data loss and location error. GPS units use stored satellite information to estimate locations, including almanac and ephemeris data reflecting satellite positions at weekly and at <4-hr temporal scales, respectively. Using the smallest GPS collars (45–51 g) available for...

  4. Development, test and flight results of the rf systems for the yes2 tether experiment

    NARCIS (Netherlands)

    Cucarella, Guillermina Castillejo; Cichocki, Andrzej; Burla, M.

    2008-01-01

    This paper highlights design, realization, testing and flight results of the Radio Frequency developments (RF) for ESA's second Young Engineers' Satellite (YES2), that included GPS systems, an intersatellite UHF link and a re-entry capsule telemetry and recovery system. The YES2 piggybacked on the

  5. Communication schemes for olfar's inter-satellite links

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Meijerink, Arjan; Bentum, Marinus Jan

    2012-01-01

    The Orbiting Low Frequency Array for Radio astronomy(OLFAR) project is aimed at developing a radio telescope in space sensitive for the 0.3–30 MHz range by using a swarm of more than 50 identical nano-satellites. The satellites will form a very large aperture, capable of capturing very weak

  6. Data distribution in the OLFAR satellite swarm

    NARCIS (Netherlands)

    Budianu, A.; Willink-Castro, T.J.; Engelen, S.; Rajan, R.T.; Rajan, Raj; Smith, D.M.P.; Meijerink, Arjan; Bentum, Marinus Jan

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a radio telescope for very low frequencies (below 30 MHz) by using a swarm of 50 or more nano-satellites. Spread in a 100-km diameter cloud, the satellites will form a very large aperture capable of sensing the

  7. Migratory movements of pygmy blue whales (Balaenoptera musculus brevicauda between Australia and Indonesia as revealed by satellite telemetry.

    Directory of Open Access Journals (Sweden)

    Michael C Double

    Full Text Available In Australian waters during the austral summer, pygmy blue whales (Balaenoptera musculus brevicauda occur predictably in two distinct feeding areas off western and southern Australia. As with other blue whale subspecies, outside the austral summer their distribution and movements are poorly understood. In order to describe the migratory movements of these whales, we present the satellite telemetry derived movements of eleven individuals tagged off western Australia over two years. Whales were tracked from between 8 and 308 days covering an average distance of 3,009±892 km (mean ± se; range: 832 km-14,101 km at a rate of 21.94±0.74 km per day (0.09 km-455.80 km/day. Whales were tagged during March and April and ultimately migrated northwards post tag deployment with the exception of a single animal which remained in the vicinity of the Perth Canyon/Naturaliste Plateau for its eight day tracking period. The tagged whales travelled relatively near to the Australian coastline (100.0±1.7 km until reaching a prominent peninsula in the north-west of the state of Western Australia (North West Cape after which they travelled offshore (238.0±13.9 km. Whales reached the northern terminus of their migration and potential breeding grounds in Indonesian waters by June. One satellite tag relayed intermittent information to describe aspects of the southern migration from Indonesia with the animal departing around September to arrive in the subtropical frontal zone, south of western Australia in December. Throughout their migratory range, these whales are exposed to impacts associated with industry, fishing and vessel traffic. These movements therefore provide a valuable tool to industry when assessing potential interactions with pygmy blue whales and should be considered by conservation managers and regulators when mitigating impacts of development. This is particularly relevant for this species as it continues to recover from past exploitation.

  8. Telemetry Standards

    Science.gov (United States)

    2017-07-01

    contractor facilities. The goal of frequency management is to encourage maximal use and minimal interference among telemetry users and between...difference in path lengths between the direct and reflected signals. This depends on the horizontal distance d, the altitude of the aircraft ht , and

  9. Gravity Probe-B (GP-B) Mission and Tracking, Telemetry and Control Subsystem Overview

    Science.gov (United States)

    Kennedy, Paul; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) in Huntsville, Alabama will launch the Gravity Probe B (GP-B) space experiment in the Fall of 2002. The GP-B spacecraft was developed to prove Einstein's theory of General Relativity. This paper will provide an overview of the GPB mission and will discuss the design, and test of the spacecraft Tracking, Telemetry and Control (TT&C) subsystem which incorporates NASA's latest generation standard transponder for use with the NASA Tracking and Data Relay Satellite System (TDRSS).

  10. Mobile satellite service communications tests using a NASA satellite

    Science.gov (United States)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  11. 47 CFR 90.238 - Telemetry operations.

    Science.gov (United States)

    2010-10-01

    ... MHz band (as available in the Public Safety Pool for bio-medical telemetry operations). (i) For... with § 90.257 and subject to the rules governing the use of that band). (b) 154.45625, 154.46375, 154...-470 MHz band, telemetry operations will be authorized on a secondary basis with a transmitter output...

  12. Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry

    Science.gov (United States)

    Martell, M.S.; Henny, Charles J.; Nye, P.; Solensky, Matthew J.

    2001-01-01

    Satellite telemetry was used to determine fall migratory movements of Ospreys (Pandion haliaetus) breeding in the United States. Study areas were established along the lower Columbia River between Oregon and Washington; in north-central Minnesota; on Shelter Island, New York; and in southern New Jersey. Seventy-four adults (25 males, 49 females) were tracked from 1995 through 1999. Migration routes differed among populations but not by sex. Western Ospreys migrated through California and to a lesser degree other western states and wintered in Mexico (88%), El Salvador (6%), and Honduras (6%) (25.9A?N to 13.0A?N and 108.3A?W to 87.3A?W). Minnesota Ospreys migrated along three routes: (1) through the Central U.S. and then along the east coast of Mexico, (2) along the Mississippi River Valley, then across the Gulf of Mexico, or (3) through the southeastern U.S., then across the Caribbean. East Coast birds migrated along the eastern seaboard of the U.S., through Florida, and across the Caribbean. Midwestern birds wintered from Mexico south to Bolivia (22.35A?N to 13.64A?S, and 91.75A?W to 61.76A?W), while East Coast birds wintered from Florida to as far south as Brazil (27.48A?N to 18.5A?S and 80.4A?W to 57.29A?W). Dates of departure from breeding areas differed significantly between sexes and geographic regions, with females leaving earlier than males. Western birds traveled a shorter distance than either midwestern or eastern Ospreys. Females traveled farther than males from the same population, which resulted in females typically wintering south of males.

  13. Home Video Telemetry vs inpatient telemetry: A comparative study looking at video quality

    Directory of Open Access Journals (Sweden)

    Sutapa Biswas

    Full Text Available Objective: To compare the quality of home video recording with inpatient telemetry (IPT to evaluate our current Home Video Telemetry (HVT practice. Method: To assess our HVT practice, a retrospective comparison of the video quality against IPT was conducted with the latter as the gold standard. A pilot study had been conducted in 2008 on 5 patients.Patients (n = 28 were included in each group over a period of one year.The data was collected from referral spreadsheets, King’s EPR and telemetry archive.Scoring of the events captured was by consensus using two scorers.The variables compared included: visibility of the body part of interest, visibility of eyes, time of event, illumination, contrast, sound quality and picture clarity when amplified to 200%.Statistical evaluation was carried out using Shapiro–Wilk and Chi-square tests. The P-value of ⩽0.05 was considered statistically significant. Results: Significant differences were demonstrated in lighting and contrast between the two groups (HVT performed better in both.Amplified picture quality was slightly better in the HVT group. Conclusion: Video quality of HVT is comparable to IPT, even surpassing IPT in certain aspects such as the level of illumination and contrast. Results were reconfirmed in a larger sample of patients with more variables. Significance: Despite the user and environmental variability in HVT, it looks promising and can be seriously considered as a preferable alternative for patients who may require investigation at locations remote from an EEG laboratory. Keywords: Home Video Telemetry, EEG, Home video monitoring, Video quality

  14. Narrow-front loop migration in a population of the common cuckoo Cuculus canorus, as revealed by satellite telemetry.

    Directory of Open Access Journals (Sweden)

    Mikkel Willemoes

    Full Text Available Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8, to wintering sites in south-western Central Africa (n = 6 and back to the breeding grounds (n = 3. Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival. Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study.

  15. Untitled

    Indian Academy of Sciences (India)

    The antenna systems, both onboard and ground, were found to be compatible and fulfilled the design requirements during the actual orbit operations of the satellite. In the case of telemetry reception, the signal could be acquired at elevation angles even lower than 5. References. American Radio Relay League Antenna ...

  16. Electric smog: telemetry interference between ICD and LVAD.

    Science.gov (United States)

    Duncker, David; König, Thorben; Müller-Leisse, Johanna; Michalski, Roman; Oswald, Hanno; Schmitto, Jan D; Bauersachs, Johann; Veltmann, Christian

    2017-09-01

    Electromagnetic interferences between implantable cardioverter/defibrillators (ICD) and left ventricular assist devices (LVAD) impacting telemetry have been described in previous generations of ICD as well as LVAD, but have been predominantly overcome in current ICD generations. After introduction of a new fully magnetically levitated centrifugal continuous-flow circulatory pump, we report a case of tenacious telemetry interference between the HeartMate 3 LVAD and an ICD after battery exchange to an Iforia 5. Initialization of the initial telemetry handshake was only possible using several specific maneuvers simultaneously. In order to exclude device-device interference, we suggest to place the ICD above the LVAD before implantation and to test for possible telemetry interferences.

  17. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  18. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Science.gov (United States)

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  19. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    International Nuclear Information System (INIS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-01-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system

  20. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com [College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha (China); Yan, Guozheng; Zhu, Bingquan [820 Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  1. Telemetry experiments with a hibernating black bear

    Science.gov (United States)

    Craighead, J. J.; Varney, J. R.; Sumner, J. S.; Craighead, F. C., Jr.

    1972-01-01

    The objectives of this research were to develop and test telemetry equipment suitable for monitoring physiological parameters and activity of a hibernating bear in its den, to monitor this data and other environmental information with the Nimbus 3 IRLS data collection system, and to refine immobilizing, handling, and other techniques required in future work with wild bears under natural conditions. A temperature-telemetering transmitter was implanted in the abdominal cavity of a captive black bear and body temperature data was recorded continuously during a 3 month hibernation period. Body temperatures ranging between 37.5 and 31.8 C were observed. Body temperature and overall activity were influenced by disturbances and ambient den temperature. Nychthemeral temperature changes were not noticable. A load cell weight recording device was tested for determining weight loss during hibernation. Monitoring of data by satellite was not attempted. The implanted transmitter was removed and the bear was released with a radiolocation collar at the conclusion of the experiment.

  2. LP MOON MERGED TELEMETRY DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Prospector merged telemetry data set is a result of comparing the two Lunar Prospector telemetry data streams and selecting one of them. The Lunar...

  3. Guideline-based intervention to reduce telemetry rates in a large tertiary centre.

    Science.gov (United States)

    Ramkumar, Satish; Tsoi, Edward H; Raghunath, Ajay; Dias, Floyd F; Li Wai Suen, Christopher; Tsoi, Andrew H; Mansfield, Darren R

    2017-07-01

    Inappropriate cardiac telemetry use is associated with reduced patient flow and increased healthcare costs. To evaluate the outcomes of guideline-based application of cardiac telemetry. Phase I involved a prospective audit (March to August 2011) of telemetry use at a tertiary hospital. Data were collected on indication for telemetry and clinical outcomes. Phase II prospectively included patients more than 18 years under general medicine requiring ward-based telemetry. As phase II occurred at a time remotely from phase I, an audit similar to phase I (phase II - baseline) was completed prior to a 3-month intervention (May to August 2015). The intervention consisted of a daily telemetry ward round and an admission form based on the American Heart Association guidelines (class I, telemetry indicated; class II, telemetry maybe indicated; class III, telemetry not indicated). Patient demographics, telemetry data, and clinical outcomes were studied. Primary endpoint was the percentage reduction of class III indications, while secondary endpoint included telemetry duration. In phase I (n = 200), 38% were admitted with a class III indication resulting in no change in clinical management. A total of 74 patients was included in phase II baseline (mean ± standard deviation (SD) age 73 years ± 14.9, 57% male), whilst 65 patients were included in the intervention (mean ± SD age 71 years ± 18.4, 35% male). Both groups had similar baseline characteristics. There was a reduction in class III admissions post-intervention from 38% to 11%, P 0.05). Guideline-based telemetry admissions and a regular telemetry ward round are associated with a reduction in inappropriate telemetry use. © 2017 Royal Australasian College of Physicians.

  4. Acoustic telemetry and fisheries management

    Science.gov (United States)

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K.; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.

    2017-01-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  5. A search for radio pulsars and fast transients in M31 using the Westerbork Synthesis Radio Telescope

    NARCIS (Netherlands)

    Rubio-Herrera, E.; Stappers, B.W.; Hessels, J.W.T.; Braun, R.

    2013-01-01

    We present the results of the most sensitive and comprehensive survey yet undertaken for radio pulsars and fast transients in the Andromeda galaxy (M31) and its satellites, using the Westerbork Synthesis Radio Telescope (WSRT) at a central frequency of 328 MHz. We used the WSRT in a special

  6. Satellite constellation design and radio resource management using genetic algorithm.

    OpenAIRE

    Asvial, Muhamad.

    2003-01-01

    A novel strategy for automatic satellite constellation design with satellite diversity is proposed. The automatic satellite constellation design means some parameters of satellite constellation design can be determined simultaneously. The total number of satellites, the altitude of satellite, the angle between planes, the angle shift between satellites and the inclination angle are considered for automatic satellite constellation design. Satellite constellation design is modelled using a mult...

  7. 106-17 Telemetry Standards Digitized Audio Telemetry Standard Chapter 5

    Science.gov (United States)

    2017-07-01

    Digitized Audio Telemetry Standard 5.1 General This chapter defines continuously variable slope delta (CVSD) modulation as the standard for digitizing...audio signal. The CVSD modulator is, in essence , a 1-bit analog-to-digital converter. The output of this 1-bit encoder is a serial bit stream, where

  8. The effect of solar radio bursts on the GNSS radio occultation signals

    Science.gov (United States)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  9. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  10. An inductive narrow-pulse RFID telemetry system for gastric slow waves monitoring.

    Science.gov (United States)

    Javan-Khoskholgh, Amir; Abukhalaf, Zaid; Ji Li; Miller, Larry S; Kiani, Mehdi; Farajidavar, Aydin

    2016-08-01

    We present a passive data telemetry system for real-time monitoring of gastric electrical activity of a living subject. The system is composed of three subsystems: an implantable unit (IU), a wearable unit (WU), and a stationary unit (SU). Data communication between the IU and WU is based on a radio-frequency identification (RFID) link operating at 13.56 MHz. Since wireless power transmission and reverse data telemetry system share the same inductive interface, a load shift keying (LSK)-based differential pulse position (DPP) coding data communication with only 6.25% duty cycle is developed to guarantee consistent wireless downlink power transmission and uplink high data transfer rate, simultaneously. The clock and data are encoded into one signal by an MSP430 microcontroller (MCU) at the IU side. This signal is sent to the WU through the inductive link, where decoded by an MSP432 MCU. Finally, the retrieved data at the WU are transmitted to the SU connected to a PC via a 2.4 GHz transceiver for real-time display and analysis. The results of the measurements on the implemented test bench, demonstrate IU-WU 125 kb/s and WU-SU 2 Mb/s data transmission rate with no observed mismatch, while the data stream was randomly generated, and matching between the transmitted data by the IU and received by the SU verified by a custom-made automated software.

  11. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  12. Atlantic Salmon Telemetry Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual telemetry data are collected as part of specific projects (assessments within watersheds) or as opportunistic efforts to characterize Atlantic salmon smolt...

  13. Beamsteerable GNSS Radio Occultation ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  14. Satellite communication from user to user

    Science.gov (United States)

    Gern, Manfred

    Satellite communication systems which allow a multitude of user-to-user, point-to-point, and multipoint connections, are presented. The bit rates are 64 kbit/sec and multiples, up to 1.92 Mbit/sec. If required, the ground-stations are installed at the customer's site or at suitable locations in order to serve several customers. However, technical requirements for station location have also to be fulfulled, in order to avoid interference with terrestrial radio services. The increasing number of participants to Satellite Multi Service and INTELSAT Business Services imposes the solution of the problem of communication using cheap techniques. The changes of the German Federal Post Office also permit the economic use of satellite radio techniques for short distances.

  15. An Enhanced Run-Length Encoding Compression Method for Telemetry Data

    Directory of Open Access Journals (Sweden)

    Shan Yanhu

    2017-09-01

    Full Text Available The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.

  16. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  17. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  18. High-Performance Wireless Telemetry

    Science.gov (United States)

    Griebeler, Elmer; Nawash, Nuha; Buckley, James

    2011-01-01

    Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to

  19. Animal Telemetry Network (ATN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data (updated daily) are from the Animal Telemetry Network (ATN) program. Begun as one of the field projects in the international Census of Marine Life, the...

  20. Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its...

  1. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  2. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  3. Satellite tracking of two Montagu's Harriers (Circus pygargus) : Dual pathways during autumn migration

    NARCIS (Netherlands)

    Trierweiler, Christiane; Koks, Ben J.; Drent, Rudi H.; Exo, Klaus-Michael; Komdeur, Jan; Dijkstra, Cor; Bairlein, Franz

    2007-01-01

    Autumn migration routes of two Dutch female Montagu's Harriers (Circus pygargus) were documented for the first time using satellite telemetry. Both migrated to their African wintering area-one via the Straits of Gibraltar through the Mediterranean and the other via Italy/Tunisia. The rate of travel

  4. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  5. Definition phase of Grand Tour missions/radio science investigations study for outer planets missions

    Science.gov (United States)

    Tyler, G. L.

    1972-01-01

    Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.

  6. Fisher research in the US Rocky Mountains: A critical overview

    Science.gov (United States)

    Michael Schwartz; J. Sauder

    2013-01-01

    In this talk we review the recent fisher research and monitoring efforts that have occurred throughout Idaho and Montana in past 2 decades. We begin this talk with a summary of the habitat relationship work that has examined fisher habitat use at multiple scales. These have largely been conducted using radio and satellite telemetry, although a new, joint effort to use...

  7. Satellite communications network design and analysis

    CERN Document Server

    Jo, Kenneth Y

    2011-01-01

    This authoritative book provides a thorough understanding of the fundamental concepts of satellite communications (SATCOM) network design and performance assessments. You find discussions on a wide class of SATCOM networks using satellites as core components, as well as coverage key applications in the field. This in-depth resource presents a broad range of critical topics, from geosynchronous Earth orbiting (GEO) satellites and direct broadcast satellite systems, to low Earth orbiting (LEO) satellites, radio standards and protocols.This invaluable reference explains the many specific uses of

  8. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  9. A Web-Based Airborne Remote Sensing Telemetry Server, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  10. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  11. Shoestring Budget Radio Astronomy (Abstract)

    Science.gov (United States)

    Hoot, J. E.

    2017-12-01

    (Abstract only) The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  12. Operation of the Radio Occultation Mission in KOMPSAT-5

    Directory of Open Access Journals (Sweden)

    Mansoo Choi

    2010-12-01

    Full Text Available Korea multi-purpose satellite-5 (KOMPSAT-5 is a low earth orbit (LEO satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD system which consists of a space-borne dual frequency global positioning system (GPS receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

  13. Magnetospheric radio sounding

    International Nuclear Information System (INIS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  14. Using Onboard Telemetry for MAVEN Orbit Determination

    Science.gov (United States)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  15. Change of the high-latitude ionosphere during heating by a powerful short radio wave of the EISCAT/Heating complex according to signals of the GLONASS satellite and the incoherent scattering radar

    Directory of Open Access Journals (Sweden)

    Tereshchenko E. D.

    2018-03-01

    Full Text Available Results of observations of variations of temperature, electron concentration and total electron content of the high-latitude region of the ionosphere during its modification by powerful short radio waves of the heating complex EISCAT/Heating (Tromsø, Norway according to signals of the GLONASS satellites and the incoherent scattering UHF EISCAT radar (Tromsø, Norway have been provided. The geometry of passes of the GLONASS and GPS satellites for operating conditions of the heating complex in Tromsø has been considered. It has been shown that during the experiments on the EISCAT/Heating complex for the study of the modified structure of the high-latitude ionosphere it is more convenient to use the GLONASS satellites. Parameters of orbits of these satellites allow researching changes of total electron content in the direction along the geomagnetic field line at the place of observation. It has been shown that during heating of the ionosphere by powerful short radio waves its structure is becoming an irregular one. Operation of the heating complex in the mode "switched on – switched off" has caused appearance of wavy variations of total electron content with the periods close to the heating period. The main features of behavior of the total electron content in the case of the continuous heating of the ionosphere in the direction of the magnetic zenith according to the GLONASS satellite are: reduction of total electron content in the central zone of the antenna diagram, i. e. in the direction of the magnetic zenith, and presence of the increased values of total electron content at the edges of the heating zone. According to the incoherent scattering radar the heating of the ionosphere by the powerful short radio wave has created the region of the increased electron temperature and electron concentration along the direction of the magnetic zenith. The behavior of total electron content according to the GLONASS satellite and the radar of

  16. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  17. Modems for emerging digital cellular-mobile radio system

    Science.gov (United States)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  18. The Direct Satellite Connection: Definitions and Prospects.

    Science.gov (United States)

    Wigand, Rolf T.

    1980-01-01

    Defines direct satellite broadcasting as the transmission of broadcast signals via high-powered satellites that permit direct reception of television or radio programs by means of small antennas. Outlines American, European, and Japanese plans for direct-to-home television reception and implications for the broadcasting industry. (JMF)

  19. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  20. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    Science.gov (United States)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  1. Precise timing correlation in telemetry recording and processing systems

    Science.gov (United States)

    Pickett, R. B.; Matthews, F. L.

    1973-01-01

    Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.

  2. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  3. SDR Implementation for Satellite Communication

    OpenAIRE

    Jakobsson, Carin; Sjödin, Olof

    2017-01-01

    SDR (Software Defined Radio) is a radio communicationsystem that has been of great interest and developmentover the last 20 years. It decreases communication costs significantlyas it replaces expensive analogue system components withcheap and flexible digital ones. In this article we describe anSDR implementation for communication with the SEAM (SmallExplorer for Advances Missions) satellite, a CubeSat satellitethat will perform high quality magnetic measurements in theEarth orbit. The projec...

  4. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  5. The application of coronal scattering measurements to solar radio bursts

    International Nuclear Information System (INIS)

    Bradford, H.M.

    1980-01-01

    The interpretation of ground based observations of solar 'plasma frequency' radio bursts has been hampered in the past by an insufficient knowledge of coronal scattering by density inhomogeneities close to the Sun. Calculations based on measuurements of the angular broadening of natural radio sources, and Woo's 1975 measurement of the angular broadening of the telemetry carrier by Helios I near occultation (Woo, 1978), indicate that plasma frequency solar bursts should undergo considerable scattering, at least near the maximum of the sunspot cycle. The calculated displacements of the apparent positions of the bursts are about equal to the observed displacements which have been attributed to the bursts occurring in dense streamers. In order to obtain more scattering data close to the Sun, interferometer measurements of the angular broadening of spacecraft signals are planned, and the important contribution which could be made with large dishes is discussed. (Auth.)

  6. Holy grail: Pioneering acoustic telemetry technology set to revolutionize downhole communication

    Energy Technology Data Exchange (ETDEWEB)

    Greenaway, R.

    2003-12-01

    Acoustic telemetry, a faster and more efficient downhole-to-surface-communication technology, is the latest development in downhole communication systems. The system has been developed by Extreme Engineering Limited of Calgary, led by Derek Logan, founder and one-time senior vice-president of Ryan Energy Technologies that developed the original measurement -while-drilling (MWD) and logging-while-drilling )LWD) tools. The company predicts that acoustic telemetry will cause a massive transformation of the drilling industry in Western Canada once the technology is commercialized. Conventional MWD techniques, based on mud-pulse technology, have been industry standard since the 1970s, but mud-pulse technology is now considered extremely slow. In the 1980s industry came up electromagnetic telemetry, as an alternative to mud-pulse. Today, the need to transmit ever more data, the need for a faster communications system and greater wellbore control, has become even more pressing. Logan believes that acoustic technology is the answer. It is not only capable of transmitting data 20 to 30 times faster than mud-pulse telemetries, it can also communicate massive amounts of data. It can be used in drilling, completion production, drillstem testing, frac monitoring and any other wellbore process requiring wireless real-time telemetry. Acoustic telemetry is also the only wireless system that can perform MWD and LWD in offshore underbalanced drilling. Notwithstanding its great promise, Extreme Engineering Limited had considerable difficulty raising funds for developing and commercializing XAcT (the trade name for acoustic telemetry). Prospects are reported to have been substantially improved by recent infusion of funds by the federal Industrial Research Assistance Program (IRAP) , and XAcT's recognition by R and D Magazine with one of the R and D 100 awards for 2003. 3 figs.

  7. Toward a national animal telemetry network for aquatic observations in the United States

    Science.gov (United States)

    Block, Barbara A.; Holbrook, Christopher; Simmons, Samantha E; Holland, Kim N; Ault, Jerald S.; Costa, Daniel P.; Mate, Bruce R; Seitz, Andrew C.; Arendt, Michael D.; Payne, John; Mahmoudi, Behzad; Moore, Peter L.; Price, James; J. J. Levenson,; Wilson, Doug; Kochevar, Randall E

    2016-01-01

    Animal telemetry is the science of elucidating the movements and behavior of animals in relation to their environment or habitat. Here, we focus on telemetry of aquatic species (marine mammals, sharks, fish, sea birds and turtles) and so are concerned with animal movements and behavior as they move through and above the world’s oceans, coastal rivers, estuaries and great lakes. Animal telemetry devices (“tags”) yield detailed data regarding animal responses to the coupled ocean–atmosphere and physical environment through which they are moving. Animal telemetry has matured and we describe a developing US Animal Telemetry Network (ATN) observing system that monitors aquatic life on a range of temporal and spatial scales that will yield both short- and long-term benefits, fill oceanographic observing and knowledge gaps and advance many of the U.S. National Ocean Policy Priority Objectives. ATN has the potential to create a huge impact for the ocean observing activities undertaken by the U.S. Integrated Ocean Observing System (IOOS) and become a model for establishing additional national-level telemetry networks worldwide.

  8. Michelson-type Radio Interferometer for University Education

    Science.gov (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  9. Retrieval of Electron Density Profile for KOMPSAT-5 GPS Radio Occultation

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2007-12-01

    Full Text Available The AOPOD (Atmosphere Occultation and Precision Orbit Determination system, the secondary payload of KOMPSAT (KOrea Multi-Purpose SATellite-5 scheduled to be launched in 2010, shall provide GPS radio occultation data. In this paper, we simulated the GPS radio occultation characteristic of KOMPSAT-5 and retrieved electron density profiles using KROPS (KASI Radio Occultation Processing Software. The electron density retrieved from CHAMP (CHAllenging Minisatellite Payload GPS radio occultation data on June 20, 2004 was compared with IRI (International Reference Ionosphere - 2001, PLP (Planar Langmuir Probe, and ionosonde measurements. When the result was compared with ionosonde measurements, the discrepancies were 5 km on the F_2 peak height (hmF_2 and 3×10^{10} el/m^3 on the electron density of the F_2 peak height (NmF_2. By comparing with the Langmuir Probe measurements of CHAMP satellite (PLP, both agrees with 1.6×10^{11} el/m^3 at the height of 365.6 km.

  10. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Science.gov (United States)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  11. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Science.gov (United States)

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  12. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  13. The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement

    Directory of Open Access Journals (Sweden)

    Philip D. Taylor

    2017-06-01

    Full Text Available We describe a new collaborative network, the Motus Wildlife Tracking System (Motus; https://motus.org, which is an international network of researchers using coordinated automated radio-telemetry arrays to study movements of small flying organisms including birds, bats, and insects, at local, regional, and hemispheric scales. Radio-telemetry has been a cornerstone of tracking studies for over 50 years, and because of current limitations of geographic positioning systems (GPS and satellite transmitters, has remained the primary means to track movements of small animals with high temporal and spatial precision. Automated receivers, along with recent miniaturization and digital coding of tags, have further improved the utility of radio-telemetry by allowing many individuals to be tracked continuously and simultaneously across broad landscapes. Motus is novel among automated arrays in that collaborators employ a single radio frequency across receiving stations over a broad geographic scale, allowing individuals to be detected at sites maintained by others. Motus also coordinates, disseminates, and archives detections and associated metadata in a central repository. Combined with the ability to track many individuals simultaneously, Motus has expanded the scope and spatial scale of research questions that can be addressed using radio-telemetry from local to regional and even hemispheric scales. Since its inception in 2012, more than 9000 individuals of over 87 species of birds, bats, and insects have been tracked, resulting in more than 250 million detections. This rich and comprehensive dataset includes detections of individuals during all phases of the annual cycle (breeding, migration, and nonbreeding, and at a variety of spatial scales, resulting in novel insights into the movement behavior of small flying animals. The value of the Motus network will grow as spatial coverage of stations and number of partners and collaborators increases. With

  14. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

    Science.gov (United States)

    Tereshchenko, E. D.; Turyansky, V. A.; Khudukon, B. Z.; Yurik, R. Yu.; Frolov, V. L.

    2018-01-01

    We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10-12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

  15. OLFAR, a radio telescope based on nano satellites in moon orbit

    NARCIS (Netherlands)

    Engelen, S.; Verhoeven, C.J.M.; Bentum, Marinus Jan

    2010-01-01

    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional‿ way. The

  16. Live Satellite Communications... An Exciting Teaching Aid

    Science.gov (United States)

    Journal of Aerospace Education, 1976

    1976-01-01

    Describes ways that orbiting satellites carrying amateur radios can be used in the classroom at various grade levels to supplement physics, mathematics, electronics, and social science curricula. (MLH)

  17. Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques

    Science.gov (United States)

    Hooke, A. J.

    1983-01-01

    Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.

  18. UAV telemetry communications using ZigBee protocol

    Science.gov (United States)

    Nasution, T. H.; Siregar, I.; Yasir, M.

    2017-10-01

    Wireless communication has been widely used in various fields or disciplines such as agriculture, health, engineering, military, and aerospace so as to support the work in that field. The communication technology is typically used for controlling devices and data monitoring. One development of wireless communication is the widely used telemetry system used to reach areas that cannot be reached by humans using UAV (Unmanned Aerial Vehicle) or unmanned aircraft. In this paper we discuss the design of telemetry system in UAV using ZigBee protocol. From the test obtained the system can work well with visualization displays without pause is 20 data per second with a maximum data length of 120 characters.

  19. Development of telemetry for high-speed rotor instrumentation and monitoring: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, G.T.; Nenno, P.N.; Parker, J.H.; Eckels, P.W.

    1987-06-01

    A modern data acquisition and telemetry system for rotating systems was developed as a part of a program, jointly funded by EPRI and Westinghouse, to develop a 300 MVA superconducting generator. While the overall program was terminated before completion, the telemetry development task was essentially complete at termination. It had been planned that the data acquisition and telemetry system was to be used in large scale models and the final 300 MVA rotor testing for transmitting sensor data from the rotating frame. An important part of this development was the qualification of a number of cryogenic sensors that were to be used in conjunction with the telemetry system for measuring temperature, strain and liquid helium level. The telemetry system that was developed handled the data transmission by digital frequency shift keying with a carrier of 200 kHz. The analog sensor signals were amplified and filtered ''on-board'' before being multiplexed and converted to a digital signal. All of this was under the control of a single chip microcomputer (Intel 8748) in the rotating frame. The overall sensor, data acquisition and telemetry system were operated and tested under rotation for a period of over one hundred hours. Overall, the system has proven itself to be reliable and effective. The present report covers all aspects of this development in detail, including the circuit and software design and performance. 27 refs., 58 figs.

  20. An open-source hardware GPS data logger for wildlife radio-telemetry studies: A case study using Eastern box turtles

    Directory of Open Access Journals (Sweden)

    Patrick W. Cain

    2018-04-01

    Full Text Available Global Positioning System (GPS telemetry technology has been a boon to animal spatial ecology studies. Oftentimes, the main limitation to widespread application of this technology is the cost, which can dictate the number of individuals outfitted with GPS technology, thereby limiting sample sizes. Here, we discuss the development of a low-cost, customizable, open-source hardware GPS logger for use in animal movement studies. We also present results from field tests with Eastern box turtles (Terrapene carolina in northwestern Ohio. These GPS loggers have the potential to augment existing projects and facilitate studies that would be otherwise cost-prohibitive. Keywords: GPS, Data logger, Arduino, Eastern box turtle

  1. LTE Adaptation for Mobile Broadband Satellite Networks

    Directory of Open Access Journals (Sweden)

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  2. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)

    2007-06-15

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  3. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    International Nuclear Information System (INIS)

    Park, Seung Hee; Yun, Chung Bang; Inman, Daniel J.

    2007-01-01

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  4. Telemetry and Science Data Software System

    Science.gov (United States)

    Bates, Lakesha; Hong, Liang

    2011-01-01

    The Telemetry and Science Data Software System (TSDSS) was designed to validate the operational health of a spacecraft, ease test verification, assist in debugging system anomalies, and provide trending data and advanced science analysis. In doing so, the system parses, processes, and organizes raw data from the Aquarius instrument both on the ground and while in space. In addition, it provides a user-friendly telemetry viewer, and an instant pushbutton test report generator. Existing ground data systems can parse and provide simple data processing, but have limitations in advanced science analysis and instant report generation. The TSDSS functions as an offline data analysis system during I&T (integration and test) and mission operations phases. After raw data are downloaded from an instrument, TSDSS ingests the data files, parses, converts telemetry to engineering units, and applies advanced algorithms to produce science level 0, 1, and 2 data products. Meanwhile, it automatically schedules upload of the raw data to a remote server and archives all intermediate and final values in a MySQL database in time order. All data saved in the system can be straightforwardly retrieved, exported, and migrated. Using TSDSS s interactive data visualization tool, a user can conveniently choose any combination and mathematical computation of interesting telemetry points from a large range of time periods (life cycle of mission ground data and mission operations testing), and display a graphical and statistical view of the data. With this graphical user interface (GUI), the data queried graphs can be exported and saved in multiple formats. This GUI is especially useful in trending data analysis, debugging anomalies, and advanced data analysis. At the request of the user, mission-specific instrument performance assessment reports can be generated with a simple click of a button on the GUI. From instrument level to observatory level, the TSDSS has been operating supporting

  5. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  6. Telemetry System Data Latency

    Science.gov (United States)

    2017-07-13

    latencies will be measured. DATS Network TM Antenna TM ReceiverMCS System IOPlex IOPlexIADS CDS IADS Client TM Transmitter Sensors Signal Conditioning...TIME Figure 1-2 Mission Control System (MCS) / Interactive Analysis and Display System (IADS) Overview IADS CDSIADS Client TELEMETRY SYSTEM DATA...Sim GPS Signal Combiner MCS system Oscilloscope IADS Client IADS CDS Figure 13-1 IADS Data Flow 13.2. Test Results The results of the data test at

  7. HMSRP Hawaiian Monk Seal Telemetry Tag Deployments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project investigates foraging behavior of Hawaiian monk seals by conducting telemetry studies. During these studies, live seals are instrumented with dive...

  8. Implementing telemetry on new species in remote areas: Recommendations from a large-scale satellite tracking study of African waterfowl

    Science.gov (United States)

    Cappelle, J.; Iverson, S.A.; Takekawa, John Y.; Newman, S.H.; Dodman, T.; Gaidet, N.

    2011-01-01

    We provide recommendations for implementing telemetry studies on waterfowl on the basis of our experience in a tracking study conducted in three countries of sub-Saharan Africa. The aim of the study was to document movements by duck species identified as priority candidates for the potential spread of avian influenza. Our study design included both captive and field test components on four wild duck species (Garganey, Comb Duck, White-faced Duck and Fulvous Duck). We used our location data to evaluate marking success and determine when signal loss occurred. The captive study of eight ducks marked with non-working transmitters in a zoo in Montpellier, France, prior to fieldwork showed no evidence of adverse effects, and the harness design appeared to work well. The field study in Malawi, Nigeria and Mali started in 2007 on 2 February, 6 February and 14 February, and ended on 22 November 2007 (288 d), 20 January 2010 (1 079 d), and 3 November 2008 (628 d), respectively. The field study indicated that 38 of 47 (81%) of the platform transmitter terminals (PTTs) kept transmitting after initial deployment, and the transmitters provided 15 576 locations. Signal loss during the field study was attributed to three main causes: PTT loss, PTT failure and mortality (natural, human-caused and PTT-related). The PTT signal quality varied by geographic region, and interference caused signal loss in the Mediterranean Sea region. We recommend careful attention at the beginning of the study to determine the optimum timing of transmitter deployment and the number of transmitters to be deployed per species. These sample sizes should be calculated by taking into account region-specific causes of signal loss to ensure research objectives are met. These recommendations should be useful for researchers undertaking a satellite tracking program, especially when working in remote areas of Africa where logistics are difficult or with poorly-known species. ?? NISC (Pty) Ltd.

  9. A battery-free multichannel digital neural/EMG telemetry system for flying insects.

    Science.gov (United States)

    Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S

    2012-10-01

    This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.

  10. Communications Satellite Receiver Systems for Public Schools: A Technical Primer.

    Science.gov (United States)

    Texas Education Agency, Austin.

    Designed to aid school districts contemplating use of some of the telecommunications services now available by satellite, this document contains information on home satellite receiving dishes (Television Receive-Only--TVROs), which can receive radio signals carrying television, sound, and data. This information includes: some factors involved in…

  11. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service

    Science.gov (United States)

    Mech, L. David; Barber, Shannon M.

    2002-01-01

    Because of the naturalness of National Parks and because of the public’s strong interest in the parks, the National Park Service (NPS) must gather as much information as needed to help understand and preserve the natural functioning of its ecosystems, and especially of its wildlife. The most useful technique for studying wildlife is radio-tracking, or wildlife telemetry. Radio-tracking is the technique of determining information about an animal through the use of radio signals from or to a device carried by the animal.The basic components of a traditional radio-tracking system are (1) a transmitting subsystem consisting of a radio transmitter, a power source and a propagating antenna, and (2) a receiving subsystem including a “pick-up” antenna, a signal receiver with reception indicator (speaker and/or display) and a power source. Most radio tracking systems involve transmitters tuned to different frequencies (analogous to different AM/FM radio stations) that allow individual identification.Three distinct types of radio-tracking are in use today: (1)conventional, very-high-frequency (VHF) radio tracking, (2) satellite tracking, and (3) Global Positioning System (GPS) tracking. VHF radio-tracking is the standard technique that has been in use since 1963.However, radio-tracking can be considered intrusive in that it requires live-capturing animals and attaching a collar or other device to them. A person must then monitor signals from the device, thus usually requiring people in the field in vehicles, aircraft, and on foot. Nevertheless, most national parks have recognized the benefits of radio-tracking and have hosted radio-tracking studies for many years; in some parks, hundreds of animals have been, or are being, so studied.As a result, some NPS staff are concerned about actual or potential intrusiveness of radio-tracking. Ideally, wildlife studies would still be done but with no intrusion on animals or conflict with park visitors.Thus the NPS has decided to

  12. Does Plan B work? Home range estimations from stored on board and transmitted data sets produced by GPS-telemetry in the Colombian Amazon.

    Science.gov (United States)

    Cabrera, Jaime A; Molina, Eduardo; González, Tania; Armenteras, Dolors

    2016-12-01

    Telemetry based on Global Positioning Systems (GPS) makes possible to gather large quantities of information in a very fine scale and work with species that were impossible to study in the past. When working with GPS telemetry, the option of storing data on board could be more desirable than the sole satellite transmitted data, due to the increase in the amount of locations available for analysis. Nonetheless, the uncertainty in the retrieving of the collar unit makes satellite-transmitted technologies something to take into account. Therefore, differences between store-on-board (SoB) and satellite-transmitted (IT) data sets need to be considered. Differences between SoB and IT data collected from two lowland tapirs (Tapirus terrestris), were explored by means of the calculation of home range areas by three different methods: the Minimum Convex Polygon (MCP), the Fixed Kernel Density Estimator (KDE) and the Brownian Bridges (BB). Results showed that SoB and IT data sets for the same individual were similar, with fix ranging from 63 % to 85 % respectively, and 16 m to 17 m horizontal errors. Depending on the total number of locations available for each individual, the home ranges estimated showed differences between 2.7 % and 79.3 %, for the 50 % probability contour and between 9.9 % and 61.8 % for the 95 % probability contour. These differences imply variations in the spatial coincidence of the estimated home ranges. We concluded that the use of IT data is not a good option for the estimation of home range areas if the collar settings have not been designed specifically for this use. Nonetheless, geographical representations of the IT based estimators could be of great help to identify areas of use, besides its assistance to locate the collar for its retrieval at the end of the field season and as a proximate backup when collars disappear.

  13. Aquatic animal telemetry: A panoramic window into the underwater world

    DEFF Research Database (Denmark)

    Hussey, Nigel E.; Kessel, Steven T.; Aarestrup, Kim

    2015-01-01

    The distribution and interactions of aquatic organisms across space and time structure our marine, freshwater, and estuarine ecosystems. Over the past decade, technological advances in telemetry have transformed our ability to observe aquatic animal behavior and movement. These advances are now p...... individuals, populations, and entire ecosystems. The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible....

  14. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  15. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  16. A telemetry experiment on spotted grunter Pomadasys ...

    African Journals Online (AJOL)

    associated fish in South Africa was investigated by conducting a tracking experiment on spotted grunter Pomadasys commersonnii in the East Kleinemonde Estuary. The telemetry equipment comprised two VEMCO V8 transmitters and a ...

  17. Mobile satellite services for public safety, disaster mitigation and disaster medicine

    Science.gov (United States)

    Freibaum, Jerry

    1990-01-01

    Between 1967 and 1987 nearly three million lives were lost and property damage of $25 to $100 billion resulted form natural disasters that adversely affected more than 829 million people. The social and economic impacts have been staggering and are expected to grow more serious as a result of changing demographic factors. The role that the Mobile Satellite Service can play in the International Decade is discussed. MSS was not available for disaster relief operations during the recent Loma Prieta/San Francisco earthquake. However, the results of a review of the performance of seven other communication services with respect to public sector operations during and shortly after the earthquake are described. The services surveyed were: public and private telephone, mobile radio telephone, noncellular mobile radio, broadcast media, CB radio, ham radio, and government and nongovernment satellite systems. The application of MSS to disaster medicine, particularly with respect to the Armenian earthquake is also discussed.

  18. A Comprehensive Investigation of Advanced Range Telemetry

    National Research Council Canada - National Science Library

    Rice, Michael

    1999-01-01

    Data from ARTM channel sounding flights has been analyzed. A three-path model consisting of a line-of-sight path and two reflected paths adequately captures all the essential multipath features of the aeronautical telemetry channel...

  19. Movement of a female polar bear (Ursus maritimus) in the Kara Sea during the summer sea-ice break-up.

    Science.gov (United States)

    Rozhnov, V V; Platonov, N G; Naidenko, S V; Mordvintsev, I N; Ivanov, E A

    2017-01-01

    The polar bear movement trajectory in relation to onset date of the sea-ice break-up was studied in the coastal zone of the Taimyr Peninsula, eastern part of the Kara Sea, using as an example a female polar bear tagged by a radio collar with an Argos satellite transmitter. Analysis of the long-term pattern of ice melting and tracking, by means of satellite telemetry, of the female polar bear who followed the ice-edge outgoing in the north-eastern direction (in summer 2012) suggests that direction of the polar bear movement depends precisely on the direction of the sea-ice cover break-up.

  20. Space use of bumblebees (Bombus spp. revealed by radio-tracking.

    Directory of Open Access Journals (Sweden)

    Melanie Hagen

    Full Text Available Accurate estimates of movement behavior and distances travelled by animals are difficult to obtain, especially for small-bodied insects where transmitter weights have prevented the use of radio-tracking.Here, we report the first successful use of micro radio telemetry to track flight distances and space use of bumblebees. Using ground surveys and Cessna overflights in a Central European rural landscape mosaic we obtained maximum flight distances of 2.5 km, 1.9 km and 1.3 km for Bombus terrestris (workers, Bombus ruderatus (worker, and Bombus hortorum (young queens, respectively. Bumblebee individuals used large areas (0.25-43.53 ha within one or a few days. Habitat analyses of one B. hortorum queen at the landscape scale indicated that gardens within villages were used more often than expected from habitat availability. Detailed movement trajectories of this individual revealed that prominent landscape structures (e.g. trees and flower patches were repeatedly visited. However, we also observed long (i.e. >45 min resting periods between flights (B. hortorum and differences in flower-handling between bumblebees with and without transmitters (B. terrestris suggesting that the current weight of transmitters (200 mg may still impose significant energetic costs on the insects.Spatio-temporal movements of bumblebees can now be tracked with telemetry methods. Our measured flight distances exceed many previous estimates of bumblebee foraging ranges and suggest that travelling long distances to food resources may be common. However, even the smallest currently available transmitters still appear to compromise flower handling performance and cause an increase in resting behavior of bees. Future reductions of transmitter mass and size could open up new avenues for quantifying landscape-scale space use of insect pollinators and could provide novel insights into the behavior and requirements of bumblebees during critical life stages, e.g. when searching for

  1. Four Decades of Space-Borne Radio Sounding

    Science.gov (United States)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.

  2. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Science.gov (United States)

    2010-10-01

    ... SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Distress, Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations in the maritime mobile-satellite...

  3. Prototype Sistem Multi-Telemetri Wireless untuk Mengukur Suhu Udara Berbasis Mikrokontroler ESP8266 pada Greenhouse

    OpenAIRE

    Hanum Shirotu Nida

    2017-01-01

    Telemetri wireless adalah proses pengukuran parameter suatu obyek yang hasil pengukurannya dikirimkan ke tempat lain melalui proses pengiriman data tanpa menggunakan kabel (wireless), sedangkan multi telemetri adalah gabungan dari beberapa telemeteri itu sendiri. Penelitian ini merancang prototype sistem multi-telemetri wireless untuk mengukur suhu udara dan kelembaban udara pada greenhouse dengan menggunakan sensor DHT11 dan data hasil dari pembacaan sensor dikirim dengan menggunakan modul W...

  4. Can telemetry data obviate the need for sleep studies in Pierre Robin Sequence?

    Science.gov (United States)

    Aaronson, Nicole Leigh; Jabbour, Noel

    2017-09-01

    This study looks to correlate telemetry data gathered on patients with Pierre Robin Sequence (PRS) with sleep study data. Strong correlation might allow obstructive sleep apnea (OSA) to be reasonably predicted without the need for sleep study. Charts from forty-six infants with PRS who presented to our children's hospital between 2005 and 2015 and received a polysomnogram (PSG) prior to surgical intervention were retrospectively reviewed. Correlations and scatterplots were used to compare average daily oxygen nadir, overall oxygen nadir, and average number of daily desaturations from telemetry data with apnea-hypopnea index (AHI) and oxygen nadir on sleep study. Results were also categorized into groups of AHI ≥ or sleep study data. Patients with O2 nadir below 80% on telemetry were not more likely to have an O2 nadir below 80% on sleep study. Patients with an average O2 nadir below 80% did show some correlation with having an AHI greater than 10 on sleep study but this relationship did not reach significance. Of 22 patients who did not have any desaturations on telemetry below 80%, 16 (73%) had an AHI >10 on sleep study. In the workup of infants with PRS, the index of suspicion is high for OSA. In our series, telemetry data was not useful in ruling out severe OSA. Thus our data do not support forgoing sleep study in patients with PRS and concern for OSA despite normal telemetry patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Integrated Plan-Procedures-Telemetry Ops Concept and Prototype

    Data.gov (United States)

    National Aeronautics and Space Administration — The project scope includes developing the ops concept and prototype for a near-seamless interface between mission plans, electronic procedures and live telemetry...

  6. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  7. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    Science.gov (United States)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  8. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  9. Antenna architecture of a nanosatellite for radio astronomy

    NARCIS (Netherlands)

    Budianu, A.; Meijerink, Arjan; Bentum, Marinus Jan; Smith, David M.P.; Boonstra, Albert Jan

    2014-01-01

    Recent technological advancements have led to the emergence of a new miniaturized satellite platforms and this opened up the path for a whole new range of applications. The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project is one of these applications, and aims to develop a

  10. The Economic Importance of Adequate Aeronautical Telemetry Spectrum

    National Research Council Canada - National Science Library

    Kahn, Carolyn A

    2005-01-01

    INTRODUCTION: (1) The flight test community faces a telemetry spectrum crunch; (2) Amount of spectrum now allocated for ATM is not sufficient to meet needs, and requirements have been steadily growing...

  11. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    Science.gov (United States)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  12. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    Science.gov (United States)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  13. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit; Harrison, Rob; Pawar, Ankita; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Rexford, Jennifer; Willinger, Walter

    2017-01-01

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator's query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  14. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit

    2017-05-02

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator\\'s query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  15. On ionospheric investigations by coherent radiowaves emitted from artificial Earth satellites

    International Nuclear Information System (INIS)

    Al'fert, Ja. L.

    1976-01-01

    Results of radio-investigations of the ionosphere with the help of coherent radiowaves emitted by beacons placed on artificial Earth satellites are given. The data discussed cover the period from 1958, after the launch of Sputniks 1 and 3, until the last years, when the geostationary satellites ATS were launched. It is shown that up to the present justice has not been done in these experiments to investigations of the local properties of the near Earth plasma. This is a great deficiency in this field of investigation. Data are given which illustrate results of investigations of local ionospheric characteristics. Such data may help to solve some problems in the present stage of the near Earth plasma study. A new possibility of radio-investigation of the near Earth plasma with the help of a chain of satellites connected together is pointed out. (Auth.)

  16. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  17. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  18. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    Zhang Songtao; Zhang Yusong; Sun Xiurui

    2001-01-01

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  19. X-33 Telemetry Best Source Selection, Processing, Display, and Simulation Model Comparison

    Science.gov (United States)

    Burkes, Darryl A.

    1998-01-01

    The X-33 program requires the use of multiple telemetry ground stations to cover the launch, ascent, transition, descent, and approach phases for the flights from Edwards AFB to landings at Dugway Proving Grounds, UT and Malmstrom AFB, MT. This paper will discuss the X-33 telemetry requirements and design, including information on fixed and mobile telemetry systems, best source selection, and support for Range Safety Officers. A best source selection system will be utilized to automatically determine the best source based on the frame synchronization status of the incoming telemetry streams. These systems will be used to select the best source at the landing sites and at NASA Dryden Flight Research Center to determine the overall best source between the launch site, intermediate sites, and landing site sources. The best source at the landing sites will be decommutated to display critical flight safety parameters for the Range Safety Officers. The overall best source will be sent to the Lockheed Martin's Operational Control Center at Edwards AFB for performance monitoring by X-33 program personnel and for monitoring of critical flight safety parameters by the primary Range Safety Officer. The real-time telemetry data (received signal strength, etc.) from each of the primary ground stations will also be compared during each nu'ssion with simulation data generated using the Dynamic Ground Station Analysis software program. An overall assessment of the accuracy of the model will occur after each mission. Acknowledgment: The work described in this paper was NASA supported through cooperative agreement NCC8-115 with Lockheed Martin Skunk Works.

  20. A microcontroller-based telemetry system for sympathetic nerve activity and ECG measurement.

    Science.gov (United States)

    Harada, E; Yonezawa, Y; Caldwell, W M; Hahn, A W

    1999-01-01

    A telemetry system employing a low power 8-bit microcontroller has been developed for chronic unanesthetized small animal studies. The two-channel system is designed for use with animals in shielded cages. Analog signals from implantable ECG and nerve electrodes are converted to an 8-bit serial digital format. This is accomplished by individual 8 bit A/D converters included in the microcontroller, which also has serial I/O port. The converted serial binary code is applied directly to an antenna wire. Therefore, the system does not need to employ a separate transmitter, such as in FM or infrared optical telemeters. The system is used in a shielded animal cage to reduce interference from external radio signals and 60 Hz power line fields. The code is received by a high input impedance amplifier in the cage and is then demodulated. The telemeter is powered by a small 3 V lithium battery, which provides 100 hours of continuous operation. The circuit is constructed on two 25 x 25 mm. printed circuit boards and encapsulated in epoxy, yielding a total volume of 6.25 cc. The weight is 15 g.

  1. Activities of Canadian Satellite Communications, Inc.

    Science.gov (United States)

    1992-12-01

    Canadian Satellite Communications (Cancom) has as its core business the provision of television and radio signals to cable systems in Canada, with the objective of making affordable broadcast signals available to remote and/or small communities. Cancom also provides direct-to-home services to backyard receiving dishes, as well as satellite digital data business communications services, satellite business television, and satellite network services. Its business communication services range from satellite links for big-city businesses with small branch operations located far from major centers, to a mobile messaging and tracking system for the trucking industry. Revenues in 1992 totalled $48,212,000 and net income was just over $7 million. Cancom bought 10 percent interest in Leosat Corp. of Washington, DC, who are seeking approval to operate a position locator network from low-orbit satellites. Cancom has also become a partner in SovCan Star Satellite Communications Inc., which will build an international satellite system in partnership with Russia. The first satellite in this east-west business network will be placed in a Russian orbital slot over the Atlantic by 1996, and a second satellite will follow for the Pacific region. This annual report of Cancom's activities for 1992 includes financial statements and a six year financial review.

  2. Finding our way: On the sharing and reuse of animal telemetry data in Australasia

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Hamish A., E-mail: hamish.campbell@une.edu.au [Department of Ecosystem Management, School of Environment and Rural Sciences, University of New England, Armidale, NSW (Australia); Beyer, Hawthorne L. [ARC Centre of Excellence for Environmental Decisions, Centre for Biodiversity & Conservation Science, University of Queensland, Brisbane, QLD (Australia); Dennis, Todd E. [School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Dwyer, Ross G. [School of Biological Sciences, University of Queensland, St Lucia, QLD (Australia); Forester, James D. [Dept. Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN (United States); Fukuda, Yusuke [Department of Land Resource Management, PO Box 496, Palmerston, NT (Australia); Lynch, Catherine [Arid Recovery, PO Box 147, Roxby Downs, SA (Australia); Hindell, Mark A. [University of Tasmania, Hobart, TAS (Australia); Menke, Norbert [Queensland Department of Science, Information, Technoloty, Innovation and the Arts, Brisbane, QLD (Australia); Morales, Juan M. [Ecotono, INIBIOMA—CONICET, Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche (Argentina); Richardson, Craig [Ecological Resources Information Network, Department of the Environment, Canberra, ACT (Australia); Rodgers, Essie [School of Biological Sciences, University of Queensland, St Lucia, QLD (Australia); Taylor, Graeme [Department of Conservation, PO Box 10420, Wellington 6143 (New Zealand); Watts, Matt E. [ARC Centre of Excellence for Environmental Decisions, Centre for Biodiversity & Conservation Science, University of Queensland, Brisbane, QLD (Australia); Westcott, David A. [Commonwealth Scientific and Industrial Research Organisation, PO Box 780, Atherton, QLD (Australia)

    2015-11-15

    The presence and movements of organisms both reflect and influence the distribution of ecological resources in space and time. The monitoring of animal movement by telemetry devices is being increasingly used to inform management of marine, freshwater and terrestrial ecosystems. Here, we brought together academics, and environmental managers to determine the extent of animal movement research in the Australasian region, and assess the opportunities and challenges in the sharing and reuse of these data. This working group was formed under the Australian Centre for Ecological Analysis and Synthesis (ACEAS), whose overall aim was to facilitate trans-organisational and transdisciplinary synthesis. We discovered that between 2000 and 2012 at least 501 peer-reviewed scientific papers were published that report animal location data collected by telemetry devices from within the Australasian region. Collectively, this involved the capture and electronic tagging of 12 656 animals. The majority of studies were undertaken to address specific management questions; rarely were these data used beyond their original intent. We estimate that approximately half (~ 500) of all animal telemetry projects undertaken remained unpublished, a similar proportion were not discoverable via online resources, and less than 8.8% of all animals tagged and tracked had their data stored in a discoverable and accessible manner. Animal telemetry data contain a wealth of information about how animals and species interact with each other and the landscapes they inhabit. These data are expensive and difficult to collect and can reduce survivorship of the tagged individuals, which implies an ethical obligation to make the data available to the scientific community. This is the first study to quantify the gap between telemetry devices placed on animals and findings/data published, and presents methods for improvement. Instigation of these strategies will enhance the cost-effectiveness of the research and

  3. Finding our way: On the sharing and reuse of animal telemetry data in Australasia

    International Nuclear Information System (INIS)

    Campbell, Hamish A.; Beyer, Hawthorne L.; Dennis, Todd E.; Dwyer, Ross G.; Forester, James D.; Fukuda, Yusuke; Lynch, Catherine; Hindell, Mark A.; Menke, Norbert; Morales, Juan M.; Richardson, Craig; Rodgers, Essie; Taylor, Graeme; Watts, Matt E.; Westcott, David A.

    2015-01-01

    The presence and movements of organisms both reflect and influence the distribution of ecological resources in space and time. The monitoring of animal movement by telemetry devices is being increasingly used to inform management of marine, freshwater and terrestrial ecosystems. Here, we brought together academics, and environmental managers to determine the extent of animal movement research in the Australasian region, and assess the opportunities and challenges in the sharing and reuse of these data. This working group was formed under the Australian Centre for Ecological Analysis and Synthesis (ACEAS), whose overall aim was to facilitate trans-organisational and transdisciplinary synthesis. We discovered that between 2000 and 2012 at least 501 peer-reviewed scientific papers were published that report animal location data collected by telemetry devices from within the Australasian region. Collectively, this involved the capture and electronic tagging of 12 656 animals. The majority of studies were undertaken to address specific management questions; rarely were these data used beyond their original intent. We estimate that approximately half (~ 500) of all animal telemetry projects undertaken remained unpublished, a similar proportion were not discoverable via online resources, and less than 8.8% of all animals tagged and tracked had their data stored in a discoverable and accessible manner. Animal telemetry data contain a wealth of information about how animals and species interact with each other and the landscapes they inhabit. These data are expensive and difficult to collect and can reduce survivorship of the tagged individuals, which implies an ethical obligation to make the data available to the scientific community. This is the first study to quantify the gap between telemetry devices placed on animals and findings/data published, and presents methods for improvement. Instigation of these strategies will enhance the cost-effectiveness of the research and

  4. The evening diffuse radio aurora, field-aligned currents and particle precipitation

    International Nuclear Information System (INIS)

    Unwin, R.S.

    1980-01-01

    The relationship of the afternoon/evening diffuse radio aurora, proton and electron precipitation and field-aligned currents is studied with data from the auroral radar at Slope Point, New Zealand, and the ISIS 2 satellite. It is shown that there is a very close association between the radio aurora and (primarily downward) field-aligned currents, which confirms and extends previous work, but that there is no clear relation with either proton or electron precipitation. (author)

  5. Uses of communication satellites in water utility operations

    Science.gov (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  6. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  7. Multi-purpose ECG telemetry system.

    Science.gov (United States)

    Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav

    2017-06-19

    The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results

  8. MARAD maritime experiments using the NASA ATS-6 satellite

    Science.gov (United States)

    Brandel, D. L.; Kaminsky, Y.

    1975-01-01

    The objectives of the MARAD maritime experiments (conducted in the L-band fan beam mode) using the ATS-6 satellite are detailed. They include the following: (1) to evaluate the economic benefits of fleet operators through the use of satellite communications, (2) to evaluate performance criteria for shipboard terminal equipment needed to establish various grades of fleet operations services using commercial satellite systems, (3) to determine the effects of signal propagation, ship radio frequency noise, and ship antenna pointing on the maritime communications and navigation channel, and (4) to evaluate various modems for the transmission and reception of voice, data and position location signals via satellite systems.

  9. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    Science.gov (United States)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  10. GUST86 - An analytical ephemeris of the Uranian satellites. [General Uranus Satellite Theory

    Science.gov (United States)

    Laskar, J.; Jacobson, R. A.

    1987-01-01

    The General Uranus Satellite Theory GUST (Laskar, 1986) is used for the construction of an analytical ephemeris for the Uranian satellites. The theory is fitted against earth-based observations from 1911 to 1986, and all radio and optical data obtained during Voyager encounter with Uranus. Earth-based observations alone allow the determination of masses which are within 15 percent of the values determined by the Uranus flyby. The analysis of all the observations confirm the values of the masses obtained during the encounter (Stone and Miner, 1986) and give a complete set of dynamical parameters for the analytical theory. An analytical ephemeris, GUST86, with an estimated precision of about 100 km with respect to Uranus is obtained.

  11. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  12. A combined telemetry - tag return approach to estimate fishing and natural mortality rates of an estuarine fish

    Science.gov (United States)

    Bacheler, N.M.; Buckel, J.A.; Hightower, J.E.; Paramore, L.M.; Pollock, K.H.

    2009-01-01

    A joint analysis of tag return and telemetry data should improve estimates of mortality rates for exploited fishes; however, the combined approach has thus far only been tested in terrestrial systems. We tagged subadult red drum (Sciaenops ocellatus) with conventional tags and ultrasonic transmitters over 3 years in coastal North Carolina, USA, to test the efficacy of the combined telemetry - tag return approach. There was a strong seasonal pattern to monthly fishing mortality rate (F) estimates from both conventional and telemetry tags; highest F values occurred in fall months and lowest levels occurred during winter. Although monthly F values were similar in pattern and magnitude between conventional tagging and telemetry, information on F in the combined model came primarily from conventional tags. The estimated natural mortality rate (M) in the combined model was low (estimated annual rate ?? standard error: 0.04 ?? 0.04) and was based primarily upon the telemetry approach. Using high-reward tagging, we estimated different tag reporting rates for state agency and university tagging programs. The combined telemetry - tag return approach can be an effective approach for estimating F and M as long as several key assumptions of the model are met.

  13. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  14. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  15. Results from the northern New Mexico satellite-beacon radio interferometer

    International Nuclear Information System (INIS)

    Carlos, R.; Jacobson, A.; Massey, R.; Wu, G.

    1994-01-01

    An interferometer described in the Boston, 1992, meeting of the Beacon Satellite Symposium has been in full operation for over a year now. It consists of four autonomous stations; three are in a triangle 70 km on a side and one is in the center. The stations receive the VHF beacons from two geosynchronous satellites, GOES-2 and ATS-3. The phases of the beacons are tracked at each station by referring them to an extremely stable rubidium oscillator. The studies of the two satellites are virtually separate experiments. The received phase of the beacon is retarded by the increased Total-Electron-Content of the dense regions of waves in the ionosphere. By comparing the phase history at four spatially separated stations, the authors can determine the two-dimensional propagation vector of the waves. This array is optimal for wavelengths of 70--300 km (periods of 300--3,000 seconds). Since the measurement is of the phase of the signal rather than the difference between the O-mode and X-mode phases, and since the beacons are in the VHF rather than in the L-band of GPS beacons, the array is very sensitive. It has a noise level of 10 13 electrons/m 2 , or 10 -4 of the normal daytime TEC. This has been verified by operating two stations in the same location, so that they saw the same ionosphere. The first interesting results from a year's study is that the authors do not see the same TID's when looking at the two satellites. One conclusion they draw is that they do not see evidence of ionospheric winds

  16. High Temperature Telemetry Transmitter for Venus Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian corrosive, high pressure, 460oC ambient atmosphere without being contained in a...

  17. High Temperature Telemetry Transmitter for Venus Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian high pressure, 465?aC ambient atmosphere without being contained in a thermally...

  18. The Impact of Radio Interference on Future Radio Telescopes

    Science.gov (United States)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  19. Radio Observations of the Ionosphere From an Imaging Array and a CubeSat

    Science.gov (United States)

    Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.

    2017-12-01

    The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the

  20. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  1. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    Science.gov (United States)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  2. Plant Habitat Telemetry / Command Interface and E-MIST

    Science.gov (United States)

    Walker, Uriae M.

    2013-01-01

    Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting

  3. Coping with Radio Frequency Interference

    Science.gov (United States)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  4. DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy

    NARCIS (Netherlands)

    Saks, Noah; Boonstra, Albert Jan; Rajan, Raj Thilak; Rajan, Raj; Bentum, Marinus Jan; Beliën, Frederik; van 't Klooster, Kees

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy In Space) is a mission to conduct radio astronomy in the low frequency region from 1-10MHz. This region has not yet been explored, as the Earth's ionosphere is opaque to those frequencies, and so a space based observatory is the only solution.

  5. Improving estimation of flight altitude in wildlife telemetry studies

    Science.gov (United States)

    Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd

    2018-01-01

    Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.

  6. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  7. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  8. TELEVISION AND RADIO IN ADULT EDUCATION, NUMBER 1. CURRENT INFORMATION SOURCES.

    Science.gov (United States)

    Syracuse Univ., NY. ERIC Clearinghouse on Adult Education.

    AN ANNOTATED BIBLIOGRAPHY CONTAINS 32 INDEXED ITEMS, MOSTLY WITH ABSTRACTS, ON ASPECTS OF EDUCATIONAL AND INSTRUCTIONAL RADIO AND TELEVISION, PARTICULARLY VIEWING HABITS, MOTIVATION, PUBLIC TELEVISION, MEDIA TECHNOLOGY (INCLUDING COMMUNICATION SATELLITES), INFORMATION DISSEMINATION AND PATTERNS OF INFORMATION SEEKING, THE USE OF CORRESPONDENCE…

  9. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S. -P.

    2012-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  10. Thermal structure of intense convective clouds derived from GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Randel, W. J.; Ho, S.-P.

    2011-01-01

    Thermal structure associated with deep convective clouds is investigated using Global Positioning System (GPS) radio occultation measurements. GPS data are insensitive to the presence of clouds, and provide high vertical resolution and high accuracy measurements to identify associated temperature...... behavior. Deep convective systems are identified using International Satellite Cloud Climatology Project (ISCCP) satellite data, and cloud tops are accurately measured using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) lidar observations; we focus on 53 cases of near-coincident GPS...

  11. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  12. Potential markets for advanced satellite communications

    Science.gov (United States)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  13. Expanding radio astronomy in Africa

    International Nuclear Information System (INIS)

    Gaylard, M J

    2013-01-01

    The Square Kilometre Array (SKA) Organisation announced in May 2012 that its members had agreed on a dual site solution for the SKA [1]. South Africa's bid for hosting the SKA has caused a ramp up of radio astronomy in Africa. To develop technology towards the SKA, the South African SKA Project (SKA SA) built a protoype radio telescope in 2007, followed in 2010 the seven antenna Karoo Array Telescope (KAT-7). Next is the 64 antenna MeerKAT, which will merge into SKA Phase 1 in Africa. As SKA Phase 2 is intended to add a high resolution capability with baselines out to 3000 km, the SKA SA brought in partner countries in Africa to host outstations. South Africa has been working with the partners to build capacity to operate the SKA and to benefit from it. The SA Department of Science and Technology (DST) developed a proposal to establish radio telescopes in the partner countries to provide hands-on learning and a capability for Very Long Baseline Interferometry (VLBI) research. Redundant 30 m class satellite antennas are being incorporated in this project.

  14. Development of U.S. Government General Technical Requirements for UAS Flight Safety Systems Utilizing the Iridium Satellite Constellation

    Science.gov (United States)

    Murray, Jennifer; Birr, Richard

    2010-01-01

    This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.

  15. An Evidence-Based Approach to Reducing Cardiac Telemetry Alarm Fatigue.

    Science.gov (United States)

    Srinivasa, Ekta; Mankoo, Jaspreet; Kerr, Charles

    2017-08-01

    It is estimated that between 80% and 99% of alarms in the clinical areas are in actionable alarms (Gross, Dahl, & Nielson). Alarm management is one of the Joint Commission's National Patient Safety Goals (2014) because sentinel events have directly been linked to the devices generating these alarms. At an acute care facility in Boston, a multidisciplinary team consisting of Nursing, Biomedical Engineers, Patient Safety and Providers was formed to conduct a pilot study on the state of telemetry alarms on a surgical floor. An evidence-based approach was taken utilizing Philips Real-time data exporter alarms tracking software to capture all telemetry alarms during a 43-day time span. Likewise, noise meters were placed near telemetry alarm speakers to track decibel levels within the aforementioned timeframe for 21 days. Analysis of the data showed that clinically insignificant Premature Ventricular Contractions (PVC) alarms accounted for more than 40% of all alarms in the unit within the time span, while also contributing to an average noise level of 58.49 dB. In response to the data, the interdisciplinary team approved to permanently default the settings for PAIR PVC, MULTIFORM PVC, and RUN PVC alarms to off. The results showed a 54% decrease in the rate of alarms per bed per day, and an average noise reduction of 2.3 dB between the two selected noise measurement areas. Organizing a multidisciplinary team provides an effective framework toward analyzing and addressing cardiac telemetry alarm fatigue. Looking at quantitative datasets for clinical care areas through various lenses helps identify opportunities for improvement in regards to highlighting alarms that are not actionable. Pilot changes to alarm parameters can be tested for their environmental impact in the care area. © 2017 Sigma Theta Tau International.

  16. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  17. Message Brokering Evaluation for Live Spacecraft Telemetry Monitoring, Recorded Playback, and Analysis

    Science.gov (United States)

    Lee, Daren; Pomerantz, Marc

    2015-01-01

    Live monitoring and post-flight analysis of telemetry data play a vital role in the development, diagnosis, and deployment of components of a space flight mission. Requirements for such a system include low end-to-end latency between data producers and visualizers, preserved ordering of messages, data stream archiving with random access playback, and real-time creation of derived data streams. We evaluate the RabbitMQ and Kafka message brokering systems, on how well they can enable a real-time, scalable, and robust telemetry framework that delivers telemetry data to multiple clients across heterogeneous platforms and flight projects. In our experiments using an actively developed robotic arm testbed, Kafka yielded a much higher message throughput rate and a consistent publishing rate across the number of topics and consumers. Consumer message rates were consistent across the number of topics but can exhibit bursty behavior with an increase in the contention for a single topic partition with increasing number of consumers.

  18. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  19. Improved Radio Emissivities for Satellites of Saturn

    Science.gov (United States)

    Ries, Paul

    2010-10-01

    The size distribution of TNOs is one of the most important constraints on the history of the early solar system. However, while TNOs are most detectable in the visible and near-IR wavelengths, their albedos vary substantially, thus creating uncertainty in their sizes when determined from reflected light alone. One way of determining the size distribution for a large number of TNOs is to measure their thermal emission, such as has been done with Spitzer and Herschel. However, in just a few year's time, ALMA will be coming online, and will be able to detect thermal emission from even more TNOs. However, thermal emission from Solar System bodies in the millimeter and submillimeter, such as that which ALMA will detect, is not that of a pure blackbody. Pluto, the Gallillean satellites, and Vesta have all shown deviations from unity emissivity. However, the cause of this variation is not well understood. Here we re-analayze data from the Cassini RADAR instrument at 2.5 cm. Cassini RADAR measured the brightness temperature and emissivity of several of Saturn's icy satellites, at least one of which, Phoebe, is thought to be a captured TNO. Previous emissivity determinations relied on relatively simple thermal models. We recalculate emissivities using thermal models based on recent data obtained with the CIRS (infrared) instrument on Cassini which account for, among other things, diurnal effects and the rotation during the RADAR observations. For one important result, we demonstrate that deviation from unity emissivity on Iapetus is due solely to surface depth effects at long wavelengths when RADAR data at 2.5 cm is combined with data obtained at 3.3 mm on the Green Bank Telescope (GBT). This research is supported by a grant under the NRAO Student Observing Support program.

  20. TETRA Backhauling via Satellite: Improving Call Setup Times and Saving Bandwidth

    Directory of Open Access Journals (Sweden)

    Anton Donner

    2014-01-01

    Full Text Available In disaster management scenarios with seriously damaged, not existing, or saturated communication infrastructures satellite communications can be an ideal means to provide connectivity with unaffected remote terrestrial trunked radio (TETRA core networks. However, the propagation delay imposed by the satellite link affects the signalling protocols. This paper discusses the suitability of using a satellite link for TETRA backhauling, introducing two different architectures. In order to cope with the signal delay of the satellite link, the paper proposes and analyzes a suitable solution based on the use of a performance enhancing proxy (PEP. Additionally, robust header compression (ROHC is discussed as suitable technology to transmit TETRA voice via IP-based satellite networks.

  1. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  2. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite

    Science.gov (United States)

    Jacobson, A. R.; Light, T. E. L.

    2012-02-01

    The lightning stroke called a "Narrow Bipolar Event", or NBE, is an intracloud discharge responsible for significant charge redistribution. The NBE occurs within 10-20 μs, and some associated process emits irregular bursts of intense radio noise, fading at shorter timescales, sporadically during the charge transfer. In previous reports, the NBE has been inferred to be quite different from other forms of lightning strokes, in two ways: First, the NBE has been inferred to be relatively dark (non-luminous) compared to other lightning strokes. Second, the NBE has been inferred to be isolated within the storm, usually not participating in flashes, but when it is in a flash, the NBE has been inferred to be the flash initiator. These two inferences have sufficiently stark implications for NBE physics that they should be subjected to further independent test, with improved statistics. We attempt such a test with both optical and radio data from the FORTE satellite, and with lightning-stroke data from the Los Alamos Sferic Array. We show rigorously that by the metric of triggering the PDD optical photometer aboard the FORTE satellite, NBE discharges are indeed less luminous than ordinary lightning. Referred to an effective isotropic emitter at the cloud top, NBE light output is inferred to be less than ~3 × 108 W. To address isolation of NBEs, we first expand the pool of geolocated intracloud radio recordings, by borrowing geolocations from either the same flash's or the same storm's other recordings. In this manner we generate a pool of ~2 × 105 unique and independent FORTE intracloud radio recordings, whose slant range from the satellite can be inferred. We then use this slant range to calculate the Effective Radiated Power (ERP) at the radio source, in the passband 26-49 MHz. Stratifying the radio recordings by ERP into eight bins, from a lowest bin (140 kW), we document a trend for the radio recordings to become more isolated in time as the ERP increases. The highest

  3. A porcine model of bladder outlet obstruction incorporating radio-telemetered cystometry.

    Science.gov (United States)

    Shaw, Matthew B; Herndon, Claude D; Cain, Mark P; Rink, Richard C; Kaefer, Martin

    2007-07-01

    To present a novel porcine model of bladder outlet obstruction (BOO) with a standardized bladder outlet resistance and real-time ambulatory radio-telemetered cystometry, as BOO is a common condition with many causes in both adults and children, with significant morbidity and occasional mortality, but attempts to model this condition in many animal models have the fundamental problem of standardising the degree of outlet resistance. BOO was created in nine castrated male pigs by dividing the mid-urethra; outflow was allowed through an implanted bladder drainage catheter containing a resistance valve, allowing urine to flow across the valve only when a set pressure differential was generated across the valve. An implantable radio-telemetered pressure sensor monitored the pressure within the bladder and abdominal cavity, and relayed this information to a remote computer. Four control pigs had an occluded bladder drainage catheter and pressure sensor placed, but were allowed to void normally through the native urethra. Intra-vesical pressure was monitored by telemetry, while the resistance valve was increased weekly, beginning with 2 cmH2O and ultimately reaching 10 cmH2O. The pigs were assessed using conventional cystometry under anaesthesia before death, and samples conserved in formalin for haematoxylin and eosin staining. The pigs had radio-telemetered cystometry for a median of 26 days. All telemetry implants functioned well for the duration of the experiment, but one pig developed a urethral fistula and was excluded from the study. With BOO the bladder mass index (bladder mass/body mass x 10 000) increased from 9.7 to 20 (P = 0.004), with a significant degree of hypertrophy of the detrusor smooth muscle bundles. Obstructed bladders were significantly less compliant than control bladders (8.3 vs 22.1 mL/cmH2O, P = 0.03). Telemetric cystometry showed that there was no statistically significance difference in mean bladder pressure between obstructed and control pigs

  4. Observation of solar radio bursts of type II and III at kilometer wavelengths from Prognoz-8 during STIP Interval XII

    International Nuclear Information System (INIS)

    Pinter, S.; Kecskemety, K.; Kudela, K.

    1982-04-01

    Type II and type III radio events were observed at low frequencies (2.16 MHz to 114 kHz) by the Prognoz-8 satellite during the period of STIP Interval XII in April and May, 1981, respectively. This review covers briefly a chronology of the sub-megahertz radio events, and where possible their association with both groundbased radio observations and solar flare. (author)

  5. Helios-1 Faraday rotation experiment - Results and interpretations of the solar occultations in 1975

    Science.gov (United States)

    Volland, H.; Bird, M. K.; Levy, G. S.; Stelzried, C. T.; Seidel, B. L.

    1977-01-01

    The first of two solar occultations of the satellite Helios-1 in 1975 occurred in April when the satellite's ray path approached the west limb of the sun to a minimum distance of 1.63 solar radii. The second occultation took place in late August/early September when Helios-1 was totally eclipsed by the photosphere. Measurements of the polarization angle of the linearly polarized telemetry signal were performed with automatic tracking polarimeters at the 64 m Goldstone Tracking Station in California and also at the 100 m radio telescope in Effelsberg, West Germany. The coronal Faraday rotation as a function of the solar offset for both occultations is shown in graphs. The theoretical significance of the observations is investigated.

  6. Low and Mid-Latitude Ionospheric Irregularities Studies Using TEC and Radio Scintillation Data from the CITRIS Radio Beacon Receiver in Low-Earth-Orbit

    Science.gov (United States)

    Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.

    2009-12-01

    Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35° inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.

  7. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  8. Implementing telemetry on new species in remote areas ...

    African Journals Online (AJOL)

    We provide recommendations for implementing telemetry studies on waterfowl on the basis of our experience in a tracking study conducted in three countries of sub-Saharan Africa. The aim of the study was to document movements by duck species identified as priority candidates for the potential spread of avian influenza.

  9. Telemetry-based mortality estimates of juvenile spot in two North Carolina estuarine creeks

    Science.gov (United States)

    Friedl, Sarah E.; Buckel, Jeffery A.; Hightower, Joseph E.; Scharf, Frederick S.; Pollock, Kenneth H.

    2013-01-01

    We estimated natural mortality rates (M) of age-1 Spot Leiostomus xanthurus by using a sonic telemetry approach. Sonic transmitters were surgically implanted into a total of 123 age-1 Spot in two North Carolina estuarine creeks during spring 2009 and 2010, and the fish were monitored by using a stationary acoustic receiver array and manual tracking. Fates of telemetered Spot were inferred based on telemetry information from estimated locations and swimming speeds. Potential competitors of age-1 Spot were assessed through simultaneous otter trawl sampling, while potential predators of Spot were collected using gill nets and trammel nets. The number of inferred natural mortalities was zero in 2009 (based on 29 telemetered Spot at risk) and four in 2010 (based on 52 fish at risk), with fish being at risk for up to about 70 d each year. Catches of potential competitors or predators did not differ between years, and age-1 Spot were not found in analyzed stomach contents of potential predators. Our estimated 30-d M of 0.03 (95% credible interval = 0.01–0.07) was lower than that predicted from weight-based (M = 0.07) and life-history-based (M = 0.06–0.36) estimates. Our field-based estimate of M for age-1 Spot in this estuarine system can assist in the assessment and management of Spot by allowing a direct comparison with M-values predicted from fish size or life history characteristics. The field telemetry and statistical analysis techniques developed here provide guidance for future telemetry studies of relatively small fish in open, dynamic habitat systems, as they highlight strengths and weaknesses of using a telemetry approach to estimate M.

  10. A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.; Miranda, R. F.

    1979-01-01

    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference.

  11. Dekametric and hectometric observations of Jupiter from the RAE-1 satellite

    Science.gov (United States)

    Desch, M. D.; Carr, T. D.

    1974-01-01

    Analysis of RAE-1 satellite data has revealed the presence of radio bursts from Jupiter in the frequency range from 4700 kHz to 450 kHz. Variations in the activity with respect to the planet's system III longitude are presented at seven frequencies. A merge of ground-based and satellite-acquired data indicates that the long-sought-for peak in Jupiter's low-frequency flux spectrum occurs at about 8 MHz.

  12. Heart rate, multiple body temperature, long-range and long-life telemetry system for free-ranging animals

    Science.gov (United States)

    Lund, G. F.; Westbrook, R. M.; Fryer, T. B.

    1980-01-01

    The design details and rationale for a versatile, long-range, long-life telemetry data acquisition system for heart rates and body temperatures at multiple locations from free-ranging animals are presented. The design comprises an implantable transmitter for short to medium range transmission, a receiver retransmitter collar to be worn for long-range transmission, and a signal conditioner interface circuit to assist in signal discrimination and demodulation of receiver or tape-recorded audio outputs. Implanted electrodes are used to obtain an ECG, from which R-wave characteristics are selected to trigger a short RF pulse. Pulses carrying heart rate information are interrupted periodically by a series of pulse interval modulated RF pulses conveying temperature information sensed at desired locations by thermistors. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as radio frequency interference. The implanted transmitter may be used alone for medium and short-range tracking, or with a receiver-transmitter collar that employs commercial tracking equipment for transmissions of up to 12 km. A system prototype has been tested on a dog.

  13. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    Science.gov (United States)

    Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.

  14. An integrated development framework for rapid development of platform-independent and reusable satellite on-board software

    Science.gov (United States)

    Ziemke, Claas; Kuwahara, Toshinori; Kossev, Ivan

    2011-09-01

    Even in the field of small satellites, the on-board data handling subsystem has become complex and powerful. With the introduction of powerful CPUs and the availability of considerable amounts of memory on-board a small satellite it has become possible to utilize the flexibility and power of contemporary platform-independent real-time operating systems. Especially the non-commercial sector such like university institutes and community projects such as AMSAT or SSETI are characterized by the inherent lack of financial as well as manpower resources. The opportunity to utilize such real-time operating systems will contribute significantly to achieve a successful mission. Nevertheless the on-board software of a satellite is much more than just an operating system. It has to fulfill a multitude of functional requirements such as: Telecommand interpretation and execution, execution of control loops, generation of telemetry data and frames, failure detection isolation and recovery, the communication with peripherals and so on. Most of the aforementioned tasks are of generic nature and have to be conducted on any satellite with only minor modifications. A general set of functional requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A standard "Telemetry and telecommand packet utilization". This standard not only defines the communication protocol of the satellite-ground link but also defines a set of so called services which have to be available on-board of every compliant satellite and which are of generic nature. In this paper, a platform-independent and reusable framework is described which is implementing not only the ECSS-E-70-41A standard but also functionalities for interprocess communication, scheduling and a multitude of tasks commonly performed on-board of a satellite. By making use of the capabilities of the high-level programming language C/C++, the powerful open source library BOOST, the real-time operating system RTEMS and

  15. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  16. The Breakthrough Listen Search for Intelligent Life: Radio Frequency Interference in the Green Bank Telescope

    Science.gov (United States)

    Dana, Ryan

    2018-01-01

    In the search for extra terrestrial intelligence, the vast majority of our “signals of interest,” are simply satellite radio frequency interference. The goal to my research, therefore, was to accurately predict the exact locations of satellites in our sky to analyze specific satellites causing the interference as well as potentially predict when satellites will cross in the way of our beams so that we can further optimize our scripts and get more usable data.I have built an algorithm that plots the exact location in altitude and azimuth of any grouping of satellites that you want in the sky from any position on earth in latitude, longitude, and elevation. From there, you can input a specific right ascension and declination of the location you are trying to track in the sky with a telescope. Using these inputs, we can calculate the angular and positional distance of certain satellites to our beam to further analyze satellite radio frequency interference.The process begins by importing a list of Two Line Element information that the algorithm reads in. Two Line Elements are how Satellites are organized and are updated frequently. They give a variety of information ranging from the Satellite ID to its Mean Motion or anomaly. From there, the code breaks up the information given by these elements to predict their location. The algorithm can also plot in 3D coordinates around an earthlike sphere to conceptualize the route that each Satellite has taken.The code has been used in a variety of ways but most notably to identify satellites interfering with the beam for Arecibo’s Ross 128 Candidate signal. From here, the code will be the backbone to calculating drift rates, Doppler shifts and intensity of certain satellites and why our team consistently receives estranged satellite signals of interest. Furthermore, in the case of a serious candidate signal in the near future, it will be important to analyze satellites interfering in the beam.

  17. Apple - Indian experimental geostationary communication satellite

    Science.gov (United States)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  18. An explosive acoustic telemetry system for seabed penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  19. Data Stream Processing Study in a Multichannel Telemetry Data Registering System

    Directory of Open Access Journals (Sweden)

    I. M. Sidyakin

    2015-01-01

    Full Text Available The paper presents the results of research that is aimed to improve the reliability of transmission of telemetry information (TMI through a communication channel with noise from the object of telemeasurements to the telemetry system for collecting and processing data. It considers the case where the quality of received information changes over time, due to movement of the object relative to the receiving station, or other factors that cause changes in the characteristics of noise in the channel, up to the total loss due to some temporary sites. To improve the reliability of transmission and ensure continuous communication with the object, it is proposed to use a multi-channel system to record the TMI. This system consists of several telemetry stations, which simultaneously register data stream transmitted from the telemetry object. The multichannel system generates a single stream of TMI for the user at the output. The stream comprises the most reliable pieces of information, being received at all inputs of the system.The paper investigates the task of constructing a multi-channel registration scheme for telemetry information (TMI to provide a simultaneous reception of the telemeasurement data by multiple telemetry stations and to form a single TMI stream containing the most reliable pieces of received data on the basis of quality analysis of information being received.In a multichannel registering system of TMI there are three main factors affecting the quality of the output of a single stream of information: 1 quality of the method used for protecting against errors during transmission over the communication channel with noise; 2 efficiency of the synchronization process of telemetry frames in the received flow of information; 3 efficiency of the applied criteria to form a single output stream from multiple input streams coming from different stations in the discussed multichannel registering system of TMI.In the paper, in practical

  20. A Comparison of Methods for Player Clustering via Behavioral Telemetry

    DEFF Research Database (Denmark)

    Drachen, Anders; Thurau, C.; Sifa, R.

    2013-01-01

    patterns in the behavioral data, and developing profiles that are actionable to game developers. There are numerous methods for unsupervised clustering of user behavior, e.g. k-means/c-means, Nonnegative Matrix Factorization, or Principal Component Analysis. Although all yield behavior categorizations......, interpretation of the resulting categories in terms of actual play behavior can be difficult if not impossible. In this paper, a range of unsupervised techniques are applied together with Archetypal Analysis to develop behavioral clusters from playtime data of 70,014 World of Warcraft players, covering a five......The analysis of user behavior in digital games has been aided by the introduction of user telemetry in game development, which provides unprecedented access to quantitative data on user behavior from the installed game clients of the entire population of players. Player behavior telemetry datasets...

  1. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  2. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    Science.gov (United States)

    2015-03-01

    Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK-13-C-0026 ( PAQ ...Report: Preamble assisted equalization for aeronautical telemetry ( PAQ ),‖ Brigham Young University, Technical Report, 2014, submitted to the Spectrum

  3. Causal relationships between solar proton events and single event upsets for communication satellites

    Science.gov (United States)

    Lohmeyer, W. Q.; Cahoy, K.; Liu, Shiyang

    In this work, we analyze a historical archive of single event upsets (SEUs) maintained by Inmarsat, one of the world's leading providers of global mobile satellite communications services. Inmarsat has operated its geostationary communication satellites and collected extensive satellite anomaly and telemetry data since 1990. Over the course of the past twenty years, the satellites have experienced more than 226 single event upsets (SEUs), a catch-all term for anomalies that occur in a satellite's electronics such as bit-flips, trips in power supplies, and memory changes in attitude control systems. While SEUs are seemingly random and difficult to predict, we correlate their occurrences to space weather phenomena, and specifically show correlations between SEUs and solar proton events (SPEs). SPEs are highly energetic protons that originate from solar coronal mass ejections (CMEs). It is thought that when these particles impact geostationary (GEO) satellites they can cause SEUs as well as solar array degradation. We calculate the associated statistical correlations that each SEU occurs within one day, one week, two weeks, and one month of 10 MeV SPEs between 10 - 10,000 particle flux units (pfu). However, we find that SPEs are most prevalent at solar maximum and that the SEUs on Inmarsat's satellites occur out of phase with the solar maximum. Ultimately, this suggests that SPEs are not the primary cause of the Inmarsat SEUs. A better understanding of the causal relationship between SPEs and SEUs will help the satellite communications industry develop component and operational space weather mitigation techniques as well as help the space weather community to refine radiation models.

  4. A Systematic Approach to Error Free Telemetry

    Science.gov (United States)

    2017-06-28

    FORCE BASE , CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE 4 1 2 T W This Technical Information Memorandum (412TW-TIM-17-03, A...INTRODUCTION The airborne telemetry channel between the test article and ground receiving station introduces impairments that distort the received signal...the airframe under certain airplane-to-ground station geometries can exist should only one transmit antenna be used. Conversely, using two transmit

  5. Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry

    KAUST Repository

    Braun, Camrin D.

    2015-10-27

    Populations of mobulid rays are declining globally through a combination of directed fisheries and indirect anthropogenic threats. Understanding the movement ecology of these rays remains an important priority for devising appropriate conservation measures throughout the world’s oceans. We sought to determine manta movements across several temporal and spatial scales with a focus on quantifying site fidelity and seasonality in the northern Farasan Banks, Red Sea. We fitted manta rays with acoustic transmitters (n = 9) and pop-up satellite archival transmitting (PSAT) tags (n = 9), including four with GPS capability (Fastloc), during spring 2011 and 2012. We deployed an extensive array of acoustic receivers (n = 67) to record movements of tagged mantas in the study area. All acoustically tagged individuals traveled frequently among high-use receiver locations and reefs and demonstrated fidelity to specific sites within the array. Estimated and realized satellite tag data indicated regional movements <200 km from the tagging location, largely coastal residency, and high surface occupation. GPS-tagged individuals regularly moved within the coastal reef matrix up to ~70 km to the south but continued to return to the tagging area near the high-occupancy sites identified in the acoustic array. We also tested the accuracy of several geolocation models to determine the best approach to analyze our light-based satellite tag data. We documented significant errors in light-based movement estimates that should be considered when interpreting tracks derived from light-level geolocation, especially for animals with restricted movements through a homogenous temperature field. Despite some error in satellite tag positions, combining results from PSAT and acoustic tags in this study yielded a comprehensive representation of manta spatial ecology across several scales, and such approaches will, in the future, inform the design of appropriate management strategies for manta

  6. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  7. Bidirectional Telemetry Controller for Neuroprosthetic Devices

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor

    2010-01-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010

  8. Bidirectional telemetry controller for neuroprosthetic devices.

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B; Han, Martin; Pikov, Victor

    2010-02-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s , allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes approximately 420 mW and operates without recharge for 8 h . It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 mus after the end of the stimulus pulse applied in the cochlear nucleus.

  9. Techniques for Fault Detection and Visualization of Telemetry Dependence Relationships for Root Cause Fault Analysis in Complex Systems

    Science.gov (United States)

    Guy, Nathaniel

    This thesis explores new ways of looking at telemetry data, from a time-correlative perspective, in order to see patterns within the data that may suggest root causes of system faults. It was thought initially that visualizing an animated Pearson Correlation Coefficient (PCC) matrix for telemetry channels would be sufficient to give new understanding; however, testing showed that the high dimensionality and inability to easily look at change over time in this approach impeded understanding. Different correlative techniques, combined with the time curve visualization proposed by Bach et al (2015), were adapted to visualize both raw telemetry and telemetry data correlations. Review revealed that these new techniques give insights into the data, and an intuitive grasp of data families, which show the effectiveness of this approach for enhancing system understanding and assisting with root cause analysis for complex aerospace systems.

  10. Broadband and scalable mobile satellite communication system for future access networks

    Science.gov (United States)

    Ohata, Kohei; Kobayashi, Kiyoshi; Nakahira, Katsuya; Ueba, Masazumi

    2005-07-01

    Due to the recent market trends, NTT has begun research into next generation satellite communication systems, such as broadband and scalable mobile communication systems. One service application objective is to provide broadband Internet access for transportation systems, temporal broadband access networks and telemetries to remote areas. While these are niche markets the total amount of capacity should be significant. We set a 1-Gb/s total transmission capacity as our goal. Our key concern is the system cost, which means that the system should be unified system with diversified services and not tailored for each application. As satellites account for a large portion of the total system cost, we set the target satellite size as a small, one-ton class dry mass with a 2-kW class payload power. In addition to the payload power and weight, the mobile satellite's frequency band is extremely limited. Therefore, we need to develop innovative technologies that will reduce the weight and maximize spectrum and power efficiency. Another challenge is the need for the system to handle up to 50 dB and a wide data rate range of other applications. This paper describes the key communication system technologies; the frequency reuse strategy, multiplexing scheme, resource allocation scheme, and QoS management algorithm to ensure excellent spectrum efficiency and support a variety of services and quality requirements in the mobile environment.

  11. Untitled

    Indian Academy of Sciences (India)

    satellite telemetry system and the data decoded and printed out using an on-line. PDP-11 computer. The data compared very well with the bench test data. 4.5. The complex test. In this test all the subsystems of the satellite were integrated and the data taken through satellite telemetry when all the subsystems were powered.

  12. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  13. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  14. The 1992 World Administrative Radio Conference: Technology and Policy Implications

    Science.gov (United States)

    1993-05-01

    As the 20th century draws to a close, new radio technologies and services are poised to change the ways we communicate. Radio waves already make possible a wide range of services considered commonplace--AM and FM radio broadcasting, television, cellular telephones, remote garage-door openers, and baby monitors. Advances in radio technology are giving birth to even more new products and services, including pocket-sized telephones that may allow people to make and receive calls anywhere in the world, high-definition televisions (HDTV) with superior quality pictures and sound, and static-free digital radios. The 1992 World Administrative Radio Conference (WARC-92) authorized frequencies for many of these new radio communication services, and granted additional frequencies for many existing services, including international broadcasting, satellite-based mobile communications, and communications in space. The effects of these changes will be felt well into the 21st century as countries around the world develop and deploy new communications systems to serve the needs of consumers, businesses, and governments. For the United States, the decisions made at the conference will critically affect how we develop new radio technologies and applications, how competitive this country will be in radio communications equipment and services, and how effectively the United States can exercise its role as a leader in world radio communication policymaking. This study of the outcomes and implications of WARC-92 was requested by the House Committee on Energy and Commerce and the Senate Committee on Commerce, Science, and Transportation. OTA was asked to evaluate the success of U.S. proposals at the conference, discuss the implications of the decisions made for U.S. technology and policy development, and identify options for improving U.S. participation in future world radio communication conferences.

  15. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    Science.gov (United States)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  16. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-09-01

    Full Text Available A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC, a microcontroller unit (MCU, a graphical user interface (GUI, and a radio frequency (RF transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA. The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment, a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

  17. Acoustic telemetry reveals cryptic residency of whale sharks

    KAUST Repository

    Cagua, Edgar F.

    2015-04-01

    Althoughwhale sharks (Rhincodon typus) have beendocumentedtomove thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long \\'off-seasons\\' at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated yearround residency of R. typus. The sharks use a different habitat in the offseason, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks\\' visibility, giving the false impression that they have left the area.We demonstrate, for the first timeto our knowledge, year-roundresidencyofunprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. DSP-Enabled Radio Astronomy: Towards IIIZW35 Reconquest

    Directory of Open Access Journals (Sweden)

    Alain Lecacheux

    2005-09-01

    Full Text Available In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio frequency interferences (RFI. The impact of these RFIs on power spectral measurement ranges from total saturation to subtle distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875 kHz to 14 MHz, high spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency blanking with a robust threshold detector. This receiver has been used to reobserve the IIIWZ35 astronomical source which has been scrambled by a strong satellite RFI for several years.

  19. Telemetry with an Optical Fiber Revisited: An Alternative Strategy

    Science.gov (United States)

    Kraftmakher, Yaakov

    2014-01-01

    With a new data-acquisition system developed by PASCO scientific, an experiment on telemetry with an optical fiber can be made easier and more accurate. For this aim, an alternative strategy of the remote temperature measurements is proposed: the frequency of light pulses transmitted via the light guide numerically equals the temperature using…

  20. Habitat use and movements of breeding male Boreal Owls (Aegolius funereus) in northeast Minnesota as determined by radio telemetry

    Science.gov (United States)

    William H. Lane; David E. Andersen; Thomas H. Nicholls

    1997-01-01

    To determine habitat use and movements of male Boreal Owls (Aegolius funereus) in northeast Minnesota, we monitored 10 radio-equipped owls from 1990-1992. We used mist nets, bal-chartris, and the taped playback recording of the primary song of the male Boreal Owl to trap territorial male owls during the springtime breeding season.

  1. Ocean Surface Topography Mission (OSTM) /Jason-2: Telemetry (NODC Accession 0044986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the data descriptions for the OSTM/Jason-2 Telemetry data, which is served through the NOAA/NESDIS Comprehensive Large Array-data Stewardship...

  2. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility

    Science.gov (United States)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  3. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  4. Earth-satellite propagation above GHz: Papers from the 1972 spring URSI session on experiments utilizing the ATS-5 satellite

    Science.gov (United States)

    Ippolito, L. J. (Compiler)

    1972-01-01

    Papers are reported from the Special Session on Earth-Satellite Propagation Above 10 GHz, presented at The 1972 Spring Meeting of the United States National Committee, International Union of Radio Science, April 1972, Washington, D. C. This session was devoted to propagation measurements associated with the Applications Technology Satellite (ATS-5), which provided the first operational earth-space links at frequencies above 15 GHz. A comprehensive summary is presented of the major results of the ATS-5 experiment measurements and related radiometric, radar and meteorological studies. The papers are organized around seven selected areas of interest, with the results of the various investigators combined into a single paper presented by a principal author for that area. A comprehensive report is provided on the results of the ATS-5 satellite to earth transmissions. A complete list of published reports and presentations related to the ATS-5 Millimeter Wave Experiment is included.

  5. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  6. Instrumentation and Baseband Telemetry for RLV-TD HEX Mission

    Science.gov (United States)

    Jose, Smitha; Varghese, Bibin; Chauhan, Akshay; Elizabeth, Sheba; Sreelal, S.; Sreekumar, S.; Vinod, P.; Mookiah, T.

    2017-12-01

    In this work, the salient requirements and features of the baseband telemetry system used in Reusable Launch Vehicle—Technology Demonstrator Hypersonic Experiment mission are discussed. The configuration of the overall system, subsystem components and their features are described in brief. The unique requirements of the telemetry system, when compared to that in a conventional launch vehicle, by way of a large number of temperature and strain measurements that enable the assessment of structural integrity and mission performance in re-entry mission, are dealt with, along with the system configuration to cater to these. Subsequently, two new units have been described—Strain Data Acquisition Unit and Multiplexed Data Acquisition Unit that were inducted specifically to cater to strain measurements using strain gauges and temperature measurements using thermocouples respectively. The optimized subsystem configurations for these units are described and their field performance during flight is analyzed. This work further discusses a novel method of data recovery for those measurements affected by the baseline offset shift caused by the presence of a chassis voltage and poor isolation of sensor to chassis.

  7. S-band multiple-access interference study for advanced tracking and data relay satellite systems

    Science.gov (United States)

    Peng, Wei-Chung; Yang, Chau-Chin

    1990-01-01

    The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.

  8. Evaluation of three telemetry transmitter attachment methods for female silver-phase American eels ( Anguilla rostrata Lesueur)

    DEFF Research Database (Denmark)

    Cottrill, R.A.; Økland, F.; Aarestrup, Kim

    2006-01-01

    Declines in juvenile American eel (Anguilla rostrata Lesueur) abundance have led to concern about the impacts of anthropogenic structures on eel migration patterns. Telemetry provides an insightful tool for examining the movements of eels around these structures. Although there have been a number...... of studies investigating movements of Anguillid eels, using a variety of transmitter attachment techniques, there are few published evaluations of the effects of various tag attachment procedures. Hence, the effects of three telemetry attachment procedures were evaluated for female silver phase American eels...... of silver-phase American eels is not affected by the presence of telemetry transmitters or the method of transmitter attachment, even though swim performance decreases. However, transmitter retention rates varied considerably after the 12-week experimental period. Three gastric tags were regurgitated...

  9. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Science.gov (United States)

    2010-10-01

    ... devices operating in the 608-614 MHz band. For a wireless medical telemetry device operating within the... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band. 95.1119 Section 95.1119 Telecommunication FEDERAL...

  10. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  11. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    Science.gov (United States)

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  12. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  13. Radio frequency transistors principles and practical applications

    CERN Document Server

    Dye, Norm

    1993-01-01

    Cellular telephones, satellite communications and radar systems are adding to the increasing demand for radio frequency circuit design principles. At the same time, several generations of digitally-oriented graduates are missing the essential RF skills. This book contains a wealth of valuable design information difficult to find elsewhere.It's a complete 'tool kit' for successful RF circuit design. Written by experienced RF design engineers from Motorola's semiconductors product section.Book covers design examples of circuits (e.g. amplifiers; oscillators; switches; pulsed power; modular syst

  14. Some measurements of total electron content made with the ATS-6 radio beacon

    International Nuclear Information System (INIS)

    Davies, K.; Degenhardt, W.; Hartmann, G.K.

    1978-01-01

    The paper deals with some measurements made with the radio beacon on board the ATS-6 satellite in the American and European sectors. Measurements of the slant electron content, the Faraday content, and the plasmaspheric (or residual) content, made under different geographic and geomagnetic conditions, are discussed and compared

  15. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Science.gov (United States)

    2010-10-01

    ... wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the critical... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121...

  16. Stable Isotope (δ13C, δ15N, δ34S) Analysis and Satellite Telemetry Depict the Complexity of Gray Wolf (Canis lupus) Diets in Southwest Alaska

    Science.gov (United States)

    Stanek, A.; Watts, D. E.; Cohn, B. R.; Spencer, P.; Mangipane, B.; Welker, J. M.

    2010-12-01

    Throughout Alaska, gray wolves (Canis lupus) are a top predator of large ungulates. While they primarily rely on ungulates such as moose (Alces alces) and caribou (Rangifer tarandus) as food, they are opportunistic and use alternative resources. The variation and supplemental protein sources in wolf diet has not been studied extensively on live animals currently using the landscape. With large seasonal influxes of Pacific salmon (Oncorhynchus sp.) into Alaska, terrestrial carnivore use of marine species is of particular interest. Using stable isotope (δ13C, δ15N, δ34S) analysis of wolf guard hair and blood, this study aims to determine the proportion of marine derived nutrients (MDN) in the diet of wolf packs within and surrounding Lake Clark National Park and Preserve and Alaska Peninsula and Becharof National Wildlife Refuges in Southwest Alaska. Satellite telemetry from the animals sampled facilitates quantification of landscape use patterns in correspondence with isotopic traits. Wolf pack territories within and surrounding the Lake Clark region appear to vary in spatial extent and in availability of MDN, such as salmon. Initial analysis shows that two packs with smaller home ranges, centrally located around areas with greater salmon availability, have enriched δ15N values compared to packs that have larger home ranges not centralized around salmon spawning waters. This pattern of isotopic enrichment is found in red blood cells, blood serum and hair, representing diets over different time scales. The enrichment in both blood and hair indicates a sustained use of MDN over the previous six to nine months. In the Lake Clark region, simple mixing model estimates suggest that up to 30% of wolf pack diets may be from marine sources. In contrast, packs with larger home ranges and less access to salmon have stable isotope values representative of a terrestrial diet.

  17. Contrast in low-cost operational concepts for orbiting satellites

    Science.gov (United States)

    Walyus, Keith D.; Reis, James; Bradley, Arthur J.

    2002-12-01

    Older spacecraft missions, especially those in low Earth orbit with telemetry intensive requirements, required round-the-clock control center staffing. The state of technology relied on control center personnel to continually examine data, make decisions, resolve anomalies, and file reports. Hubble Space Telescope (HST) is a prime example of this description. Technological advancements in hardware and software over the last decade have yielded increases in productivity and operational efficiency, which result in lower cost. The re-engineering effort of HST, which has recently concluded, utilized emerging technology to reduce cost and increase productivity. New missions, of which NASA's Transition Region and Coronal Explorer Satellite (TRACE) is an example, have benefited from recent technological advancements and are more cost-effective than when HST was first launched. During its launch (1998) and early orbit phase, the TRACE Flight Operations Team (FOT) employed continually staffed operations. Yet once the mission entered its nominal phase, the FOT reduced their staffing to standard weekday business hours. Operations were still conducted at night and during the weekends, but these operations occurred autonomously without compromising their high standards for data collections. For the HST, which launched in 1990, reduced cost operations will employ a different operational concept, when the spacecraft enters its low-cost phase after its final servicing mission in 2004. Primarily due to the spacecraft"s design, the HST Project has determined that single-shift operations will introduce unacceptable risks for the amount of dollars saved. More importantly, significant cost-savings can still be achieved by changing the operational concept for the FOT, while still maintaining round-the-clock staffing. It"s important to note that the low-cost solutions obtained for one satellite may not be applicable for other satellites. This paper will contrast the differences between

  18. A search for fast radio bursts associated with gamma-ray bursts

    International Nuclear Information System (INIS)

    Palaniswamy, Divya; Wayth, Randall B.; Trott, Cathryn M.; Tingay, Steven J.; Reynolds, Cormac; McCallum, Jamie N.

    2014-01-01

    The detection of seven fast radio bursts (FRBs) has recently been reported. FRBs are short duration (∼1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within ∼140 s. The data were searched for pulses up to 5000 pc cm –3 in dispersion measure and pulse widths ranging from 640 μs to 25.60 ms. We did not detect any events ≥6σ. An in depth statistical analysis of our data shows that events detected above 5σ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.

  19. Acoustic telemetry reveals cryptic residency of whale sharks.

    Science.gov (United States)

    Cagua, E Fernando; Cochran, Jesse E M; Rohner, Christoph A; Prebble, Clare E M; Sinclair-Taylor, Tane H; Pierce, Simon J; Berumen, Michael L

    2015-04-01

    Although whale sharks (Rhincodon typus) have been documented to move thousands of kilometres, they are most frequently observed at a few predictable seasonal aggregation sites. The absence of sharks at the surface during visual surveys has led to the assumption that sharks disperse to places unknown during the long 'off-seasons' at most of these locations. Here we compare 2 years of R. typus visual sighting records from Mafia Island in Tanzania to concurrent acoustic telemetry of tagged individuals. Sightings revealed a clear seasonal pattern with a peak between October and February and no sharks observed at other times. By contrast, acoustic telemetry demonstrated year-round residency of R. typus. The sharks use a different habitat in the off-season, swimming deeper and further away from shore, presumably in response to prey distributions. This behavioural change reduces the sharks' visibility, giving the false impression that they have left the area. We demonstrate, for the first time to our knowledge, year-round residency of unprovisioned, individual R. typus at an aggregation site, and highlight the importance of using multiple techniques to study the movement ecology of marine megafauna. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Initial Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    Science.gov (United States)

    MacLeond, Todd C.; Sims, W. Herb; Varnavas,Kosta A.; Ho, Fat D.

    2011-01-01

    The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite that launched in November 2010. The memory device being tested is a commercial Ramtron Inc. 512K memory device. The circuit was designed into the satellite avionics and is not used to control the satellite. The test consists of writing and reading data with the ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is sent to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test is one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The initial data from the test is presented. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.

  1. 47 CFR 95.601 - Basis and purpose.

    Science.gov (United States)

    2010-10-01

    ... Radio Service)—subpart C, the CB (Citizens Band Radio Service)—subpart D, the Low Power Radio Service (LPRS)—subpart G, the Wireless Medical Telemetry Service (WMTS)—subpart H, the Medical Device...

  2. Designing marine fishery reserves using passive acoustic telemetry

    OpenAIRE

    Glazer, Robert A.; Delgado, Gabriel A.

    2006-01-01

    Marine Fishery Reserves (MFRs) are being adopted, in part, as a strategy to replenish depleted fish stocks and serve as a source for recruits to adjacent fisheries. By necessity, their design must consider the biological parameters of the species under consideration to ensure that the spawning stock is conserved while simultaneously providing propagules for dispersal. We describe how acoustic telemetry can be employed to design effective MFRs by elucidating important life-history parameters o...

  3. Radiation from ingested wireless devices in bio-medical telemetry bands

    OpenAIRE

    Chirwa, L.C.; Roy, S.; Cumming, D.R.S.

    2003-01-01

    The performance of wireless devices, using electrically small antennae, in the human intestine is investigated using the finite difference time domain method in recommended biomedical device telemetry bands. The radiation field intensity was found to depend on position but more strongly on frequency, with a transmission peak at 650 MHz.

  4. Hour time-scale QPOs in the X-ray and radio emission of LS I +61°303

    Science.gov (United States)

    Nösel, S.; Sharma, R.; Massi, M.; Cimò, G.; Chernyakova, M.

    2018-05-01

    LS I +61°303 is an X-ray binary with a radio outburst every ˜27 d. Previous studies of the stellar system revealed radio microflares superimposed on the large radio outburst. We present here new radio observations of LS I +61°303 at 2.2 GHz with the Westerbork Synthesis Radio Telescope (WSRT). Using various timing analysis methods, we find significant quasi-periodic oscillations (QPOs) of 55 min stable over the duration of 4 d. We also use archival data obtained from the Suzaku satellite at X-ray wavelengths. We report here for the first time significant X-ray QPOs of about 2 h present over the time span of 21 h. We compare our results with the previously reported QPO observations and we conclude that the QPOs seem to be associated with the radio outburst, independent of the amplitude of the outburst. Finally, the different QPO time-scales are discussed in the context of magnetic reconnection.

  5. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  6. Fast Radio Bursts with Extended Gamma-Ray Emission?

    International Nuclear Information System (INIS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-01-01

    We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emission of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  7. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    Science.gov (United States)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  8. Florida Atlantic Coast Telemetry (FACT) Array: A Working Partnership

    Science.gov (United States)

    Scheidt, Douglas; Ault, Erick; Ellis, Robert D.; Gruber, Samuel; Iafrate, Joseph; Kalinowsky, Chris; Kessel, Steven; Reyier, Eric; Snyder, David; Watwood, Stephanie; hide

    2015-01-01

    The Florida Atlantic Coast Telemetry (FACT) Array is a collaborative partnership of researchers from 24 different organizations using passive acoustic telemetry to document site fidelity, habitat preferences, seasonal migration patterns, and reproductive strategies of valuable sportfish, sharks, and marine turtles. FACT partners have found that by bundling resources, they can leverage a smaller investment to track highly mobile animals beyond a study area typically restrained in scale by funds and manpower. FACT is guided by several simple rules: use of the same type of equipment, locate receivers in areas that are beneficial to all researchers when feasible, maintain strong scientific ethics by recognizing that detection data on any receiver belongs to the tag owner, do not use other members detection data without permission and acknowledge FACT in publications. Partners have access to a network of 480 receivers deployed along a continuum of habitats from freshwater rivers to offshore reefs and covers 1100 km of coastline from the Dry Tortugas, Florida to South Carolina and extends to the Bahamas. Presently, 49 species, (25 covered by Fisheries Management Plans and five covered by the Endangered Species Act) have been tagged with 2736 tags in which 1767 tags are still active.

  9. Tracking wildlife by satellite: Current systems and performance

    Science.gov (United States)

    Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.

    1990-01-01

    Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.

  10. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  11. Restoration and Reexamination of Apollo Lunar Dust Detector Data from Original Telemetry Files

    Science.gov (United States)

    McBride, M. J.; Williams, David R.; Hills, H. Kent

    2012-01-01

    We are recovering the original telemetry (Figure I) from the Apollo Dust, Thermal, Radiation Environment Monitor (DTREM) experiment, more commonly known as the Dust Detector, and producing full time resolution (54 second) data sets for release through the Planetary Data System (PDS). The primary objective of the experiment was to evaluate the effect of dust deposition, temperature, and radiation damage on solar cells on the lunar surface. The monitor was a small box consisting of three solar cells and thermistors mounted on the ALSEP (Apollo Lunar Surface Experiments Package) central station. The Dust Detector was carried on Apollo's 11, 12, 14 and 15. The Apollo 11 DTREM was powered by solar cells and only operated for a few months as planned. The Apollo 12, 14, and 15 detectors operated for 5 to 7 years, returning data every 54 seconds, consisting of voltage outputs from the three solar cells and temperatures measured by the three thermistors. The telemetry was received at ground stations and held on the Apollo Housekeeping (known as "Word 33") tapes. made available to the National Space Science Data Center (NSSDC) by Yosio Nakamura (University of Texas Institute for Geophysics). We have converted selected parts of the telemetry into uncalibrated and calibrated output voltages and temperatures.

  12. Communication strategies and timeliness of response to life critical telemetry alarms.

    Science.gov (United States)

    Bonzheim, Kimberly A; Gebara, Rani I; O'Hare, Bridget M; Ellis, R Darin; Brand, Monique A; Balar, Salil D; Stockman, Rita; Sciberras, Annette M; Haines, David E

    2011-05-01

    A centralized electrocardiogram telemetry monitoring system (TMS) facilitates early identification of critical arrhythmias and acute medical decompensation. Timely intervention can only be performed if abnormalities are communicated rapidly to the direct caregiver. The study objectives were to measure effectiveness of bi-directional voice communication badges versus one-way alphanumeric pagers for telemetry alarm response and communication loop closure. A sequential observational pilot study of nursing response to TMS alarms compared communication technologies on four nursing units in a 1,061 bed tertiary care hospital with 264 TMS channels of telemetry over a 2-year period. Subsequently, the communication technologies were compared in a randomized fashion on a 68-bed progressive cardiac care unit. Caregivers were blinded to the protocol. All alarm responses were recorded during two periods using either pagers or voice communication devices. Alarm response time and closure of the communication loop were analyzed in a blinded fashion. The direct communication functionality of the badge significantly shortened the time to first contact, time to completion, and rate of closure of the communication loop in both the pilot and study phases. Median time to first contact with the communication badge was 0.5  min, compared to 1.6  min with pager communication (p Communication loop closure was achieved in 100% of clinical alarms using the badge versus 19% with the pager (p Communication badge technology reduced alarm time to first contact and completion as well as facilitated communication loop closures. Immediate two-way communication significantly impacted practice, alarm management, and resulted in faster bedside care.

  13. Radio beacon synchronization in coherent receivers for nanosatellite applications

    OpenAIRE

    Camps Llorente, Daniel; Piera González, Joan

    2017-01-01

    This document presents a study about the Radio beacon synchronization in coherent receivers for nanosatellite applications. First of all, it is studied the history of these nanosatellites and their actual role in the Aerospace industry, considering their low cost compared to bigger satellites and also because of their availability for all types of companies and people (as universities). These nanosatellites have a wide range of applications, and lots of them depend on the imagination of the u...

  14. Polarization Characteristics Inferred From the Radio Receiver Instrument on the Enhanced Polar Outflow Probe

    Science.gov (United States)

    Danskin, Donald W.; Hussey, Glenn C.; Gillies, Robert G.; James, H. Gordon; Fairbairn, David T.; Yau, Andrew W.

    2018-02-01

    The Radio Receiver Instrument (RRI) on the CAScade, Smallsat, and Ionospheric Polar Explorer/enhanced Polar Outflow Probe (CASSIOPE/e-POP) satellite was used to receive continuous wave and binary phase shift keyed transmissions from a high-frequency transmitter located in Ottawa, ON, Canada during April 2016 to investigate how the ionosphere affects the polarization characteristics of transionospheric high-frequency radio waves. The spacecraft orientation was continuously slewed to maintain the dipole orientation in a plane perpendicular to the direction toward the transmitter, enabling the first in situ planar polarization determination for continuous wave and binary phase shift keyed modulated radio waves from space at times when the wave frequency is at least 1.58 times the plasma frequency. The Stokes parameters and polarization characteristics were derived from the measured data and interpreted using an existing ray tracing model. For the southern part of the passes, the power was observed to oscillate between the two dipoles of RRI, which was attributed to Faraday rotation of the radio waves. For the first time, a reversal in the rate of change of orientation angle was observed where the minimum in modeled Faraday rotation occurred. The reversal point was poleward of the point of closest approach between the satellite and transmitter; this was explained by the variations of total electron content and component of magnetic field along the direction of propagation. The received signals show both quasi-longitudinal (QL) and quasi-transverse characteristics. South of the transmitter the QL regime is dominant. Around the reversal point, a combination of QL and quasi-transverse nature was observed.

  15. An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies

    Science.gov (United States)

    Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi

    2018-05-01

    Using large samples containing nearly 2300 active galaxies of low radio luminosity (1.4 GHz luminosity between 2 × 1023 and 3 × 1025 W Hz‑1, essentially low-excitation radio galaxies) at z ≲ 0.3, we present a self-contained analysis of the dependence of the nuclear radio activity on both intrinsic and extrinsic properties of galaxies, with the goal of identifying the best predictors of the nuclear radio activity. While confirming the established result that stellar mass must play a key role on the triggering of radio activities, we point out that for the central, most massive galaxies, the radio activity also shows a strong dependence on halo mass, which is not likely due to enhanced interaction rates in denser regions in massive, cluster-scale halos. We thus further investigate the effects of various properties of the intracluster medium (ICM) in massive clusters on the radio activities, employing two standard statistical tools, principle component analysis and logistic regression. It is found that ICM entropy, local cooling time, and pressure are the most effective in predicting the radio activity, pointing to the accretion of gas cooling out of a hot atmosphere to be the likely origin in triggering such activities in galaxies residing in massive dark matter halos. Our analysis framework enables us to logically discern the mechanisms responsible for the radio activity separately for central and satellite galaxies.

  16. Basking Shark (Cetorhinus maximus Movements in the Eastern North Pacific Determined Using Satellite Telemetry

    Directory of Open Access Journals (Sweden)

    Heidi Dewar

    2018-05-01

    Full Text Available To fill data gaps on movements, behaviors and habitat use, both near- and offshore, two programs were initiated to deploy satellite tags on basking sharks off the coast of California. Basking sharks are large filter-feeding sharks that are second in size only to whale sharks. Similar to many megafauna populations, available data suggest that populations are below historic levels. In the eastern North Pacific (ENP Ocean, the limited information on basking sharks comes from nearshore habitats where they forage. From 2010 to 2011, four sharks were tagged with pop-off satellite archival tags with deployments ranging from 9 to 240 days. The tags provided both transmitted and archived data on habitat use and geographic movement patterns. Nearshore, sharks tended to move north in the summer and prefer shelf and slope habitat around San Diego, Point Conception and Monterey Bay. The two sharks with 180 and 240 days deployments left the coast in the summer and fall. Offshore their paths diverged and by January one shark had moved to near the tip of the Baja Peninsula, Mexico and the other to the waters near Hawaii, USA. Vertical habitat use was variable both within and among individuals and changed as sharks moved offshore. Nearshore, most time was spent in the mixed layer but sharks did spend hours in cold waters below the mixed layer. Offshore vertical movements depended on location. The shark that went to Hawaii had a distinct diel pattern, with days spent at ~450–470 m and nights at ~250–300 m and almost no time in surface waters, corresponding with the diel migration of a specific portion of the deep scattering layer. The shark that moved south along the Baja Peninsula spent progressively more time in deep water but came to the surface daily. Movement patterns and shifts in vertical habitat and use are likely linked to shifts in prey availability and oceanography. Data collected indicate the potential for large-scale movements and the need for

  17. Recent Korean R&D in Satellite Communications

    Science.gov (United States)

    Lee, Ho-Jin; Kim, Jae Moung; Lee, Byung-Seub; Lee, Han; Ryoo, Jang-Soo

    The R&D in satellite communications in Korea has been driven mainly by KCC (Korea Communications Commission) but in a small scale compared to Korea space development program organized by MEST (Ministry of Education, Science and Technology). Public and civilian satcom sector R&D has been led mainly by ETRI with small/medium companies contrary to rare investment in private sector while military sector R&D has been orchestrated by ADD with defense industry. By the COMS (Communication, Ocean and Meteorological Satellite) experimental Ka-band payload, Korea pursues a space qualification of own technology for national infrastructure evolution as well as industrialization of space R&D results. Once COMS launched and space qualified in 2009, subsequent application experiments and new technology R&D like UHDTV will entail service and industry promotion. The payload technology is expected for the next Korean commercial satellites or for new OBP satellites. The COMS ground control system and GNSS ground station technologies are under development for COMS operation and enhanced GNSS services along with advent of Galileo respectively. Satellite broadband mobile VSAT based on DVB-S2/RCS (+M) and low profile tracking antennas have been developed for trains, ships, and planes. While APSI is developing GMR-1 based Thuraya handset functions, ETRI is designing IMT-Advanced satellite radio interface for satellite and terrestrial dual-mode handheld communication system like Japanese STICS, with universities' satellite OFDM researches. A 21GHz Ka-band higher-availability scalable HD broadcasting technology and SkyLife's hybrid satellite IPTV technology are being developed. In near term Korea will extend R&D programs to upgrade the space communication infrastructure for universal access to digital opportunity and safer daily life from disaster, and to promote space green IT industrialization, national security, and space resources sovereign. Japanese stakeholders are invited to establish

  18. Satellite and terrestrial radio positioning techniques a signal processing perspective

    CERN Document Server

    Dardari, Davide; Falletti, Emanuela

    2014-01-01

    * The first book to combine satellite and terrestrial positioning techniques - vital for the understanding and development of new technologies * Written and edited by leading experts in the field, with contributors belonging to the European Commission's FP7 Network of Excellence NEWCOM++ Applications to a wide range of fields, including sensor networks, emergency services, military use, location-based billing, location-based advertising, intelligent transportation, and leisure Location-aware personal devices and location-based services have become ever more prominent in the past few years

  19. Geolocation applications of the Gonets LEO messaging satellites

    Science.gov (United States)

    Vlasov, Vladimir N.; Ashjaee, Javad M.

    Geostationary satellites carry a majority of the international telecommunications traffic not carried by transoceanic cable. However, because the radio path links to and from geostationary satellites total at least 70,000 km and because of inherent on-board spacecraft power limitations, earth stations used in conjunction with geostationary satellites are usually large and expensive. This limits their installation to areas with a well-developed industrial and economic infrastructure. This reality helps perpetuate a chicken egg dilemma for the developing countries and isolated regions. Economic integration with the developed world requires being 'networked'. But for many developing entities, even the initial price of entry exceeds their modest resources. Exclusion from the global information highways virtually assures retardation of economic growth for developing nations, remote and isolated areas. Very Small Aperture Terminal (VSAT) earth stations are often thought of as a solution for networking developing regions. But economic considerations often forecloses this option. If VSAT size and cost is to be minimized, powerful spot beams from the satellite need to be focused on relatively small regions. This is not often feasible because of the high cost of the satellite itself. To dedicate a high power spot beam to a small region is usually not economically feasible.

  20. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  1. Comparison of freely-moving telemetry Chinese Miniature Experiment Pigs (CMEPs) to beagle dogs in cardiovascular safety pharmacology studies.

    Science.gov (United States)

    Yuan, Haitao; Zhao, Jing; Guo, Jiabin; Wu, Ruiqin; He, Li; Cui, Yaxiong; Feng, Min; Zhang, Tingfen; Hou, Mingyue; Guo, Qian; Zhang, Lijun; Jia, Li; Huang, Chang; Ye, Lin; Peng, Shuangqing

    2014-01-01

    Telemetry beagle dogs are the most frequently used species in cardiovascular telemetry assessments. However, beagle dogs may not be always suitable for all of the tests. Recently minipigs have received increased attention for these studies. Differences between the two species regarding the response of their cardiovascular systems to environmental stimuli are unclear. This study investigates how the telemetry minipig compares to beagle dog as a test subject and also refines the experimental protocols necessary to obtain accurate data. Beagle dogs and Chinese Miniature Experiment Pigs (CMEPs) were implanted with telemetry transmitters and the influences of gavage, feeding and the circadian cycle on various cardiovascular parameters were investigated. ECG signal quality from CMEPs was superior to that of the beagle dogs. Poor ECG signal quality, elevated HR, BP and locomotor activity associated with gavage and feeding were observed in both species. ECG signal quality, BP and locomotor activity recovered more quickly in the CMEPs than in the beagle dogs. Residual elevation of HR found in CMEPs lasted approximately 4h post-feeding, which has a profound influence on the circadian cycle. A diurnal rhythm in CMEP with a significant increase of body temperature during the dark period and a clear circadian rhythm of locomotor activity in both species were observed. The present data demonstrated that gavage, feeding and circadian cycle were having an enormous influence on BP, HR and locomotor activity in both species. If drug-induced effects are expected rapidly after oral administration and feeding, CMEP seems to be a favorable choice. Also, due to the effects of feeding on HR, CMEPs should fast at least 5h before the start of recording or should not be fed during the study where the Tmax of a given compound might occur very late. It also should be taken into consideration when the test article has a potential effect on body temperature by using CMEPs. In summary, the

  2. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  3. Radio Emissions from Magnetopause Reconnection Events

    Science.gov (United States)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  4. Assimilation of GNSS radio occultation observations in GRAPES

    Science.gov (United States)

    Liu, Y.; Xue, J.

    2014-07-01

    This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.

  5. Large wood budget and transport dynamics on a large river using radio telemetry

    Science.gov (United States)

    Schenk, Edward R.; Moulin, Bertrand; Hupp, Cliff R.; Richte, Jean M.

    2014-01-01

    Despite the abundance of large wood (LW) river studies there is still a lack of understanding of LW transport dynamics on large low gradient rivers. This study used 290 radio frequency identification tagged (RFID) LW and 54 metal (aluminum) tagged LW, to quantify the percent of in-channel LW that moves per year and what variables play a role in LW transport dynamics. Aluminum tags were installed and monitored on LW in-transit during the rising limb of a flood, the mean distance traveled by those pieces during the week was 13.3 river kilometers (km) with a maximum distance of 72 km. RFID tagged LW moved a mean of 11.9 km/yr with a maximum observed at 101.1 km/yr. Approximately 41% of LW low on the bank moves per year. The high rate of transport and distance traveled is likely due to the lack of interaction between LW floating in the channel and the channel boundaries, caused primarily by the width of the channel relative to length of the LW. Approximately 80% of the RFID tags moved past a fixed reader during the highest 20% of river stage per year. LW transport and logjam dynamics are complicated at high flows as pieces form temporary jams that continually expand and contract. Unlike most other studies, key members that create a logjam were defined more by stability than jam size or channel/hydrologic conditions. Finally, using an existing geomorphic database for the river, and data from this study, we were able to develop a comprehensive LW budget showing that 5% of the in-channel LW population turns over each year (input from mass wasting and fluvial erosion equals burial, decomposition, and export out of system) and another 16% of the population moving within the system.

  6. A new way of assessing foraging behaviour at the individual level using faeces marking and satellite telemetry.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Heterogeneity in foraging behaviour can profoundly influence ecological processes shaping populations. To scale-up from individual foraging behaviour to processes occurring at the population scale, one needs to sample foraging behaviour at the individual level, and over large temporal scales or during critical seasons known to influence life-history traits. We developed an innovative technique to monitor foraging behaviour at the individual level in secretive species, a technique that can be ultimately used to investigate the links between foraging behaviour and life-history traits. First, the technique used a novel approach, namely the combination of telemetry tracking and biomarking of faeces with food dyes to locate fresh signs of presence left by individuals equipped with GPS collars. Second, the technique is based on the simultaneous or successive sampling of life-history traits and individual foraging behaviour, using tracks with high probabilities of recovery of dyed faeces. We first describe our methodological approach, using a case study of a large herbivore, and then provide recommendations and guidelines for its use. Sampling single snow tracks of individuals equipped with a GPS collar was a reliable way to assess individual winter foraging behaviour in a white-tailed deer (Odocoileus virginianus Zimmermann population. During that period, the probability of recovery of dyed faeces within the range of the collar precision was very high for single snow tracks of equipped deer (97%. Our approach is well suited to study individual foraging behaviour, and could ultimately be used to investigate the interplay between intra-population heterogeneity in foraging behaviour, life-history traits, and demographic processes.

  7. Real-Time CMA Equalization of SOQPSK for Aeronautical Telemetry

    Science.gov (United States)

    2014-06-01

    1 2 4 6 Channel Length 9 20 19 4 No. of Non-zero taps 3 8 9 4 EXPERIMENTAL SETUP Implementation of the CMA for PAQ For this...through the U.S. Army Program Exectuve Offcie for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK_13-C-0026 ( PAQ ...telemetry ( PAQ ),” Brigham Young University, Technical Report, 2014, submitted to the Spectrum Efficient Technologies (SET) Office of the Science

  8. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  9. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.

    Directory of Open Access Journals (Sweden)

    Mónica A Silva

    Full Text Available Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF. The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were <5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6 ± 5.6 km was nearly half that of LS estimates (11.6 ± 8.4 km. Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.

  10. A method for estimating abundance of mobile populations using telemetry and counts of unmarked animals

    Science.gov (United States)

    Clement, Matthew; O'Keefe, Joy M; Walters, Brianne

    2015-01-01

    While numerous methods exist for estimating abundance when detection is imperfect, these methods may not be appropriate due to logistical difficulties or unrealistic assumptions. In particular, if highly mobile taxa are frequently absent from survey locations, methods that estimate a probability of detection conditional on presence will generate biased abundance estimates. Here, we propose a new estimator for estimating abundance of mobile populations using telemetry and counts of unmarked animals. The estimator assumes that the target population conforms to a fission-fusion grouping pattern, in which the population is divided into groups that frequently change in size and composition. If assumptions are met, it is not necessary to locate all groups in the population to estimate abundance. We derive an estimator, perform a simulation study, conduct a power analysis, and apply the method to field data. The simulation study confirmed that our estimator is asymptotically unbiased with low bias, narrow confidence intervals, and good coverage, given a modest survey effort. The power analysis provided initial guidance on survey effort. When applied to small data sets obtained by radio-tracking Indiana bats, abundance estimates were reasonable, although imprecise. The proposed method has the potential to improve abundance estimates for mobile species that have a fission-fusion social structure, such as Indiana bats, because it does not condition detection on presence at survey locations and because it avoids certain restrictive assumptions.

  11. Effect of Wearing a Telemetry Jacket on Behavioral and Physiologic Parameters of Dogs in the Open-Field Test.

    Science.gov (United States)

    Fish, Richard E; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Dorman, Davidc C

    2017-07-01

    Safety pharmacology studies in dogs often integrate behavioral assessments made using video recording with physiologic measurements collected by telemetry. However, whether merely wearing the telemetry vest affects canine behavior and other parameters has not been evaluated. This pilot study assessed the effect of a telemetry vest on behavioral and physiologic responses to an environmental stressor, the sounds of a thunderstorm, in Labrador retrievers. Dogs were assigned to one of 2 experimental groups (Vest and No-Vest, n = 8 dogs per group) by using a matched pairs design, with a previously determined, sound-associated anxiety score as the blocking variable. Dogs were individually retested with the same standardized sound stimulus (thunderstorm) in an open-field arena, and their behavioral responses were video recorded. Video analysis of locomotor activity and anxiety-related behavior and manual determination of heart rate and body temperature were performed; results were compared between groups. Vest wearing did not affect total locomotor activity or rectal body temperature but significantly decreased heart rate by 8% and overall mean anxiety score by 34% during open-field test sessions. Our results suggest that the use of telemetry vests in dogs influences the measurement of physiologic parameters and behaviors that are assessed in safety pharmacology studies.

  12. First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite

    Science.gov (United States)

    Thampi, S.; Yamamoto, M.; Tsunoda, R. T.; Otsuka, Y.; Tsugawa, T.; Uemoto, J.; Ishii, M.

    2009-12-01

    Equatorial spread F (ESF) is a generic name, which refers to the presence of a wide spectrum of field-aligned irregularities in the equatorial nighttime F-region that can extend over nearly seven orders of magnitude. Recently, a large-scale wave structure (LSWS) in the F-layer electron density is identified as a reliable precursor to ESF. The LSWS can be identified as a quasi-periodic modulation in the altitude of isoelectron density contours in the bottomside F-region, superimposed on a mean slope that increases in altitude from west to east. First observations of large-scale wave structure (LSWS) and the subsequent development of equatorial spread F (ESF), using total electron content (TEC) derived from the ground based reception of Coherent Electromagnetic Radio Tomography (CETRO) radio beacon signals on board the C/NOFS (Communications/Navigation Outage Forecasting System) satellite will be presented. For this study the TEC observations from Bac Lieu, Vietnam (9.2°N, 105.6°E geographic, 1.7°N magnetic dip latitude), Phukhet (7.8°N, 98.38°E, 0.4°S dip lat) and Kototabang, Indonesia (0.20°S, 100.32°E, 10.36°S dip lat) are analyzed along with ionosonde observations from Bac Lieu, Chumphon (10.7°N, 99.4°E, 3.3° dip lat) and 30.8 MHz VHF radar observations from Kototabang. It should also be mentioned here that LSWS is not easily detectable with overhead measurements using a sensor at a fixed location, at least not during its early growth phase, mainly because initially it grows in amplitude without significant zonal drift. The results indicate (1) LSWS appears to play a more important role in the development of ESF than the post-sunset rise (PSSR) of the F-layer, and (2) LSWS can appear well before E-region sunset. Other findings, that LSWS does not have significant zonal drift in the initial stages of growth, and can have zonal wavelengths of several hundred kilometers, corroborate earlier reports.

  13. Prototype Sistem Multi-Telemetri Wireless untuk Mengukur Suhu Udara Berbasis Mikrokontroler ESP8266 pada Greenhouse

    Directory of Open Access Journals (Sweden)

    Hanum Shirotu Nida

    2017-07-01

    Full Text Available Telemetri wireless adalah proses pengukuran parameter suatu obyek yang hasil pengukurannya dikirimkan ke tempat lain melalui proses pengiriman data tanpa menggunakan kabel (wireless, sedangkan multi telemetri adalah gabungan dari beberapa telemeteri itu sendiri. Penelitian ini merancang prototype sistem multi-telemetri wireless untuk mengukur suhu udara dan kelembaban udara pada greenhouse dengan menggunakan sensor DHT11 dan data hasil dari pembacaan sensor dikirim dengan menggunakan modul WiFi ESP8266 ke server dengan menggunakan protokol HTTP. Dalam penelitian ini diuji nilai sensor DHT11, heap memory ESP8266, jarak atau jangkauan ESP8266, uji coba data missing handling dan kestabilan jaringan. Berdasarkan hasil pengujian diketahui bahwa sensor DHT11 memiliki rata-rata kesalahan ukur suhu 0.92 oC dan kelembaban 3.1%. Modul WiFi ESP8266 mampu menyimpan dan mengirim buffer hingga 100 data dan dapat melakukan pengiriman dalam jangkauan 50 meter. Data missing handling memanfaatkan buffer untuk menyimpan data selama server sedang tidak dapat diakses oleh sensor node agar data tidak hillang. Kestabilan pengiriman data atau koneksi sensor node dengan server dipengaruhi oleh jumlah access point yang sedang berkomunikasi disekitar access point server dengan menggunakan channel yang sama.

  14. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    Science.gov (United States)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  15. Radioactivity telemetry

    International Nuclear Information System (INIS)

    Bouras, Florent; Legrand, Bernard; Montigaud, Jean-Marie; Grandin, Marc

    1969-05-01

    The authors present an assembly which aims at radio-transmitting from mobile stations information on radioactivity. It comprises 20 mobile stations which can be located within the Cadarache Centre or outside of it within a 10 km radius, and a central station which centralises information. The report proposes a general presentation of these stations, their characteristics and principles of operation. It describes operation sequences, central station functions (call programmer, address and memory management, recording, peripherals) and its energy supply, and mobile station functions. The last part presents the installation, its start-up and exploitation, its threshold devices and its safety device

  16. Design of a wireless radiation telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H H [Chung Yuan Christian Coll. of Science and Engineering, Chung-Li, Taiwan; Chang, J K

    1976-12-01

    The wireless radiation telemetry system can be operated in all seasons. It is designed for the measurement of radiation intensities up to millicurie order at a distance of 1 Km or less. Its measuring error is +-0.01 percent deviation from the count rate of the typical direct-detecting instrument with the same radiation source. This error indicates that the accuracy is high enough for practical uses. This system is cheaper and more flexible, comparing with the corresponding cable facility. The line-of-sight transmission distance can be longer if the transmitting power is appropriately increased. All pulse type radiation detectors can be used as the input section of this system.

  17. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  18. ATS-6 radio beacon electron content measurements at Ootacamund, India, October 1975-July 1976

    International Nuclear Information System (INIS)

    Bouwer, S.D.; Davies, K.; Donnelly, R.F.; Grubb, R.N.; Jones, J.E.

    1980-03-01

    An atlas of total slant-path columnar electron content data measured between the ATS-6 satellite and Ootacamund, India, a site near the magnetic Equator is presented. Although these measurements were taken during a solar minimum, the general level of flare and geomagnetic activity that occurred during the observation period is summarized. These total content (N(T)) data were derived from the modulation phase (group delay) of a carrier signal transmitted from the geostationary satellite's Radio Beacon Experiment. This atlas contains two data sets: (1) N(T) as 2-min subsamples digitally recorded between 2 October 1975 and 28 January 1976 corrected for ATS-6 pitch maneuvers and (2) N(T) as 15-min subsamples chart recorded between 21 October 1975 and 22 July 1976 but uncorrected for changes in satellite orientation

  19. Modeling of acoustic wave propagation and scattering for telemetry of complex structures; Modelisation de la propagation et de l'interaction d'une onde acoustique pour la telemetrie de structures complexes

    Energy Technology Data Exchange (ETDEWEB)

    LU, B.

    2011-11-07

    This study takes place in the framework of tools development for the telemetry simulation. Telemetry is a possible technology applied to monitoring the sodium-cooled fast reactors (SFR) and consists in positioning in the reactor core a transducer to generate an ultrasonic beam. This beam propagates through an inhomogeneous random medium since temperature fluctuations occur in the liquid sodium and consequently the sound velocity fluctuates as well, which modifies the bream propagation. Then the beam interacts with a reactor structure immersed in sodium. By measuring the time of flight of the backscattered echo received by the same transducer, one can determine the precise location of the structure. The telemetry simulation therefore requires modeling of both the acoustic wave propagation in an inhomogeneous random medium and the interaction of this wave with structures of various shapes; this is the objective of this work. A stochastic model based on a Monte Carlo algorithm is developed in order to take into account the random fluctuations of the acoustic field. The acoustic field through an inhomogeneous random medium is finally modeled from the field calculated in a mean homogeneous medium by modifying the travel times of rays in the homogeneous medium, using a correction provided by the stochastic model. This stochastic propagation model has been validated by comparison with a deterministic model and is much simpler to integrate in the CIVA software platform for non destructive evaluation simulation and less time consuming than the deterministic model. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and the Kirchhoff approximation (KA). These two approaches appear to be complementary. Combining them so as to retain only their advantages, we have developed a hybrid model (the so-called refined KA

  20. A Model for Real-Time Data Reputation Via Cyber Telemetry

    Science.gov (United States)

    2016-06-01

    methodology which focuses on iterative cycles, known as sprints, to produce the capabilities of the system. Traditional waterfall models do not allow for...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A MODEL FOR REAL...Master’s Thesis 4. TITLE AND SUBTITLE A MODEL FOR REAL-TIME DATA REPUTATION VIA CYBER TELEMETRY 5. FUNDING NUMBERS 6. AUTHOR(S) Beau M

  1. Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators

    Science.gov (United States)

    Fantini, Jay A.

    1998-01-01

    Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.

  2. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Smith, James A.; Jewell, James Keith

    2015-01-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  3. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  4. TMATS/ IHAL/ DDML Schema Validation

    Science.gov (United States)

    2017-02-01

    integrated Network Enhanced Telemetry IRIG Inter-Range Instrumentation Group PCM pulse code modulation POC point of contact RCC Range Commanders Council...RF radio frequency SVG Scalable Vector Graphics T&E test and evaluation TMATS Telemetry Attributes Transfer Standard TmNS telemetry network ...configured. For more details on IHAL, see the IHAL Handbook.2 The DDML standard is a specification of an XML-based neutral format that is intended to

  5. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  6. First radio astronomy from space - RAE

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed. 11 references

  7. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  8. The Relationship Between Solar Radio and Hard X-Ray Emission

    Science.gov (United States)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; hide

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  9. A real-time GNSS-R system based on software-defined radio and graphics processing units

    Science.gov (United States)

    Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki

    2012-04-01

    Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.

  10. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Duffin, R. T.; White, S. M.; Ray, P. S.; Kaiser, M. L.

    2015-09-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena.

  11. Type III-L Solar Radio Bursts and Solar Energetic Particle Events

    International Nuclear Information System (INIS)

    Duffin, R T; White, S M; Ray, P S; Kaiser, M L

    2015-01-01

    A radio-selected sample of fast drift radio bursts with complex structure occurring after the impulsive phase of the associated flare (“Type III-L bursts”) is identified by inspection of radio dynamic spectra from 1 to 180 MHz for over 300 large flares in 2001. An operational definition that takes into account previous work on these radio bursts starting from samples of solar energetic particle (SEP) events is applied to the data, and 66 Type III-L bursts are found in the sample. In order to determine whether the presence of these radio bursts can be used to predict the occurrence of SEP events, we also develop a catalog of all SEP proton events in 2001 using data from the ERNE detector on the SOHO satellite. 68 SEP events are found, for 48 of which we can identify a solar source and hence look for associated Type III-L emission. We confirm previous work that found that most (76% in our sample) of the solar sources of SEP events exhibit radio emission of this type. However, the correlation in the opposite direction is not as strong: starting from a radio-selected sample of Type III-L events, around 64% of the bursts that occur at longitudes magnetically well-connected to the Earth, and hence favorable for detection of SEPs, are associated with SEP events. The degree of association increases when the events have durations over 10 minutes at 1 MHz, but in general Type III-L bursts do not perform any better than Type II bursts in our sample as predictors of SEP events. A comparison of Type III-L timing with the arrival of near-relativistic electrons at the ACE spacecraft is not inconsistent with a common source for the accelerated electrons in both phenomena. (paper)

  12. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  13. Crosslink Radio Occultation for the Remote Sensing of Planetary Atmospheres

    Science.gov (United States)

    Mannucci, A. J.; Ao, C. O.; Asmar, S.; Edwards, C. D.; Kahan, D. S.; Paik, M.; Pi, X.; Williamson, W.

    2015-12-01

    Radio occultation utilizing deep space telecommunication signals has been used with great success in the profiling of planetary atmospheres and ionospheres since the 1960s. A shortcoming of this technique, however, is the limited temporal and spatial sampling that it provides. We consider a different approach where radio occultation measurements are taken between two spacecraft orbiting an extra-terrestrial body. Such "crosslink" radio occultations between the Global Positioning System satellites and low-earth orbiting spacecraft have been routinely acquired to provide global observations of the Earth's atmosphere and ionosphere that are used for weather forecast, climate analysis, and space weather applications. The feasibility of applying this concept to other planets has recently been demonstrated for the first time, where crosslink occultation measurements have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. In this presentation, we will describe the Mars crosslink experiments and the corresponding data analysis in detail. In addition, we will discuss how the crosslink occultation concepts can be effectively applied in future space exploration missions.

  14. Strumenti d’osservazione per il telerilevamento da satellite

    Directory of Open Access Journals (Sweden)

    Giorgio Perrotta

    2009-03-01

    Full Text Available Earth observation instruments for satellite remote sensingThis article features a brief description of the instrumentation  families commonly used during Earth Observation activities. The optical exploration of our planet, already anticipated more than 50 years ago at the beginning of the exploration era with the first analogic photographic instrumentation, is now complemented by sophisticated instruments that work under the domain of radio  waves in order to produce informations useful fo a wide variety of applications.

  15. Disturbance phenomena in VLF standard radio wave observation

    International Nuclear Information System (INIS)

    Muraoka, Yoshikazu

    1977-01-01

    Storm aftereffect, i.e. the phase disturbance after initiation of a magnetic storm has been revealed in the observation of VLF standard radio waves. In VLF long distance propagation at middle latitudes (L - 3), the phase disturbance for several days after the initiation of a magnetic storm is due to electron fall from the radiation belt. This has been confirmed by the comparison with electron flux detected by an artificial satellite. The correlations between VLF phase disturbance and magnetism activity or ionosphere absorption are described. The relation between winter anomaly and phase disturbance is also discussed. (Mori, K.)

  16. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  17. ZigBee-Based Telemetry System

    Directory of Open Access Journals (Sweden)

    L. Khriji

    2010-12-01

    Full Text Available Nowadays, there is a significant improvement in technology regarding healthcare. Real-time monitoring systems improve the quality of life of patients as well as the performance of hospitals and healthcare centers. In this paper, we present an implementation of a designed framework of a telemetry system using ZigBee technology for automatic and real-time monitoring of Biomedical signals. These signals are collected and processed using 2-tiered subsystems. The first subsystem is the mobile device which is carried on the body and runs a number of biosensors. The second subsystem performs further processing by a local base station using the raw data which is transmitted on-request by the mobile device. The processed data as well as its analysis are then continuously monitored and diagnosed through a human-machine interface. The system should possess low power consumption, low cost and advanced configuration possibilities. This paper accelerates the digital convergence age through continual research and development of technologies related to healthcare.

  18. Solar power satellite - A geostationary channel tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, C

    1981-12-01

    The concept-development status of solar power satellite (SPS) systems is considered, with attention to Heavy-Lift Launch Vehicles (HLLVs), the construction methods to be used in either geostationary or low earth orbit, and the configuration of the solar array. By comparison with the 30-ton payload of the Space Shuttle, HLLV designs under consideration have payloads of 114 to 425 tons. The unit cost for 5-GW satellites, in 1977 dollars, is estimated at five billion dollars. Consideration is given to the possible deleterious environmental effects of both the 400 or more launches required for each SPS and such results of radio frequency energy transfer beam operation as the suppression of blood platelet production in human beings and ionospheric heating. The uncertainty that still surrounds the relative advantages of competing designs and the need for long-range, billion-dollar funding appear to be insuperable obstacles to the construction of SPSs.

  19. Radio-location of mobile stations in third generation networks

    Directory of Open Access Journals (Sweden)

    Milan Manojle Šunjevarić

    2013-06-01

    direction, if specified by a direction on an object, (b circle, if determined by measuring the distance of an object, or (c a hyperbola, if the difference is determined by measuring the distance between two objects. In cellular networks, the location of mobile stations can be estimated roughly by proximity sensing methods and methods based on an evaluation of the characteristics of base stations (fingerprinting. Basic characteristics of the UMTS standard The radio network controller (RNC has three different roles and is therefore known as: Controlling RNC (CRNC, Serving RNC (SRNC and Drifting RNC (DRNC. The Local Measurement Unit (LMU performs radio measurements (measuring the delay of signals from base stations to the LMU and forwards the data to the CRNC. The main location functions are performed within the Serving RNC which can operate in two modes: RNC central and central SAS (Standalone SMLC. The RNC in the RNC central mode controls the flow of requirements for the localization, chooses the method of localization, provides information as necessary and, finally, estimates the location of the user. The SAS mode performs the procedures based on the requirements of the service radio network controller (SRNC. The SAS executes the global location (Global Navigation Satellite System and location on the uplink, based on measuring the time difference U-TDoA (Uplink - Time Difference of Arrival. Methods of locating the MS in a UMTS network In the UMTS network, depending on the used network infrastructure,  both the station and network-based method can be used, i.e. determining the MS location can be performed on the MS or on the network side. In UMTS networks, the following methods can be used: methods based on measurements in the time domain (time-based, methods based on measurements of a received power level (Received Signal Strength - RSS, methods based on measuring the angle under which the signal arrives to the receiving antenna and methods based on the global location

  20. Telemetry Standards, RCC Standard 106-17. Chapter 21. Telemetry Network Standard Introduction

    Science.gov (United States)

    2017-07-01

    Critical RF radio frequency RFC Request for Comment SNMP Simple Network Management Protocol TA test article TCP Transmission Control Protocol...chapters might be of most interest for a particular reader. In order to guide the reader toward the chapters of further interest , the applicable... Simple Network Management Protocol (SNMP) to pass management information through the system. The SNMP management information bases (MIBs) provide

  1. Telemetry Standards, IRIG Standard 106-17, Chapter 22, Network Based Protocol Suite

    Science.gov (United States)

    2017-07-01

    requirements. 22.2 Network Access Layer 22.2.1 Physical Layer Connectors and cable media should meet the electrical or optical properties required by the...Telemetry Standards, IRIG Standard 106-17 Chapter 22, July 2017 i CHAPTER 22 Network -Based Protocol Suite Acronyms...iii Chapter 22. Network -Based Protocol Suite

  2. Microcontroller-based underwater acoustic ECG telemetry system.

    Science.gov (United States)

    Istepanian, R S; Woodward, B

    1997-06-01

    This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).

  3. Some early results from the ATS-6 radio beacon experiment

    International Nuclear Information System (INIS)

    Davies, K.; Fritz, R.B.; Grubb, R.N.; Jones, J.E.

    1975-01-01

    The multifrequency satellite radio beacon enables the measurement of the columnar electron content of the ionosphere and plasmasphere along the ray path and its spatial and temporal structure. Measurements include modulation phase, Faraday rotation, and amplitude. The characteristics of the beacon transmitter and its design are presented together with the design of the Boulder receiver and antennas and the calibration procedures. A shape factor F is defined which depends on the electron density and geomagnetic field distributions. It is found that F varies by about 30 percent from day to night. It is shown that the ratio of the plasmaspheric content to total content varies from about 0.08 during the day to about 0.35 at night. Other examples which are presented to illustrate the uses of the radio beacon include sunrise effects, solar flare enhancements of total content, and the ionospheric storms of early July 1974

  4. Development of a High-Temperature Smart Transducer Interface Node and Telemetry System (HSTINTS)

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.A. et al.

    2006-11-03

    Halliburton Energy Services and Oak Ridge National Laboratory established a CRADA to conduct applied research to develop a general purpose, High-Temperature, Smart Transducer Interface Node and Telemetry System (HSTINTS) capable of temporally-coherent multiple-channel, high speed, high-resolution data transuction and acquisition while operating in a hostile thermal, chemical, and pressure environment for extended periods of time over a single coaxial cable. This ambitious, high-risk effort required development of custom dielectric isolated integrated circuits, amplified hybrid couplers for telemetry and an audio-frequency based power supply and distribution system using an engineered application of standing waves to compensate voltage drop along a 2 mile long cable. Several goals were achieved but underestimated challenges and a couple of mistakes hampered progress. When it was determined that an additional year of concerted effort would be required to complete the system demonstration, the sponsor withdrew funding and terminated the effort.

  5. Proceedings of the Twenty-First NASA Propagation Experiments Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry. NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of three sessions. Session 1, entitled "ACTS Propagation Study Results & Outcome " covered the results of 20 station-years of Ka-band radio-wave propagation experiments. Session 11, 'Ka-band Propagation Studies and Models,' provided the latest developments in modeling, and analysis of experimental results about radio wave propagation phenomena for design of Ka-band satellite communications systems. Session 111, 'Propagation Research Topics,' covered a diverse range of propagation topics of interest to the space community, including overviews of handbooks and databases on radio wave propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997 and consisted of a technical session in the morning and a plenary session in the afternoon. The morning session covered updates on the status of the ACTS Project & Propagation Program, engineering support for ACTS Propagation Terminals, and the Data Center. The plenary session made specific recommendations for the future direction of the program.

  6. ALGUNAS APLICACIONES RECIENTES DE LA TÉCNICA DE RADIO OCULTAMIENTO SATELITAL EN EL ESTUDIO DE PROCESOS ATMOSFÉRICOS

    Directory of Open Access Journals (Sweden)

    Pedro

    2013-12-01

    Full Text Available SOME RECENT APPLICATIONS OF RADIO OCCULTATIONTECHNIQUE IN ATMOSPHERIC PROCESES Abstract In the last years, the use of radio occultation (RO technique to observe the terrestrial atmosphere and the climate takes advantage of the occultation of the Sun, the Moon, the stars and principally of artificial satellites of low height (LEO. In the latter case, crossed signs between LEO and GPS satellites are used. The application of RO's technology using transmitters of the GPS system in high orbits and recipients on board of low orbit satellites, has provided profiles of atmospheric refractivity very precise. The basic idea of a RO is to observe how waves emitted by a GPS are propagated in the atmosphere. The ray trajectory associated to a radio wave between a GPS and a LEO, while these are hiding themselves mutually due to the interposition of the Earth, is deviated due to refractivity gradients. The ray bending angle is obtained from a change in the phase (Doppler shift of the signal received by the LEO. Assuming spherical symmetry, the deviation information may be inverted by an Abel transformation to obtain a vertical profile of the index of refraction. From atmospheric profiles of refractivity and an atmospheric model, several parameters are obtained: from temperature (T, pressure, geopotential height and water vapor to minor species as aerosols, cloud liquid water and ionospheric electron density. The enormous advantage offered by the coverage in the whole planet, above the continental and oceanic territories, the 1K T resolution, the long term stability and mainly the absence of any restriction imposed by climatic conditions, makes the GPS RO technique unique among different remote sensing atmospheric systems. Up to now, hundreds of thousands of soundings have been processed, from the first satellites to recent (SAC-C, CHAMP, GRACE, COSMIC, TerraSAR-X, MetOp. In the present work, examples of global and regional water vapor and atmospheric wave

  7. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  8. Modulation/demodulation techniques for satellite communications. Part 1: Background

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  9. IRAS observations of radio-quiet and radio-loud quasars

    Science.gov (United States)

    Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.

    1984-01-01

    Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.

  10. A high speed multi-tasking, multi-processor telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kung Chris [Univ. of Texas, El Paso, TX (United States)

    1996-12-31

    This paper describes a small size, light weight, multitasking, multiprocessor telemetry system capable of collecting 32 channels of differential signals at a sampling rate of 6.25 kHz per channel. The system is designed to collect data from remote wind turbine research sites and transfer the data via wireless communication. A description of operational theory, hardware components, and itemized cost is provided. Synchronization with other data acquisition systems and test data on data transmission rates is also given. 11 refs., 7 figs., 4 tabs.

  11. Fiber Optic Telemetry System for LLL High-Voltage Test Stand

    International Nuclear Information System (INIS)

    Richter, J.P.

    1977-01-01

    This paper describes the Fiber Optic Telemetry System designed to operate in the hostile particle and electromagnetic radiation environment of the High Voltage Test Stand. It discusses system criteria, components, packaging, and performance. In all tests to date, the system exceeds its design goals with very comfortable margins. It is well advanced into the fabrication stages with all crucial components tested and only straightforward TTL (Transistor Transistor Logic) circuitry to be completed

  12. Test Methods for Telemetry Systems and Subsystems. Volume 5: Test Methods for Digital Recorder/Reproducer Systems and Recorder Memory Modules

    Science.gov (United States)

    2016-09-26

    Commanders Council. “Digital Data Bus Acquisition Formatting Standard” in Telemetry Standards. RCC 106-13. June 2013. Superseded by Telemetry...second after startup and within one second of stopping should be evaluated. The METS validation software must be configured to mirror the... startup of the recorder. A log file from a test with no errors should look something similar to Table 6-3. Configurations M_01-01 through M_02-02

  13. Telemetry and Communication IP Video Player

    Science.gov (United States)

    OFarrell, Zachary L.

    2011-01-01

    Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.

  14. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  15. Diel movement of smallmouth yellowfish Labeobarbus aeneus in the ...

    African Journals Online (AJOL)

    Burchell, 1822) in the Vaal River, South Africa, were determined by externally attaching radio transmitters to 11 adult fish and manually tracking them between March and May 2012. Twenty-four radio telemetry monitoring surveys produced 2 304 ...

  16. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  17. Flight Demonstration Results of an Inertial Measurement Unit and Global Positioning System Translator Telemetry System

    National Research Council Canada - National Science Library

    David, Bradford

    2001-01-01

    .... A GPS translator from the Johns Hopkins University Applied Physics Laboratory and a low-cost IMU designed by ARL from commercial off-the-shelf components were combined with a telemetry system, packaged...

  18. High data rate coding for the space station telemetry links.

    Science.gov (United States)

    Lumb, D. R.; Viterbi, A. J.

    1971-01-01

    Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.

  19. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  20. NRAO Teams With NASA Gamma-Ray Satellite

    Science.gov (United States)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  1. VLF radio wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake

    Science.gov (United States)

    Shen, Xuhui; Zhima, Zeren; Zhao, Shufan; Qian, Geng; Ye, Qing; Ruzhin, Yuri

    2017-05-01

    The VLF radio signals recorded both from the ground based VLF radio wave monitoring network and the DEMETER satellite are investigated during the 2010 Ms 7.1 Yushu earthquake. The ground-based observations show that the disturbance intensity of VLF wave's amplitude relative to the background gets an enhancement over 22% at 11.9 kHz, 27% at 12.6 kHz and 62% at 14.9 kHz VLF radio wave along the path from Novosibirsk - TH one day before the main shock, as compared to the maximum 20% observed during non-earthquake time. The space based observations indicate that there is a decrease of the signal to noise ratio (SNR) for the power spectral density data of 14.9 kHz VLF radio signal at electric field four days before the main shock, with disturbance intensity exceeding the background by over 5% as compared to the maximum 3% observed during non-earthquake time. The geoelectric field observations in the epicenter region also show that a sharp enhancement from ∼340 to 430 mV/km simultaneously appeared at two monitors 14 days before main shock. The comparative analysis from the ground and space based observations during the earthquake and non-earthquake time provides us convincible evidence that there exits seismic anomalies from the VLF radio wave propagation before the 2010 Ms 7.1 Yushu earthquake. The possible mechanism for VLF radio signal propagation anomaly during 2010 Yushu earthquake maybe related to the change of the geoelectric field nearby the earthquake zone.

  2. Mitigating reentry radio blackout by using a traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-10-01

    Full Text Available A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  3. Mitigating reentry radio blackout by using a traveling magnetic field

    Science.gov (United States)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  4. A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Science.gov (United States)

    Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi

    2012-01-01

    Background Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium

  5. A low-cost GPS GSM/GPRS telemetry system: performance in stationary field tests and preliminary data on wild otters (Lutra lutra.

    Directory of Open Access Journals (Sweden)

    Lorenzo Quaglietta

    Full Text Available BACKGROUND: Despite the increasing worldwide use of global positioning system (GPS telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra. The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55. GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%. CONCLUSIONS/SIGNIFICANCE: Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or

  6. Fast Faraday fading of long range satellite signals.

    Science.gov (United States)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  7. A data processing unit (DPU) for a satellite-borne charge composition experiment

    International Nuclear Information System (INIS)

    Koga, R.; Blake, J.B.; Chenette, D.L.; Fennell, J.F.; Imamoto, S.S.; Katz, N.; King, C.G.

    1985-01-01

    A data processing unit (DPU) for use with a charge composition experiment to be flown aboard the VIKING auroral research satellite is described. The function of this experiment is to measure the mass, charge state, energy, and pitch-angle distribution of ions in the earth's high-altitude magnetosphere in the energy range from 50 keV/q to 300 keV/q. In order to be compatible with the spacecraft telemetry limitations, raw sensor data are processed in the DPU using on-board composition analysis and the scalar compression. The design of this DPU is such that it can be readily adapted to a variety of space composition experiments. Special attention was given to the effect of the radiation environment on orbit since a microprocessor and a relatively large number of random access memories (RAMs) comprise a considerable portion of the DPU

  8. Development of solar flares and features of the fine structure of solar radio emission

    Science.gov (United States)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  9. VizieR Online Data Catalog: Radio observations of SN 2009bb (Soderberg+, 2010)

    Science.gov (United States)

    Soderberg, A. M.; Chakraborti, S.; Pignata, G.; Chevalier, R. A.; Chandra, P.; Ray, A.; Wieringa, M. H.; Copete, A.; Chaplin, V.; Connaughton, V.; Barthelmy, S. D.; Bietenholz, M. F.; Chugai, N.; Stritzinger, M. D.; Hamuy, M.; Fransson, C.; Fox, O.; Levesque, E. M.; Grindlay, J. E.; Challis, P.; Foley, R. J.; Kirshner, R. P.; Milne, P. A.; Torres, M. A. P.

    2010-02-01

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported. (1 data file).

  10. Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity.

    NARCIS (Netherlands)

    Mens, L.H.M.

    2007-01-01

    During the last decade, cochlear implantation has evolved into a well-established treatment of deafness, predominantly because of many improvements in speech processing and the controlled excitation of the auditory nerve. Cochlear implants now also feature telemetry, which is highly useful to

  11. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  12. Telemetry Option in the Measurement of Physical Activity for Patients with Heart Failure

    Science.gov (United States)

    Melczer, Csaba; Melczer, László; Oláh, András; Sélleyné-Gyúró, Mónika; Welker, Zsanett; Ács, Pongrác

    2015-01-01

    Measurement of physical activity among patients with heart failure typically requires a special approach due to the patients' physical status. Nowadays, a technology is already available that can measure the kinematic movements in 3-D by a pacemaker and implantable defibrillator giving an assessment on software. The telemetry data can be…

  13. A guide to developing resource selection functions from telemetry data using generalized estimating equations and generalized linear mixed models

    Directory of Open Access Journals (Sweden)

    Nicola Koper

    2012-03-01

    Full Text Available Resource selection functions (RSF are often developed using satellite (ARGOS or Global Positioning System (GPS telemetry datasets, which provide a large amount of highly correlated data. We discuss and compare the use of generalized linear mixed-effects models (GLMM and generalized estimating equations (GEE for using this type of data to develop RSFs. GLMMs directly model differences among caribou, while GEEs depend on an adjustment of the standard error to compensate for correlation of data points within individuals. Empirical standard errors, rather than model-based standard errors, must be used with either GLMMs or GEEs when developing RSFs. There are several important differences between these approaches; in particular, GLMMs are best for producing parameter estimates that predict how management might influence individuals, while GEEs are best for predicting how management might influence populations. As the interpretation, value, and statistical significance of both types of parameter estimates differ, it is important that users select the appropriate analytical method. We also outline the use of k-fold cross validation to assess fit of these models. Both GLMMs and GEEs hold promise for developing RSFs as long as they are used appropriately.

  14. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  15. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  16. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking

    Science.gov (United States)

    Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.

    2015-01-01

    Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively

  17. Development of Next Generation Memory Test Experiment for Deployment on a Small Satellite

    Science.gov (United States)

    MacLeod, Todd; Ho, Fat D.

    2012-01-01

    The original Memory Test Experiment successfully flew on the FASTSAT satellite launched in November 2010. It contained a single Ramtron 512K ferroelectric memory. The memory device went through many thousands of read/write cycles and recorded any errors that were encountered. The original mission length was schedule to last 6 months but was extended to 18 months. New opportunities exist to launch a similar satellite and considerations for a new memory test experiment should be examined. The original experiment had to be designed and integrated in less than two months, so the experiment was a simple design using readily available parts. The follow-on experiment needs to be more sophisticated and encompass more technologies. This paper lays out the considerations for the design and development of this follow-on flight memory experiment. It also details the results from the original Memory Test Experiment that flew on board FASTSAT. Some of the design considerations for the new experiment include the number and type of memory devices to be used, the kinds of tests that will be performed, other data needed to analyze the results, and best use of limited resources on a small satellite. The memory technologies that are considered are FRAM, FLASH, SONOS, Resistive Memory, Phase Change Memory, Nano-wire Memory, Magneto-resistive Memory, Standard DRAM, and Standard SRAM. The kinds of tests that could be performed are read/write operations, non-volatile memory retention, write cycle endurance, power measurements, and testing Error Detection and Correction schemes. Other data that may help analyze the results are GPS location of recorded errors, time stamp of all data recorded, radiation measurements, temperature, and other activities being perform by the satellite. The resources of power, volume, mass, temperature, processing power, and telemetry bandwidth are extremely limited on a small satellite. Design considerations must be made to allow the experiment to not interfere

  18. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  19. Digitization of Electrocardiogram From Telemetry Prior to In-hospital Cardiac Arrest: A Pilot Study.

    Science.gov (United States)

    Attin, Mina; Wang, Lu; Soroushmehr, S M Reza; Lin, Chii-Dean; Lemus, Hector; Spadafore, Maxwell; Najarian, Kayvan

    2016-03-01

    Analyzing telemetry electrocardiogram (ECG) data over an extended period is often time-consuming because digital records are not widely available at hospitals. Investigating trends and patterns in the ECG data could lead to establishing predictors that would shorten response time to in-hospital cardiac arrest (I-HCA). This study was conducted to validate a novel method of digitizing paper ECG tracings from telemetry systems in order to facilitate the use of heart rate as a diagnostic feature prior to I-HCA. This multicenter study used telemetry to investigate full-disclosure ECG papers of 44 cardiovascular patients obtained within 1 hr of I-HCA with initial rhythms of pulseless electrical activity and asystole. Digital ECGs were available for seven of these patients. An algorithm to digitize the full-disclosure ECG papers was developed using the shortest path method. The heart rate was measured manually (averaging R-R intervals) for ECG papers and automatically for digitized and digital ECGs. Significant correlations were found between manual and automated measurements of digitized ECGs (p < .001) and between digitized and digital ECGs (p < .001). Bland-Altman methods showed bias = .001 s, SD = .0276 s, lower and upper 95% limits of agreement for digitized and digital ECGs = .055 and -.053 s, and percentage error = 0.22%. Root mean square (rms), percentage rms difference, and signal to noise ratio values were in acceptable ranges. The digitization method was validated. Digitized ECG provides an efficient and accurate way of measuring heart rate over an extended period of time. © The Author(s) 2015.

  20. Anomaly Monitoring Method for Key Components of Satellite

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2014-01-01

    Full Text Available This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM, which is made up of state estimation based on Multivariate State Estimation Techniques (MSET and anomaly detection based on Sequential Probability Ratio Test (SPRT. On the basis of analysis failure of lithium-ion batteries (LIBs, we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (Re and the charge transfer resistance (Rct as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (RX and healthy residual value (RL of LIBs based on the state estimation of MSET, and then, through the residual values (RX and RL of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM.

  1. A spring stopover of a migratory osprey (Pandion haliaetus in northern Spain as revealed by satellite tracking: implications for conservation

    Directory of Open Access Journals (Sweden)

    Galarza, A.

    2009-12-01

    Full Text Available Improvements in the accuracy of satellite telemetry locations now allow detailed studies on territorial behaviour or use of habitat that can be used to enhance bird conservation. In this paper we describe the behaviour of a satellite-tracked adult female osprey (Pandion haliaetus in the Urdaibai Biosphere Reserve (N Spain to evaluate the suitability of this protected area for the species. The data set consisted of 10 complete days with a total of 145 exact fixes received. Night roosts were mainly surrounded by high or intermediate level protected land, separated from roads or buildings by more than 200 m and located less than one km away from the feeding area. During daylight hours, most fixes (76.5% were located in wooded areas. We found that the bird selected holm oak woods and we suggest that this is related to low disturbance from human activity. We also suggest that northern Spanish estuaries are important as stopovers by migrating ospreys for feeding during migration.

  2. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  3. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  4. Polarimetric mountain based radio-occultation for rain detection: The ROHP-PAZ ground campaign

    Science.gov (United States)

    Padulles, Ramon; Cardellach, Estel; Tomas, Sergio; de la Torre, Manuel; Turk, Joe

    2014-05-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) Radio-Occultation (RO) payload on board of the Spanish Earth Observation satellite PAZ. This will be a new technique that has never been tested before, that aims to improve the knowledge of precipitation through simultaneous thermodynamic and vertical rain profiles. Prior to the launch of the satellite, expected for 2014, a ground experimental campaign is being conducted with the goal of starting the process of identifying and understanding all the factors that might affect the polarimetric RO observables. The campaign is being carried out at the top of Puig Sesolles, a 1667m peak in the Natural Park of Montseny (41º46'24 N, 2º26'17 E), 50 km N-NE from Barcelona, with clear views over the horizon to the South (East to West) direction, an area in which intense precipitation events tend to occur a few times per year. The campaign uses a ICE-CSIC/IEEC's GOLD-RTR open-loop receiver initially designed for collecting GNSS signals reflected off the sea surface. The receiver has been adjusted to track occulting GNSS radio-links. A double polarization (H and V) GNSS antenna has been designed and manufactured by the Polytechnic University of Barcelona (UPC) team for this particular ground-based experiment. The antenna is a phase-array made of 7 elements, each of them being a square patch built using a Rogers 4003 substrate, and symmetrically fed by four probes. It provides a pattern of 12.9 dB peak gain, 45 degrees half-power beam-width, and <-35 dB cross-polar isolation at the peak (better than -30 dB in the main lobe). The preliminary results show that not only precipitation, but also other factors are affecting the GNSS signal, wich means that the polarimetric signal is richer than expected

  5. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  6. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  7. Understanding the migratory orientation program of birds

    DEFF Research Database (Denmark)

    Thorup, Kasper; Holland, Richard A.; Tøttrup, Anders P.

    2010-01-01

    in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension...

  8. La radio en África. Una radio para el desarrollo

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lafrance

    2015-01-01

    Full Text Available La radio de tipo comunitario, tal como la conocemos en Norteamérica y Europa (no-comercial, no-estatal y particípatíva, no existe en Africa. Sin embargo, la situación histórica y el contexto socio-político particulares de Africa han precedido la instauración de una radio que, dentro del marco del presente estudio, nos ha resultado interesante. Se trata de la radio educativa rural. Aunque enmarcada dentro del molde estatal de regímenes que en su mayoría son dictaduras, la radio rural africana, al igual que las radios de tipo comunitario, utiliza la radio con otros fines además de los convencionales. En este caso, la radio es un instrumento al servicio del desarrollo, por no decir al servicio del campesino, en una relación con éste último que probablemente dejará cada vez más de ser uni-direccional. La experiencia africana nos proporcionará en esta perspectiva nuevos elementos de reflexión en lo que respecta al rol de la radio dentro de la comunidad y sobre las condiciones incluso del éxito o no-éxito de la participación popular.

  9. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in [National Center for Radio Astrophysics—Tata Institute of Fundamental Research Post Box 3, Ganeshkhind P.O., Pune 41007 (India)

    2017-10-01

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.

  10. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  11. Analisis Jangkauan Dan Baud Rate Transmisi Data Pada Sistem Telemetri Temperatur Berbasis Mikrokontroler

    Directory of Open Access Journals (Sweden)

    Nurjannah

    2016-06-01

    Full Text Available Pengujian jangkauan dan boud rate transmisi data pada sistem telemetri temperatur dilakukan untuk menganalisis pengaruhnya terhadap data yang ditransmisikan.. Alat-alat yang digunakan untuk menganalisisnya adalah sensor temperatur LM35, perangkat transmitter, perangkat receiver dan PC. Adapun metode yang dilakukan untuk pengujian jangkauan transmisi data adalah dengan cara mentransmisikan data pada jangkauan 1 meter sampai dengan 10 meter. Sedangkan untuk melakukan pengujian pengaruh boud rate terhadap data yang ditransmisikan dilakukan dengan cara memvariasikan boud rate perangkat receiver pada setiap transmisi data. Testing of the extent and baud rate of data transmission on temperature telemetry system was conducted to analyze its effect to the transmitted data. The tools that was used to analyze it was LM35 temperature sensor, transmitter devices, receiver devices and PC. The method that was carried out to test the extent of the data transmission was by transmiting data on a range of 1 meter to 10 meters. As for testing the effect of baud rate against data that was transmitted was done by varying the baud rate on receiver device at any transmission of data.

  12. 47 CFR 95.1125 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 95.1125 Section 95.1125 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1125 RF safety. Portable devices...

  13. Telemetry Physical Activity Monitoring in Minipig’s Model of Huntington’s Disease

    Czech Academy of Sciences Publication Activity Database

    Pokorný, M.; Juhás, Štefan; Juhásová, Jana; Klíma, Jiří; Motlík, Jan; Klempíř, J.; Havlík, J.

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 39-42 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. Liblice, 08.11.2015-10.11.2015] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington´s disease * minipig * telemetry Subject RIV: FH - Neurology Impact factor: 0.209, year: 2015

  14. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-01-01

    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  15. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  16. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.

    2015-01-01

    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  17. First Joint Observations of Radio Aurora by the VHF and HF Radars of the ISTP SB RAS

    Science.gov (United States)

    Berngardt, O. I.; Lebedev, V. P.; Kutelev, K. A.; Kushnarev, D. S.; Grkovich, K. V.

    2018-01-01

    Two modern radars for diagnosis of the ionosphere by the radio-wave backscattering method, namely, the Irkutsk incoherent scatter radar at VHF (IISR, 154-162 MHz) and the Ekaterinburg coherent radar at HF (EKB, 8-20 MHz) are operated at the Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS). The paper analyzes the results of joint observations of strong scattering (radio aurora) on June 8, 2015. To determine the geographical position of the radio aurora, we developed original methods that take into account both the features of the radio-wave propagation and the features of the radar antenna systems. It is shown that there are areas where the spatial position of the HF and VHF radio aurora can coincide. This permits using the radars as a single complex for diagnosis of the characteristics of small-scale high-latitude irregularities in the ionospheric E and F layers. A comparative analysis of the characteristics and temporal dynamics of the radio-aurora region in the HF and VHF ranges is performed. Using the DMSP satellite data, it has been shown that the radio aurora dynamics during this experiment with the EKB radar can be related with the spatial dynamics of the localized area with high electric field, which moves from high to equatorial latitudes. It is found that due to the broader field of view, radio aurora at the HF radar was stably observed 6-12 min earlier than at the VHF radar. This permits using the EKB radar data for prediction of the radio-aurora detection by the IISR radar.

  18. Cost and Performance Comparison of an Earth-Orbiting Optical Communication Relay Transceiver and a Ground-Based Optical Receiver Subnet

    Science.gov (United States)

    Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.

    2003-01-01

    Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.

  19. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  20. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    International Nuclear Information System (INIS)

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  1. Early X-ray and radio observations of Nova Sco 2015 implicate strong shocks against a red giant wind

    Science.gov (United States)

    Nelson, T.; Linford, J.; Chomiuk, L.; Sokoloski, J.; Mukai, K.; Finzell, T.; Weston, J.; Rupen, M.; Mioduszewski, A.

    2015-02-01

    We report the first observations of Nova Sco 2015 (PNV J17032620-3504140) at X-ray, UV and radio wavelengths. The X-ray observations were carried out with the Swift satellite between 2015 February 15.5 and 16.3 UT (roughly 4 days after discovery) and resulted in a total exposure time with the XRT instrument of 4065 s.

  2. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  3. Mobile Vending - Benefit and limits of vending machines by using telemetry

    OpenAIRE

    Heinkele, Christian; Pousttchi, Key; Legler, Steffen

    2004-01-01

    The use of telemetry via wireless communication technique is able to support the process of operating vending machines. The advantages on appropriate kinds of vending machines can be achieved by using a demand-driven instead of a trigger-driven provisioning as well as a trouble-shooting in real time. The availability of reliable telemetrically collected real time data enhance the analysis and optimization of the supply in vending machines and the profitability of vending machine places, too. ...

  4. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... and solemn radio voices to lightharted, laughing and chatting speakers. Senior radio listerners have experienced the development and refinements of technique, content and genres. It is now expected of all media users that they are capable of crossing media, combining, juggling and jumping between various...... media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers...

  5. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  6. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  7. Effects of angling and manual handling on pike behaviour investigated by high-resolution positional telemetry

    DEFF Research Database (Denmark)

    Baktoft, Henrik; Aarestrup, Kim; Berg, Søren

    2013-01-01

    Human disturbances such as angling and manual handling may have long-term effects on the behaviour of pike, Esox lucius L., an ecologically important species. Using continuous high-resolution positional telemetry, this study compared the swimming activity of handled and unhandled pike in a small...

  8. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    Science.gov (United States)

    2017-03-01

    Interface Processor BCT Brigade Combat Team BFT Blue Force Tracking BLOS Beyond Line-of-Sight C2 Command And Control C2E Communications in...Satellite Communications and Tactical Networking Appendix D-2 GIG Global Information Grid GMR Ground Mobile Radio GPS Global Positioning System...System SIPRNet Secret Internet Protocol Router Network SITREPS Situational Reports SMART -T Secure Mobile Anti-Jam Reliable Tactical Terminal SMC Space

  9. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  10. Magnetosphere VLF observation by satellite ISIS

    International Nuclear Information System (INIS)

    Ondo, Tadanori; Nakamura, Yoshikatsu; Watanabe, Shigeaki; Murakami, Toshimitsu

    1978-01-01

    On the basis of the VLF (50 Hz -- 30 kHz) electric field data from the satellite ISIS, the following works carried out in The Radio Research Laboratories are described: deuteron whistler and whistler duct, detection of plasmapause by LHR hiss, and the origin of 5 kHz hiss at low/middle latitudes. The deuteron whistlers are observable distinctly only at low latitude because of gyro-frequency and the frequency resolution of spectral analyzers. Whistler echo occurs when a whistler moves back and forth through a duct along the line of magnetic force, so it is considered that the ISIS satellite crosses the duct. The variation in ion composition around plasmapause obtained through LHR hiss is explainable by the plasamapause position and the magnetic storm effect on the plasamapause. Concerning the narrow band hiss of 5 kHz +- 1.0 kHz frequently observed on the ground at low/middle latitudes, it may occur around plasmapause, propagate through the ionosphere and then to the ground in waveguide mode, or otherwise, it may occur above the ionosphere and then propagate directly to the ground penetrating through the ionosphere. (J.P.N.)

  11. Radio Frequency Interference: The Study of Rain Effect on Radio Signal Attenuation

    International Nuclear Information System (INIS)

    Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Atiq Wahidah Azlan; Zainol Abidin Ibrahim

    2015-01-01

    The intensity of radio waves received by radio telescopes is always not subject to human control. In the millimetre band, the propagation of the electromagnetic waves is severely affected by rain rate, dust particle size and drop size in the terms of attenuation, noise and depolarization. At the frequency above 10 GHz, the absorption and scattering by rain cause a reduction in the transmitted signal amplitude which will lead to the reducing of the availability, reliability and performance on the communications link. In this study, the rain effect on radio signal has been investigated. Spectrum analyzer and weather stations were used to obtain the RFI level and rain rate data respectively. The radio frequency interference (RFI) pattern due to rain factor was determined. This will benefit radio astronomer in managing sites for radio observation for radio astronomy purposes. (author)

  12. Next Generation Satellite Communications: Automated Doppler Shift Compensation of PSK-31 Via Software-Defined Radio

    Science.gov (United States)

    2014-05-09

    of wireless communications. One such development was the superheterodyne principle, which was discovered by amateur radio operator Edwin Armstrong in...synchronous: the same number of samples that enter the block will leave the block. Examples include filters, math operators and phase- locked loops...phase- locked loop (PLL) was used to determine the subcarrier frequency. The PLL tracks the error between the incoming frequency and the output

  13. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  14. COSMIC Radio Occultation technique for measurement of the tropopause during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    Basin during July 2008 and reached a maximum intensity of Category 3 and the typhoon Hondo, formed in the south Indian basin during February 2008 with maximum intensity of Category 4. Using measurements from a variety of earth observation satellites (A-Train constellation) and from aircraft together...... and they cool the tropopause layers. The GPS radio occultation technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution...

  15. Home ranges of brown hares in a natural salt marsh: comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, P.; Wal, van der R.; Wieren, van S.E.

    2001-01-01

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  16. Home ranges of brown hares in a natural salt marsh : comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, PJG; van der Wal, R; van Wieren, Sip

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  17. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  18. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  19. A two-channel wave analyser for sounding rockets and satellites

    International Nuclear Information System (INIS)

    Brondz, E.

    1989-04-01

    Studies of low frequency electromagnetic waves, produced originally by lightning discharges penetrating the ionosphere, provide an important source of valuable information about the earth's surrounding plasma. Use of rockets and satellites supported by ground-based observations implies, unique opportunity for measuring in situ a number of parameters simultaneously in order to correlate data from various measurements. However, every rocket experiment has to be designed bearing in mind telemetry limitations and/or short flight duration. Typical flight duration for Norwegian rockets launched from Andoeya Rocket Range is 500 to 600 s. Therefore, the most desired way to use a rocket or satellite is to carry out data analyses on board in real time. Recent achievements in Digital Signal Processing (DSP) technology have made it possible to undertake very complex on board data manipulation. As a part of rocket instrumentation, a DSP based unit able to carry out on board analyses of low frequency electromagnetic waves in the ionosphere has been designed. The unit can be seen as a general purpose computer built on the basis of a fixed-point 16 bit signal processor. The unit is supplied with a program code in order to perform wave analyses on two independent channels simultaneously. The analyser is able to perform 256 point complex fast fourier transformations, and it produce a spectral power desity estimate on both channels every 85 ms. The design and construction of the DSP based unit is described and results from the tests are presented

  20. Unexpected very low frequency (VLF) radio events recorded by the ionospheric satellite DEMETER

    Czech Academy of Sciences Publication Activity Database

    Parrot, M.; Berthelier, J. J.; Blecki, J.; Brochot, J. Y.; Hobara, Y.; Lagoutte, D.; Lebreton, J. P.; Němec, F.; Onishi, T.; Pincon, J. L.; Píša, David; Santolík, Ondřej; Sauvaud, J. A.; Slominska, E.

    2015-01-01

    Roč. 36, č. 3 (2015), s. 483-511 ISSN 0169-3298 R&D Projects: GA ČR(CZ) GA14-31899S; GA MŠk LH12231 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100421206; Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100421206 Institutional support: RVO:68378289 Keywords : ionosphere * natural and man-made VLF radio emissions * anomalies Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.622, year: 2015 http://link.springer.com/article/10.1007%2Fs10712-015-9315-5