WorldWideScience

Sample records for satellite radiation measurements

  1. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  2. The possible direct use of satellite radiance measurements by the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    1993-03-01

    The Atmospheric Radiation Measurement (ARM) Program is a major research program initiated by the Department of Energy to improve our understanding of radiative and cloud processes critical to predicting the Earth's climate and its changes. Central to this concept is the use of four to six intensively instrumented sites for long-term study and characterization of the processes of interest. The instrumentation suites will include ground-based, high-accuracy radiometers for measuring the short and longwave surface flux, as well as an extensive set of ground-and air-based instrumentation for characterizing the intervening atmospheric column. Satellite-based measurements are expected to play a very important role in providing top-of-the-atmosphere measurements. In this study, we examine the possibility of comparing ARM outputs directly with satellite measurements, thereby ensuring the independence of these two important data sets. Thus we focused on what do satellites really measure and how well do they measure it. On what can we do about the general lack of adequate visible channel calibration. On what is the best way for ARM to obtain near-real-time access to this unprocessed data. And on what is the optimum way for ARM to make use of satellite data

  3. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  4. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  5. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  6. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  7. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  8. The radiation dosimeter on-board the FY-4 Satellite

    Science.gov (United States)

    Zhang, B.; Sun, Y.; Zhang, S.; Zhang, X.; Sun, Y.; Jing, T.

    2017-12-01

    The total radiation dose effect can lead to a decrease in the performance of satellite devices or materials. Accurately obtaining the total radiation dose during satellite operation could help to analyze the abnormality of payloads in orbit and optimize the design of radiation shielding. The radiation dosimeter is one of the space environmental monitoring devices on the "FY-4" satellite, which is a new generation of geostationary meteorological satellite. The dosimeter consists of 8 detectors, which are installed in different locations of the satellite, to obtain the total radiation dose with different shielding thickness and different orientations. To measure a total radiation dose up to 2000krad(Si), 100nm ion implantation RADFET was used. To improve the sensitivity of the dosimeter, the bias voltage of RADFET is set to 15V, and a 10V, 15-bit A/D is adopted to digitalize the RADFET's threshold voltage, which is increased as the total radiation dose grows. In addition, the temperature effect of RADFET is corrected from the measured temperature on orbit. The preliminary monitoring results show that the radiation dose is less than 35rad (Si) per day at 0.87 mm shielding thickness of equivalent aluminum in the geostationary orbit, and the dose in Y direction of the satellite is less than those in the X and Z directions. The radiation dose at the thickness of 3.87 mm equivalent aluminum is less than 1rad(Si)/day. It is found that the daily total dose measured by the dosimeter has a strong correlation with the flux of high energy electrons.

  9. Techniques for predicting environment electromagnetic radiation at satellite ground station

    International Nuclear Information System (INIS)

    Xu Peiji

    1987-01-01

    The measurement theories, techniques, and calculation methods on public exposure level of electromagnetic radiation at satellite ground station are described for the purpose of enviroment protection and research of EM compatibility. According to the results of the measurement and calculation, it is possible to predict the effects of electromagnetic radiation to environment at satellite ground station

  10. Solar Radiation and Climate Experiment (SORCE) Satellite

    Science.gov (United States)

    2003-01-01

    This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).

  11. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  12. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  13. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  14. Satellite Atmospheric Sounder IRFS-2 1. Analysis of Outgoing Radiation Spectra Measurements

    Science.gov (United States)

    Polyakov, A. V.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Uspensky, A. B.; Zavelevich, F. S.; Golovin, Yu. M.; Kozlov, D. A.; Rublev, A. N.; Kukharsky, A. V.

    2017-12-01

    The outgoing radiation spectra measured by the IRFS-2 spectrometer onboard Meteor-M no. 2 satellite have been analyzed. Some statistical parameters of more than 106 spectra measured in spring in 2015 have been calculated. The radiation brightness temperature varied from ˜300 K (surface temperature) up to ˜210 K (tropopause temperature). The quite high variability of the longwave measured radiation has been demonstrated. The signal-to-noise ratio distinctively decreases in the shortwave region (higher than 1300 cm-1). Intercomparisons of IR sounders IRFS-2 with IASI and CrIS spectra showed that the discrepancies in the average spectra and their variability do not exceed measurement errors in the spectral region 660-1300 cm-1. A comparison of specially chosen pairs of the simultaneously measured spectra showed that the differences between IRFS-2 and European instruments in the region of the 15-μm CO2 band and the transparency windows 8-12 μm are less than 1 mW/(m2 sr cm-1) and no more than the differences between the two IASI instruments (-A and -B). The differences between measured and simulated spectra are less than 1 mW/(m2 sr cm-1) in the mean part of CO2 band. However, starting from 720 cm-1, values appear that reach 2-4 mW/(m2 sr cm-1). This is caused by the absence of precise information about the surface temperature. Further investigations into the possible reasons for the observed disagreements are required in order to improve both the method of initial processing and the radiative model of the atmosphere.

  15. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  16. Space radiation measurement of plant seeds boarding on the Shijian-8 satellite

    International Nuclear Information System (INIS)

    Lv Duicai; Huang Zengxin; Zhao Yali; Wang Genliang; Jia Xianghong; Guo Huijun; Liu Luxiang; Li Chunhua; Zhang Long

    2008-01-01

    In order to identify cause of mutagenesis of plant seeds induced by space flight, especially to ascertain the interrelation between space radiation and mutagenesis, a 'photograph location' experimental setup was designed in this study. CR-39 solid-state nuclear track detectors were used to detect space heavy particles. The plant seeds and their position hit by space heavy ions were checked based on relative position between track and seeds in the setup. The low LET part of the spectrum was also measured by thermoluminescence dosemeter (TLD, LiF). The results showed that the 'photograph location' experimental method was convenient, practicable and economical. This new method also greatly saved time for microscopical analysis. On Shijian-8 satellite, the average ion flux of space heavy ions was 4.44 ions/cm 2 ·d and the average dosage of low LET space radiation to the plant seeds was 4.79 mGy. (authors)

  17. Statistical theory for estimating sampling errors of regional radiation averages based on satellite measurements

    Science.gov (United States)

    Smith, G. L.; Bess, T. D.; Minnis, P.

    1983-01-01

    The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.

  18. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-12-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  19. Measurement of low-LET radiation dose aboard the chinese scientific experiment satellite (1988) by highly sensitive LiF (Mg, Cu, P) TL chips

    International Nuclear Information System (INIS)

    Zhang Zhonglun; Zheng Yanzhen.

    1989-01-01

    Low-LET radiation dose is an important portion of spaceflight dose. It is a new application that highly sensitive LiF(Mg, Cu, P) TL chips are used in measurement of low-LET dose aboard the chinese scientific experiment satellite. Avarage dose rate in satellite is 9.2 mrad/day and on the ground is about 0.32 mrad/day

  20. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    Science.gov (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  1. Symposium on radiation transfer problems and satellite measurements in meteorology and oceanography. Symposium ueber Strahlungstransportprobleme und Satellitenmessungen in der Meteorologie und der Ozeanographie. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The atmospherical cloud fields in the mesoscale and the synoptic scale are studied and classified with respect to brightness, form, structure, horizontal and vertical dimension, and surface temperature on the basis of satellite observations. The different developing stages and the drift of the clouds are analysed by satellite measurements; which give insight into the atmospheric processes, improving the possibilities for predictions. The wind velocities in the higher troposphere are of particular interest for civil aviation. The world climate program takes profit from the covering statistics of the cloud fields, and from measurements of the surface temperature, covering the continents and the sea. Such measurements can be performed by satellite-born radiometers, e.g. also with Meteosat. The surface radiation temperature distributions are the initial data for climate models aiming at climate predictions for the human society on a time scale of several years. Models describing the circulation in the atmosphere and in the sea as well as in the boundary region in between can be considered as a first step in this direction. Several reports are dedicated to the role of the radiation budget for the simulation and description of such physical processes. The changes of the radiation budget components in space and time as well as the resulting meteorological effects, in particular the number and the properties (first of all radiation temperature and albedo) of the clouds have an essential influence on the calculation of the radiation fluxes and divergencies in different layers of the atmosphere. Abstracts are available for 59 papers of this conference report.

  2. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    International Nuclear Information System (INIS)

    Stewart, J.B.; Watts, C.J.; Rodriguez, J.C.; Bruin, H.A.R. de; Berg, A.R. van den; Garatuza-Payán, J.

    1999-01-01

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  3. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  4. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  5. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  6. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel

    OpenAIRE

    Stubenrauch , C.J.; Rossow , W.B.; Kinne , S.; Ackerman , S.; Cesana , G.; Chepfer , H.; Di Girolamo , L.; Getzewich , B.; Guignard , A.; Heidinger , A.; Maddux , B.C.; Menzel , W.P.; Minnis , P.; Pearl , C.; Platnick , S.

    2013-01-01

    International audience; The Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel initiated the GEWEX Cloud Assessment in 2005 to compare available, global, long-term cloud data products with the International Satellite Cloud Climatology Project (ISCCP). The GEWEX Cloud Assessment database included cloud properties retrieved from different satellite sensor measurements, taken at various local times and over various time periods. The relevant passive satellite sensors measured radia...

  7. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2002-01-01

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  8. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  9. Interfering line in trace analysis by X-ray spectrometry: Radiative auger satellites

    International Nuclear Information System (INIS)

    Maeda, Kuniko; Kawai, Jun.

    1994-01-01

    Strong characteristic X-ray lines (e.g. Kα and Kβ) are accompanied by broad low-energy satellites caused by the radiative Auger effect (RAE). In order to prove how the RAE satellites interfere the analysis of minor elements, low-energy side spectra of Ca and Ti Kβ, and Ca-Fe Kα were measured. The obtained RAE intensities are summarized together with published experimental and theoretical data. The integrated intensities of satellites due to K → MM, K → LM and K → LL RAE relative to that of Kα are determined to be of the order of 0.01-0.1%. This warns that the neglecting of the RAE satellites will introduce a serious error in trace analysis. (author)

  10. Satellite-based trends of solar radiation and cloud parameters in Europe

    Science.gov (United States)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  11. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  12. Daily Radiation Budget of the Baltic Sea Surface from Satellite Data

    Directory of Open Access Journals (Sweden)

    Zapadka Tomasz

    2015-09-01

    Full Text Available Recently developed system for assessment of radiation budget for the Baltic Sea has been presented and verified. The system utilizes data from various sources: satellite, model and in situ measurements. It has been developed within the SatBałtyk project (Satellite Monitoring of the Baltic Sea Environment - www.satbaltyk.eu where the energy radiation budget is one of the key element. The SatBałtyk system generates daily maps of the all components of radiation budget on every day basis. We show the scheme of making daily maps, applied algorithms and empirical data collection within the system. An empirical verification of the system has been carried out based on empirical data collected on the oil rig placed on the Baltic Sea. This verification concerned all the components of the surface radiation budget. The average daily NET products are estimated with statistical error ca. 13 Wm-2. The biggest absolute statistical error is for LWd component and equals 14 Wm-2. The relative error in relation to the average annual values for whole Baltic is the biggest for SWu and reaches 25%. All estimated components have correlation coefficient above 0.91.

  13. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  14. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    Science.gov (United States)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  15. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    International Nuclear Information System (INIS)

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  16. A new CM SAF Solar Surface Radiation Climate Data Set derived from Meteosat Satellite Observations

    Science.gov (United States)

    Trentmann, J.; Mueller, R. W.; Pfeifroth, U.; Träger-Chatterjee, C.; Cremer, R.

    2014-12-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. It is mandatory to monitor this part of the earth's energy balance, and thus gain insights on the state and variability of the climate system. In addition, data sets of the surface solar radiation have received increased attention over the recent years as an important source of information for the planning of solar energy applications. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving surface solar radiation from geostationary and polar-orbiting satellite instruments. While CM SAF is focusing on the generation of high-quality long-term climate data records, also operationally data is provided in short time latency within 8 weeks. Here we present SARAH (Solar Surface Radiation Dataset - Heliosat), i.e. the new CM SAF Solar Surface Radiation data set based on Meteosat satellite observations. SARAH provides instantaneous, daily- and monthly-averaged data of the effective cloud albedo (CAL), the direct normalized solar radiation (DNI) and the solar irradiance (SIS) from 1983 to 2013 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05 deg allowing for detailed regional studies, and are available in netcdf-format at no cost without restrictions at www.cmsaf.eu. We provide an overview of the data sets, including a validation against reference measurements from the BSRN and GEBA surface station networks.

  17. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  18. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  19. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  20. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  1. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    Science.gov (United States)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  2. PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays

    Science.gov (United States)

    Bongi, M.; Adriani, O.; Ambriola, M.; Bakaldin, A.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G.; Bellotti, R.; Bencardino, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongiorno, L.; Bonvicini, V.; Boscherini, M.; Cafagna, F. S.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Furano, G.; Galper, A. M.; Giglietto, N.; Grigorjeva, A.; Koldashov, S. V.; Korotkov, M. G.; Krut'kov, S. Y.; Lund, J.; Lundquist, J.; Menicucci, A.; Menn, W.; Mikhailov, V. V.; Minori, M.; Mirizzi, N.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Mukhametshin, R.; Orsi, S.; Osteria, G.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Romita, M.; Rossi, G.; Russo, S.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Spinelli, P.; Stochaj, S. J.; Stozhkov, Y.; Straulino, S.; Streitmatter, R. E.; Taccetti, F.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Wischnewski, R.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2004-06-01

    PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10/sup -8/. The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.

  3. Spatial and temporal variations of albedo and absorbed solar radiation during 2009 - 2016 from IKOR-M satellite program

    Science.gov (United States)

    Cherviakov, Maksim; Bogdanov, Mikhail; Spiryakhina, Anastasia; Shishkina, Elena; Surkova, Yana; Kulkova, Eugenia

    2017-04-01

    This report describes Earth's radiation budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M» No 1 of this project was put into orbit in September, 2009. The IKOR-M radiometer is a satellite instrument that measures reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov State University and installed on Russian hydrometeorological satellites "Meteor-M" No 1 and No 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such measurements can be used to derive Earth's surface albedo and absorbed solar radiation. This information also can be used in different models of long-term weather forecasts and in researches of climate change trends (Sklyarov et al., 2016). Satellite "Meteor-M" No 1 and No 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2 (Bogdanov et al., 2016). The effect of aging is investigated for first IKOR

  4. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data

    International Nuclear Information System (INIS)

    Lu, Ning; Qin, Jun; Yang, Kun; Sun, Jiulin

    2011-01-01

    Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. -- Highlights: → A simple and efficient algorithm to estimate GSR from geostationary satellite data. → ANN model fully exploits both the information from satellite and ground measurements. → Good performance of the ANN model is comparable to that of the classical models. → Surface elevation and infrared information enhance GSR inversion.

  5. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    International Nuclear Information System (INIS)

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  6. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  7. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  8. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    Science.gov (United States)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  9. Measurements of the cosmic background radiation

    International Nuclear Information System (INIS)

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  10. Radiation properties of moving constellations of (nano) satellites: A complexity study

    NARCIS (Netherlands)

    Bruinsma, Wessel P.; Hes, Robin P.; Bosma, Sjoerd; Lager, Ioan E.; Bentum, Marinus Jan

    2016-01-01

    The (computational) complexity involved by beamforming in moving constellations of (nano) satellites is investigated by means of illustrative numerical experiments. While the number of radiators in such three-dimensional (3D) array antennas is not large, evaluating their radiation patterns entails

  11. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  12. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  13. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  14. Radiation load experiments with electronic components of the SYMPHONIE satellite

    International Nuclear Information System (INIS)

    Spencker, A.; Wagemann, H.G.; Braeunig, D.

    1975-09-01

    This report surveys fundamentals, realization and results of irradiation experiments which applied to 36 different electronic components of the Symphonie satellite and which were completed at the HMI Berlin and the C.N.E.T. Lannion in the years 1972/73. In a general section the evaluation of equivalent fluencies concerning 1 MeV electrons as radiation simulating the extraterrestric particle spectra with regard to the well-known semiconductor damage mechanisms is discussed. Then the realization of irradiation testing for the Symphonie satellite is described. Three selected examples demonstrate typical failure modes of semiconductor devices under radiation stress: Finally the main experimental results are shown in a standardized manner; a survey in English is given on p. 44. (orig.) [de

  15. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NARCIS (Netherlands)

    Lenaerts, JTM; Van Tricht, Kristof; Lhermitte, S.L.M.; L'Ecuyer, T.S.

    2017-01-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007–2010) to evaluate simulated clouds and radiation over both polar ice sheets

  16. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  17. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: An experiment with neural network algorithms inverting SCIAMACHY data

    International Nuclear Information System (INIS)

    Sellitto, P.; Di Noia, A.; Del Frate, F.; Burini, A.; Casadio, S.; Solimini, D.

    2012-01-01

    Theoretical evidence has been given on the role of visible (VIS) radiation in enhancing the accuracy of ozone retrievals from satellite data, especially in the troposphere. However, at present, VIS is not being systematically used together with ultraviolet (UV) measurements, even when possible with one single instrument, e.g., the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY). Reasons mainly reside in the defective performance of optimal estimation and regularization algorithms caused by inaccurate modeling of VIS interaction with aerosols or clouds, as well as in inconsistent intercalibration between UV and VIS measurements. Here we intend to discuss the role of VIS radiation when it feeds a retrieval algorithm based on Neural Networks (NNs) that does not need a forward radiative transfer model and is robust with respect to calibration errors. The NN we designed was trained with a set of ozonesondes (OSs) data and tested over an independent set of OS measurements. We compared the ozone concentration profiles retrieved from UV-only with those retrieved from UV plus VIS nadir data taken by SCIAMACHY. We found that VIS radiation was able to yield more than 10% increase of accuracy and to substantially reduce biases of retrieved profiles at tropospheric levels.

  18. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  19. Satellite-based climate data records of surface solar radiation from the CM SAF

    Science.gov (United States)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface

  20. Improved Satellite-based Photosysnthetically Active Radiation (PAR) for Air Quality Studies

    Science.gov (United States)

    Pour Biazar, A.; McNider, R. T.; Cohan, D. S.; White, A.; Zhang, R.; Dornblaser, B.; Doty, K.; Wu, Y.; Estes, M. J.

    2015-12-01

    One of the challenges in understanding the air quality over forested regions has been the uncertainties in estimating the biogenic hydrocarbon emissions. Biogenic volatile organic compounds, BVOCs, play a critical role in atmospheric chemistry, particularly in ozone and particulate matter (PM) formation. In southeastern United States, BVOCs (mostly as isoprene) are the dominant summertime source of reactive hydrocarbon. Despite significant efforts in improving BVOC estimates, the errors in emission inventories remain a concern. Since BVOC emissions are particularly sensitive to the available photosynthetically active radiation (PAR), model errors in PAR result in large errors in emission estimates. Thus, utilization of satellite observations to estimate PAR can help in reducing emission uncertainties. Satellite-based PAR estimates rely on the technique used to derive insolation from satellite visible brightness measurements. In this study we evaluate several insolation products against surface pyranometer observations and offer a bias correction to generate a more accurate PAR product. The improved PAR product is then used in biogenic emission estimates. The improved biogenic emission estimates are compared to the emission inventories over Texas and used in air quality simulation over the period of August-September 2013 (NASA's Discover-AQ field campaign). A series of sensitivity simulations will be performed and evaluated against Discover-AQ observations to test the impact of satellite-derived PAR on air quality simulations.

  1. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  2. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  3. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  4. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    Science.gov (United States)

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  5. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    International Nuclear Information System (INIS)

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  6. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  7. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  8. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  9. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Climate Science Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, CJ. Y.

    2012-01-01

    The "global warming hiatus" since the 1998 El Nino, highlighted by Meehl et al., and the resulting "missing energy" problem highlighted by Trenberth et al., has opened the door to a more fundamental view of climate change than mere surface air temperature. That new view is based on two variables which are strongly correlated: the rate of change of ocean heat content d(OHC)/dt; and Earth Radiation Imbalance (ERI) at the top of the atmosphere, whose guesstimated range is 0.4 to 0.9 Watts per square meters (this imbalance being mainly due to increasing CO2). The Argo float array is making better and better measurements of OHC. But existing satellite systems cannot measure ERI to even one significant digit. So, climate model predictions of ERI are used in place of real measurements of it, and the satellite data are tuned to the climate model predictions. Some oceanographers say "just depend on Argo for understanding the global warming hiatus and the missing energy", but we don't think this is a good idea because d(OHC)/dt and ERI have different time scales and are never perfectly correlated. We think the ERB community needs to step up to measuring ERI correctly, just as oceanographers have deployed Argo to measure OHC correctly. This talk will overview a proposed constellation of 66 Earth radiation budget instruments, hosted on Iridium satellites, that will actually be able to measure ERI to at least one significant digit, thus enabling a crucial test of climate models. This constellation will also be able to provide ERI at two-hourly time scales and 500-km spatial scales without extrapolations from uncalibrated narrowband geostationary instruments, using the highly successful methods of GRACE to obtain spatial resolution. This high time resolution would make ERI a synoptic variable like temperature, and allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes and even brief excursions of Total Solar Irradiance. Time permitting, we

  10. Inconing solar radiation estimates at terrestrial surface using meteorological satellite

    International Nuclear Information System (INIS)

    Arai, N.; Almeida, F.C. de.

    1982-11-01

    By using the digital images of the visible channel of the GOES-5 meteorological satellite, and a simple radiative transfer model of the earth's atmosphere, the incoming solar radiation reaching ground is estimated. A model incorporating the effects of Rayleigh scattering and water vapor absorption, the latter parameterized using the surface dew point temperature value, is used. Comparisons with pyranometer observations, and parameterization versus radiosonde water vapor absorption calculation are presented. (Author) [pt

  11. Resonant satellite transitions in argon

    International Nuclear Information System (INIS)

    Samson, J.A.R.; Lee Eunmee; Chung, Y.

    1990-01-01

    The production of specific Ar + satellite states has been studied with synchrotron radiation at wavelengths between 300 and 350 A with an effective energy resolution of 20 meV. The specific states studied were the ( 3 P)4p( 2 P 3/2 ), ( 1 D)4p( 2 F 7/2 ), and ( 1 D)4p( 2 P 1/2 ) states. The fluorescent radiation emitted from these excited ionic states was measured at 4766, 4611, and 4133 A by the use of narrow band interference filters. The variation of the fluorescence intensity was measured as a function of wavelength. This provided a measure of the relative cross section for production of the satellite states. Each satellite state was found to be completely dominated by autoionization of the neutral doubly excited states (3s 2 3p 4 )nl, n'l' found in this spectral region. (orig.)

  12. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  13. Radiation practices and radiation measurements

    International Nuclear Information System (INIS)

    2008-03-01

    The guide presents the principal requirements on accuracy of radiation measurements and on the approval, calibration and operating condition inspections of radiation meters, together with requirements for dosimetric services measuring the individual radiation doses of workers engaged in radiation work (approved dosimetric services). The Guide also sets out the definitions of quantities and units used in radiation measurements. The radiation protection quantities used for assessing the harmful effects of radiation and for expressing the maximum values for radiation exposure (equivalent dose and effective dose) are set out in Guide ST 7.2. This Guide concerns measurements of ionizing radiation involved in radiation practices, the results of which are used for determining the radiation exposure of workers engaged in radiation work and members of the public, and of patients subject to the use of radiation in health services, or upon the basis of which compliance with safety requirements of appliances currently in use and of their premises of use or of the workplaces of workers is ensured. The Guide also concerns measurements of the radon concentration of inhaled air in both workplaces and dwellings. The Guide does not apply to determining the radiation exposure of aircrews, determination of exposure caused by internal radiation, or measurements made to protect the public in the event of, or in preparation for abnormal radiation conditions

  14. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  15. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    Science.gov (United States)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  16. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  17. Study of cloud properties using airborne and satellite measurements

    Science.gov (United States)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  18. Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi-Satellite Measurements

    Science.gov (United States)

    Capannolo, L.; Li, W.; Ma, Q.

    2017-12-01

    Electron precipitation into the upper atmosphere is one of the important loss mechanisms in the Earth's inner magnetosphere. Various magnetospheric plasma waves (i.e., chorus, plasmaspheric hiss, electromagnetic ion cyclotron waves, etc.) play an important role in scattering energetic electrons into the loss cone, thus enhance ionization in the upper atmosphere and affect ring current and radiation belt dynamics. The present study evaluates conjunction events where low-earth-orbiting satellites (twin AeroCube-6) and near-equatorial satellites (twin Van Allen Probes) are located roughly along the same magnetic field line. By analyzing electron flux variation at various energies (> 35 keV) measured by AeroCube-6 and wave and electron measurements by Van Allen Probes, together with quasilinear diffusion theory and modeling, we determine the physical process of driving the observed energetic electron precipitation for the identified electron precipitation events. Moreover, the twin AeroCube-6 also helps us understand the spatiotemporal effect and constrain the coherent size of each electron precipitation event.

  19. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  20. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  1. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  2. Leonardo-BRDF: A New Generation Satellite Constellation

    Science.gov (United States)

    Esper, Jaime; Neeck, Steven; Wiscombe, Warren; Ryschkewitsch, Michael; Andary, J. (Technical Monitor)

    2000-01-01

    Instantaneous net radiation flux at the top of the atmosphere is one of the primary drivers of climate and global change. Since the dawn of the satellite era, great efforts and expense have gone into measuring this flux from single satellites and even (for a several-year period) from a constellation of three satellites called ERBE. However, the reflected solar flux is an angular and spectral integral over the so-called "BRDF" or Bidirectional Reflectance Distribution Function, which is the angular distribution of reflected solar radiation for each solar zenith angle and each wavelength. Previous radiation flux satellites could not measure instantaneous BRDF, so scientists have had to fall back on models or composites. Because their range of observed solar zenith angles was very limited due to sunsynchronous orbits, the resultant flux maps are too inaccurate to see the dynamics of radiation flux or to reliably correlate it with specific phenomena (hurricanes, biomass fires, urban pollution, dust outbreaks, etc.). Accuracy only becomes acceptable after monthly averaging, but this washes out almost all cause-and-effect information, further exacerbated by the lack of spectral resolution. Leonardo-BRDF is a satellite system designed to measure the instantaneous spectral BRDF using a formation of highly coordinated satellites, all pointing at the same Earth targets at the same time. It will allow scientists for the first time to assess the radiative forcing of climate due to specific phenomena, which is bound to be important in the ongoing debate about global warming and what is causing it. The formation is composed of two satellite types having, as instrument payloads, single highly-integrated miniature imaging spectrometers or radiometers. Two nearby "keystone" satellites anchor the formation and fly in static orbits. They employ wide field of view imaging spectrometers that are extremely light and compact. The keystone satellites are identical and can operate in

  3. Airborne gamma-radiation snow water-equivalent and soil-moisture measurements and satellite areal extent of snow-cover measurements. A user's guide. Version 3.0

    International Nuclear Information System (INIS)

    Carroll, T.; Allen, M.

    1988-01-01

    The National Remote Sensing Hydrology Program is managed by the Office of Hydrology and consists of the Airborne Snow Survey Section and the Satellite Hydrology Section. The Airborne Snow Survey Section makes airborne snow water-equivalent and soil-moisture measurements over large areas of the country subject to a severe and chronic snowmelt flooding threat. The User's Guide is intended primarily to provide field hydrologists with some background on the technical and administrative aspects of the National Remote Sensing Hydrology Program. The guide summarizes the techniques and procedures used to make and distribute real-time, operational airborne snow water-equivalent measurements and satellite areal extent of snow-cover measurements made over large areas of the country. The current airborne and satellite databases are summarized, and procedures to access the real-time observations through both AFOS and through a commercial, electronic bulletin board system are given in the appendices

  4. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite

    Directory of Open Access Journals (Sweden)

    Yuriy Puzachenko

    2013-09-01

    Full Text Available The paper discusses methods of evaluating thermodynamic properties of landscape cover based on multi-spectral measurements by the Landsat satellites. Authors demonstrate how these methods could be used for studying functionality of landscapes and for spatial interpolation of Flux NET system measurements.

  5. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Directory of Open Access Journals (Sweden)

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  6. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    Science.gov (United States)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  7. Selection of fiber-optical components for temperature measurement for satellite applications

    Science.gov (United States)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to

  8. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  9. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  10. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  11. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  12. Community Radiative Transfer Model for Inter-Satellites Calibration and Verification

    Science.gov (United States)

    Liu, Q.; Nalli, N. R.; Ignatov, A.; Garrett, K.; Chen, Y.; Weng, F.; Boukabara, S. A.; van Delst, P. F.; Groff, D. N.; Collard, A.; Joseph, E.; Morris, V. R.; Minnett, P. J.

    2014-12-01

    Developed at the Joint Center for Satellite Data Assimilation, the Community Radiative Transfer Model (CRTM) [1], operationally supports satellite radiance assimilation for weather forecasting. The CRTM also supports JPSS/NPP and GOES-R missions [2] for instrument calibration, validation, monitoring long-term trending, and satellite retrieved products [3]. The CRTM is used daily at the NOAA NCEP to quantify the biases and standard deviations between radiance simulations and satellite radiance measurements in a time series and angular dependency. The purposes of monitoring the data assimilation system are to ensure the proper performance of the assimilation system and to diagnose problems with the system for future improvements. The CRTM is a very useful tool for cross-sensor verifications. Using the double difference method, it can remove the biases caused by slight differences in spectral response and geometric angles between measurements of the two instruments. The CRTM is particularly useful to reduce the difference between instruments for climate studies [4]. In this study, we will carry out the assessment of the Suomi National Polar-orbiting Partnership (SNPP) [5] Cross-track Infrared Sounder (CrIS) data [6], Advanced Technology Microwave Sounder (ATMS) data, and data for Visible Infrared Imaging Radiometer Suite (VIIRS) [7][8] thermal emissive bands. We use dedicated radiosondes and surface data acquired from NOAA Aerosols and Ocean Science Expeditions (AEROSE) [9]. The high quality radiosondes were launched when Suomi NPP flew over NOAA Ship Ronald H. Brown situated in the tropical Atlantic Ocean. The atmospheric data include profiles of temperature, water vapor, and ozone, as well as total aerosol optical depths. The surface data includes air temperature and humidity at 2 meters, skin temperature (Marine Atmospheric Emitted Radiance Interferometer, M-AERI [10]), surface temperature, and surface wind vector. [1] Liu, Q., and F. Weng, 2006: JAS [2] Liu, Q

  13. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Directory of Open Access Journals (Sweden)

    K. Lamy

    2018-01-01

    . Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman(2000's algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006's algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  14. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Science.gov (United States)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  15. Alignment of Ar+ [3P]4p2P03/2 satellite state from the polarization analysis of fluorescent radiation after photoionization

    International Nuclear Information System (INIS)

    Yenen, O.; McLaughlin, K.W.; Jaecks, D.H.

    1997-01-01

    The measurement of the polarization of radiation from satellite states of Ar + formed after the photoionization of Ar provides detailed information about the nature of doubly excited states, magnetic sublevel cross sections and partial wave ratios of the photo-ejected electrons. Since the formation of these satellite states is a weak process, it is necessary to use a high flux beam of incoming photons. In addition, in order to resolve the many narrow doubly excited Ar resonances, the incoming photons must have a high resolution. The characteristics of the beam line 9.0.1 of the Advanced Light Source fulfill these requirements. The authors determined the polarization of 4765 Angstrom fluorescence from the Ar + [ 3 P] 4p 2 P 3/2 0 satellite state formed after photoionization of Ar by photons from the 9.0.1 beam line of ALS in the 35.620-38.261 eV energy range using a resolution of approximately 12,700. This is accomplished by measuring the intensities of the fluorescent light polarized parallel (I parallel) and perpendicular (I perpendicular) to the polarization axis of the incident synchrotron radiation using a Sterling Optics 105MB polarizing filter. The optical system placed at 90 degrees with respect to the polarization axis of the incident light had a narrow band interference filter (δλ=0.3 nm) to isolate the fluorescent radiation

  16. R-B measurements and their implications : solar UV radiation trends

    International Nuclear Information System (INIS)

    Basher, R.

    1993-01-01

    There is a wide variety of needs for UV information, including: (i) real-time monitoring and other public information; (ii) trend detection and policy-maker needs; (iii) space/time/wavelength information for health and biological impacts research; and (iv) atmospheric research, e.g. effects of clouds on UV, transmission model development, etc. The way each need is satisfied will vary. High quality spectral data for research purposes requires expensive equipment and close, on-site scientific supervision and hence will be restricted to a few locations, while conversely, measurements of spatial patterns will require numerous simple instruments, such a the Robertson-Berger Meter or International Light instrument, or the use of satellite methods. Trend detection will lay great store on long-term stability of instrumentation. It is important to recognise that to deal with the variety of needs, we need the combined use of spectral measurement, broadband measurement, radiation modelling, and satellite techniques. (author). 13 refs., 3 figs

  17. Satellite Based Downward Long Wave Radiation by Various Models in Northeast Asia

    Directory of Open Access Journals (Sweden)

    Chanyang Sur

    2014-01-01

    Full Text Available Satellite-based downward long wave radiation measurement under clear sky conditions in Northeast Asia was conducted using five well-known physical models (Brunt 1932, Idso and Jackson 1969, Brutsaert 1975, Satterlund 1979, Prata 1996 with a newly proposed global Rld model (Abramowitz et al. 2012. Data from two flux towers in South Korea were used to validate downward long wave radiation. Moderate resolution imaging spectroradiometer (MODIS atmospheric profile products were used to develop the Rld models. The overall root mean square error (RMSE of MODIS Rld with respect to two ecosystem-type flux towers was determined to be ≈ 20 W m-2. Based on the statistical analyses, MODIS Rld estimates with Brutsaert (1975 and Abramowitz et al. (2012 models were the most applicable for evaluating Rld for clear sky conditions in Northeast Asia. The Abramowitz Rld maps with MODIS Ta and ea showed reasonable seasonal patterns, which were well-aligned with other biophysical variables reported by previous studies. The MODIS Rld map developed in this study will be very useful for identifying spatial patterns that are not detectable from ground-based Rld measurement sites.

  18. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  19. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not

  20. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  1. Radiation measurement

    International Nuclear Information System (INIS)

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  2. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  3. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  4. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    Science.gov (United States)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  5. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    International Nuclear Information System (INIS)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-01

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  6. Validation of ultraviolet radiation budgets using satellite observations from the OMI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Den Outer, P.N.; Van Dijk, A.; Slaper, H.

    2008-11-15

    Satellite retrieval of ozone, clouds, aerosols and ground albedo allows the modelling of ultraviolet (UV)-doses received at the ground. UV-doses derived from satellite observations are highly useful in analyzing regional differences in the effects of ozone depletion and climate change on the biologically effective UV-radiation levels. RIVM has developed and used UV-mapping and UV-risk mapping techniques in environmental assessments in evaluating the effects of ozone depletion and climate change. This project provides a validation study on the OMUVB product by means of a comparison with ground-based measurements. This validation should demonstrate if the OMUVB product can be used from the perspective of long-term environmental trend assessments. Comparing ground-based UV-measurements with the OMUVB product, we show that the product consistently overestimates the UV-doses received at the ground in Europe. The systematic comparison with data from 8 European sites shows on average a 15% overestimate in the yearly integrated UV with a site-to-site variability of around 8%. For four of the more northern sites the overestimation in yearly doses is between 5-10%, and for the four sites that are more southern the deviation is 20-27%. Using the ozone and reflectivity data from the OMI-instrument (Ozone Monitoring Instrument) in combination with the AMOUR-algorithm (Assessment Model for Ultraviolet radiation and Risks) shows smaller overestimates of on average 5-6% with a similar variability between the sites. The variability between sites is largely caused by aerosol and albedo effects and is reduced to 3% if local data on aerosol and albedo are used. The overestimates in the OMUVB product are primarily due to too low (tropospheric) aerosol loads used for the European sites. In addition, our comparison shows that under heavy clouded conditions the cloud modification factors are too high. This contributes to the overall too high UV-doses of the OMUVB product. Environmental

  7. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  8. An Alternative Inter-Satellite Calibration of the UMD HIRS OLR Retrievals

    Science.gov (United States)

    Robertson, Franklin R.; Lee, Hai-Tien

    2012-01-01

    Outgoing Longwave Radiation (OLR) at the top-of-atmosphere (TOA) is a fundamental component of Earth's energy balance and represents the heat energy in the thermal bands rejected to space by the planet. Determination of OLR from satellites has a long and storied history, but the observational record remains largely fragmented with gaps in satellite measurements over the past three decades. Perhaps the most semi-continuous set of retrievals comes from the University of Maryland (UMD) algorithm that uses four HIRS (High Resolution Infrared Sounder) channels on the NOAA polar orbiting satellites to estimate OLR. This data set shows great promise in helping to bridge the discontinuous ERBS (Earth Radiation Budget Satellite) and CERES (Clouds and the Earth s Radiant Energy System) measurements. However, significant satellite inter-calibration biases persist with the present UMD data, principally outside the tropics. Difficulties relate to the combination of drift of the satellite equator crossing time through the diurnal cycle and changes in HIRS channel response function design. Here we show how an ad hoc recalibration of the UMD retrievals among the different satellites removes much of the remaining uncertainty due to diurnal drift of the satellite orbit. The adjusted HIRS data (using no other external information) show much better agreement with OLR from the European Center Interim Reanalysis (EC-Int), longer-term signals in the Global Energy and Water Cycle Experiment / Surface Radiation Budget (GEWEX/SRB) retrievals, and also agree well with ERBS and CERES OLR measurements. These results augur well for narrowing the uncertainties in multi-decadal estimates of this important climate variable.

  9. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  10. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  11. Radiation-resistance test on optical fiber for artificial satellite

    International Nuclear Information System (INIS)

    Morita, Yosuke; Seguchi, Tadao; Mori, Tatsuo; Miyaji, Yuji.

    1985-01-01

    Radiation resistance of a prototype optical fiber for use in artificial satellites is investigated under a long-term irradiation of gamma rays at relatively low dose rates. The optical fiber tested is composed of a pure silica core and an F-doped cladding. Various aspects of the relations between induced loss and irradiation time are observed and results obtained are discussed. It is generally accepted that a satellite and its equipment should be resistant to a total dose of about 1 x 10 6 rad. In the present test, accordingly, gamma ray irradiation is performed up to a total dose of 1 x 10 6 rad at a dose rate of 1 x 10 4 rad/h (for 100 h), 3 x 10 3 rad/h (333 h) and 1 x 10 3 rad/h (1000 h), and it is shown that the loss induced in this fiber at these dose rates is 23.6 - 27.2, 16.9 - 21.6 and 12.5 - 13.5 dB/km, respectively. On the other hand, it has been reported that the loss induced at the dose rate of 1 x 10 6 rad/h (1 h) is about 600 dB/km, which is much larger than the above values. From these results, the loss at a dose rate of 100 rad/h, which would be expected in a satellite, is estimated at about 10 dB/km. It is concluded that this prototype fiber has a sufficient capability for satellite use with respect to induced loss. (Nogami, K.)

  12. Algorithms and programs for processing of satellite data on ozone layer and UV radiation levels

    International Nuclear Information System (INIS)

    Borkovskij, N.B.; Ivanyukovich, V.A.

    2012-01-01

    Some algorithms and programs for automatic retrieving and processing ozone layer satellite data are discussed. These techniques are used for reliable short-term UV-radiation levels forecasting. (authors)

  13. LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection

    Science.gov (United States)

    Hazumi, M.; Borrill, J.; Chinone, Y.; Dobbs, M. A.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; Holzapfel, W. L.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Karatsu, K.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, N.; Koga, K.; Komatsu, E.; Lee, A. T.; Matsuhara, H.; Matsumura, T.; Mima, S.; Mitsuda, K.; Morii, H.; Murayama, S.; Nagai, M.; Nagata, R.; Nakamura, S.; Natsume, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ohta, I.; Otani, C.; Richards, P. L.; Sakai, S.; Sato, N.; Sato, Y.; Sekimoto, Y.; Shimizu, A.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takagi, Y.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Watanabe, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2012-09-01

    LiteBIRD [Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection] is a small satellite to map the polarization of the cosmic microwave background (CMB) radiation over the full sky at large angular scales with unprecedented precision. Cosmological inflation, which is the leading hypothesis to resolve the problems in the Big Bang theory, predicts that primordial gravitational waves were created during the inflationary era. Measurements of polarization of the CMB radiation are known as the best probe to detect the primordial gravitational waves. The LiteBIRD working group is authorized by the Japanese Steering Committee for Space Science (SCSS) and is supported by JAXA. It has more than 50 members from Japan, USA and Canada. The scientific objective of LiteBIRD is to test all the representative inflation models that satisfy single-field slow-roll conditions and lie in the large-field regime. To this end, the requirement on the precision of the tensor-to-scalar ratio, r, at LiteBIRD is equal to or less than 0.001. Our baseline design adopts an array of multi-chroic superconducting polarimeters that are read out with high multiplexing factors in the frequency domain for a compact focal plane. The required sensitivity of 1.8μKarcmin is achieved with 2000 TES bolometers at 100mK. The cryogenic system is based on the Stirling/JT technology developed for SPICA, and the continuous ADR system shares the design with future X-ray satellites.

  14. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  15. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  16. Wide-banded NTC radiation: local to remote observations by the four Cluster satellites

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2015-10-01

    Full Text Available The Cluster multi-point mission offers a unique collection of non-thermal continuum (NTC radio waves observed in the 2–80 kHz frequency range over almost 15 years, from various view points over the radiating plasmasphere. Here we present rather infrequent case events, such as when primary electrostatic sources of such waves are embedded within the plasmapause boundary far from the magnetic equatorial plane. The spectral signature of the emitted electromagnetic waves is structured as a series of wide harmonic bands within the range covered by the step in plasma frequency encountered at the boundary. Developing the concept that the frequency distance df between harmonic bands measures the magnetic field magnitude B at the source (df = Fce, electron gyrofrequency, we analyse three selected events. The first one (studied in Grimald et al., 2008 presents electric field signatures observed by a Cluster constellation of small size (~ 200 to 1000 km spacecraft separation placed in the vicinity of sources. The electric field frequency spectra display frequency peaks placed at frequencies fs = n df (n being an integer, with df of the order of Fce values encountered at the plasmapause by the spacecraft. The second event, taken from the Cluster tilt campaign, leads to a 3-D view of NTC waves ray path orientations and to a localization of a global source region at several Earth radii (RE from Cluster (Décréau et al., 2013. The measured spectra present successive peaks placed at fs ~ (n+ 1/2 df. Next, considering if both situations might be two facets of the same phenomenon, we analyze a third event. The Cluster fleet, configured into a constellation of large size (~ 8000 to 25 000 km spacecraft separation, allows us to observe wide-banded NTC waves at different distances from their sources. Two new findings can be derived from our analysis. First, we point out that a large portion of the plasmasphere boundary layer, covering a large range of magnetic

  17. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  18. Impacts of Aerosol Direct Effects on the South Asian climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/surface Measurements

    Science.gov (United States)

    Wang, S.; Gautam, R.; Lau, W. K.; Tsay, S.; Sun, W.; Kim, K.; Chern, J.; Colarco, P. R.; Hsu, N. C.; Lin, N.

    2011-12-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation. In addition to modeling study, we will also present the most recent results on aerosol properties, regional aerosol absorption, and radiative forcing estimation based on NASA's operational satellite and ground-based remote sensing. Observational results show spatial gradients in aerosol loading and solar absorption accounting over Indo-Gangetic Plains during the pre-monsoon season. The

  19. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  20. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  1. Ionizing radiation risks to satellite power systems (SPS) workers

    International Nuclear Information System (INIS)

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities

  2. Ionizing radiation risks to satellite power systems (SPS) workers

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

  3. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  4. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  5. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  6. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  7. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  8. Concept of space NPP radiation safety and its realization in the Kosmos-1900 satellite

    International Nuclear Information System (INIS)

    Gryaznov, G.M.; Nikolaev, V.S.; Serbin, V.I.; Tyugin, V.M.

    1989-01-01

    A standard NPP for a space vehicle, radioactivity composition and radiation safety systems are considered. Plausible accidents on board the space vehicle and requirements to system operation reliability are discussed. The main reactor characteristics situation on board the Kosmos-1900 satellite and completion of its flight are described. The experience in providing radiation safety of space NPP has shown that it is sufficient to use two independent systems: a drift system and a reactor dispersion system based on separation of its structure by active means

  9. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  10. A Simple Semi-Empirical Model for the Estimation of Photosynthetically Active Radiation from Satellite Data in the Tropics

    Directory of Open Access Journals (Sweden)

    S. Janjai

    2013-01-01

    Full Text Available This paper presents a simple semi-empirical model for estimating global photosynthetically active radiation (PAR under all sky conditions. The model expresses PAR as a function of cloud index, aerosol optical depth, total ozone column, solar zenith angle, and air mass. The formulation of the model was based on a four-year period (2008–2011 of PAR data obtained from the measurements at four solar monitoring stations in a tropical environment of Thailand. These are Chiang Mai (18.78°N, 98.98°E, Ubon Ratchathani (15.25°N, 104.87°E, Nakhon Pathom (13.82°N, 100.04°E, and Songkhla (7.20°N, 100.60°E. The cloud index was derived from MTSAT-1R satellite, whereas the aerosol optical depth was obtained from MODIS/Terra satellite. For the total ozone column, it was retrieved from OMI/Aura satellite. The model was validated against independent data set from the four stations. It was found that hourly PAR estimated from the proposed model and that obtained from the measurements were in reasonable agreement, with the root mean square difference (RMSD and mean bias difference (MBD of 14.3% and −5.8%, respectively. In addition, for the case of monthly average hourly PAR, RMSD and MBD were reduced to 11.1% and −5.1%, respectively.

  11. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    Science.gov (United States)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  12. Estimation of solar radiation over Turkey using artificial neural network and satellite data

    International Nuclear Information System (INIS)

    Senkal, Ozan; Kuleli, Tuncay

    2009-01-01

    This study introduces artificial neural networks (ANNs) for the estimation of solar radiation in Turkey (26-45 E and 36-42 N). Resilient propagation (RP), Scale conjugate gradient (SCG) learning algorithms and logistic sigmoid transfer function were used in the network. In order to train the neural network, meteorological data for the period from August 1997 to December 1997 for 12 cities (Antalya, Artvin, Edirne, Kayseri, Kuetahya, Van, Adana, Ankara, Istanbul, Samsun, Izmir, Diyarbakir) spread over Turkey were used as training (nine stations) and testing (three stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean diffuse radiation and mean beam radiation) are used in the input layer of the network. Solar radiation is the output. However, solar radiation has been estimated as monthly mean daily sum by using Meteosat-6 satellite C3 D data in the visible range over 12 cities in Turkey. Digital counts of satellite data were converted into radiances and these are used to calculate the albedos. Using the albedo, the cloud cover index of each pixel was constructed. Diffuse and direct component of horizontal irradiation were calculated as a function of optical air mass, turbidity factor and Rayleigh optical thickness for clear-sky. Using the relation between clear-sky index and cloud cover index, the solar irradiance for any pixel is calculated for Physical method. RMS between the estimated and ground values for monthly mean daily sum with ANN and Physical method values have been found as 2.32 MJ m -2 (54 W/m 2 ) and 2.75 MJ m -2 (64 W/m 2 ) (training cities), 3.94 MJ m -2 (91 W/m 2 ) and 5.37 MJ m -2 (125 W/m 2 ) (testing cities), respectively

  13. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks

    Science.gov (United States)

    Nussbaumer, Eric A.; Pinker, Rachel T.

    2012-04-01

    A novel approach for calculating downwelling surface longwave (DSLW) radiation under all sky conditions is presented. The DSLW model (hereafter, DSLW/UMD v2) similarly to its predecessor, DSLW/UMD v1, is driven with a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. To compute the clear sky component of DSLW a two layer feed-forward artificial neural network with sigmoid hidden neurons and linear output neurons is implemented; it is trained with simulations derived from runs of the Rapid Radiative Transfer Model (RRTM). When computing the cloud contribution to DSLW, the cloud base temperature is estimated by using an independent artificial neural network approach of similar architecture as previously mentioned, and parameterizations. The cloud base temperature neural network is trained using spatially and temporally co-located MODIS and CloudSat Cloud Profiling Radar (CPR) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. Daily average estimates of DSLW from 2003 to 2009 are compared against ground measurements from the Baseline Surface Radiation Network (BSRN) giving an overall correlation coefficient of 0.98, root mean square error (rmse) of 15.84 W m-2, and a bias of -0.39 W m-2. This is an improvement over an earlier version of the model (DSLW/UMD v1) which for the same time period has an overall correlation coefficient 0.97 rmse of 17.27 W m-2, and bias of 0.73 W m-2.

  14. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    Science.gov (United States)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  15. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  16. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  17. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  18. Radiation-hardened optical amplifier based on multicore fiber for telecommunication satellites

    Science.gov (United States)

    Filipowicz, M.; Napierała, M.; Murawski, M.; Ostrowski, L.; Szostkiewicz, L.; Mergo, P.; Kechagias, M.; Farzana, J.; Stampoulidis, L.; Kehayas, E.; Crabb, J.; Nasilowski, T.

    2017-10-01

    Our research results concerning a space-dedicated C-band optical amplifier for application in telecommunication satellites are presented in this article. The device is based on a 7-core microstructured fiber where independent access to each core is granted by an all fiber fan-in/ fan-out coupler. The amplifier properties are described as well as its performance after irradiation to a maximal dose of 100 kRad. Also the difference between two kinds of fiber material compositions is discussed with regard to radiation resistance.

  19. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  20. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    Science.gov (United States)

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  1. How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.

    2017-12-01

    Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly

  2. Large enhancement of highly energetic electrons in the outer radiation belt and its transport into the inner radiation belt inferred from MDS-1 satellite observations

    Science.gov (United States)

    Obara, T.; Matsumoto, H.

    2016-03-01

    We have examined a large increase of relativistic electrons in the outer radiation belt and its penetration into the inner radiation belt over slot region using the MDS-1 satellite observations. Result of analyses demonstrates that a large increase took place in the spring and autumn seasons, and we have newly confirmed that the penetration of outer belt electrons to the inner radiation zone took place during the big magnetic storms by examining a pitch angle distribution of the penetrating electrons.

  3. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    Science.gov (United States)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  4. Alignment of Ar{sup +} [{sup 3}P]4p{sup 2}P{sup 0}{sub 3/2} satellite state from the polarization analysis of fluorescent radiation after photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Yenen, O.; McLaughlin, K.W.; Jaecks, D.H. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The measurement of the polarization of radiation from satellite states of Ar{sup +} formed after the photoionization of Ar provides detailed information about the nature of doubly excited states, magnetic sublevel cross sections and partial wave ratios of the photo-ejected electrons. Since the formation of these satellite states is a weak process, it is necessary to use a high flux beam of incoming photons. In addition, in order to resolve the many narrow doubly excited Ar resonances, the incoming photons must have a high resolution. The characteristics of the beam line 9.0.1 of the Advanced Light Source fulfill these requirements. The authors determined the polarization of 4765 {Angstrom} fluorescence from the Ar{sup +} [{sup 3}P] 4p {sup 2}P{sub 3/2}{sup 0} satellite state formed after photoionization of Ar by photons from the 9.0.1 beam line of ALS in the 35.620-38.261 eV energy range using a resolution of approximately 12,700. This is accomplished by measuring the intensities of the fluorescent light polarized parallel (I{parallel}) and perpendicular (I{perpendicular}) to the polarization axis of the incident synchrotron radiation using a Sterling Optics 105MB polarizing filter. The optical system placed at 90{degrees} with respect to the polarization axis of the incident light had a narrow band interference filter ({delta}{lambda}=0.3 nm) to isolate the fluorescent radiation.

  5. Rotational motion of an artificial satellite perturbed by solar radiation pressure

    International Nuclear Information System (INIS)

    Moraes, R.V. de; Zanardi, M.C.

    1988-01-01

    The motion of a satellite about its center of mass is studied using a semi-analytical method. Torques produced by conservative and non conservative forces are considered. An analytical model is proposed for solar radiation torques. Andoyer variables are used to describe the rotational motion. Analytical equations are used to transform osculating to a mean set of differential equations. Since the mean equations are more slowly varying, a numerical integration using large step size can be performed to obtain the mean state at a later time. (author) [pt

  6. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  7. Comparison of the simultaneous measurement results of SCR fluxes received by geostationary satellites 'Electro-L' and 'GOES'

    International Nuclear Information System (INIS)

    Arakelov, A S; Burov, V A; Ochelkov, Y P

    2013-01-01

    In the present paper the comparison of the results of the simultaneous measurements of solar proton fluxes on board geostationary satellites 'GOES' and 'Electro' was made for the purpose of calibration of 'Electro-L' detectors and determination of the possibility to utilize 'Electro-L' data for space weather monitoring. It was shown that the solar proton observation data on board 'Electro-L' recalculated to energy thresholds of 'GOES' 10 and 30 MeV are in a good consistent with 'GOES' data and may be used for control of radiation conditions in near-earth space.

  8. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  9. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  10. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  11. Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data

    International Nuclear Information System (INIS)

    Hanan, N.P.; Prince, S.D.; Begue, A.

    1995-01-01

    The amount of photosynthetically active radiation (PAR) absorbed by green vegetation is an important determinant of photosynthesis and growth. Methods for the estimation of fractional absorption of PAR (iff PAR ) for areas greater than 1 km 2 using satellite data are discussed, and are applied to sites in the Sahel that have a sparse herb layer and tree cover of less than 5%. Using harvest measurements of seasonal net production, net production efficiencies are calculated. Variation in estimates of seasonal PAR absorption (APAR) caused by the atmospheric correction method and relationship between surface reflectances and iff PAR is considered. The use of maximum value composites of satellite NDVI to reduce the effect of the atmosphere is shown to produce inaccurate APAR estimates. In this data set, however, atmospheric correction using average optical depths was found to give good approximations of the fully corrected data. A simulation of canopy radiative transfer using the SAIL model was used to derive a relationship between canopy NDVI and iff PAR . Seasonal APAR estimates assuming a 1:1 relationship between iff PAR and NDVI overestimated the SAIL modeled results by up to 260%. The use of a modified 1:1 relationship, where iff PAR was assumed to be linearly related to NDVI scaled between minimum (soil) and maximum (infinite canopy) values, underestimated the SAIL modeled results by up to 35%. Estimated net production efficiencies (ϵ n , dry matter per unit APAR) fell in the range 0.12–1.61 g MJ −1 for above ground production, and in the range 0.16–1.88 g MJ −1 for total production. Sites with lower rainfall had reduced efficiencies, probably caused by physiological constraints on photosynthesis during dry conditions. (author)

  12. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  13. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  14. Estimations of natural variability between satellite measurements of trace species concentrations

    Science.gov (United States)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  15. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  16. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  17. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  18. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  19. FIREBIRD: A Dual Satellite Mission to Examine the Spatial and Energy Coherence Scales of Radiation Belt Electron Microbursts

    Science.gov (United States)

    Klumpar, D. M.; Spence, H. E.; Larsen, B. A.; Blake, J. B.; Springer, L.; Crew, A. B.; Mosleh, E.; Mashburn, K. W.

    2009-12-01

    FIREBIRD (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics), a mission under NSF’s “CubeSat-based Science Missions for Space Weather and Atmospheric Research”, will address the broad scientific question: What is the role of microburst electron precipitation in radiation belt dynamics? There are four major candidate processes for losses of relativistic electrons from the outer radiation belt [Millan and Thorne, 2007]: wave-particle interactions with whistler-mode chorus, wave-particle interactions with electromagnetic ion-cyclotron (EMIC) waves, outward radial diffusion to the magnetopause, and loss of adiabaticity on stretched magnetic field lines. FIREBIRD will further investigate the role of whistler-mode chorus, by examining the microburst electron precipitation phenomenon attributed to chorus. Microbursts are thought to be a hallmark of rapid radiation belt losses, possibly removing the entire pre-storm outer zone in a single day [Lorentzen 2001b; O'Brien et al., 2004], yet they are also intimately tied to in-situ acceleration mechanisms. FIREBIRD’s two 1.5U (10 x 10 x 15 cm) CubeSats, each weighing up to 2 kg, will be placed into a common high-inclination bead-on-a-string orbit. The two satellites will remain within ~500 km of one another for six to twelve months, allowing characterization over the spatial scale regime from 10 - 500 km. Each satellite will carry an identical co-aligned pair of solid-state detectors sensitive to electrons from 30 keV to ~3 MeV with 100 msec time resolution. Simultaneous dual measurements provided by the twin FIREBIRD satellites will permit, for the first time, the determination of spatial scales of single microburst events. Along with energy-resolved spectra, these measurements will provide the critically needed answers on the radiation belt loss rate attributed to microbursts. There are three critical questions about relativistic electron microbursts that FIREBIRD can answer: 1) What

  20. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  1. Comparison of several satellite-derived databases of surface solar radiation against ground measurement in Morocco

    Science.gov (United States)

    Marchand, Mathilde; Ghennioui, Abdellatif; Wey, Etienne; Wald, Lucien

    2018-04-01

    HelioClim-3v4 (HC3v4), HelioClim-3v5 (HC3v5) and the radiation service version 2 of the Copernicus Atmosphere Monitoring Service (CAMS-Rad) are databases that contain hourly values of solar radiation at ground level. These estimated hourly irradiations are compared to coincident measurements made at five stations in Morocco. The correlation coefficients between measurements and estimates are similar for the three databases and around 0.97-0.98 for global irradiation. For the direct irradiation, the correlation coefficients are around 0.70-0.79 for HC3v4, 0.79-0.84 for HC3v5 and 0.78-0.87 for CAMS-Rad. For global irradiation, the bias relative to the average of the measurements is small and ranges between -6 and -1 % for HC3v4, -4 and 0 % for HC3v5, and -4 and 7 % for CAMS-Rad; HC3v4 and HC3v5 exhibit a tendency to slightly underestimate the global irradiation. The root mean square error (RMSE) ranges between 53 (12 %) and 72 Wh m-2 (13 %) for HC3v4, 55 (12 %) and 71 Wh m-2 (13 %) for HC3v5, and 59 (11 %) and 97 Wh m-2 (21 %) for CAMS-Rad. For the direct irradiation, the relative bias ranges between -16 and 21 % for HC3v4, -7 and 22 % for HC3v5, and -18 and 7 % for CAMS-Rad. The RMSE ranges between 170 (28 %) and 210 Wh m-2 (33 %) for HC3v4, 153 (25 %) and 209 Wh m-2 (40 %) for HC3v5, and 159 (26 %) and 244 Wh m-2 (39 %) for CAMS-Rad. HC3v5 captures the temporal and spatial variability of the irradiation field well. The performance is poorer for HC3v4 and CAMS-Rad which exhibit more variability from site to site. As a whole, the three databases are reliable sources on solar radiation in Morocco.

  2. Extension of SCIATRAN by coupling atmospheric and oceanic radiative transfer: First results of comparisons for in-situ and satellite data

    Science.gov (United States)

    Blum, Mirjam; Rozanov, Vladimir; Bracher, Astrid; Burrows, John P.

    The radiative transfer model SCIATRAN [V. V. Rozanov et al., 2002; A. Rozanov et al., 2005, 2008] has been developed to model atmospheric radiative transfer. This model is mainly applied to improve the analysis of high spectrally resolved satellite data as, for instance, data of the instrument SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHar-tographY) onboard the ENVISAT satellite. Within the present study, SCIATRAN has been extended by taking radiative processes as well as at the atmosphere-water interface as within the water into account, which were caused by water itself and its constituents. Comparisons of this extended version of SCIATRAN for in-situ data and for MERIS satellite information yield first results, which will be shown. It is expected that the new version of SCIATRAN, including the coupling of atmospheric and oceanic radiative transfer, will widen the use of high spectrally resolved data in the form of achieving new findings, such as information about ocean biooptics and biogeochemistry like, for example, biomass of different phytoplankton groups or CDOM fluorescence. In addition, it is awaited that the new version improves the retrieval of atmospheric trace gases above oceanic waters. References: 1. V. V. Rozanov, M. Buchwitz, K.-U. Eichmann, R. de Beek, and J. P. Burrows. Sciatran -a new radiative transfer model for geophysical applications in the 240-2400nm spectral region: the pseudo-spherical version. Adv. in Space Res. 29, 1831-1835 (2002) 2. A. Rozanov, V. V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows. SCIA-TRAN 2.0 -A new radiative tranfer model for geophysical applications in the 175-2400nm spectral region. Adv. in Space Res. 36, 1015-1019 (2005) 3. A. Rozanov. SCIATRAN 2.X: Radiative transfer model and retrieval software package. URL = http://www.iup.physik.uni-bremen.de/sciatran (2008)

  3. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  4. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  5. Space radiation effects in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Dale, C.J.; LaBel, K.A.

    1996-01-01

    Fiber optic based technologies are relatively new to satellite applications, and are receiving considerable attention for planned applications in NASA, DOD, and commercial space sectors. The authors review various activities in recent years aimed at understanding and mitigating radiation related risk in deploying fiber based data handling systems on orbit. Before concluding that there are no critical barriers to designing survivable and reliable systems, the authors analyze several possible types of radiation effects. Particular attention is given to the subject of particle-induced bit errors in InGaAs p-i-n photodiodes, including a discussion of error mitigation and upset rate prediction methods

  6. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  7. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  8. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    Science.gov (United States)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  9. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    International Nuclear Information System (INIS)

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  10. Stray radiation and the Infrared Astronomical Satellite /IRAS/ telescope

    Science.gov (United States)

    Noll, R. J.; Harned, R.; Breault, R. P.; Malugin, R.

    1981-01-01

    Stray light control is a major consideration in the design of infrared cryogenically cooled telescopes such as the Infrared Astronomical Satellite (IRAS). The basic design of the baffle system, and the placement, shape, and coating of the secondary support struts for the telescope subsystem are described. The intent of this paper is to highlight the stray light problems encountered while designing the system, and to illustrate how computer analysis can be a useful design aid. Scattering measurements of the primary mirror, and a full system level scatter measurement are presented. Comparisons of predicted performance with the measured results are also presented.

  11. Simulating cosmic radiation absorption and secondary particle production of solar panel layers of Low Earth Orbit (LEO) satellite with GEANT4

    Science.gov (United States)

    Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat

    2016-07-01

    All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.

  12. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  13. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  14. Use of Advanced Solar Cells for Commercial Communication Satellites

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  15. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  16. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  17. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported.

  18. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  19. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  20. A study of radiative Auger emission, satellites and hypersatellites in photon-induced K x-ray spectra of some elements in the range 20≤Z≤32

    International Nuclear Information System (INIS)

    Verma, H.R.

    2000-01-01

    Photon-induced K x-ray spectra of Ca, Ti, Fe, Zn and Ge have been investigated. The measurements have been made using a crystal spectrometer combined with a thin scintillation detector. Excited by the collimated photon beam from an Rh-anode x-ray tube, the spectra of all these elements reveal the existence of radiative Auger emission (RAE) structure and the satellite and hypersatellite lines along with the diagram lines. The energies and intensities of the Kα 2 , Kα 1 , Kβ 1,3 and Kβ 5 diagram lines and the Kα satellites and hypersatellite transitions are presented. The intensity of the RAE structure corresponding to the Kβ 1,3 x-ray transition and the energy of the RAE edge for each element is also reported. The measured results have been compared with the values from other sources such as electron/heavy-ion excitation and theoretical values. From the intensities of the satellite lines of these elements, the average L-vacancy fraction P L has been deduced in each case. (author)

  1. Solar radiation alert system : final report.

    Science.gov (United States)

    2009-03-01

    The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...

  2. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  3. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  4. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  5. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  6. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  7. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  8. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model

    Directory of Open Access Journals (Sweden)

    R. Cherian

    2012-02-01

    Full Text Available In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB and Arabian Sea (AS regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5 general circulation model extended by Hamburg Aerosol Module (HAM. By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement

  9. Estimating Next Primary Productivity using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, B. J.

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (Ag) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of Ag, viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process- based approach has been taken to calculate Ag and R using satellite and ancillary data. Ag has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite

  10. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  11. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    Science.gov (United States)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  12. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  13. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  14. Coordinated airborne and satellite measurements of equatorial plasma depletions

    International Nuclear Information System (INIS)

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-01-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18 0 MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O + , were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O +2 for 6300 A and radiative recombination of O + for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O + biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar

  15. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  16. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    Science.gov (United States)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  17. Radiation protection measures in the case of incidents and radiation accidents

    International Nuclear Information System (INIS)

    Herzberg, B.

    1976-01-01

    Measures to be taken in the case of radiation accidents connected with an unusually high radiation exposure to persons, the amounts of which exceed the limiting values, with depend on whether there has been an external or an internal exposure. In order to give further treatment in the case of whole-body or partial-body irradiation, it is necessary to estimate the exposure dose. In nuclear medicine the accident doses are generally low, i.e. acute radiation damage does not occur here, and immediate measures are not necessary. Therapeutic measures in the case of incorporation accidents are only necessary when the maximum amounts for the nuclide in question recommended by the ICRP has been reached or exceeded in the organism. However, decorporation measures ought to be carried out only by qualified radiation protection physicians. The type of radiation accident which occurs most frequently in nuclear medicine is radiation exposure as a result of contamination. If in the case of contamination of a person the measurement exceeds the radioactivity limit, the decontamination measures are necessary. In the present contribution, these measures for cases without injuries are described in detail. (orig./HP) [de

  18. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  19. A fast radiative transfer method for the simulation of visible satellite imagery

    Science.gov (United States)

    Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard

    2016-05-01

    A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.

  20. Measurement uncertainty in broadband radiofrequency radiation level measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2014-01-01

    Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  1. Inversion of the Earth spherical albedo from radiation-pressure

    Science.gov (United States)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  2. Atomic electron spectrometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Sorensen, S.L.

    1989-01-01

    Techniques of atomic electron spectrometry were applied to atoms in the gaseous and solid states to derive information about fundamental atomic properties. A new method was developed to measure Coster-Kronig yields in metals by photoionization with synchrotron radiation. Photon-energy sensitive Si L-VV Auger satellites were investigated via electron spectrometry. The krypton 1s photoionization spectrum was measured in an experiment which was motivated by the need to understand the krypton 1s satellite spectrum for calibration of an experiment to measure the mass of the electron antineutrino

  3. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System †

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  4. Radiated EMC& EMI Management During Design Qualification and Test Phases on LEO Satellites Constellation

    Science.gov (United States)

    Blondeaux, H.; Terral, M.; Gutierrez-Galvan, R.; Baud, C.

    2016-05-01

    The aim of the proposed paper is to present the global radiated EMC/EMI approach applied by Thales Alenia Space in the frame of a telecommunication Low Earth Orbit (LEO) satellites constellation program. The paper will present this approach in term of analyses, of specific characterisation and of sub-system and satellite tests since first design reviews up-to satellite qualification tests on Prototype Flight Model (PFM) and to production tests on reduced FMs. The global aim is : 1 - to reduce risk and cost (units EMC delta qualification, EMC tests at satellite level for the 81 Space Vehicles (SV) through appropriated EMC analyses (in term of methodologies and contours) provided in the frame of design reviews.2 - to early anticipate potential critical case to reduce the impact in term of engineering/qualification/test extra cost and of schedule.3 - to secure/assure the payload and SV design/layout.4 - to define and optimize the EMC/EMI test campaigns to be performed on Prototype Flight Model (PFM) for complete qualification and on some FMs for industrial qualification/validation.The last part of the paper is dedicated to system Bite Error Rate (BER) functional test performed on PFM SV to demonstrate the final compatibility between the three on-board payloads and to the Internal EMC tests performed on PFM and some FMs to demonstrate the SV panel RF shielding efficiency before and after environmental tests and the Thales Alenia Space (TAS) and Orbital AKT (OATK) workmanships reproducibility.

  5. Satellite Data Support for the ARM Climate Research Facility, 8/01/2009 - 7/31/2015

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, Patrick [NASA Langley Research Center, Hampton, VA (United States); Khaiyer, Mandana M [Science Systems and Applications, Inc., Hampton, VA (United States)

    2015-10-06

    This report summarizes the support provided by NASA Langley Research for the DOE ARM Program in the form of cloud and radiation products derived from satellite imager data for the period between 8/01/09 through 7/31/15. Cloud properties such as cloud amount, height, and optical depth as well as outgoing longwave and shortwave broadband radiative fluxes were derived from geostationary and low-earth orbiting satellite imager radiance measurements for domains encompassing ARM permanent sites and field campaigns during the performance period. Datasets provided and documents produced are listed.

  6. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  7. The first observations of laser satellites from plasma created by high intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Osterheld, A.; Young, B.; Dunn, J.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Laser satellites, i.e. spectral lines caused by non-linear interaction of strong laser radiation with multicharged ions, are observed for the first time. Their identification are carried out by comparison of both experimental wavelengths and intensities with theoretical ones. It is shown that observation of laser satellites allows to measure directly the energies of ionic metastable states. (orig.). 3 refs.

  8. Radiation measurements and quality control

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1977-01-01

    Accurate measurements are essential to research leading to a successful radiation process and to the commissioning of the process and the facility. On the other hand, once the process is in production, the importance to quality control of measuring radiation quantities (i.e., absorbed dose, dose rate, dose distribution) rather than various other parameters of the process (i.e. conveyor speed, dwell time, radiation field characteristics, product dimensions) is not clearly established. When the safety of the product is determined by the magnitude of the administered dose, as in radiation sterilization, waste control, or food preservation, accuracy and precision of the measurement of the effective dose are vital. Since physical dose measurements are usually simpler, more reliable and reproducible than biological testing of the product, there is a trend toward using standardized dosimetry for quality control of some processes. In many industrial products, however, such as vulcanized rubber, textiles, plastics, coatings, films, wire and cable, the effective dose can be controlled satisfactorily by controlling process variables or by product testing itself. In the measurement of radiation dose profiles by dosimetry, it is necessary to have suitable dose meter calibrations, to account for sources of error and imprecision, and to use correct statistical procedures in specifying dwell times or conveyor speeds and source and product parameters to achieve minimum and maximum doses within specifications. (author)

  9. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    Science.gov (United States)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  10. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

    International Nuclear Information System (INIS)

    Ciufolini, I.

    1986-01-01

    We describe a new method of measuring the Lense-Thirring relativistic nodal drag using LAGEOS together with another high-altitude, laser-ranged, similar satellite with appropriately chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II have an inclination supplementary to that of LAGEOS. The experiment proposed here would provide a method for experimental verification of the general relativistic formulation of Mach's principle and measurement of the gravitomagnetic field

  11. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  12. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation

    Science.gov (United States)

    Schwarz, M.; Folini, D.; Hakuba, M. Z.; Wild, M.

    2017-12-01

    When using time series of ground-based surface solar radiation (SSR) measurements in combination with gridded data, the spatial and temporal representativeness of the point observations must be considered. We use SSR data from surface observations and high-resolution (0.05°) satellite-derived data to infer the spatiotemporal representativeness of observations for monthly and longer time scales in Europe. The correlation analysis shows that the squared correlation coefficients (R2) between SSR times series decrease linearly with increasing distance between the surface observations. For deseasonalized monthly mean time series, R2 ranges from 0.85 for distances up to 25 km between the stations to 0.25 at distances of 500 km. A decorrelation length (i.e., the e-folding distance of R2) on the order of 400 km (with spread of 100-600 km) was found. R2 from correlations between point observations and colocated grid box area means determined from satellite data were found to be 0.80 for a 1° grid. To quantify the error which arises when using a point observation as a surrogate for the area mean SSR of larger surroundings, we calculated a spatial sampling error (SSE) for a 1° grid of 8 (3) W/m2 for monthly (annual) time series. The SSE based on a 1° grid, therefore, is of the same magnitude as the measurement uncertainty. The analysis generally reveals that monthly mean (or longer temporally aggregated) point observations of SSR capture the larger-scale variability well. This finding shows that comparing time series of SSR measurements with gridded data is feasible for those time scales.

  13. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  14. Thermal design and validation of radiation detector for the ChubuSat-2 micro-satellite with high-thermal-conductive graphite sheets

    Science.gov (United States)

    Park, Daeil; Miyata, Kikuko; Nagano, Hosei

    2017-07-01

    This paper describes thermal design of the radiation detector (RD) for the ChubuSat-2 with the use of high-thermal-conductive materials. ChubuSat-2 satellite is a 50-kg-class micro-satellite joint development with Nagoya University and aerospace companies. The main mission equipment of ChubuSat-2 is a RD to observe neutrons and gamma rays. However, the thermal design of the RD encounters a serious problem, such as no heater for RD and electric circuit alignment constrain. To solve this issue, the RD needs a new thermal design and thermal control for successful space missions. This paper proposes high-thermal-conductive graphite sheets to be used as a flexible radiator fin for the RD. Before the fabrication of the device, the optimal thickness and surface area for the flexible radiator fin were determined by thermal analysis. Consequently, the surface area of flexible radiator fin was determined to be 8.6×104 mm2. To verify the effects of the flexible radiator fin, we constructed a verification model and analyzed the temperature distributions in the RD. Also, the thermal vacuum test was performed using a thermal vacuum chamber, which was evacuated at a pressure of around 10-4 Pa, and its internal temperature was cooled at -80 °C by using a refrigerant. As a result, it has been demonstrated that the flexible radiator fin is effective. And the thermal vacuum test results are presented good correlation with the analysis results.

  15. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    Science.gov (United States)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of vegetated land surface as good as in situ radiometric measurements. Future studies that address biophysical or physiological interpretations

  16. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  17. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-01-01

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r ) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  18. Evaluation of Three Parametric Models for Estimating Directional Thermal Radiation from Simulation, Airborne, and Satellite Data

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2018-03-01

    Full Text Available An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST. This paper evaluated the performance of three published directional thermal radiation models—the Roujean–Lagouarde (RL model, the Bidirectional Reflectance Distribution Function (BRDF model, and the Vinnikov model—at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1 the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI; (2 the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3 the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland and low LAI (barren or sparsely vegetated areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD-measured LST demonstrated that the root mean square (RMSE of the Moderate Resolution Imaging Spectroradiometer (MODIS LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.

  19. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  20. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  1. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  2. Radiation detection and measurement

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1979-01-01

    The book is a complete, clear and up-to-date text that provides a basic review of instruments and methods of ionizing radiation. The text covers detailed discussion of all detector types introductory discussions of radiation sources, interactions, and counting statistics functional analysis of the electronics and pulse processing aspects of radiation detectors in instrumentation systems and consideration of shielding and background potentially vital in low-level counting. A total of 350 figures and approximately 900 references to current scientific literature is included. The book is largely intended as a textbook for a junior/senior or first-year graduate course in nuclear instrumentation and radiation measurements

  3. Zenith: A Radiosonde Detector for Rapid-Response Ionizing Atmospheric Radiation Measurements During Solar Particle Events

    Science.gov (United States)

    Dyer, A. C. R.; Ryden, K. A.; Hands, A. D. P.; Dyer, C.; Burnett, C.; Gibbs, M.

    2018-03-01

    Solar energetic particle events create radiation risks for aircraft, notably single-event effects in microelectronics along with increased dose to crew and passengers. In response to this, some airlines modify their flight routes after automatic alerts are issued. At present these alerts are based on proton flux measurements from instruments onboard satellites, so it is important that contemporary atmospheric radiation measurements are made and compared. This paper presents the development of a rapid-response system built around the use of radiosondes equipped with a radiation detector, Zenith, which can be launched from a Met Office weather station after significant solar proton level alerts are issued. Zenith is a compact, battery-powered solid-state radiation monitor designed to be connected to a Vaisala RS-92 radiosonde, which transmits all data to a ground station as it ascends to an altitude of 33 km. Zenith can also be operated as a stand-alone detector when connected to a laptop, providing real-time count rates. It can also be adapted for use on unmanned aerial vehicles. Zenith has been flown on the Met Office Civil Contingency Aircraft, taken to the European Organization for Nuclear Research-EU high energy Reference Field facility for calibration and launched on a meteorological balloon at the Met Office's weather station in Camborne, Cornwall, UK. During this sounding, Zenith measured the Pfotzer-Regener maximum to be at an altitude of 18-20 km where the count rate was measured to be 1.15 c s-1 cm-2 compared to 0.02 c s-1 cm-2 at ground level.

  4. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  5. The Nimbus satellites - Pioneering earth observers

    Science.gov (United States)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  6. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  7. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    Science.gov (United States)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  8. Estimation of PV energy production based on satellite data

    Science.gov (United States)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  9. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  10. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    Science.gov (United States)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  11. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    Science.gov (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  12. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  13. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    Science.gov (United States)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  14. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  15. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.

    1994-01-01

    Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)

  16. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)

    1994-01-01

    Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).

  17. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  18. The Geostationary Earth Radiation Budget Project.

    Science.gov (United States)

    Harries, J. E.; Russell, J. E.; Hanafin, J. A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; Mueller, J.; Mossavati, R.; Ashmall, J.; Sawyer, E.; Parker, D.; Caldwell, M.; Allan, P. M.; Smith, A.; Bates, M. J.; Coan, B.; Stewart, B. C.; Lepine, D. R.; Cornwall, L. A.; Corney, D. R.; Ricketts, M. J.; Drummond, D.; Smart, D.; Cutler, R.; Dewitte, S.; Clerbaux, N.; Gonzalez, L.; Ipe, A.; Bertrand, C.; Joukoff, A.; Crommelynck, D.; Nelms, N.; Llewellyn-Jones, D. T.; Butcher, G.; Smith, G. L.; Szewczyk, Z. P.; Mlynczak, P. E.; Slingo, A.; Allan, R. P.; Ringer, M. A.

    2005-07-01

    This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north south) by 39.3 km (east west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.

  19. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    2017-07-06

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.

  20. Characteristics and correlation of various radiation measuring methods in spatial radiation measurement

    International Nuclear Information System (INIS)

    Yoneda, Kazuhiro; Tonouchi, Shigemasa

    1992-01-01

    When the survey of the state of natural radiation distribution was carried out, for the purpose of examining the useful measuring method, the comparison of the γ-ray dose rate calculated from survey meter method, in-situ measuring method and the measuring method by sampling soil was carried out. Between the in-situ measuring method and the survey meter method, the correlation Y=0.986X+5.73, r=0.903, n=18, P<0.01 was obtained, and the high correlation having the inclination of nearly 1 was shown. Between the survey meter method and the measuring method by sampling soil, the correlation Y=1.297X-10.30, r=0.966, n=20 P<0.01 was obtained, and the high correlation was shown, but as for the dose rate contribution, the disparities of 36% in U series, 6% in Th series and 20% in K-40 were observed. For the survey of the state of natural radiation distribution, the method of using in combination the survey meter method and the in-situ measuring method or the measuring method by sampling soil is suitable. (author)

  1. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  2. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  3. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    Science.gov (United States)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  4. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  5. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  6. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  7. LEAST SQUARE APPROACH FOR ESTIMATING OF LAND SURFACE TEMPERATURE FROM LANDSAT-8 SATELLITE DATA USING RADIATIVE TRANSFER EQUATION

    Directory of Open Access Journals (Sweden)

    Y. Jouybari-Moghaddam

    2017-09-01

    Full Text Available Land Surface Temperature (LST is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE. However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11 and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  8. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    Science.gov (United States)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  9. Surviving radiation in space

    International Nuclear Information System (INIS)

    Coates, A.

    1990-01-01

    Radiation damage to communications, navigation and weather satellites is common and caused by high energy charged particles, mainly protons and electrons, from the Earth's Van Allen belts. The combined release and radiation effects satellite (CRRES), recently launched by the United States, will allow scientists to create far more realistic computer models of satellite radiation damage than has been the case to date. It is hoped that information thus received will allow satellite builders to protect these essential structures in future. The second aim of the CCRES mission is to study the effect of releasing artificially charged particles into the magnetosphere and the ionosphere. Spacecraft design engineers will benefit from the results produced by the CCRES mission. (UK)

  10. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  11. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  12. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  13. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  14. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    Science.gov (United States)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  15. Observations of 50/60 Hz Power Line Radiation in the Low Latitude Ionosphere Detected by the Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Simoes, F. A.; Liebrecht, M. C.; Farrell, W.

    2017-12-01

    One of the most ubiquitous forms of EM radiation emanating from the earth's surface is that of power line radiation. Associated with AC electric power generation, such emissions are typically launched along conducting power lines that may travel hundreds, or even thousands of km, from generating stations. The fundamental frequencies of such emissions are characteristically 50 Hz or 60 Hz, depending on the regional standards for power generation/consumption. The frequency of this radiation is well below that of the plasma frequency of the ionosphere (typically several MHz) and hence is expected to reflect back to the earth and propagate in the waveguide formed by the earth's surface and the bottom ledge of the ionosphere, typically near 100 km. Given that such power lines are widespread on the exposed lithosphere, the leakage of some ELF emissions associated with electric power generation might nevertheless be expected in the ionosphere, in the same manner in which a small fraction of the power associated with ELF Schumann resonances and lightning sferics have been shown to penetrate into the ionosphere. We present direct measurements of 50/60 Hz power line radiation detected by in situ probes on an orbiting satellite in the earth's ionosphere. The data were gathered by the Vector Electric Field Investigation (VEFI) tri-axial double probe detector flown on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS was launched in April, 2008 into a low latitude (13 deg inclination) orbit with perigee and apogee of 400 km and 850 km, respectively. The electric field wave data were gathered by ELF receivers comprised of two orthogonal broadband channels sampled at 512 s/sec each, and digitized with 16 bit A/D converters. The data show distinct 60 Hz emissions while the satellite sampled within the Brazilian sector whereas distinct 50 Hz emissions were detected over India. Other, less distinct, emissions were observed over Africa and southeast Asia

  16. DEPRON dosimeter for ``Lomonosov'' satellite

    Science.gov (United States)

    Brilkov, Ivan; Vedenkin, Nikolay; Panasyuk, Mikhail; Amelyushkin, Aleksandr; Petrov, Vasily; Nechayev, Oleg; Benghin, Victor

    It is commonly known, that cosmic radiation generates negative impact on the human body during space flight. The structure of the radiation fields in the near-Earth space was studied during intensive research of recent decades. Huge number of dosimetry studies was conducted on manned and unmanned space vehicles in order to solve the problem of radiation safety humans during space flights. It should be noted that most of the measurements was made onboard the spacecrafts, flying along the orbits with inclination of up to 51.6 degrees. Due to the prospect of manned missions at the orbits with larger inclination it seems advisable to conduct preliminary detailed dosimetry measurements at high-altitude orbit, for which the "Lomonosov" satellite provides good opportunities. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. Proposed in the late 70's this method is widely used onboard spacecraft, including full-time radiation monitoring onboard the ISS. Recently it has been improved, providing an opportunity to register not only the absorbed dose of charged particles radiation, but also range of their ionization losses. It allowed assessment of equivalent dose. Appropriate procedure based on using of a telescope consisting of two semiconductor detectors provided a basis of the developed unit. It should be noted that not only the charged particles contribute significantly in the equivalent dose, but also neutrons do. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. It was therefore decided to add thermal neutrons counter to the developed device in order to provide an opportunity of estimation of neutron flux variations along the satellite trajectory. A gas-discharge counter SI-13N, operated in a mode of corona discharge was chosen as a neutron detector. This method of neutron detection is well-proven and used many times in SINP MSU experiments. Thus, the

  17. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  18. On the coordination of EISCAT measurements with rocket and satellite observations

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1977-01-01

    The scientific interest of combining EISCAT measurements of the thermal ionospheric plasma with sounding rocket and/or satellite measurements of the hot plasma distribution function and other variables is discussed briefly. Some examples are presented where such coordinated measurements are of great interest. The importance of being able to launch rockets through, or at least quite close to, the radar beam is emphasized. (Auth.)

  19. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    International Nuclear Information System (INIS)

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  20. Establishing best practices for the validation of atmospheric composition measurements from satellites

    Science.gov (United States)

    Lambert, Jean-Christopher

    As a contribution to the implementation of the Global Earth Observation System of Systems (GEOSS), the Committee on Earth Observation Satellites (CEOS) is developing a data quality strategy for satellite measurements. To achieve GEOSS requirements of consistency and interoperability (e.g. for comparison and for integrated interpretation) of the measurements and their derived data products, proper uncertainty assessment is essential and needs to be continuously monitored and traceable to standards. Therefore, CEOS has undertaken the task to establish a set of best practices and guidelines for satellite validation, starting with current practices that could be improved with time. Best practices are not intended to be imposed as firm requirements, but rather to be suggested as a baseline for comparing against, which could be used by the widest community and provide guidance to newcomers. The present paper reviews the current development of best practices and guidelines for the validation of atmospheric composition satellites. Terminologies and general principles of validation are reminded. Going beyond elementary definitions of validation like the assessment of uncertainties, the specific GEOSS context calls also for validation of individual service components and against user requirements. This paper insists on two important aspects. First one, the question of the "collocation". Validation generally involves comparisons with "reference" measurements of the same quantities, and the question of what constitutes a valid comparison is not the least of the challenges faced. We present a tentative scheme for defining the validity of a comparison and of the necessary "collocation" criteria. Second focus of this paper: the information content of the data product. Validation against user requirements, or the verification of the "fitness for purpose" of both the data products and their validation, needs to identify what information, in the final product, is contributed really

  1. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  2. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  3. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  4. Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation

    Directory of Open Access Journals (Sweden)

    Richard Müller

    2015-06-01

    Full Text Available Solar surface radiation data of high quality is essential for the appropriate monitoring and analysis of the Earth's radiation budget and the climate system. Further, they are crucial for the efficient planning and operation of solar energy systems. However, well maintained surface measurements are rare in many regions of the world and over the oceans. There, satellite derived information is the exclusive observational source. This emphasizes the important role of satellite based surface radiation data. Within this scope, the new satellite based CM-SAF SARAH (Solar surfAce RAdiation Heliosat data record is discussed as well as the retrieval method used. The SARAH data are retrieved with the sophisticated SPECMAGIC method, which is based on radiative transfer modeling. The resulting climate data of solar surface irradiance, direct irradiance (horizontal and direct normal and clear sky irradiance are covering 3 decades. The SARAH data set is validated with surface measurements of the Baseline Surface Radiation Network (BSRN and of the Global Energy and Balance Archive (GEBA. Comparison with BSRN data is performed in order to estimate the accuracy and precision of the monthly and daily means of solar surface irradiance. The SARAH solar surface irradiance shows a bias of 1.3 \\(W/m^2\\ and a mean absolute bias (MAB of 5.5 \\(W/m^2\\ for monthly means. For direct irradiance the bias and MAB is 1 \\(W/m^2\\ and 8.2 \\(W/m^2\\ respectively. Thus, the uncertainty of the SARAH data is in the range of the uncertainty of ground based measurements. In order to evaluate the uncertainty of SARAH based trend analysis the time series of SARAH monthly means are compared to GEBA. It has been found that SARAH enables the analysis of trends with an uncertainty of 1 \\(W/m^2/dec\\; a remarkable good result for a satellite based climate data record. SARAH has been also compared to its legacy version, the satellite based CM-SAF MVIRI climate data record. Overall

  5. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  6. Insight into the Global Carbon Cycle from Assimilation of Satellite CO2 measurements

    Science.gov (United States)

    Baker, D. F.

    2017-12-01

    A key goal of satellite CO2 measurements is to provide sufficient spatio-temporal coverage to constrain portions of the globe poorly observed by the in situ network, especially the tropical land regions. While systematic errors in both measurements and modeling remain a challenge, these satellite data are providing new insight into the functioning of the global carbon cycle, most notably across the recent 2015-16 En Niño. Here we interpret CO2 measurements from the GOSAT and OCO-2 satellites, as well as from the global in situ network (both surface sites and routine aircraft profiles), using a 4DVar-based global CO2 flux inversion across 2009-2017. The GOSAT data indicate that the tropical land regions are responsible for most of the observed global variability in CO2 across the last 8+ years. For the most recent couple of years where they overlap, the OCO-2 data give the same result, an +2 PgC/yr shift towards CO2 release in the ENSO warm phase, while disagreeing somewhat on the absolute value of the flux. The variability given by both these satellites disagrees with that given by an in situ-only inversion across the recent 2015-16 El Niño: the +2 PgC/yr shift from the satellites is double that given by the in situ data alone, suggesting that the more complete coverage is providing a more accurate view. For the current release of OCO-2 data (version 7), however, the flux results given by the OCO-2 land data (from both nadir- and glint-viewing modes) disagree significantly with those given by the ocean glint data; we examine the soon-to-be-released v8 data to assess whether these systematic retrieval errors have been reduced, and whether the corrected OCO-2 ocean data support the result from the land data. We discuss finer-scale features flux results given by the satellite data, and examine the importance of the flux prior, as well.

  7. Nitrogen oxides in the troposphere – What have we learned from satellite measurements?

    Directory of Open Access Journals (Sweden)

    Richter A.

    2009-02-01

    Full Text Available Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2 , some examples of typical applications and an outlook on future prospects.

  8. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  9. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  10. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  11. The measurement of ultraviolet radiation and sunburn time over southern Ontario

    Science.gov (United States)

    Evans, W. F. J.

    1994-01-01

    Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.

  12. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  13. Radiation exposure near Chernobyl based on analysis of satellite images

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Marvin; Ustin, Susan [University of California, Laboratory for Energy-related Health Research, CA (United States); Warman, Edward A [Stone and Webster Engineering Corp., Boston, MA (United States)

    1987-12-01

    Radiation-induced damage in conifers adjacent to the damaged Chernobyl nuclear power plant has been evaluated using LANDSAT Thematic Mapper satellite images. Eight images acquired between April 22, 1986 and May 15, 1987 were used to assess the extent and magnitude of radiation effects on pine trees within 10 km of the reactor site. The timing and spatial extent of vegetation damaged was used to estimate the radiation doses in the near field around the Chernobyl nuclear power station and to derive dose rates as a function of time during and after the accident. A normalized vegetation index was developed from the TM spectral band data to visually demonstrate the damage and mortality to nearby conifer stands. The earliest date showing detectable injury 1 km west of the reactor unit was June 16, 1986. Subsequent dates revealed continued expansion of the affected areas to the west, north, and south. The greatest aerial expansion of this area occurred by October 15, 1986, with vegetation changes evident up to 5 km west, 2 km south, and 2 km north of the damaged Reactor Unit 4. By May 11, 1987, further scene changes were due principally to removal and mitigation efforts by the Soviet authorities. Areas showing spectral evidence of vegetation damage during the previous growing season do not show evidence of recovery and reflectance in the TM Bands 4 and 3 remain higher than surrounding vegetation, which infers that the trees are dead. The patterns of spectral change indicative of vegetation stress are consistent with changes expected for radiation injury and mortality. The extent and the timing of these effects enabled developing an integrated radiation dose estimate, which was combined with the information regarding the characteristics of radionuclide mix to provide an estimate of maximum dose rates during the early period of the accident. The derived peak dose rates during the 10-day release in the accident are high and are estimated at about 0.5 to 1 rad per hour. These

  14. SATELLITE CONSTELLATION DESIGN PARAMETER

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. SATELLITE CONSTELLATION DESIGN PARAMETER. 1. ORBIT CHARACTERISTICS. ORBITAL HEIGHT >= 20,000 KM. LONGER VISIBILITY; ORBITAL PERIOD. PERTURBATIONS(MINIMUM). SOLAR RADIATION PRESSURE (IMPACTS ECCENTRICITY); LUNI ...

  15. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  16. Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2016-06-01

    Full Text Available In this paper we combine SO2 and ash plume dispersion modelling with satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna on the optical and micro-physical properties of Mediterranean aerosols. We analyse the Mount Etna eruption episode of 25–27 October 2013. The evolution of the plume along the trajectory is investigated by means of the FLEXible PARTicle Lagrangian dispersion (FLEXPART model. The satellite data set includes true colour images, retrieved values of volcanic SO2 and ash, estimates of SO2 and ash emission rates derived from MODIS (MODerate resolution Imaging Spectroradiometer observations and estimates of cloud top pressure from SEVIRI (Spinning Enhanced Visible and InfraRed Imager. Surface remote sensing measurements of aerosol and SO2 made at the ENEA Station for Climate Observations (35.52° N, 12.63° E; 50 m a.s.l. on the island of Lampedusa are used in the analysis. The combination of these different data sets suggests that SO2 and ash, despite the initial injection at about 7.0 km altitude, reached altitudes around 10–12 km and influenced the column average aerosol particle size distribution at a distance of more than 350 km downwind. This study indicates that even a relatively weak volcanic eruption may produce an observable effect on the aerosol properties at the regional scale. The impact of secondary sulfate particles on the aerosol size distribution at Lampedusa is discussed and estimates of the clear-sky direct aerosol radiative forcing are derived. Daily shortwave radiative forcing efficiencies, i.e. radiative forcing per unit AOD (aerosol optical depth, are calculated with the LibRadtran model. They are estimated between −39 and −48 W m−2 AOD−1 at the top of the atmosphere and between −66 and −49 W m−2 AOD−1 at the surface, with the variability in the estimates mainly depending on the

  17. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    Science.gov (United States)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  18. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  19. Radiation dose measurements

    International Nuclear Information System (INIS)

    1960-01-01

    About 200 scientists from 28 countries and 5 international organizations met at a symposium on radiation dosimetry held by the International Atomic Energy Agency in June 1960. The aim of the symposium was not so much the description of a large number of measuring instruments as a discussion of the methods used, with special emphasis on those problems which had become important in the context of recent developments, such as the measurement of mixed or very large doses

  20. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    Science.gov (United States)

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  1. High spatial resolution radiation budget for Europe: derived from satellite data, validation of a regional model; Raeumlich hochaufgeloeste Strahlungsbilanz ueber Europa: Ableitung aus Satellitendaten, Validation eines regionalen Modells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Since forty years instruments onboard satellites have been demonstrated their usefulness for many applications in the field of meteorology and oceanography. Several experiments, like ERBE, are dedicated to establish a climatology of the global Earth radiation budget at the top of the atmosphere. Now the focus has been changed to the regional scale, e.g. GEWEX with its regional sub-experiments like BALTEX. To obtain a regional radiation budget for Europe in the first part of the work the well calibrated measurements from ScaRaB (scanner for radiation budget) are used to derive a narrow-to-broadband conversion, which is applicable to the AVHRR (advanced very high resolution radiometer). It is shown, that the accuracy of the method is in the order of that from SCaRaB itself. In the second part of the work, results of REMO have been compared with measurements of ScaRaB and AVHRR for March 1994. The model reproduces the measurements overall well, but it is overestimating the cold areas and underestimating the warm areas in the longwave spectral domain. Similarly it is overestimating the dark areas and underestimating the bright areas in the solar spectral domain. (orig.)

  2. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  3. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  4. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  5. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les

    2013-01-01

    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  6. Measuring the relativistic perigee advance with satellite laser ranging

    International Nuclear Information System (INIS)

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 -2 -10 -3 . In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 -3 . With the corresponding measured value of (2 + 2γ - β)/3, by using η = 4β - γ - 3 from lunar laser ranging, we could get an estimate of the PPN parameters γ and β with an accuracy of the order of 10 -2 -10 -3 . Nevertheless, these accuracies would be substantially improved in the near future with the new Earth gravity field models by the CHAMP and GRACE missions. The use of the perigee of LARES (LAser RElativity Satellite), with a suitable combination of orbital residuals including also the node and the perigee of LAGEOS II, would also further improve the accuracy of the proposed measurement

  7. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  8. Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps, Development Priorities, and Opportunities

    Directory of Open Access Journals (Sweden)

    Robert Frouin

    2018-02-01

    Full Text Available Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to climate change. At present, only a few properties are reliably retrieved from space, either directly or via water-leaving radiance. Existing satellite products are limited to planar photosynthetically available radiation (PAR and ultraviolet (UV irradiance above the surface and diffuse attenuation coefficient. Examples of operational products are provided, and their advantages and drawbacks are examined. The usefulness and convenience of these products notwithstanding, there is a need, as expressed by the user community, for other products, i.e., sub-surface planar and scalar fluxes, average cosine, spectral fluxes (UV to visible, diurnal fluxes, absorbed fraction of PAR by live algae (APAR, surface albedo, vertical attenuation, and heating rate, and for associating uncertainties to any product on a pixel-by-pixel basis. Methodologies to obtain the new products are qualitatively discussed in view of most recent scientific knowledge and current and future satellite missions, and specific algorithms are presented for some new products, namely sub-surface fluxes and average cosine. A strategy and roadmap (short, medium, and long term for usage and development priorities is provided, taking into account needs and readiness level. Combining observations from satellites overpassing at different times and geostationary satellites should be pursued to improve the quality of daily-integrated radiation fields, and products should be generated without gaps to provide boundary conditions for general circulation and biogeochemical models. Examples of new products, i.e., daily scalar PAR below the surface, daily average

  9. Quality assurance in radiation measurement

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2002-01-01

    The achievement of traceability to recognize measurement standards for ionizing radiation posses special requirements. Methods of transferring reference standard to the working situation are devised through calibration and appropriate traceability, which optimize the accuracy attainable with the method of dose determination in routine use. Appropriate procedures are developed by the SSDL-MINT to establish accurate dose measurement in wide range of radiation fields such as in medicine, agriculture and industrial application. The status of work including effort towards ISO 9000 certification of SSDL dosimetry services will be summarized. (Author)

  10. Intercomparison of Environmental Nuclear Radiation Measuring

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; NI; Ning; HOU; Jin-bing; SONG; Ming-zhe

    2015-01-01

    In 2015,Radiation Metrology Division of China Institute of Atomic Energy organized an environmental monitoring of nuclear radiation measuring intercomparison,and 9laboratories attended.The intercomparison included environmental level dosemeters and protection level

  11. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  12. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  13. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  14. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  15. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  16. Laboratory Measurements of the Dielectronic Recombination Satellite Transitions of He-Like FE XXV and H-Like FE XXVI

    Science.gov (United States)

    Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,

    2012-01-01

    We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.

  17. measurement of indoor background ionizing radiation in some

    African Journals Online (AJOL)

    Administrator

    Measurement of the background ionizing radiation profile within the. Chemistry Research Laboratory and Physics Laboratory III all of the. University of Jos and their immediate neighbourhood were carried out. These science laboratories also harbour a number of active radiation sources. The radiation levels were measured ...

  18. The long-term effects of space weather on satellite operations

    Directory of Open Access Journals (Sweden)

    D. T. Welling

    2010-06-01

    Full Text Available Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA National Geophysical Data Center (NGDC satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles. The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment.

  19. Transportation Satellite Accounts : A New Way of Measuring Transportation Services in America

    Science.gov (United States)

    2011-01-01

    Transportation Satellite Accounts (TSA), produced by the Bureau of Economic Analysis and the Bureau of Transportation Statistics, provides measures of national transportation output. TSA includes both in-house and for-hire transportation services. Fo...

  20. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejo, L.F.; Ramirez, L.; Polo, J. [DER-CIEMAT, Madrid (Spain). Renewable Energy Dept.

    2005-07-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models. (author)

  1. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    International Nuclear Information System (INIS)

    Zarzalejo, Luis F.; Ramirez, Lourdes; Polo, Jesus

    2005-01-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models

  2. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  3. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  4. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  5. Space Weather Concerns for All-Electric Propulsion Satellites

    Science.gov (United States)

    Horne, Richard B.; Pitchford, David

    2015-08-01

    The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.

  6. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  7. Atmospheric Radiation Measurement Program plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  8. Solar energy R + D programme, 1979-1983. Project F: solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Individual presentations report work in the following areas: production of test reference years for model simulation of solar systems and components; global radiation atlas for horizontal surfaces; radiation data on inclined surfaces; intensity thresholds and cumulative frequency curves; useful energy output from solar collectors; network comparison of pyranometers; measurements of turbidity, spectral radiation, etc.; satellite data. (LEW)

  9. Ground-based spectral measurements of solar radiation, (2)

    International Nuclear Information System (INIS)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  10. Method and apparatus for determining accuracy of radiation measurements made in the presence of background radiation

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1977-01-01

    A radioactivity measuring instrument, and a method related to its use, for determining the radioactivity of a sample measured in the presence of significant background radiation, and for determining an error value relating to a specific probability of accuracy of the result are presented. Error values relating to the measurement of background radiation alone, and to the measurement of sample radiation and background radiation together, are combined to produce a true error value relating to the sample radiation alone

  11. Radiation protection measurement. Philosophy and implementation

    International Nuclear Information System (INIS)

    Recht, P.; Lakey, J.R.A.

    1975-01-01

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  12. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  13. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  14. Radiation measurement of civil air flight

    International Nuclear Information System (INIS)

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  15. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  16. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  17. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    Science.gov (United States)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  18. Radiation quantities, units and measurements. Final report 1999

    International Nuclear Information System (INIS)

    Wambersie, A.; Allisy, A.; Caswell, R.S.

    2000-01-01

    The determination of human exposure to radiation and radioactivity, whether arising from environmental exposures, medical practice or industrial activities, requires a fundamental set of quantities and units with which exposures can be specified and the means and ability to make measurements which yield results in terms of these quantities and units. Radiation protection then, as well as effective use of radiation in medical applications, requires the capability to accurately quantify the characteristics and extent of radiation exposure, so that appropriate and useful assessments of the potential health consequences and risks, whether for protection of the public and workers or for diagnosis and treatment of disease, can be formulated. The work carried out via this concerted action on ''Radiation quantities, units and measurements'' has addressed these needs. Measurement of radiation is a complex subject and is a science in itself. Yet many users of radiation who need to make radiation measurements cannot be expected to become experts in this particular field. They need authoritative guidance on how to deal with the measurement problems connected with their particular use of radiation. The work carried out pursuant to this concerted action has resulted in publications that meet this need. Important achievements include the publication of seven new ICRU reports, the completion of all but the printing of three other ICRU reports, completion of the drafting work on two other reports, the development of many others reports and the initiation of seven new activities that will result in ICRU reports representing important future contribution to the needs identified in this project. (orig.)

  19. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    Science.gov (United States)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  20. Relativistic effects on earth satellites and their measurement

    International Nuclear Information System (INIS)

    Bertotti, B.

    1988-01-01

    There are three kinds of relativistic effects on earth satellites: those due post newtonian corrections in the field of the earth; the relativistic corrections in the field of the sun; and the precession of the local frames with respect to far away bodies. The authors point out that it is not possible to eliminate the second kind by decreasing the distance of the satellite and the earth; in other words, the effect of the sun is not entirely tidal and a generalized principle of equivalence does hold exactly. Concerning the third kind, the motion of the moon and the measurements of its distance from the earth by lunar laser ranging provides a way to establish experimentally the two connections between the three fundamental frames one should consider: the local frame, determined geometrically by parallel transport; the planetary dynamical frame; and the kinematical frame defined by extragalactic radio sources. According to general relativity the first two frames are related by de Sitter's precision; the last two coincide. It shown that the connections between the first two frames and the first and third frame are already hidden in the existing data

  1. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    Science.gov (United States)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  2. MEASUREMENTS OF ELECTROMAGNETIC ULF FIELD ONBOARD THE MAGION-4 SATELLITE: ULF EXPERIMENT

    Czech Academy of Sciences Publication Activity Database

    Tříska, Pavel; Vojta, Jaroslav; Czapek, Alexandr; Chum, Jaroslav; Teodosiev, D.; Galev, G.; Shibaev, I.

    2003-01-01

    Roč. 17, - (2003), s. 47-53 ISSN 0861-1432 Institutional research plan: CEZ:AV0Z3042911 Keywords : Satellite * measurement * electromagnetic field * ULF Subject RIV: JV - Space Technology http://www.space.bas.bg/astro/eng.html

  3. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  4. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Z. Hou

    2018-04-01

    Full Text Available This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  5. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    Science.gov (United States)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  6. Pioneer 10/11 data analysis of the trapped radiation experiment

    Science.gov (United States)

    Fillius, W.

    1982-01-01

    The data handling operations and the database produced by the Trapped Radiation Experiment on the NASA Pioneer 10 and 11 spacecraft are outlined. In situ measurements of trapped radiation at both Jupiter and Saturn, the extension of cosmic ray observations to the outer heliosphere, the presence of Jovian electrons in interplanetary space, analyses of the interaction between planetary satellites and the trapped radiation that engulfs them, and further investigations of the radiation enviroments of both planets are reported.

  7. Discrete Anisotropic Radiative Transfer (DART 5 for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Gastellu-Etchegorry

    2015-02-01

    Full Text Available Satellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc. and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc. are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR waveform and photon counting signals.

  8. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  9. The Mini-SPT (Space Particle Telescope) for dual use: Precision flux measurement of low energy proton electron and heavy ion with tracking capability and A compact, low-cost realtime local radiation hazard/alarm detector to be used on board a satellite

    Science.gov (United States)

    Alpat, Behcet; Ergin, Tulun; Kalemci, Emrah

    2016-07-01

    The Mini-SPT project is the first, and most important, step towards the ambitious goal of creating a low-cost, compact, radiation hardened and high performance space particle telescope that can be mounted, in the near future, as standard particle detector on any satellite. Mini-SPT will be capable of providing high quality physics data on local space environment. In particular high precision flux measurement and tracking of low energy protons and electrons on different orbits with same instrumentation is of paramount importance for studies as geomagnetically trapped fluxes and space weather dynamics, dark matter search, low energy proton anisotropy and its effects on ICs as well as the solar protons studies. In addition, it will provide real-time "differentiable warnings" about the local space radiation hazard to other electronics systems on board the hosting satellite, including different criticality levels and alarm signals to activate mitigation techniques whenever this is strictly necessary to protect them from temporary/permanent failures. A real-time warning system will help satellite subsystems to save significant amount of power and memory with respect to other conventional techniques where the "mitigation" solutions are required to be active during entire mission life. The Mini-SPT will combine the use of technologies developed in cutting-edge high energy physics experiments (including technology from CMS experiments at CERN) and the development of new charged particle detecting systems for their use for the first time in space. The Mini-SPT essential objective is, by using for the first time in space SIPMs (Silicon Photomultipliers) technology for TOF and energy measurements, the production of high quality data with a good time, position and energy resolutions. The mini-SPT will consists of three main sub-units: a- A tracking and dE/dX measuring sub-detector which will be based on silicon pixel detectors (SPD) coupled to the rad-hard chip ROC-DIG (Read

  10. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  11. Canadian radiation belt science in the ILWS era

    Science.gov (United States)

    Mann, I. R.

    The Outer Radiation Belt Injection, Transport, Acceleration, and Loss Satellite (ORBITALS) is a Canadian Space Agency small satellite mission proposed as a Canadian contribution to the satellite infrastructure for the International Living With a Star (ILWS) program. Planned to operate contemporaneously with the NASA Radiation Belt Storm Probes (RBSP), the ORBITALS will monitor the energetic electron and ion populations in the inner magnetosphere across a wide range of energies (keV to tens of MeV) as well as the dynamic electric and magnetic fields, waves, and cold plasma environment which govern the injection, transport, acceleration and loss of these energetic and space weather critical particle populations in the inner magnetosphere. Currently in Phase A Design Study, the ORBITALS will be launched into a low-inclination GTO-like orbit which every second orbit maximizes the long lasting apogee-pass conjunctions with both the ground-based instruments of the Canadian Geospace Monitoring (CGSM) array as well as with the GOES East and West and geosynchronous communications satellites in the North American sector. In a twelve-hour orbit, every second apogee will conjunct with instrumentation 180 degree in longitude away in the Asian sector. Specifically, the ORBITALS will make the measurements necessary to reach reveal fundamental new understanding of the relative importance of different physical processes (for example VLF verses ULF waves) which shape the energetic particle populations in the inner magnetosphere, as well as providing the raw radiation measurements at MEO altitudes necessary for the development of the next-generation of radiation belt specification models. On-board experiments will also monitor the dose, single event upset, and deep-dielectric charging responses of electronic components on-orbit. Supporting ground-based measurements of ULF and higher frequency wave fields from the Canadian CARISMA (www.carisma.ca) magnetometer array, as well as from

  12. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    Energy Technology Data Exchange (ETDEWEB)

    Feister, Uwe [German Meteorological Service, Meteorological Observatory Lindenberg - Richard-Assmann-Observatory, Am Observatorium 12, 15848 Lindenberg (Germany); Meyer, Gabriele; Kirst, Ulrich [German Social Accident Insurance Institution for Transport and Traffic, Ottenser Hauptstrasse 54, 22765 Hamburg (Germany)

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  13. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  14. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  15. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  16. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  17. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  18. Mathematical modeling of a new satellite thermal architecture system connecting the east and west radiator panels and flight performance prediction

    International Nuclear Information System (INIS)

    Torres, Alejandro; Mishkinis, Donatas; Kaya, Tarik

    2014-01-01

    An entirely novel satellite thermal architecture, connecting the east and west radiators of a geostationary telecommunications satellite via loop heat pipes (LHPs), is proposed. The LHP operating temperature is regulated by using pressure regulating valves (PRVs). A transient numerical model is developed to simulate the thermal dynamic behavior of the proposed system. The details of the proposed architecture and mathematical model are presented. The model is used to analyze a set of critical design cases to identify potential failure modes prior to the qualification and in-orbit tests. The mathematical model results for critical cases are presented and discussed. The model results demonstrated the robustness and versatility of the proposed architecture under the predicted worst-case conditions. - Highlights: •We developed a mathematical model of a novel satellite thermal architecture. •We provided the dimensioning cases to design the thermal architecture. •We provided the failure mode cases to verify the thermal architecture. •We provided the results of the corresponding dimensioning and failure cases

  19. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  20. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  1. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  2. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    International Nuclear Information System (INIS)

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  3. Control measures in industrial and medical applications of radiation

    International Nuclear Information System (INIS)

    Akinloye, M. K.

    1999-01-01

    Radiation and radioactive substances are natural and permanent features of the environment; additionally the use of human made radiation is widespread. Sources of radiation are essential to modern health care, disposable medical supplies sterilized by intense radiation have been central to combating disease, radiology is a vital diagnostic tool and radiotherapy is commonly part of the treatment of malignancies. Nuclear techniques are in growing use in industry, agriculture, medicine and many fields of research, benefiting hundreds of millions of people and giving employment to millions of people in the related occupations, Irradiation is used around the world to preserve and reduce wastage and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds and detect cracks and help prevent the failure of engineered structures. It is also known that exposure to ionizing radiation can result to injuries that manifest themselves in the individual and his descendants. It is therefore imperative that the use of radiation sources be accompanied with the methods necessary for the prevention of the harmful effects of the radiation. These methods are referred to as control measures. Control measures that have been applied in establishments can be classified into physical control measures and administrative control measures. Physical control measures involve the technical aspects while administrative control measures augment physical measures. The guidelines and recommendations for the safe use of radiation and radioactive materials are provided through legislative and regulatory controls

  4. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  5. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  6. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  7. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  8. Measurement of radiation damage on an optical reflector

    International Nuclear Information System (INIS)

    Peng, K.C.; Sahu, S.K.; Huang, H.C.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical white fluorocarbon reflector called Goretex, which is to be used for aerogel threshold counters and crystal calorimeters of the BELLE detector of the KEK B-factory. Reflectance of the Goretex surface was monitored to see any effect of the radiation damage. Maximum equivalent dose was 8.6 Mrad. No radiation damage is observed within measurement errors. (orig.)

  9. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  10. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  11. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  12. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    Science.gov (United States)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  13. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  14. Chernobyl accident: Causes, consequences and problems of radiation measurements

    International Nuclear Information System (INIS)

    Kortov, V.; Ustyantsev, Yu.

    2013-01-01

    General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described

  15. Measurement tolerance analysis of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  16. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  17. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  18. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    Science.gov (United States)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  19. Measurement of the central ion and electron temperature of tokamak plasmas from the x-ray line radiation of high-Z impurity ions

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Goldman, M.; Hill, K.W.; Horton, R.; Roney, W.; Sauthoff, N.; Stodiek, W.

    1982-04-01

    This paper describes measurements of the central ion and electron temperature of tokamak plasmas from the observation of the 1s - 2p resonance lines, and the associated dielectronic (1s 2 nl - 1s2pnl, with n greater than or equal to 2) satellites, of helium-like iron (Fe XXV) and titanium (Ti XXI). The satellite to resonance line ratios are very sensitive to the electron temperature and are used as an electron temperature diagnostic. The ion temperature is deduced from the Doppler width of the 1s - 2p resonance lines. The measurements have been performed with high resolution Bragg crystal spectrometers on the PLT (Princeton Large Torus) and PDX (Poloidal Divertor Experiment) tokamaks. The details of the experimental arrangement and line evaluation are described, and the ion and electron temperature results are compared with those obtained from independent diagnostic techniques, such as the analysis of charge-exchange neutrals and measurements of the electron cyclotron radiation. The obtained experimental results permit a detailed comparison with theoretical predictions

  20. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    Science.gov (United States)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  1. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  2. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  3. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  4. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  5. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  6. Current situation and prospect of market on the latest radiation measuring instrument

    International Nuclear Information System (INIS)

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  7. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  8. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  9. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  10. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  11. Full-Physics Inverse Learning Machine for Satellite Remote Sensing Retrievals

    Science.gov (United States)

    Loyola, D. G.

    2017-12-01

    The satellite remote sensing retrievals are usually ill-posed inverse problems that are typically solved by finding a state vector that minimizes the residual between simulated data and real measurements. The classical inversion methods are very time-consuming as they require iterative calls to complex radiative-transfer forward models to simulate radiances and Jacobians, and subsequent inversion of relatively large matrices. In this work we present a novel and extremely fast algorithm for solving inverse problems called full-physics inverse learning machine (FP-ILM). The FP-ILM algorithm consists of a training phase in which machine learning techniques are used to derive an inversion operator based on synthetic data generated using a radiative transfer model (which expresses the "full-physics" component) and the smart sampling technique, and an operational phase in which the inversion operator is applied to real measurements. FP-ILM has been successfully applied to the retrieval of the SO2 plume height during volcanic eruptions and to the retrieval of ozone profile shapes from UV/VIS satellite sensors. Furthermore, FP-ILM will be used for the near-real-time processing of the upcoming generation of European Sentinel sensors with their unprecedented spectral and spatial resolution and associated large increases in the amount of data.

  12. Environmental Gamma Radiation Measurements in Baskil District

    International Nuclear Information System (INIS)

    Canbazoglu, C.

    2008-01-01

    In this study, we have determined environmental gamma radiation dose rate in Baskil district which has very high granite content in its geographical structure. Gamma radiation dose rate measurements were achieved by portable radiation monitoring equipment based on the energy range between 40 keV and 1.3 MeV. The measurements were performed on asphalt and soil surface level and also one meter above the ground surface. The gamma dose rate was also performed inside and outside of buildings over the district. The dose rates were found to be between 8.46μR/h and 34.66 μR/h. Indoor and outdoor effective dose rate of the gamma radiation exposure has been calculated to be 523μSv/y and 196μSv/y, respectively

  13. Automated System of Area Radiation Measurement (ASARM)

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2013-10-01

    The realized activities in nuclear facilities involve the determination of the presence of ionizing radiation fields in the workspaces. The instruments designed to detect and to measure these radiation fields provide useful information (specific type of radiation, intensity, etc.) to take the appropriate radiological protection measures, with the purpose of reducing to the minimum the workers exposition and the people in general. The radiological protection program of Reactor TRIGA Mark III contains the instructions and procedures to implement a periodic radiological monitoring, surveillance, rising of contamination levels, type and number of the instruments required for the radiological monitoring of areas and personal. The ana logical monitoring system model Rms II used to detect and measuring exposition speed and neutron radiation fields in several areas of the installation, provides the information in a logarithmic scale measurer of 4 or 5 decades located in a shelf where the previously mentioned measurement channels are centralized. Also inside the reactor monitoring system are two monitors of radioactive material concentration in the air: The particles continuous monitor and the gaseous effluents monitor which present the referred information of the diverse detectors through ana logical readers. These monitors when operating with an ana logical indication does not present the possibility to generate historical files electronically of each monitor previously mentioned neither to generate visual and audible indications of the alarms. This work presents the Automated System of Area Radiation Measurement which potentiated the functionality of the area monitors for gamma and neutron radiation, as well as of the particles continuous monitor and the gaseous effluents of reactor TRIGA Mark III, when being developed a computer system that captures in real time the information of all the monitors, generating this way an electronic binnacle, a visual and audible alarm

  14. Environmental radiation measurements and remedial actions (Hantepe/Ezine/Canakkale)

    International Nuclear Information System (INIS)

    2009-01-01

    There are some regions in the world that are known as high background radiation areas. Intensive scientific investigations in the field of radiation dose and health effects, risk estimates, radiation protection, environmental transportation routes and ecological effects related with natural radiation have been carried out in these regions. Also natural radiation dosimetry, in vitro and in vivo biological studies which take into account the measurements in the field of low level radiation, radon, thoron and cosmic rays have been carried out, again in these regions. The well-known high natural background radiation areas in the world are Guarapari in Brazil, Ramsar in Iran, Kerala in India and Yangjiang in China. In addition to above mentioned areas, other relatively lower high background radiation areas are exist. Since 1960s, radiological, geological, epidemiological and ecological studies have been carried out in order to determine the risks and possible health effects of long-term low level natural radiation exposure. In the framework of surveying the background radiation of Turkey, the background radiation measurements were carried out in 56 different points around the area of Canakkale city. The radiation levels at Hantepe beach of Geyikli which is located in Ezine town of Canakkale was found higher than the mean background radiation level of the region. The radiation dose rates were measured in between 0.20 and 10.88 Gy h-1 in contact and 0.27 and 3.11 Gy h-1 above 1 meter of the ground level where the thorium-containing sand is dense. After the rehabilitation studies, the radiation dose rate were measured in between 0.15 and 8.09 Gy h-1 in contact and 0.17 and 2.88 Gy h-1 above 1 meter of the ground level. It was observed that the radiation dose rates were decreased seriously after the rehabilitation studies when the arithmetic mean value of the dose rates was taken into account. The effective dose calculations were performed by taking into account the

  15. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  16. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  17. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  18. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    Science.gov (United States)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  19. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    International Nuclear Information System (INIS)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A S

    2013-01-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately

  20. Neutron measuring instruments for radiation protection

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Schneider, W.; Hoefert, M.; Kuehn, H.; Jahr, R.; Wagner, S.; Piesch, E.

    1979-09-01

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP) [de

  1. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  2. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C. [Center for Quantum Technologies, 3 Science Drive 2, 117543 (Singapore); Yeo, G. H.; Chan, A. H., E-mail: pengkian@physics.org, E-mail: phyck@nus.edu.sg [Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 (Singapore)

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  3. Energetic electrons at Uranus: Bimodal diffusion in a satellite limited radiation belt

    International Nuclear Information System (INIS)

    Selesnick, R.S.; Stone, E.C.

    1991-01-01

    The Voyager 2 cosmic ray experiment observed intense electron fluxes in the middle magnetosphere of Uranus. High counting rates in several of the solid-state detectors precluded in the normal multiple coincidence analysis used for cosmic ray observations, and the authors have therefore performed laboratory measurements of the single-detector response to electrons. These calibrations allow a deconvolution from the counting rate data of the electron energy spectrum between energies of about 0.7 and 2.5 MeV. They present model fits to the differential intensity spectra from observations between L values of 6 and 15. The spectra are well represented by power laws in kinetic energy with spectral indices between 5 and 7. The phase space density at fixed values of the first two adiabatic invariants generally increases with L, indicative of an external source. However, there are also local minima associated with the satellites Ariel and Umbriel, indicating either a local source or an effective source due to nonconservation of the first two adiabatic invariants. For electrons which mirror at the highest magnetic latitudes, the local minimum associated with Ariel is radically displaced from the minimum L of that satellite by ∼0.5. The latitude variation of the satellite absorption efficiency predicts that if satellite losses are replenished primarily by radial diffusion there should be an increasing pitch angle anisotropy with decreasing L. The uniformity in the observed anisotropy outside the absorption regions then suggests that it is maintained by pitch angle diffusion. The effective source due to pitch angle diffusion is insufficient to cause the phase space density minimum associated with Ariel. Model solutions of the simultaneous radial and pitch angle diffusion equation show that the displacement of the high-latitude Ariel signature is also consistent with a larger effective source

  4. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  5. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    Science.gov (United States)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  6. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  7. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  8. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  9. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    OpenAIRE

    J. Kujanpää; N. Kalakoski

    2015-01-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSA...

  10. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  11. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  12. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  13. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  14. Data Collection Satellite Application in Precision Agriculture

    Science.gov (United States)

    Durào, O.

    2002-01-01

    Agricultural Instrumentation Research Center, Brazilian Agricultural Research Corporation; Space Programs Brazil launched in 1993 its first satellite partially built and entirely designed, integrated, tested and operated in the country. It was the SCD-1 satellite, a small (115 kg. and an octagonal prism with 80 cm. height and an external diameter of 100 cm.) with a payload transponder that receives data from ground platforms spread all over the country (including its sea shore). These data are then retransmitted to a receiving station at every satellite pass. Data collected and received are processed at Data Collection Mission Center for distribution via internet at most 30 min after the satellite pass. The ground platforms are called PCD's and differ in the parameters measured according to its purpose and location. Thus, they are able to measure temperature, rain level, wind direction, solar radiation, carbon monoxide as well as many others, beyond its own location. SCD- 1 had a nominal designed life of one year, but is still functioning. It is a LEO satellite with inclination of 25°. In 1998, the country launched SCD-2, with the same purpose, but in phase with SCD-1 . Other differences were a higher index of Brazilian made components and an active attitude control subsystem for the spin rate provided by the magnetic torque coils (these in accordance with a development strategy previously planned). In 1999 the country launched in cooperation with China a remote sensing satellite (mass of 1.4 ton.) called CBERS-1. This satellite is sun synchronous (98° inclination) and also carries a transponder for data collection/transmission as a secondary payload. Thus, the country has now three satellites with data collection/transmission capabilities, two in low inclination phased orbits and one in polar orbit, providing a nice coverage both geographical and temporal not only to its territory but also to other regions of the world.. At first there were not too many PCD

  15. Calorimeter with capacitance transducer for measurement of SHF radiation power

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  16. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  17. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    scattering Ångström exponent suggest that the fraction of smaller particles in the aerosol is larger near the surface than at high altitudes. The observed dependence of scattering on size, wavelength, angular integration range, and relative humidity, together with the spectral dependence of absorption, show that the aerosol at higher altitudes is larger, less hygroscopic, and more strongly absorbing at shorter wavelengths, suggesting an increased contribution from dust or organic aerosols. The aerosol profiles show significant differences among seasons. The largest amounts of aerosol (as determined by median light extinction profile measurements throughout most of the sampled column were observed during summer, with the lowest amounts in the winter and intermediate values in the spring and fall. The highest three profile levels (3.1, 3.7, 4.6 km, however, showed larger median extinction values in the spring, which could reflect long-range transport of dust or smoke aerosols. The aerosols in the mixed layer were darkest (i.e., lowest single-scattering albedo in the fall, in agreement with surface measurements at Bondville and other continental sites in the US. In situ profiles of aerosol radiative forcing efficiency showed little seasonal or vertical variability. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP

  18. Development of a mobile robot for remote radiation measurement

    International Nuclear Information System (INIS)

    Sarkar, Ushnish; Saini, Surendra Singh; Swaroop, Tumapala Teja; Sreejith, P.; Kumar, Ravinder; Ray, Debasish Datta

    2016-01-01

    Remote measurement of radiation using mobile robots is recommended in nuclear installations. For this purpose various robots have been developed that carry a radiation sensor. However since the robot has to go very near to the source of radiation, the life of the robot's components is compromised due to high level of absorbed dose. It was earlier managed to increase the life expectancy of remote radiation measurement robots by allowing the sensor to be placed on an extendable telescopic assembly; analogous to a health physicist taking measurements using a Teletector. The first prototype developed had stair climbing capabilities but it was found to be over dimensioned for various potential applications. A significant use of such robots is in taking measurements at nuclear reprocessing facilities having narrow cluttered pathways. This required development of a new version of the robot capable of negotiating the narrow pathways of such facilities. This paper describes the different aspects of the development of the mobile robot system with flexible radiation sensing capabilities

  19. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  20. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  1. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  2. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  3. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  4. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  5. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  6. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  7. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  8. Radiation exposure near Chernobyl based on analysis of conifer injury using thematic mapper satellite images

    International Nuclear Information System (INIS)

    Goldman, M.; Ustin, S.L.; Sadowski, F.G.

    1988-01-01

    Radiation-induced damage in conifers adjacent to the damaged Chernobyl nuclear power plant has been evaluated using LANDSAT Thematic Mapper (TM) satellite images. Eight images acquired between 22 April 1986 and 15 May 1987 were used to assess the extent and magnitude of radiation effects on pine trees within 10 km of the reactor site. The timing and spatial extent of vegetation damaged was used to estimate the radiation doses in the near field around the Chernobyl nuclear power station and to indirectly derive the dose rates as a function of time during and after the accident. A normalized vegetation index was developed from the TM band data to visually demonstrate the damage and mortality to nearby conifer stands. The patterns of spectral change indicative of vegetation stress are consistent with changes expected for radiation injury and mortality. The extent and timing of these effects permitted the development of an integrated dose estimate, which was combined with the information regarding the characteristics of radionuclide mix, to provide an estimate of maximum dose rates during the early period of the accident. The derived peak dose rates during the 10-day release in the accident are high and are estimated at about 0.5 to 1 rad per hour. These are not considered life-threatening and would therefore require prompt but not immediate evacuation; that is, no off-site fatalities would be likely under such conditions. The methodology employed to combine remote-sensing analyses and the estimates of source term release with the known radiation effects on conifers represent a unique integration of these scientific and technical tools. The results of the study show that remote-sensing techniques can be used to develop a quantitative methodology for dosimetric applications and for future monitoring activities related to reactor safety

  9. Space electronics: radiation belts set new challenges

    International Nuclear Information System (INIS)

    Leray, J.L.; Barillot, C.; Boudenot, J.C.

    1999-01-01

    Telecommunications satellites have been in use since 1962 with the first satellite network (constellation) coming into operation in 1966. GPS systems have been available since the mid seventies. Until now, all these systems have avoided orbits which lie within the radiation belts. The latest constellation projects, offering much wider bandwidths, need to use orbits between 1500 and 2000 km, where the proton density is at its highest. The vulnerability of future generations of components can be predicted by extrapolating the behaviour of current devices. Screening is not a viable option due to cost and weight limitations in satellite applications. As a result, satellite and component manufacturers are seeking new methods of hardening components or making them more radiation tolerant in an environment where the radiation levels are ten times those currently experiences. (authors)

  10. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  11. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  12. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  13. Bunch Length Measurements using Coherent Radiation

    CERN Document Server

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  14. Estimating solar radiation using NOAA/AVHRR and ground measurement data

    Science.gov (United States)

    Fallahi, Somayeh; Amanollahi, Jamil; Tzanis, Chris G.; Ramli, Mohammad Firuz

    2018-01-01

    Solar radiation (SR) data are commonly used in different areas of renewable energy research. Researchers are often compelled to predict SR at ground stations for areas with no proper equipment. The objective of this study was to test the accuracy of the artificial neural network (ANN) and multiple linear regression (MLR) models for estimating monthly average SR over Kurdistan Province, Iran. Input data of the models were two data series with similar longitude, latitude, altitude, and month (number of months) data, but there were differences between the monthly mean temperatures in the first data series obtained from AVHRR sensor of NOAA satellite (DS1) and in the second data series measured at ground stations (DS2). In order to retrieve land surface temperature (LST) from AVHRR sensor, emissivity of the area was considered and for that purpose normalized vegetation difference index (NDVI) calculated from channels 1 and 2 of AVHRR sensor was utilized. The acquired results showed that the ANN model with DS1 data input with R2 = 0.96, RMSE = 1.04, MAE = 1.1 in the training phase and R2 = 0.96, RMSE = 1.06, MAE = 1.15 in the testing phase achieved more satisfactory performance compared with MLR model. It can be concluded that ANN model with remote sensing data has the potential to predict SR in locations with no ground measurement stations.

  15. A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

    Science.gov (United States)

    Podrascanin, Z.; Balog, I.; Jankovic, A.; Mijatovic, Z.; Nadj, Z.

    2017-12-01

    In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer's facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.

  16. Determination of circumsolar radiation from Meteosat Second Generation

    Science.gov (United States)

    Reinhardt, B.; Buras, R.; Bugliaro, L.; Wilbert, S.; Mayer, B.

    2014-03-01

    Reliable data on circumsolar radiation, which is caused by scattering of sunlight by cloud or aerosol particles, is becoming more and more important for the resource assessment and design of concentrating solar technologies (CSTs). However, measuring circumsolar radiation is demanding and only very limited data sets are available. As a step to bridge this gap, a method was developed which allows for determination of circumsolar radiation from cirrus cloud properties retrieved by the geostationary satellites of the Meteosat Second Generation (MSG) family. The method takes output from the COCS algorithm to generate a cirrus mask from MSG data and then uses the retrieval algorithm APICS to obtain the optical thickness and the effective radius of the detected cirrus, which in turn are used to determine the circumsolar radiation from a pre-calculated look-up table. The look-up table was generated from extensive calculations using a specifically adjusted version of the Monte Carlo radiative transfer model MYSTIC and by developing a fast yet precise parameterization. APICS was also improved such that it determines the surface albedo, which is needed for the cloud property retrieval, in a self-consistent way instead of using external data. Furthermore, it was extended to consider new ice particle shapes to allow for an uncertainty analysis concerning this parameter. We found that the nescience of the ice particle shape leads to an uncertainty of up to 50%. A validation with 1 yr of ground-based measurements shows, however, that the frequency distribution of the circumsolar radiation can be well characterized with typical ice particle shape mixtures, which feature either smooth or severely roughened particle surfaces. However, when comparing instantaneous values, timing and amplitude errors become evident. For the circumsolar ratio (CSR) this is reflected in a mean absolute deviation (MAD) of 0.11 for both employed particle shape mixtures, and a bias of 4 and 11%, for the

  17. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  18. Phantoms for Radiation Measurements of Mobile Phones

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...... to be the main reason for the large variation in radiation efficiency among persons. The tilt angle of the phone and the distance between the head and phone only play a minor role...

  19. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  20. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  1. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  2. Radiated power measurement with AXUV photodiodes in EAST tokamak

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)

  3. Measuring the relativistic perigee advance with satellite laser ranging

    CERN Document Server

    Iorio, L; Pavlis, E C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 sup - sup 2 -10 sup - sup 3. In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 sup 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 sup - sup 3. With the corresponding measured value of (2 + 2 gamma - beta)/3, ...

  4. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  5. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  6. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  7. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    Science.gov (United States)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  8. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  9. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  10. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  11. Measuring thyroid uptake with hand-held radiation monitors

    International Nuclear Information System (INIS)

    Deschamps, M.

    1987-04-01

    With the use of Iodine 123, 125 and 131 and some compounds of Technetium-99 m, a fraction of the isotopes can be trapped in the thyroid of the technicians. We used the hand-held radiation contamination or survey meters of the nine (9) Nuclear medicine departments we visited to see if they were adequate for the evaluation of thyroid uptake of the users. Measurements on a neck-phanton helped us to determine a minimum detectable activity for each isotope. We were then able to check if the measurements of investigations and action levels were possible. None of the hand-held radiation monitors are completely satisfactory for the measure of thyroid uptake of the user. We discuss a class of equipment capable of measuring radiation emissions at the investigation level. Measurement at the action level is possible with meters having scintillation or proportional probes but none of them permits the discrimination in energy required for a quantitative evaluation of the radioisotopes used

  12. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  13. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  14. Quality control of gamma radiation measuring systems

    International Nuclear Information System (INIS)

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  15. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    International Nuclear Information System (INIS)

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  16. Survey by measurement of urban environmental radiation, 1

    International Nuclear Information System (INIS)

    Inokoshi, Yukio; Kitahara, Akiharu; Suzuki, Takashi; Sugiura, Shiroharu; Shindo, Kotaro

    1984-01-01

    In the evaluation of the effect of radiation on the population of Tokyo Metropolis, it is necessary to know the external exposure due to natural radiation. Radiation dose rate has been measured on the ground (parks, etc.), paved roads (sidewalks), buildings, and transportation facilities (subways). The average values of cosmic ray and ground radiation were 8.8 x 10 -10 C/kg.h and 6.5 x 10 -10 C/kg.h, respectively. The radiation dose rate on roads differed largely with the structural materials, thickness, etc. The radiation in wooden buildings was almost similar to surrounding natural radiation. In high-rise buildings, there was not much difference from floor to floor. The natural radiation in subways depends largely on the depth. (Mori, K.)

  17. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  18. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  19. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    International Nuclear Information System (INIS)

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  20. The Sun-earth Imbalance radiometer for a direct measurement of the net heating of the earth

    Science.gov (United States)

    Dewitte, Steven; Karatekin, Özgür; Chevalier, Andre; Clerbaux, Nicolas; Meftah, Mustapha; Irbah, Abdanour; Delabie, Tjorven

    2015-04-01

    It is accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude - of the order of 340 W/m² - resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. Based on our 30 year experience of measuring the Total Solar Irradiance with the Differential Absolute RADiometer (DIARAD) type of instrument and on our 10 year experience of measuring the Earth Radiation Budget with the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat Second Generation, we propose an innovative constellation of Sun-earth IMBAlance (SIMBA) radiometer cubesats with the ultimate goal to measure the Sun-earth radiation imbalance. A first Simba In Orbit Demonstration satellite is scheduled for flight with QB50 in 2015. It is currently being developed as ESA's first cubesat through an ESA GSTP project. In this paper we will give an overview of the Simba science objectives and of the current satellite and payload development status.

  1. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  2. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  3. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  4. A synchrotron radiation study of nonlinear diffusion in Cu-Au

    International Nuclear Information System (INIS)

    Menon, E.S.K.; Huang, P.; Kraitchman, M.; deFontaine, D.; Hoyt, J.J.; Chow, P.

    1992-01-01

    This paper reports a study in which alternate layers of pure copper and gold were vapor deposited on a sodium chloride substrate, the average concentration of the films being Cu-16 at% Au and the layering periodicity (modulation wavelength) being 3.31 nm. The composition modulation gives rise to satellite diffraction peaks around the (200) Bragg reelections. Synchrotron radiation at SSRL was able to detect u to third order satellite intensity the evolution of which was measured as a function of annealing time at 515 K. although the first order satellite intensity decayed as expected exponentially with time, intensities of both second and third order satellites decreased very rapidly at first, then increased before decaying exponentially. These results are in conformity with theoretical models of satellite evolution during annealing in a one-dimensional modulated system governed by a nonlinear diffusion equation

  5. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  6. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  7. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  8. USA's gift aids radiation measurement

    International Nuclear Information System (INIS)

    1970-01-01

    On 8 December 1969, the anniversary of President Eisenhower's speech which led to the foundation of the Agency, the United States of America handed over a $25 000 gift which will assist considerably the promotion of world-wide standardization in the measurement of radiation. (author)

  9. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  10. Physical characteristics of satellite surfaces

    International Nuclear Information System (INIS)

    Veverka, J.; Thomas, P.; Johnson, T.V.; Matson, D.; Housen, K.

    1986-01-01

    Both exogenic and endogenic effects have been proposed to explain the major observed characteristics of satellite surfaces. The current view is that the basic properties of most surfaces result from the intrinsic composition of a body and its geologic history. Exogenic effects have, however, played a role in modifying the appearance of nearly all surfaces. The most important exogenic effect is impact cratering, one manifestation of which is the production of micrometeoroid gardened regoliths on airless bodies. On large, silicate bodies the micrometeoroid bombardment can produce an optically mature, dark agglutinate-rich soil; the nature of regoliths on predominantly icy satellites remains uncertain. Direct accumulation of infalling material does not appear to play a major role in modifying most surfaces. Solar wind radiation effects have not altered greatly the optical properties of solar system objects; magnetospheric charged particles may have modified the optical properties of some outer planet satellites (e.g., sulfur ion bombardment in the case of some of the satellites of Jupiter). Other effects, such as aeolian and liquid/solid chemical weathering, may be important on satellites with atmospheres like Titan and Triton

  11. Evaluation of a combined modelling-remote sensing method for estimating net radiation in a wetland: a case study in the Nebraska Sand Hills, USA

    International Nuclear Information System (INIS)

    Goodin, D.G.

    1995-01-01

    Close-range measurement combined with modelling of incoming radiation is used to evaluate the prospect of remotely-measuring net radiation of a wetland environment located in the Sand Hills of Nebraska. Results indicate that net radiation can be measured with an accuracy comparable to that of conventional instruments. Sources of error are identified and discussed. Possible application of the methodology to satellite remote sensing is considered. (author)

  12. The Legal Regime of Nuclear Power Satellites-A Problem at the Cross-Roads of Nuclear Law and Space Law

    International Nuclear Information System (INIS)

    Courteix, S.

    1992-01-01

    The number of nuclear-powered satellites rises constantly and, recalling the fear generated by the crash of the Cosmos 954 satellite, the author points out that radioactive debris falling on earth could represent as great a hazard as accidental releases of radioactive material from land-based nuclear installations. Such satellites, therefore, can be governed by both space law and nuclear law. On the basis of international conventions applicable in the two fields and also with reference to the Law of the Sea and environmental law, the article analyses preventive and radiation protection measures as well as emergency plans and also raises the problem of liability and compensation for damage. (NEA)

  13. Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls (Invited)

    Science.gov (United States)

    Christopher, S. A.

    2009-12-01

    Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls Abstract. Fine or respirable particles with particle aerodynamic diameters less than 2.5 µm (PM2.5) affect visibility, change cloud properties, reflect and absorb incoming solar radiation, affect human health and are ubiquitous in the atmosphere. These particles are injected into the atmosphere either as primary emissions or form into the atmosphere by gas to particle conversion. There are various sources of PM2.5 including emissions from automobiles, industrial exhaust, and agricultural fires. In 2006, the United States Environmental Protection Agency (EPA) made the standards stringent by changing the 24-hr averaged PM2.5 mass values from 65µgm-3 to 35µgm-3. This was primarily based on epidemiological studies that showed the long term health benefits of making the PM2.5 standards stringent. Typically PM2.5 mass concentration is measured from surface monitors and in the United States there are nearly 1000 such filter based daily and 600 contiguous stations managed by federal, state, local, and tribal agencies. Worldwide, there are few PM2.5 ground monitors since they are expensive to purchase, maintain and operate. Satellite remote sensing therefore provides a viable method for monitoring PM2.5 from space. Although, there are several hundred satellites currently in orbit and not all of them are suited for PM2.5 air quality assessments. Typically multi-spectral reflected solar radiation measurements from space-borne sensors are converted to aerosol optical depth (AOD) which is a measure of the column (surface to top of atmosphere) integrated extinction (absorption plus scattering). This column AOD (usually at 550 nm) is often converted to PM2.5 mass near the ground using various techniques. In this presentation we discuss the progress over the last decade on assessing PM2.5 from satellites; outline the potential and discuss the various pitfalls that one encounters. We

  14. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  15. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and

  16. Validation and in vivo assessment of an innovative satellite-based solar UV dosimeter for a mobile app dedicated to skin health.

    Science.gov (United States)

    Morelli, M; Masini, A; Simeone, E; Khazova, M

    2016-08-31

    We present an innovative satellite-based solar UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in vivo assessment of the erythemal effects on some volunteers having controlled exposure to solar radiation. The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. Both validations showed that the system has a good accuracy and reliability needed for health-related applications. This app will be launched on the market by siHealth Ltd in May 2016 under the name of "HappySun" and is available for both Android and iOS devices (more info on ). Extensive R&D activities are on-going for the further improvement of the satellite-based UV dosimeter's accuracy.

  17. Changes in Handset Performance Measures due to Spherical Radiation Pattern Measurement Uncertainty

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    An important characteristic of a mobile handset is its ability to receive and transmit power. One way to characterize the performance of a handset in this respect is to use measurements of the spherical radiation pattern from which the total radiated power (TRP), total isotropic sensitivity (TIS)...... with respect to the environment. Standard deviations up to about 0.5dB and a maximum deviation of about 1.6dB were found....... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5dB with a maximum of about 1.4dB. For the MEG values the results depend on the orientation of the handset...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...

  18. Measurement of TFTR D-T radiation shielding efficiency

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ascione G.; Elwood, S.

    1994-01-01

    High power D-T fusion reactor designs presently exhibit complex geometric and material density configurations. Simulations of the radiation shielding required for safe operation and full compliance with all regulatory requirements must include sufficient margin to accommodate uncertainties in material properties and distributions, uncertainties in the final configurations, and uncertainties in approximations employing the homogenization of complex geometries. Measurements of radiation shielding efficiency performed in a realistic D-T tokamak environment can provide empirical guidance for simulating safe, efficient, and cost effective shielding systems for future high power fusion reactors. In this work, the authors present the results of initial measurements of the TFTR radiation shielding efficiency during high power D-T operations with record neutron yields. The TFTR design objective is to limit the total dose-equivalent at the nearest PPPL property lines from all radiation pathways to 10 mrem per calendar year. Compliance with this design objective over a calendar year requires measurements in the presence of typical site backgrounds of about 80 mrem per year

  19. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  20. On quality control procedures for solar radiation and meteorological measures, from subhourly to montly average time periods

    Science.gov (United States)

    Espinar, B.; Blanc, P.; Wald, L.; Hoyer-Klick, C.; Schroedter-Homscheidt, M.; Wanderer, T.

    2012-04-01

    Meteorological data measured by ground stations are often a key element in the development and validation of methods exploiting satellite images. These data are considered as a reference against which satellite-derived estimates are compared. Long-term radiation and meteorological measurements are available from a large number of measuring stations. However, close examination of the data often reveals a lack of quality, often for extended periods of time. This lack of quality has been the reason, in many cases, of the rejection of large amount of available data. The quality data must be checked before their use in order to guarantee the inputs for the methods used in modelling, monitoring, forecast, etc. To control their quality, data should be submitted to several conditions or tests. After this checking, data that are not flagged by any of the test is released as a plausible data. In this work, it has been performed a bibliographical research of quality control tests for the common meteorological variables (ambient temperature, relative humidity and wind speed) and for the usual solar radiometrical variables (horizontal global and diffuse components of the solar radiation and the beam normal component). The different tests have been grouped according to the variable and the average time period (sub-hourly, hourly, daily and monthly averages). The quality test may be classified as follows: • Range checks: test that verify values are within a specific range. There are two types of range checks, those based on extrema and those based on rare observations. • Step check: test aimed at detecting unrealistic jumps or stagnation in the time series. • Consistency checks: test that verify the relationship between two or more time series. The gathered quality tests are applicable for all latitudes as they have not been optimized regionally nor seasonably with the aim of being generic. They have been applied to ground measurements in several geographic locations, what

  1. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  2. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  3. What can we learn about Mars from satellite magnetic field measurements?

    Science.gov (United States)

    Morschhauser, A.; Mittelholz, A.; Thomas, P.; Vervelidou, F.; Grott, M.; Johnson, C.; Lesur, V.; Lillis, R. J.

    2017-12-01

    The Mars orbiters MGS and MAVEN provide vector magnetic field data for Mars at a variety of altitudes, locations, and local times. In spite of the abundance of data, there are many open questions concerning the crustal magnetic field of Mars. In this contribution, we present our efforts to estimate the shutdown time of the Martian core dynamo and to estimate Martian paleopole locations, using magnetic field satellite data and models derived from these data [1]. Models are primarily based on MGS data, and we shortly present our recent advances to include MAVEN data. There exists some controversy concerning the timing of the Martian core dynamo shutdown [e.g., 2-5]. We address this question by studying the so-called visible magnetization [6-7] of impact craters larger than 400 km in diameter, and conclude that the dynamo ceased to operate in the Noachian period [8]. Further, paleopole locations have been used to constrain the dynamics of the Martian core dynamo [e.g. 4-5, 9]. However, such estimates are limited by the inherent non-uniqueness of inferring magnetization from magnetic field measurements. Here, we discuss how estimated paleopoles are influenced by this non-uniqueness and the limited signal-to-noise ratio of satellite measurements [6]. Furthermore, we discuss how paleopole locations may still be obtained from satellite magnetic field measurements. In this context, we present some new paleopole estimates for Mars including estimates of uncertainties. References: [1] A. Morschhauser et al. (2014), JGR, doi: 10.1002/2013JE004555 [2] R.J. Lillis et al. (2015), JGR, doi: 10.1002/2014je004774 [3] L.L. Hood et al. (2010), Icarus, doi: 10.1016/j.icarus.2010.01.009 [4] C. Milbury et al. (2012), JGR, doi: 10.1029/2012JE004099 [5] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [6] F. Vervelidou et al., On the accuracy of paleopole estimations from magnetic field measurements, GJI, under revision 2017 [7] D. Gubbins et al. (2011), GJI, doi: 10

  4. Radiation measurements on the Mir Orbital Station

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Atwell, W.; Reitz, G.; Beaujean, R.; Heinrich, W.

    2002-01-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250x10 4 Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 μGy day -1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0±0.5 deg. W, and 1.6±0.5 deg. N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources

  5. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  6. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  7. Radiation protection measuring device SSM-1

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  8. Measurement of natural background radiation intensity on a train

    International Nuclear Information System (INIS)

    Chen, Y. F.; Lin, J. W.; Sheu, R. J.; Lin, U. T.; Jiang, S. H.

    2011-01-01

    This work aims to measure different components of natural background radiation on a train. A radiation measurement system consisting of four types of radiation detectors, namely, a Berkeley Lab cosmic-ray detector, moderated 3He detector, high pressure ionisation chamber and NaI(Tl) spectrometer, associated with a global positioning system unit was established for this purpose. For the commissioning of the system, a test measurement on a train along the railway around the northern Taiwan coast from Hsinchu to Hualien with a distance of ∼275 km was carried out. No significant variation of the intensities of the different components of natural background radiation was observed, except when the train went underground or in the tunnels. The average external dose rate received by the crew of the train was estimated to be 62 nSv h -1 . (authors)

  9. Low level radiation testing of micro-electronic components. Pt. 1

    International Nuclear Information System (INIS)

    Farren, J.; Stephen, J.H.; Mapper, D.; Sanderson, T.K.; Hardman, M.

    1984-05-01

    A review of the existing literature has been carried out, dealing with the current technology relating to low level radiation testing of microelectronic devices, as used in space satellite systems. After consideration of the space radiation environment, the general effects of cosmic radiation on MOSFET structures and other MOS devices have been assessed. The important aspect of annealing phenomena in relation to gamma-ray induced damage has also been reviewed in detail. The experimental and theoretical aspects of radiation testing have been assessed, with particular reference to the Harwell LORAD low level irradiation test facility. In addition, a review of modern dosimetry methods has been carried out, with specific regard to the problems of accurately measuring low radiation fields (1 to 10 R/hour) over periods of many months. Finally, a detailed account of the proposed experimental programme to be carried out in the LORAD facility is presented, and aspects of the experimental set-up discussed. The particular types of test circuits to be studied are dealt with, and full consideration is given to the various CMOS memory devices of special interest in the ESA space satellite programme. (author)

  10. Measurement of Radiated Power Loss on EAST

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Mao Songtao; Xu Ping; Chen Kaiyun; Lin Shiyao; Zhong Guoqiang; Zhang Jizong; Zhang Ling; Wang Liang

    2011-01-01

    A type of silicon detector known as AXUV (absolute extreme ultraviolet) photodiodes is successfully used to measure the radiated power in EAST. The detector is characterized by compact structure, fast temporal response (<0.5 s) and flat spectral sensitivity in the range from ultra-violet to X-ray. Two 16-channel AXUV arrays are installed in EAST to view the whole poloidal cross-section of plasma. Based on the diagnostic system, typical radiation distributions for both limiter and divertor plasma are obtained and compared. As divertor detachment occurs, the radiation distribution in X-point region is observed to vary distinctly. The total radiation power losses in discharges with different plasma parameters are briefly analyzed.

  11. The problem of the detection threshold in radiation measurement

    International Nuclear Information System (INIS)

    Rose, E.; Wueneke, C.D.

    1983-01-01

    In all cases encountered in practical radiation measurement, the basic problem is to differentiate between the lowest measured value and the zero value (background, natural background radiation, etc.). For this purpose, on the mathematical side, tests based on hypotheses are to be applied. These will show the probability of differentiation between two values having the same random spread. By means of these tests and the corresponding error theory, a uniform treatment of the subject, applicable to all problems relating to measuring technique alike, can be found. Two basic concepts are found in this process, which have to be defined in terms of semantics and nomenclature: Decision threshold and detection threshold, or 'minimum detectable mean value'. At the decision threshold, one has to decide (with a given statistical error probability) whether a measured value is to be attributed to the background radiation, accepting the zero hypothesis, or whether this value differs significantly from the background radiation (error of 1rst kind). The minimum detectable mean value is the value which, with a given decision threshold, can be determined with sufficient significance to be a measured value and thus cannot be mistaken as background radiation (alternative hypothesis, error of 2nd kind). Normally, the two error types are of equal importance. It may happen, however, that one type of error gains more importance, depending on the approach. (orig.) [de

  12. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  13. Ozone Satellite Data Synergy and Combination with Non-satellite Data in the AURORA project

    Science.gov (United States)

    Cortesi, U.; Tirelli, C.; Arola, A.; Dragani, R.; Keppens, A.; Loenen, E.; Masini, A.; Tsiakos, , C.; van der A, R.; Verberne, K.

    2017-12-01

    The geostationary satellite constellation composed of TEMPO (North America), SENTINEL-4 (Europe) and GEMS (Asia) missions is a major instance of space component in the fundamentally new paradigm aimed at integrating information on air quality from a wide variety of sources. Space-borne data on tropospheric composition from new generation satellites have a growing impact in this context because of their unprecedented quantity and quality, while merging with non-satellite measurements and other types of auxiliary data via state-of-the-art modelling capabilities remains essential to fit the purpose of highly accurate information made readily available at high temporal and spatial resolution, both in analysis and forecast mode. Proper and effective implementation of this paradigm poses severe challenges to science, technology and applications that must be addressed in a closely interconnected manner to pave the way to high quality products and innovative services. Novel ideas and tools built on these three pillars are currently under investigation in the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) Horizon 2020 project of the European Commission. The primary goal of the project is the proof of concept of a synergistic approach to the exploitation of Sentinel-4 and -5 Ozone measurements in the UV, Visible and Thermal Infrared based on the combination of an innovative data fusion method and assimilation models. The scientific objective shares the same level of priority with the technological effort to realize a prototype data processor capable to manage the full data processing chain and with the development of two downstream applications for demonstration purposes. The presentation offers a first insight in mid-term results of the project, which is mostly based on the use of synthetic data from the atmospheric Sentinels. Specific focus is given to the role of satellite data synergy in integrated systems for air quality monitoring, in

  14. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  15. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  16. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  17. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  18. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  19. Radiation measured for ISS-Expedition 12 with different dosimeters

    International Nuclear Information System (INIS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.

    2007-01-01

    Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles' radiation impact to astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities

  20. Plasmaspheric noise radiation during geomagnetic storms

    International Nuclear Information System (INIS)

    Larkina, V.I.; Likhter, Ya.I.

    1981-01-01

    Variations of plasmospheric background radiations during geomagnetic storms of different intensity are investigated. Used are results of ELF and VLF radiation measurements as well as electron fluxes of energies Esub(e)>40 keV carried out by Intercosmos 3 and Intercosmos 5 satellites. Dependences of radiation amplitude variations at 1.6 and 25 kHz frequencies on L shell for various geomagnetic activity in the day-time as well as data on variations of quasicaptured electron fluxes at Esub(e)>40 keV, are given. It is shown that experimental data agree with the existing theories of plasmospheric noise excitation. It is concluded that the plasmospheric noise excitation area Lsub(max) is always in the region of gap between radiation belts and inner slope of external radiation belt during magnetic storms. During magnetic storms Lsub(max) area moves simultaneously with the area, where particle flux of the external radiation belt is the most intensive [ru

  1. Radhard optical patchcords and packaging for satellites using liquid crystal polymers

    Science.gov (United States)

    O'Riorden, S.; Mahapatra, A.

    2017-11-01

    There are many advantages to employing fiber optics for high capacity satellite communication. However, optical cables can be susceptible to high radiation, temperature extremes and vacuum environment. Any hardware used in these systems must be rugged, durable and immune to the detrimental effects of the aforementioned conditions. Standard COTS optical fiber will darken when exposed to high levels of radiation limiting the effectiveness of the communications system. Of particular concern to satellites in GEO are energetic electrons, bursts of heavy particles due to solar storms which can cause total dose and single event effects (SEE). Conventional fiber optic cables have several issues performing in high radiation environments. Linden has patented and developed a novel cable using an extruded layer of Liquid Crystal Polymer (LCP) applied to commercially available fiber. Total dose effects are minimized by shielding with Liquid Crystal Polymer jacketing. It is a simple, inexpensive way to increase the radiation shielding and mechanical performance of cables in satellites while concomitantly providing hermeticity and thus increased fatigue factor for optical glass. • LCPs exposed to 5000 Mrad dose of gamma rays retain in excess of 90% of their mechanical properties. • LCPs exposed to 1 Mrad radiation dose with energetic protons retain almost 100% of their mechanical strength. Tensile modulus increases with exposure to the radiation. • Weight for weight the proton absorbing power of LCP is 25% better than that of aluminum. We will present experimental data on radhard optical patchcords.

  2. Traceability of radiation measurements: musings of a user

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1980-04-01

    Although users of radiation desire measurement traceability for a number of reasons, including legal, regulatory, contractual, and quality assurance requirements, there exists no real definition of the term in the technical literature. Definitions are proposed for both traceability and traceability to the National Bureau of Standards. The hierarchy of radiation standards is discussed and allowable uncertainties are given for each level. Areas of need with respect to radiation standards are identified, and a system of secondary radiation calibration laboratories is proposed as a means of providing quality calibrations and traceability on a routine basis

  3. Traceability of radiation measurements: musings of a user

    Energy Technology Data Exchange (ETDEWEB)

    Kathren, R.L.

    1980-04-01

    Although users of radiation desire measurement traceability for a number of reasons, including legal, regulatory, contractual, and quality assurance requirements, there exists no real definition of the term in the technical literature. Definitions are proposed for both traceability and traceability to the National Bureau of Standards. The hierarchy of radiation standards is discussed and allowable uncertainties are given for each level. Areas of need with respect to radiation standards are identified, and a system of secondary radiation calibration laboratories is proposed as a means of providing quality calibrations and traceability on a routine basis.

  4. Measurement of background gamma radiation in the northern Marshall Islands.

    Science.gov (United States)

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  5. Recent developments and trends in radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Maushart, R.

    1993-01-01

    Measuring instruments used in radiation protection have undergone dramatic changes over the past decade. But also the attitude of users vis-a-vis this equipment is changing. This is reflected in changes in equipment concepts, the trend being towards 'considerate equipment' which does not absorb the user's attention, but reserves it for the real proposes of radiation protection. Just measuring is no longer enough. Measured data acquisition and evaluation must be integrated more closely, and more specifically, into an overall process of optimized in-plant radiation protection. A key role in this scheme is played by the application-oriented user interface, while measurement and testing routines become more and more automated. The technology now available for storing programs and data, interconnecting and displaying them in many ways, offers almost unlimited possibilities

  6. Intensity increase of energetic electrons in the outer radiation belt of the Earth in July 1972 according to data of the ''Prognoz-2'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Blyudov, V.A.; Volodichev, N.N.; Nechaev, O.Yu.; Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    Carried out is the investigation of the 6-10 MeV electrons in the outer radiation belt of the Earth at the ''Prognoz-2'' artificial Earth satellite along the trajectory of the satellite motion according to the Mac Ilvain parameter L. With the help of a ternary coincidance telescope in Juny 1972, the formationand decay of the belt of energetic electrons with the maximum intensity in the L=3.7 region was recorded. The maximum fluxer of this belt electrons are estimated. It is supposed that the event recorded is the consequence of the magnetospherical disturbance that occured on 18.4.1972

  7. Radiofrequency (RF) radiation measurement for diathermy machine

    International Nuclear Information System (INIS)

    Rozaimah Abdul Rahim; Roha Tukimin; Mohd Amirul Nizam; Ahmad Fadzli; Mohd Azizi

    2010-01-01

    Full-text: Diathermy machine is one of medical device that use widely in hospital and clinic. During the diathermy treatment, high radiofrequency (RF) currents (shortwave and microwave) are used to heat deep muscular tissues through electromagnetic energy to body tissues. The heat increases blood flow, relieve pain and speeding up recovery. The stray RF radiation from the machine can exposes to unintended tissue of the patient, to the operator (physical therapist) and also can cause electromagnetic interference (EMI) effect to medical devices around the machine. The main objective of this study is to establish a database of the RF radiation exposure levels experienced by the operator and patient during the treatments. RF radiation (electric and magnetic field) produced by the diathermy machines were measured using special RF survey meters. The finding of this study confirms that radiation levels on the surface and near the applicator of the diathermy machine much more elevated due to the much closer distance to the source and they exceeding the occupational and general public exposure limit. The results also shows the field strengths drop very significantly when the distance of measurement increase. (author)

  8. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  9. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...

  10. Earth Radiation Budget Research at the NASA Langley Research Center

    Science.gov (United States)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  11. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  12. 110. PTB seminar: Dose rate measurements of ionizing radiation in the range of natural ambient radiation. Proceedings

    International Nuclear Information System (INIS)

    Lauterbach, U.; Pessara, W.; Woehler-Figgen, S.

    1997-12-01

    Measuring instruments for radiation dose measurement in the range of natural ambient radiation are not subject to legal obligations for calibration and the PTB received numerous requests in the past, asking for measures to be taken in order to ensure reliability of measuring results in this range of radiation. This has induced PTB to organise the seminar, intended to present the current status of measuring technology in this field, reveal problems encountered in practical applications, and discuss suitable ction for quality assurance. The papers of the seminar report the measuring performance and capabilities of the available instruments, results of comparative analyses of measurements, and resulting proposed action for quality assurance. Discussions concluding the sessions are also presented in the processdings volume. (orig./CB) [de

  13. Situational awareness of hazards: Validation of multi-source radiation measurements

    Science.gov (United States)

    Hultquist, C.; Cervone, G.

    2016-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led SAFECAST project has recorded 50 million radiation measurements worldwide, with the majority of these measurements from Japan. The analysis of data which are multi-dimensional, not vetted, and provided from multiple devices presents big data challenges due to their volume, velocity, variety, and veracity. While the SAFECAST project produced massive open-source radiation measurements at specific coordinates and times, the reliability and validity of the overall data have not yet been assessed. The nuclear disaster provides a case for assessing the SAFECAST data with official aerial remote sensing radiation data jointly collected by the governments of the United States and Japan. A spatial and statistical assessment of SAFECAST requires several preprocessing steps. First, SAFECAST ionized radiation sensors collected data using different units of measure than the government data, and they had to be converted. Secondly, the normally occurring radiation and decay rates of Cesium from deposition surveys were used to properly compare measurements in space and time. Finally, the GPS located points were selected within overlapping extents at multiple spatial resolutions. Quantitative measures were used to assess the similarity and differences in the observed measurements. Radiation measurements from the same geographic extents show similar spatial variations and statistically significant correlations. The results suggest that actionable scientific data for disasters and emergencies can be inferred from non-traditional and not vetted data generated through citizen science projects. This

  14. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite

    Science.gov (United States)

    Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi

    2018-05-01

    This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.

  15. Improving Assessment of Lifetime Solar Ultraviolet Radiation Exposure in Epidemiologic Studies: Comparison of Ultraviolet Exposure Assessment Methods in a Nationwide United States Occupational Cohort.

    Science.gov (United States)

    Little, Mark P; Tatalovich, Zaria; Linet, Martha S; Fang, Michelle; Kendall, Gerald M; Kimlin, Michael G

    2018-06-13

    Solar ultraviolet radiation is the primary risk factor for skin cancers and sun-related eye disorders. Estimates of individual ambient ultraviolet irradiance derived from ground-based solar measurements and from satellite measurements have rarely been compared. Using self-reported residential history from 67,189 persons in a nationwide occupational US radiologic technologists cohort, we estimated ambient solar irradiance using data from ground-based meters and noontime satellite measurements. The mean distance-moved from city of longest residence in childhood increased from 137.6 km at ages 13-19 to 870.3 km at ages ≥65, with corresponding increases in absolute latitude-difference moved. At ages 20/40/60/80, the Pearson/Spearman correlation coefficients of ground-based and satellite-derived solar potential ultraviolet exposure, using irradiance and cumulative radiant-exposure metrics, were high (=0.87-0.92). There was also moderate correlation (Pearson/Spearman correlation coefficients=0.51-0.60) between irradiance at birth and at last-known address, for ground-based and satellite data. Satellite-based lifetime estimates of ultraviolet radiation were generally 14-15% lower than ground-based estimates, albeit with substantial uncertainties, possibly because ground-based estimates incorporate fluctuations in cloud and ozone, which are incompletely incorporated in the single noontime satellite-overpass ultraviolet value. If confirmed elsewhere, the findings suggest that ground-based estimates may improve exposure-assessment accuracy and potentially provide new insights into ultraviolet-radiation-disease relationships in epidemiologic studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Measures against radiation disaster/terrorism and radiation emergency medical assistance team

    International Nuclear Information System (INIS)

    Tominaga, Takako; Akashi, Makoto

    2016-01-01

    The probability of occurrence of radiological terrorism and disaster in Japan is not low. For this reason, preparations for coping with the occurrence of radiological terrorism should be an urgent issue. This paper describes the radiation medical system and the threat of radiological terrorism and disaster in Japan, and introduces the Radiation Emergency Medical Assistance Team (REMAT), one of the radiation accident/disaster response organizations at the National Institute of Radiological Sciences. Radiation exposure medical systems in Japan are constructed only in the location of nuclear facilities and adjacent prefectures. These medical systems have been developed only for the purpose of medical correspondence at the time of nuclear disaster, but preparations are not made by assuming measures against radiological terrorism. REMAT of the National Institute of Radiological Sciences is obligated to dispatch persons to the requesting prefecture to support radiation medical care in case of nuclear disaster or radiation accident. The designation of nuclear disaster orientated hospitals in each region, and the training of nuclear disaster medical staffing team were also started, but preparations are not enough. In addition to enhancing and strengthening experts, specialized agencies, and special forces dealing with radiological terrorism, it is essential to improve regional disaster management capacity and terrorism handling capacity. (A.O.)

  17. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  18. Radiation and impurity measurements in FRX-C/T

    International Nuclear Information System (INIS)

    Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Tuszewski, M.

    1984-01-01

    Translation of Field-Reversed Configurations (FRCs) in the FRX-C/T device has provided better diagnostic access for radiation measurements. It is observed that radiated power accounts for 7 +- 2% of the total power losses, indicating that thermal conduction accounts for about half of the losses. It was determined through impurity seeding experiments that the oxygen fraction is 0.6 +- 0.2% and that oxygen can account for most of the radiated power

  19. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    Science.gov (United States)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  20. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.