WorldWideScience

Sample records for satellite propagation studies

  1. Proceedings of the Seventeenth NASA Propagation Experimenters Meeting (NAPEX 17) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    Science.gov (United States)

    Davarian, Faramaz (Editor)

    1993-01-01

    The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.

  2. Propagation considerations in the American Mobile Satellite system design

    Science.gov (United States)

    Kittiver, Charles; Sigler, Charles E., Jr.

    1993-01-01

    An overview of the American Mobile Satellite Corporation (AMSC) mobile satellite services (MSS) system with special emphasis given to the propagation issues that were considered in the design is presented. The aspects of the voice codec design that effect system performance in a shadowed environment are discussed. The strategies for overcoming Ku-Band rain fades in the uplink and downlink paths of the gateway station are presented. A land mobile propagation study that has both measurement and simulation activities is described.

  3. Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort

    Science.gov (United States)

    Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.

    1982-12-01

    Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.

  4. Propagation of Rainfall Products uncertainties in hydrological applications : Studies in the framework of the Megha-Tropiques Satellite Mission

    Science.gov (United States)

    Gosset, M.; Roca, R.

    2012-04-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gages (or radar) network are generally scarce and generally degrading. The new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere will contribute to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to chose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites. Several sensitivity studies have been carried out in the Oueme Basin in Benin, West Africa, one the instrumented basin that will be used for MT products direct and hydrological validation.

  5. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  6. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  7. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  8. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    Science.gov (United States)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  9. Fade durations in satellite-path mobile radio propagation

    Science.gov (United States)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  10. COMSTAR satellite 19/29 GHz propagation experiment

    Science.gov (United States)

    Bloch, S. C.; Davidson, D.; Tang, D. D.

    1981-08-01

    Results and analysis are presented for the 19/29-GHz satellite propagation experiments using beacons aboard the COMSTAR series. Emphasis is on diversity performance of the Tampa, Florida, Triad and single-site attenuation distributions in intense rain, and on single-site performance at Waltham, Massachusetts. The substantial data base evolved to show a flattish tail on distributions due to rapid rate-of-change at onset and recovery; this type of distribution found in Tampa rain environment was not found in Waltham.

  11. Study of the Wheeler Propagator

    OpenAIRE

    Bollini, C. G.; Rocca, M. C.

    2010-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators.

  12. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  13. Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Science.gov (United States)

    Ippolito, Louis J.

    1989-01-01

    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given.

  14. Use of satellite information for analysis of aerosol substance propagation

    Science.gov (United States)

    Lezhenin, A. A.; Raputa, V. F.; Yaroslavtseva, T. V.

    2015-11-01

    With satellite data on pollution of snow cover and data of meteorological observations, some fields of dust sedimentation from high chimneys of the Iskitim cement plant are studied. In the absence of snowfalls, a possibility to analyze of the areas of pollution, which are formed in time intervals from several days to several weeks in the vicinities of industrial enterprises, is shown.

  15. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  16. A review of satellite communication and propagation experiments for frequencies above 10 GHz

    Science.gov (United States)

    Setty, P. N. R.; Goessl, H.; Hounam, D.

    1983-02-01

    Satellite experiments aimed at improving communications in the higher frequency bands, especially above 10 GHz, are described. The basic types of transmission and measurement methods in these experiments are discussed, including beacon transmission, transmission from the ground with measurement on the ground.The satellite experiments considered include: ATS-5 millimeter wave propagation experiments; ATS-6 experiments at 13, 18, 20 and 30 GHz; Comstar experiments at 19 and 28 GHz; experiments with the CTS, ETS-II, SIRIO, CS, BSE, and OTS satellites. The payload parameters of the satellites are shown, and functional block diagrams for the ground terminals are presented.

  17. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  18. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  19. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  20. Propagation characteristics for millimeter and quasi-millimeter waves by using three Japanese geostationary satellites

    Science.gov (United States)

    Hayashi, R.; Furuhama, Y.; Fugono, N.; Otsu, Y.

    1980-11-01

    Propagation experiments using the following geostationary satellites, Engineering Test Satellite-II (ETS-II), Medium-Capacity Communication Satellite for Experimental Purposes (CS), Medium-Scale Broadcasting Satellite for Experimental Purposes (BSE) and Experimental Communication Satellite (ECS), are being conducted by Radio Research Laboratories (RRL) with the co-operation of National Space Development Agency of Japan (NASDA), Nippon Telegraph and Telephone Public Corporations (NNT) and Japan Broadcasting Corporations (NHK).The Experimental Communication Satellite (ECS) will be launched into the geostationary orbit in February 1980. This satellite will then be used for further propagation experiments.The various and numerous propagation data obtained by using these satellites is being collected from many places all over Japan.The summary of the propagation experiments conducted at the main station is as follows. (a) Experimental periods covered in this paper are about 1 year for ETS-II and CS, and six months for BSE.(b) The percentages of time in which measured attenuation exceed 5, 10 and 15 dB are 0.7, 0.3 and 0.15% respectively at 34.5 GHz (ETS-II), 0.08, 0.016 and 0.008% respectively at 19.45 GHz (CS), 0.025, 0.0025 and 0.0009% respectively at 11.7125 GHz (BSE), and 0.02, 0.0023 and 0.001% respectively at 11.5 GHz (ETS-II).(c) Duration of attenuation exceeding 30 dB at 34.5 GHz is less than 50 min with the occurrence probability of 0.013% for a one year period. Attenuation exceeding 6 dB at 11.5 GHz and the one exceeding 10 dB at 19.45 GHz are 0.0025% (8 min in a year) and 0.015% (10 min in three months).(d) In the cumulative distributions of XPD (Cross Polarization Discrimination), values of XPD exceeding the percentages of time, 0.3, 0.1, 0.03 and 0.01% are 25, 22, 19 and 17 dB respectively at 34.5 GHz, 28, 23, 20 and 16.5 dB respectively at 19.45 GHz and 33, 29, 26 and 24 dB respectively at 11.5 GHz.This paper presents an outline of the propagation

  1. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C....... This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results...

  2. The effect of subionospheric propagation on whistlers recorded by the DEMETER satellite – observation and modelling

    Directory of Open Access Journals (Sweden)

    F. Lefeuvre

    2007-06-01

    Full Text Available During a routine analysis of whistlers on the wide-band VLF recording of the DEMETER satellite, a specific signal structure of numerous fractional-hop whistlers, termed the "Spiky Whistler" (SpW was identified. These signals appear to be composed of a conventional whistler combined by the compound mode-patterns of guided wave propagation, suggesting a whistler excited by a lightning "tweek" spheric. Rigorous, full-wave modelling of tweeks, formed by the long subionospheric guided spheric propagation and of the impulse propagation across an arbitrarily inhomogeneous ionosphere, gave an accurate description of the SpW signals. The electromagnetic impulses excited by vertical, preferably CG lightning discharge, exhibited the effects of guided behaviour and of the dispersive ionospheric plasma along their paths. This modelling and interpretation provides a consistent way to determine the generation and propagation characteristics of the recorded SpW signals, as well as to describe the traversed medium.

  3. Satellite and terrestrial narrow-band propagation measurements at 2.05 GHz

    Science.gov (United States)

    Vaisnys, Arv; Vogel, Wolf

    1995-08-01

    A series of satellite and terrestrial propagation measurements were conducted on 15 and 16 Dec. 1994 in the vicinity of the Jet Propulsion Laboratory (JPL), Pasadena, California, in support of the VOA/JPL DBS-Radio Program. The reason for including terrestrial measurements was the possible use of terrestrial boosters to improve reception in some satellite digital audio broadcasting system service areas. The signal sources used were the NASA TDRS satellite located at 171 degrees West and a terrestrial transmitter located on a high point on JPL property. Both signals were unmodulated carriers near 2.05 GHz, spaced a few kHz apart so that both could be received simultaneously by a single receiver. An unmodulated signal was used in order to maximize the dynamic range of the signal strength measurement. A range of greater than 35 dB was achieved with the satellite signal, and over 50 dB was achieved with the terrestrial signal measurements. Three test courses were used to conduct the measurements: (1) a 33 km round trip drive from JPL through Pasadena was used to remeasure the propagation of the satellite signal over the path previously used in DBS-Radio experiments in mid 1994. A shortened portion of this test course, approximately 20 km, was used to measure the satellite and terrestrial signals simultaneously; (2) a 9 km round trip drive through JPL property, going behind buildings and other obstacles, was used to measure the satellite and terrestrial signals simultaneously; and (3) a path through one of the buildings at JPL, hand carrying the receiver, was also used to measure the satellite and terrestrial signals simultaneously.

  4. Easy-to-Build Satellite Beacon Receiver for Propagation Experimentation at Millimeter Bands

    Directory of Open Access Journals (Sweden)

    F. Machado

    2014-04-01

    Full Text Available This paper describes the design and development of a digital satellite beacon receiver for propagation experimentation. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring rain attenuation and other phenomena as, for example, tropospheric scintillation. A fairly inexpensive beacon receiver has been built using off-the-shelf parts. This instrument is not at all bulky making it suitable for easy transportation. This article analyzes the receiver specifications, describes in detail its structure and presents some operational test results.

  5. GEOS-2 refraction program summary document. [ionospheric and tropospheric propagation errors in satellite tracking instruments

    Science.gov (United States)

    Mallinckrodt, A. J.

    1977-01-01

    Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.

  6. ACTS (Advanced Communications Technology Satellite) Propagation Experiment: Preprocessing Software User's Manual

    Science.gov (United States)

    Crane, Robert K.; Wang, Xuhe; Westenhaver, David

    1996-01-01

    The preprocessing software manual describes the Actspp program originally developed to observe and diagnose Advanced Communications Technology Satellite (ACTS) propagation terminal/receiver problems. However, it has been quite useful for automating the preprocessing functions needed to convert the terminal output to useful attenuation estimates. Prior to having data acceptable for archival functions, the individual receiver system must be calibrated and the power level shifts caused by ranging tone modulation must be received. Actspp provides three output files: the daylog, the diurnal coefficient file, and the file that contains calibration information.

  7. Rumor Propagation Model: An Equilibrium Study

    Directory of Open Access Journals (Sweden)

    José Roberto C. Piqueira

    2010-01-01

    information is analogous phenomena. Here, in an analogy with the SIR (Susceptible-Infected-Removed epidemiological model, the ISS (Ignorant-Spreader-Stifler rumor spreading model is studied. By using concepts from the Dynamical Systems Theory, stability of equilibrium points is established, according to propagation parameters and initial conditions. Some numerical experiments are conducted in order to validate the model.

  8. Atmospheric refraction corrections of radiowave propagation for airborne and satellite_borne radars

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atmospheric refraction corrections of radiowave propagation for airborne and satellite_borne radars for the spherically stratified (horizontally homogeneous) atmosphere (including lower atmosphere and ionosphere) are discussed. First, the critical apparent depression angle for radar and the perigee of ray are found using the refractive index profile close to the lowest point of the ray as the refractive index profile of spherically stratified atmosphere, and strict expressions of line_of_sight distance for radar that take account of refraction are presented. Then, to which condition the atmospheric refraction to be corrected belongs is determined, and the positioning corrections for all the twelve atmospheric refractive conditions are made using ray_tracing method. At last, the velocity_measuring corrections are made.

  9. Temporal disaggregation of satellite-derived monthly precipitation estimates and the resulting propagation of error in partitioning of water at the land surface

    Directory of Open Access Journals (Sweden)

    S.A. Margulis

    2001-01-01

    Full Text Available Global estimates of precipitation can now be made using data from a combination of geosynchronous and low earth-orbit satellites. However, revisit patterns of polar-orbiting satellites and the need to sample mixed-clouds scenes from geosynchronous satellites leads to the coarsening of the temporal resolution to the monthly scale. There are prohibitive limitations to the applicability of monthly-scale aggregated precipitation estimates in many hydrological applications. The nonlinear and threshold dependencies of surface hydrological processes on precipitation may cause the hydrological response of the surface to vary considerably based on the intermittent temporal structure of the forcing. Therefore, to make the monthly satellite data useful for hydrological applications (i.e. water balance studies, rainfall-runoff modelling, etc., it is necessary to disaggregate the monthly precipitation estimates into shorter time intervals so that they may be used in surface hydrology models. In this study, two simple statistical disaggregation schemes are developed for use with monthly precipitation estimates provided by satellites. The two techniques are shown to perform relatively well in introducing a reasonable temporal structure into the disaggregated time series. An ensemble of disaggregated realisations was routed through two land surface models of varying complexity so that the error propagation that takes place over the course of the month could be characterised. Results suggest that one of the proposed disaggregation schemes can be used in hydrological applications without introducing significant error. Keywords: precipitation, temporal disaggregation, hydrological modelling, error propagation

  10. Three-Dimensional Gear Crack Propagation Studied

    Science.gov (United States)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  11. First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet

    Science.gov (United States)

    Martinusi, Vladimir; Dell'Elce, Lamberto; Kerschen, Gaëtan

    2017-04-01

    The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.

  12. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    Science.gov (United States)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  13. Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Baso Maruddani

    2015-01-01

    Full Text Available This paper deals with the prediction method using hidden Markov model (HMM for rain rate and rain propagation attenuation for K-band satellite communication link at tropical area. As is well known, the K-band frequency is susceptible of being affected by atmospheric condition, especially in rainy condition. The wavelength of K-band frequency which approaches to the size of rain droplet causes the signal strength is easily attenuated and absorbed by the rain droplet. In order to keep the quality of system performance for K-band satellite communication link, therefore a special attention has to be paid for rain rate and rain propagation attenuation. Thus, a prediction method for rain rate and rain propagation attenuation based on HMM is developed to process the measurement data. The measured and predicted data are then compared with the ITU-R recommendation. From the result, it is shown that the measured and predicted data show similarity with the model of ITU-R P.837-5 recommendation for rain rate and the model of ITU-R P.618-10 recommendation for rain propagation attenuation. Meanwhile, statistical data for measured and predicted data such as fade duration and interfade duration have insignificant discrepancy with the model of ITU-R P.1623-1 recommendation.

  14. Ravens satellite mission concept study

    CERN Document Server

    Donovan, Eric F

    2011-01-01

    The concept for Ravens satellite mission was proposed in response to a CSA AO for potential Canadian mission contributions to the International Living With a Star (ILWS) program. Ravens was conceived of to fill an important gap in the ILWS program: global imaging. Ravens will build on the heritage of world-class global imaging carried out in Canada. It would do much more than provide global observations to complete the system level capabilities of ILWS. Ravens would be comprised of two satellites on elliptical polar orbits, relatively phased on those orbits to provide the first-ever continuous (ie., 24 hours per day 7 days per week) global imaging of the northern hemisphere auroral and polar cap regions. This would provide the first-ever unbroken sequences of global images of the auroral response during long duration geomagnetic processes like storms and steady magnetospheric convection events. Ravens could track the spatio-temporal evolution of the global electron and proton auroral distribution, and would o...

  15. Propagation Models for Dimensioning and Estimation of Performance and Availability of New Satellite Communication Systems

    OpenAIRE

    2001-01-01

    A rapid growth of new satellite systems utilizing the Ka-band (27 – 40 Ghz) and even higher frequencies is expected in the coming years. The services offered will include broadband communication, interactive broadcasting, multimedia applications, interconnection of local area networks and Internet connectivity. Many of the new systems will use technologies as multiple spot-beams, onboard processing, and switching of packets between beams and inter satellite links. Because of congestion in the...

  16. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    Science.gov (United States)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  17. An Empirical Study of Infrasonic Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Paul Mutschlecner; Rodney W. Whitaker; Lawrence H. Auer

    1999-10-01

    Observations of atmospheric nuclear tests carried out at the Nevada Test Site from 1951 to 1958 provided data for an empirical investigation of how infrasonic signals are propagated to distances of about 250 km. Those observations and the analysis documented in this report involved signal amplitudes and average velocities and included three classes of signals: stratospheric, thermospheric, and tropospheric/surface. The authors' analysis showed that stratospheric winds have a dominant effect upon stratospheric signal amplitudes. The report outlines a method for normalizing stratospheric signal amplitudes for the effects of upper atmospheric winds and presents equations for predicting or normalizing amplitude and average velocity for the three types of signals.

  18. Satellite Contributions to Global Change Studies

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    sophisticated climate models, in situ process studies, and data sets that extend back well before the introduction of satellite technology. Nonetheless, the repetitive, global view provided by satellites is contributing in a major way to our improved recognition of how the Earth im changing, a recognition that is none too soon in view of the magnitude of the impacts that humans can now have.

  19. Studies of Gravity Wave Propagation in the Middle Atmosphere.

    Science.gov (United States)

    2014-09-26

    34 . . . . . • * * . , . • :’ . . . , ",.,,- -. ’’’ " . ’-- o p - %"""" * " AFOSR.TR. 85-0505 physical dynamics,inc. PD-NW-85-330R L n STUDIES OF GRAVITY WAVE PROPAGATION IN...8217.. , .,- - -. ( %’. , .;: :..............,....... .-... . ~.b .. .. - ..... ,......... ..-. ....-.. PD-NW-85-330R STUDIES OF GRAVITY WAVE PROPAGATION...Include SewftY CsuiclUon STUDIES OF GRAVITY WAVE PROPAGATION IN THE MIDD E 12. PERSONAL AUTHORE) TMOPHU. r Timothy J. Dunkerton a13a. TYPE OF REPORT I3k

  20. Satellite's Trajectory Propagation At NearCircular Orbits Using TLE Files In The Simplified SGP Model

    Directory of Open Access Journals (Sweden)

    V. A. Chagina

    2016-01-01

    Full Text Available The article describes the satellite's trajectory calculation algorithm for near-circular orbits using TLE (two-line element files in the simplified SGP model. The aim of the algorithm is to obtain the array of satellite's azimuth and elevation required to control the antennas of ground station. The initial conditions of motion in TLE format are very widespread nowadays, they are being used by many calculation software, nevertheless there is a deficit of information concerned with this format in Russian literature. The report presented at NASA web-sites by Dr. T.S. Kelso contains the descriptions of satellite's trajectory calculation algorithms in case of various models (SGP, SGP4, SDP4 etc. The realization of these algorithms demands for the executer's experience because speaking about Russian and the American scientific schools there are differences both in measure units and in approaches to satellite's trajectory calculation.Moreover, in opposite to series of related publications all the calculation sequence to obtain the values of antenna pointing is given in this article, the described algorithm is pretty simple and clear. It is not enough to have the satellite's coordinates and velocity in Earth inertial equatorial system to calculate azimuth and elevation. One has to bind the ground station situated at the surface of the Earth, which is involved in complicated motion, to a point in inertial space using Local Sidereal Time. Several issues propose the utilization of Astronomical Almanac. But the exploitation of the Almanac is not convenient when it is required to get the arrays of values of antenna control angles as functions of time. The article contains the methodology given in foreign issues which allow the calculation of Local Sidereal Time. This methodology is an adjacent part of the trajectory calculation problem with respect to ground station.The calculation results obtained using the described algorithm were compared with the data

  1. Globally Gridded Satellite observations for climate studies

    Science.gov (United States)

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  2. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  3. Satellite animal tracking feasibility studies

    Science.gov (United States)

    Buechner, H. K.

    1975-01-01

    A study was initiated in Tsavo National Park to determine movements and home ranges of individual elephants and their relations to overall distribution patterns and environmental factors such as rainfall. Methods used were radio tracking and observations of visually identifiable individuals. Aerial counts provided data on overall distribution. Two bulls and two cows were radio-tagged in Tsavo West and two bulls and four cows in Tsavo East, providing home range and movement data. The movements of individuals were useful in interpreting relatively major shifts in elephant distribution. Results point to the following preliminary conclusions: (1) elephants in the Tsavo area undertook long distance movements in fairly direct response to localized rainfall; (2) a subdivision of the overall population into locally distinct units may exist during the dry season but did not occur after significant rainfall; and (3) food appears to be the primary factor governing movements and distribution of elephants in the area.

  4. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    -response, which is the transfer function between the magnetic vertical component and the horizontal derivative of the horizontal components, is determined. If one of these transfer functions is known for several frequencies, models of the electrical conductivity in the Earth's interior can be constructed...... for observations lasting several years, which helps to reduce the statistical error of the estimated response functions. Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic...... analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C...

  5. A preliminary study on dead geostationary satellite removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The collision between satellites IRIDIUM 33 and COSMOS 2251 indicated that the clash of two on-orbit satellites was becoming an inevitable reality. Our calculation with the two-line orbit element by NORAD showed that some two geostationary satellites had approached very close in July 2009. Therefore, more attention should be given to avoid such collisions. This paper analyzes the orbital long-term variation of a dead satellite drifting in the geostationary orbit. Also, the negative effects posed by dead satellites upon the on-orbit operational geostationary satellites are studied. Then the paper proposes a novel idea to launch a satellite sweeper whose purpose is to collect the on-orbit dead satellites and help them de-orbit to a "graveyard". The satellite sweeper consists of a parent satellite and a child satellite. The child satellite collects a dead satellite and transfers it to a higher orbit. The parent satellite stationed in the geostationary orbit is in charge of refueling the child satellite. The strategy of maneuver and rendezvous is presented and a series of formulas are derived. The analysis results show that our method to clean the geostationary orbital zone is practical and fuel-saving. With the help of just a few satellite sweepers, we can gain a clean environment of geostationary orbit environment again.

  6. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi

    2009-01-01

    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  7. A Parametric Study of Crack Propagation During Sonic IR Inspection

    Science.gov (United States)

    Chen, J. C.; Kephart, J.; Riddell, W. T.

    2006-03-01

    We have developed an experiment to study the propagation of synthetic cracks under various controlled conditions during sonic IR inspection. The experiment provides for good repeatability in testing. The parameters of interest include the initial crack length, load history (stress intensity and load ratio) during crack generation, geometry of the crack, material, and also the various conditions involving the ultrasonic source. In general, we find that under typical sonic IR inspection conditions, the initial crack will propagate when subjected to sonic IR testing. The crack growth after each inspection event varies and exhibits a distribution in length of propagation. The results show that the average crack propagation decreases with increasing initial crack length and increasing stress intensity.

  8. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  9. Near threshold studies of photoelectron satellites

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.A.

    1986-11-01

    Photoelectron spectroscopy and synchrotron radiation have been used to study correlation effects in the rare gases: He, Ne, Ar, Kr, and Xe. Two kinds of time-of-flight electron analyzers were employed to examine photoionization very close to threshold and at higher kinetic energies. Partial cross sections and angular distributions have been measured for a number of photoelectron satellites. The shake-off probability has been determined at some inner-shell resonances. 121 refs., 28 figs., 13 tabs.

  10. Comparative studies of methods of obtaining AGW's propagation properties

    Science.gov (United States)

    Lue, H. Y.; Kuo, F. S.

    2012-03-01

    Three among the existing methods of obtaining the properties (intrinsic period, wavelength, propagation direction) of atmospheric gravity waves (AGWs) were compared and studied by numerical method to simulate radar data. Three-dimensional fluctuation velocity satisfying dispersion equation and polarization relation of atmospheric gravity wave were generated, then the numerical data were analysed by these methods to obtain the properties of waves. We found that, hodograph analysis was accurate for a monochromatic wave in obtaining its wave period and propagation direction, but the analysis became erratic for the case of multiple waves' superposition. The error was especially large when data consisted of both upward propagating waves and downward propagating waves. The hodograph method became meaningful again if all the component waves propagated in the same direction and the resulting period was dominantly decided by the lowest frequency wave. Stokes parameters method would obtain statistically meaningful values of wave period and azimuth if the spreading of the azimuths among the component waves did not exceed 90° and the resulting period and azimuth were dominated by the lowest frequency wave component as well, irrespective of the vertical sense of propagation. Another method called phase and group velocity tracing technique was reconfirmed to be meaningful in measuring the characteristic wave period and vertical group and phase velocities of a wave packet: the characteristic wave period and vertical wavelength was dominated by the wave with the highest frequency among the component waves in the wave packet. Based on these numerical results, a composite procedure of data analysis for wave propagation was proposed and an example of real data analysis was presented.

  11. A study on in vitro propagation of Castanopsis argentea

    Directory of Open Access Journals (Sweden)

    MUHAMMAD IMAM SURYA

    2017-03-01

    Full Text Available Abstract. Surya MI, Kurnita NI, Setyaningsih L, Ismaini L, Muttaqin Z. 2016. A study on in vitro propagation of Castanopsis argentea. Pros Sem Nas Masy Biodiv Indon 2: 10-15. Saninten (Castanopsis argentea is a keystone species that has highly potential as a food material. Mostly, the fruits of C. argentea are eaten by animals. It made us difficults to get the natural regeneration. In vitro propagation is an effort to produce considerable amounts of C. argentea. However, the information about in vitro propagation of C. argentea is still very limited. This study was aimed to determine the initiation methods to propagate C. argentea by in vitro propagation. Two methods of sterilization were used to sterilize the explant of seed and buds. Moreover, the explant was planted on modified MS and WPM. The results show that percentage of survival, number of buds and time of germination were found on seed explants sterilized by first method. The number of callus were found on bud explants sterilized by second method. Furthermore, planting media were not affected to the germination of seed explants, but affected to growth of bud explants.

  12. Study of quench propagation velocity in superconducting magnets for UNK

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.V.; Sheherbakov, P.A.; Snitko, V.P.; Tkachenko, N.P.; Vasiliev, L.M.; Vybornov, M.G.; Ziobin, A.V.

    1989-03-01

    Two superconducting magnet models, warm-iron and cold-iron designs are studied within the frames of work on UNK. The present note describes the method and results on measuring quench propagation velocity in the superconducting cables with a transport current in external field under the cooling conditions typical for those of the magnet winding. The results on measuring quench propagation velocities in warm-iron and cold-iron designs are presented. The results obtained for short samples and model coils are compared.

  13. Review and Development on the Studies of Chinese Meteorological Satellite and Satellite Meteorology

    Institute of Scientific and Technical Information of China (English)

    FANG Zongyi; XU Jianmin; ZHAO Fengsheng

    2006-01-01

    Meteorological satellite and satellite meteorology are the fastest developing new branches in the atmospheric sciences. Today the meteorological satellite has become a key element in the global atmospheric sounding system while the satellite meteorology is covering the main components of earth's system science.This article describes the major achievements that China has made in these fields in the past 30 years.The following contents are involved: (1) History and present status of China's meteorological satellites. It covers the development, launch, operation, technical parameters of China's polar and geostationary meteorological satellites. (2) Major achievements on remote sensing principle and method. It describes the retrieval of atmospheric temperature and humidity profiles, cloud character retrieval, aerosol character retrieval, precipitation retrieval as well as the generation of cloud wind. (3) Achievement on the studies of meteorological satellite data application. This part covers the applications of meteorological satellite data to weather analysis and forecast, numerical forecast, climate monitoring, and prediction of short-term climate change. Besides, the new results on data assimilation, climate monitoring, and forecast are also included.

  14. Error Propagation in Geodetic Networks Studied by FEMLAB

    DEFF Research Database (Denmark)

    Borre, Kai

    2009-01-01

    thousand points. This leads to so large matrix problems that one starts thinking of using continous network models. They result in one or more differential equations with corresponding boundary conditions. The Green’s function works like the covariance matrix in the discrete case. If we can find the Green......’s function we also can study error propagation through large networks. Exactly this idea is exploited for error propagation studies in large geodetic networks. To solve the boundary value problems we have used the FEMLAB software. It is a powerful tool for this type of problems. The M-file was created...... and estimate the solution by using the principle of least squares. Contemporary networks often contain several thousand points. This leads to so large matrix problems that one starts thinking of using continous network models. They result in one or more differential equations with corresponding boundary...

  15. Propagation of Satelite Rainfall Products uncertainties in hydrological applications : Examples in West-Africa in the framework of the Megha-Tropiques Satellite Mission

    Science.gov (United States)

    Casse, C.; Gosset, M.; Peugeot, C.; Boone, A.; Pedinotti, V.

    2013-12-01

    The use of satellite based rainfall in research or operational Hydrological application is becoming more and more frequent. This is specially true in the Tropics where ground based gauge (or radar) network are generally scarce and often degrading. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of MT rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them in the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This talk will present on going investigations and perspectives on this subject, with examples from the Megha_tropiques Ground validation sites in West Africa. The CNRM model Surfex-ISBA/TRIP has been set up to simulate the hydrological behavior of the Niger River. This modeling set up is being used to study the predictability of Niger Floods events in the city of Niamey and the performances of satellite rainfall products as forcing for such predictions. One of the interesting feature of the Niger outflow in Niamey is its double peak : a first peak attributed to 'local' rainfall falling in small to medium size basins situated in the region of Niamey, and a second peak linked to the rainfall falling in the upper par of the river, and slowly propagating through the river towards Niamey. The performances of rainfall products are found to differ between the wetter/upper part of the basin, and the local/sahelian areas. Both academic tests with artificially biased or 'perturbed' rainfield and actual

  16. Spacecraft (Mobile Satellite) configuration design study

    Science.gov (United States)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  17. TDRSS/user satellite timing study

    Science.gov (United States)

    Mcgregor, D.; Douglas, F.; Kaul, R.

    1976-01-01

    A timing analysis for data readout through the Tracking and Data Relay Satellite System (TDRSS) was presented. Various time tagging approaches were considered and the resulting accuracies delineated. The TDRSS was also defined and described in detail.

  18. A satellite study of dayside auroral conjugacy

    Directory of Open Access Journals (Sweden)

    H. B. Vo

    Full Text Available A study of dayside auroral conjugacy has been done using the cleft/boundary layer auroral particle boundaries observed by the DMSP-F7 satellite in the southern hemisphere and the global UV auroral images taken by the Viking spacecraft in the northern hemisphere. The 22 events have been studied on the basis of an internal IGRF 1985 magnetic field; it is shown that there is a displacement of up to 4° in latitude from the conjugate points with the northern aurora appearing to be located poleward of the conjugate point. No local time dependence of the north-south auroral location difference was seen. The use of a more realistic magnetic field model for tracing field lines which incorporates the dipole tilt angle and Kp index, the Tsyganenko 1987 long model plus the IGRF 1985 internal magnetic field model, appears to organize the data better. Although with this external plus internal model some tracings did not close in the opposite hemisphere, 70% of those that did indicated satisfactory conjugacy. The study shows that the degree of auroral conjugacy is dependent upon the accuracy of the magnetic field model used to trace to the conjugate point, especially in the dayside region where the field lines can either go to the dayside magnetopause near the subsolar point or sweep all the way back to the flanks of the magnetotail. Also the discrepancy in the latitude of northern and southern aurora can be partially explained by the displacement of the neutral sheet (source region of the aurora by the dipole tilt effect.

  19. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

    Directory of Open Access Journals (Sweden)

    Skjaerpe Terje

    2003-04-01

    Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.

  20. Wave propagation in a chiral fluid an undergraduate study

    CERN Document Server

    Garel, T

    2003-01-01

    We study the propagation of electromagnetic waves in a chiral fluid, where the molecules are described by a simplified version of the Kuhn coupled oscillator model. The eigenmodes of Maxwell's equations are circularly polarized waves. The application of a static magnetic field further leads to a magnetochiral term in the index of refraction of the fluid, which is independent of the wave polarization. A similar result holds when absorption is taken into account. Interference experiments and photochemical reactions have recently demonstrated the existence of the magnetochiral term. The comparison with Faraday rotation in an achiral fluid emphasizes the different symmetry properties of the two effects.

  1. A study on compressive shock wave propagation in metallic foams

    Science.gov (United States)

    Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao

    2010-02-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  2. Classification of textures in satellite image with Gabor filters and a multi layer perceptron with back propagation algorithm obtaining high accuracy

    Directory of Open Access Journals (Sweden)

    Adriano Beluco, Paulo M. Engel, Alexandre Beluco

    2015-01-01

    Full Text Available The classification of images, in many cases, is applied to identify an alphanumeric string, a facial expression or any other characteristic. In the case of satellite images is necessary to classify all the pixels of the image. This article describes a supervised classification method for remote sensing images that integrates the importance of attributes in selecting features with the efficiency of artificial neural networks in the classification process, resulting in high accuracy for real images. The method consists of a texture segmentation based on Gabor filtering followed by an image classification itself with an application of a multi layer artificial neural network with a back propagation algorithm. The method was first applied to a synthetic image, like training, and then applied to a satellite image. Some results of experiments are presented in detail and discussed. The application of the method to the synthetic image resulted in the identification of 89.05% of the pixels of the image, while applying to the satellite image resulted in the identification of 85.15% of the pixels. The result for the satellite image can be considered a result of high accuracy.

  3. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  4. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    Science.gov (United States)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  5. A Study of Malware Propagation via Online Social Networking

    Science.gov (United States)

    Faghani, Mohammad Reza; Nguyen, Uyen Trang

    The popularity of online social networks (OSNs) have attracted malware creators who would use OSNs as a platform to propagate automated worms from one user's computer to another's. On the other hand, the topic of malware propagation in OSNs has only been investigated recently. In this chapter, we discuss recent advances on the topic of malware propagation by way of online social networking. In particular, we present three malware propagation techniques in OSNs, namely cross site scripting (XSS), Trojan and clickjacking types, and their characteristics via analytical models and simulations.

  6. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  7. Study on Knowledge Propagation in Complex Networks Based on Preferences, Taking Wechat as Example

    Directory of Open Access Journals (Sweden)

    Si-hua Chen

    2014-01-01

    Full Text Available As platform based on users’ relationship to acquire, share, and propagate knowledge, Wechat develops very rapidly and becomes an important channel to spread knowledge. This new way to propagate knowledge is quite different from the traditional media way which enables knowledge to be spread surprisingly in Wechat. Based on complex network theory and the analysis of the factors which influence the knowledge propagation in Wechat, this paper summarizes the behavior preferences of Wechat users in knowledge propagation and establishes a Wechat knowledge propagation model. By the simulation experiment, this paper tests the model established and finds some important thresholds in knowledge propagation in Wechat. The findings are valuable for further studying the knowledge propagation in Wechat and provide theoretical proof for forecasting the scale and influence of knowledge propagation.

  8. Low-Cost Satellite Infrared Imager Study

    Science.gov (United States)

    2007-11-02

    2,297.00 10 MATLAB , Simulink , Symbolic Math Toolbox (2 ea @ £894) £1,788.00 11 MATLAB Image Processing Toolbox (2 ea at £192) £384.00 12 MATLAB ...Figure 1: MWIR and TIR satellite imagery. On the left is a BIRD image of forest fires on the Portuguese/ Spanish border3 and the image on right is...space-borne MWIR and TIR imagers, instrument engineers are continually evaluating advances in the miniaturization of detector technology. One

  9. Infrared thermography study of the fatigue crack propagation

    Directory of Open Access Journals (Sweden)

    O.A. Plekhov

    2012-07-01

    Full Text Available The work is devoted to the experimental study of heat dissipation process caused by fatigue crack propagation. To investigate a spatial and time temperature evolution at the crack tip set of experiments was carried out using specimens with pre-grown centered fatigue crack. An original mathematical algorithm for experimental data treatment was developed to obtain a power of heat source caused by plastic deformation at crack tip. The algorithm includes spatial-time filtration and relative motion compensation procedures. Based on the results of mathematical data treatment, we proposed a way to estimate the values of J-integral and stress intensity factor for cracks with pronounced the plastic zone.

  10. A study on meme propagation in multimemetic algorithms

    Directory of Open Access Journals (Sweden)

    Nogueras Rafael

    2015-09-01

    Full Text Available Multimemetic algorithms (MMAs are a subclass of memetic algorithms in which memes are explicitly attached to genotypes and evolve alongside them. We analyze the propagation of memes in MMAs with a spatial structure. For this purpose we propose an idealized selecto-Lamarckian model that only features selection and local improvement, and study under which conditions good, high-potential memes can proliferate. We compare population models with panmictic and toroidal grid topologies. We show that the increased takeover time induced by the latter is essential for improving the chances for good memes to express themselves in the population by improving their hosts, hence enhancing their survival rates. Experiments realized with an actual MMA on three different complex pseudo-Boolean functions are consistent with these findings, indicating that memes are more successful in a spatially structured MMA, rather than in a panmictic MMA, and that the performance of the former is significantly better than that of its panmictic counterpart

  11. A study on compressive shock wave propagation in metallic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau,which makes it widely applicable in the design of structural crashworthiness. However,in some experimental studies,stress enhancement has been observed when the specimens are subjected to intense impact loads,leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model,a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived,where an explicit integra-tion algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses,considerable energy is dissipated during the progressive collapse of foam cells,which then reduces the crush of objects. When the pulse is sufficiently high,on the other hand,stress enhancement may take place,especially in the heterogeneous foams,where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material,amplitude and period of the pulse,as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  12. Japanese propagation experiments with ETS-5

    Science.gov (United States)

    Ikegami, Tetsushi

    1989-01-01

    Propagation experiments for maritime, aeronautical, and land mobile satellite communications were performed using Engineering Test Satellite-Five (ETS-5). The propagation experiments are one of major mission of Experimental Mobile Satellite System (EMSS) which is aimed for establishing basic technology for future general mobile satellite communication systems. A brief introduction is presented for the experimental results on propagation problems of ETS-5/EMSS.

  13. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    Science.gov (United States)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  14. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  15. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    Science.gov (United States)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  16. Reusable Reentry Satellite (RRS) system design study

    Science.gov (United States)

    1991-01-01

    The Reusable Reentry Satellite (RRS) is intended to provide investigators in several biological disciplines with a relatively inexpensive method to access space for up to 60 days with eventual recovery on Earth. The RRS will permit totally intact, relatively soft, recovery of the vehicle, system refurbishment, and reflight with new and varied payloads. The RRS is to be capable of three reflights per year over a 10-year program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is configured to permit the experimenter late access to the PM prior to launch and rapid access following recovery. The RRS will operate in one of two modes: (1) as a free-flying spacecraft in orbit, and will be allowed to drift in attitude to provide an acceleration environment of less than 10(exp -5) g. the acceleration environment during orbital trim maneuvers will be less than 10(exp -3) g; and (2) as an artificial gravity system which spins at controlled rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be rugged, easily maintained, and economically refurbishable for the next flight. Some systems may be designed to be replaced rather than refurbished, if cost effective and capable of meeting the specified turnaround time. The minimum time between recovery and reflight will be approximately 60 days. The PMs will be designed to be relatively autonomous, with experiments that require few commands and limited telemetry. Mass data storage will be accommodated in the PM. The hardware development and implementation phase is currently expected to start in 1991 with a first launch in late 1993.

  17. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    Science.gov (United States)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  18. Double noding technique for mixed mode crack propagation studies

    Science.gov (United States)

    Liaw, B. M.; Kobayashi, A. S.; Emergy, A. F.

    1982-01-01

    A simple dynamic finite element algorithm for analyzing a propagating mixed mode crack tip is presented. A double noding technique, which can be easily incorporated into existing dynamic finite element codes, is used together with a corrected J integral to extract modes I and II dynamic stress intensity factors of a propagating crack. The utility of the procedure is demonstrated by analyzing test problems involving a mode I central crack propagating in a plate subjected to uniaxial tension, a mixed mode I and II stationary, slanted central crack in a plate subjected to uniaxial impact loading, and a mixed mode I and II extending, slanted single edge crack in a plate subjected to uniaxial tension.

  19. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    Science.gov (United States)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  20. Study on relative orbital configuration in satellite formation flying

    Institute of Scientific and Technical Information of China (English)

    Junfeng Li; Xin Meng; Yunfeng Gao; Xiang Li

    2005-01-01

    In this paper, the relative orbital configurations of satellites in formation flying with non-perturbation and J2 perturbation are studied, and an orbital elements method is proposed to obtain the relative orbital configurations of satellites in formation. Firstly, under the condition of nonperturbation, we obtain many shapes of relative orbital configurations when the semi-major axes of satellites are equal.These shapes can be lines, ellipses or distorted closed curves.Secondly, on the basis of the analysis of J2 effect on relative orbital configurations, we find out that J2 effect can induce two kinds of changes of relative orbital configurations. They are distortion and drifting, respectively. In addition, when J2perturbation is concerned, we also find that the semi-major axes of the leading and following satellites should not be the same exactly in order to decrease the J2 effect. The relationship of relative orbital elements and J2 effect is obtained through simulations. Finally, the minimum relation perturbation conditions are established in order to reduce the influence of the J2 effect. The results show that the minimum relation perturbation conditions can reduce the J2 effect significantly when the orbital element differences are small enough, and they can become rules for the design of satellite formation flying.

  1. Multi-layer Study of Wave Propagation in Sunspots

    Science.gov (United States)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2010-10-01

    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I λ10,827 and the He I λ10,830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line of sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed nonlinearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I λ10,830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where nonlinearities start to become very important.

  2. Satellite Communication.

    Science.gov (United States)

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  3. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    Science.gov (United States)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  4. Multi-layer study of wave propagation in sunspots

    CERN Document Server

    Felipe, T; Collados, M; Beck, C

    2010-01-01

    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I 10827 and the He I 10830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line-of-sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed non-linearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I 10830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified at...

  5. Using Satellite Imagery to Study Landslides

    Science.gov (United States)

    Reif, S. L.; Bluth, G. J.; Rose, W. I.; Matias, O.; Wolf, R.

    2003-04-01

    Much of the world's population currently lives under the threat of volcanic hazards in the secondary form of debris movements such as landslides and lahars. Remote sensing is becoming a useful tool for hazard studies, yet many hazard-prone areas do not utilize this important resource. In this project, we intend to use common remote sensing techniques to study characteristics of landslides and lahars in order to predict hazard zones. Fuego Volcano in Guatemala is a steep sided volcano with a history of large eruptive events, including the well-studied 1974 eruption, that have extruded a large amount of material onto the upper reaches of the Fuego watersheds. Eruption processes have been a primary focus of studies; however, remobilization during the rainy season of the erupted material is hazardous to the local population and agriculture (Vallance et al. 2001, USGS Open-File Report 01-431). A study of the way material moves down Fuego and to the extent that it moves is needed to help properly mitigate the potential hazards. We propose an in-depth remote sensing survey to map the hazard-prone areas. The study will consist of processing 20 years (15 cloud-free images) of Landsat TM and ETM+ data to look at changes in landforms and vegetation. Vegetation indices will be calculated to locate areas devoid of vegetation and a masking process will be used to measure the area of these zones. These area changes will be related to field measurements to create GIS layers denoting geometry changes in the channels around Fuego. These changes will be loaded into a GIS, along with regional climate data, DEMs, hydrologic data, infrastructure, and information about the known volcanic activity recorded in the area by the local volcanologists. Modeling of lahars using LAHARZ and climate data will also be done to determine an estimate of the amount of material moved and to what distances it can be transported. A field survey undertaken in January 2003 acquired GPS ground truth data of

  6. Gravimetric geodesy and sea surface topography studies by means of satellite-to-satellite tracking and satellite altimetry

    Science.gov (United States)

    Siry, J. W.

    1972-01-01

    A satellite-to-satellite tracking experiment is planned between ATS-F and GEOS-C with a range accuracy of 2-meters and a range rate accuracy of 0.035 centimeters per second for a 10-second integration time. This experiment is planned for 1974. It is anticipated that it will improve the spatial resolution of the satellite geoid by half an order of magnitude to about 6 degrees. Longer integration times should also permit a modest increase in the acceleration resolution. Satellite altimeter data will also be obtained by means of GEOS-C. An overall accuracy of 5-meters in altitude is the goal. The altimeter, per se, is expected to have an instrumental precision of about 2 meters, and an additional capability to observe with a precision of about 0.2 meters for limited periods.

  7. Orbital rotations of a satellite. Case study: GOCE

    Science.gov (United States)

    Baur, O.; Grafarend, E. W.

    Considering a satellite orbit as a space curve in terms of Differential Geometry, we succeeded to merge orbital rotation and curvature/torsion by means of Cartan connection. Here we transform the Frenet frame of reference of the space curve to the Kepler frame of reference ("along track", "cross track", "quasi-radial") of the satellite orbit by means of Meusnier's Lemma. As a case study, we identify the spectrum of orbital rotation frequencies relative to a GOCE satellite configuration. In particular, we identify more than one rotational period. For a moving frame of reference of type Frenet, periods in the range of the time of revolution of the satellite as well as half the time of revolution appear, whereas even periods of a third the revolution time become visible for the Kepler frame of reference. We describe moving frame rotations with respect to the quasi-inertial frame of reference, namely the angular velocities around the base vectors, by means of curvature measures. This allows to calculate frame rotations by geometric orbit information only (GPS track), i.e. apart from gradiometer measurements. Among other things, we identify the angular velocity relative to the second base vector becoming strictly zero in case of the Frenet frame of reference.

  8. Two satellite study of substorm expansion near geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    Ø. Holter

    2004-12-01

    Full Text Available During several time intervals in 1979–1980 the satellites GEOS-2 and SCATHA were situated relatively close on the nightside of the Earth at geosynchronous distances. Several substorm events were identified during these periods. The event considered in this paper was recorded on 22 May 1979, when the satellites were separated by less than 30min in local time around 21:00 LT. The observed 45 to 60 s delay of magnetic signatures observed at the two s/c indicates a westward expansion of ~7.7°/min. At the two s/c, the magnetic signatures are, in particular for the azimuthal magnetic field components, quite different. At GEOS-2, being close to the magnetic equator, the dominant feature is a dipolarization with a weak field-aligned current signature corresponding to a symmetric current which cancels at the equator. On SCATHA, however, being close to the current sheet boundary, the azimuthal magnetic field indicates a strong field-aligned Birkeland current structure. On both s/c the first indication of an approaching substorm was an increase in the high energy ion flux followed by a reduction in the flux intensity of energetic electrons and a further tailward stretching of the magnetic field, starting ~2min before the onset of the magnetic field dipolarization. The tailward stretching, the observed variations of the magnetic field components, and the subsequent dipolarization are interpreted in terms of an azimuthally tilted field-aligned current system passing the s/c on the tailward side from east to west. The westward expansion and dipolarization observed at the two s/c are consistent with the propagation of a Rayleigh-Taylor type instability. The increased radial ion flux corresponds to the ExB-drift due to the substorm associated electric field.

    Key words. Magnetospheric physics (storms and substorms; plasma waves and instabilities; current systems

  9. Mouse models for studying the formation and propagation of prions.

    Science.gov (United States)

    Watts, Joel C; Prusiner, Stanley B

    2014-07-18

    Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses.

  10. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  11. Seismic wave propagation modeling in porous media for various frequencies: A case study in carbonate rock

    Science.gov (United States)

    Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.

    2012-06-01

    Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.

  12. Air Quality Study Using Satellites - Current Capability and Future Plans

    Science.gov (United States)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of

  13. Photoelastic studies of crack propagation and crack arrest. [Homalite 100

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.; Etheridge, J.M.

    1977-09-01

    This report describes the third year effort on research programs dealing with the characterization of dynamic aspects of fracture. The results included in this report are (1) verification of the BCL one-dimensional computer code; (2) determination of a-dot--K relationship from modified compact-tension specimen of Homalite 100; (3) verification of the MRL procedure for K/sub Ia/ measurement with machine-loaded C-DCB specimen of Homalite 100; (4) influence of adhesive toughness, adhesive thickness, and toughness of the arrest section on crack behavior in duplex specimens of both the M-CT and R-DCB types; (5) crack propagation in a thermally stressed ring specimen; and (6) development of a two-dimensional finite-difference code to predict fracture behavior in specimens of rectangular geometry under various a-dot vs K relationships. 118 figures, 53 tables.

  14. Experimental study on interference effect of rarefaction wave on laminar propagating flame

    Institute of Scientific and Technical Information of China (English)

    SUN Jinhua; LIU Yi; WANG Qingsong; CHEN Peng

    2005-01-01

    In order to study the interference effect of rarefaction wave on the laminar flame propagating structure and pressure characteristics of methane-air mixture, a small scale combustion chamber has been built. The techniques of high speed Schlieren photograph, pressure measurement and so on, are used to study the influence of rarefaction wave on the laminar flame propagating through methane-air mixture. The results show that, after the rarefaction wave acts on the propagation laminar flame, the laminar combustion is fully transformed into turbulent combustion just during several milliseconds, which leads to a sharp increase in the burning surface area and the pressure rise rate.

  15. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  16. Numerical and experimental study on atmospheric pressure ionization waves propagating through a U-shape channel

    Science.gov (United States)

    Yan, Wen; Xia, Yang; Bi, Zhenhua; Song, Ying; Wang, Dezhen; Sosnin, Eduard A.; Skakun, Victor S.; Liu, Dongping

    2017-08-01

    A 2D computational study of ionization waves propagating in U-shape channels at atmospheric pressure was performed, with emphasis on the effect of voltage polarity and the curvature of the bend. The discharge was ignited by a HV needle electrode inside the channel, and power was applied in the form of a trapezoidal pulse lasting 2 µs. We have shown that behavior of ionization waves propagating in U-shape channels was quite different with that in straight tubes. For positive polarity of applied voltage, the ionization waves tended to propagate along one side of walls rather than filling the channel. The propagation velocity of ionization waves predicted by the simulation was in good agreement with the experiment results; the velocity was first increasing rapidly in the vicinity of the needle tip and then decreasing with the increment of propagation distance. Then we have studied the influence of voltage polarity on discharge characteristics. For negative polarity, the ionization waves tended to propagate along the opposite side of the wall, while the discharge was more diffusive and volume-filling compared with the positive case. It was found that the propagation velocity for the negative ionization wave was higher than that for the positive one. Meanwhile, the propagation of the negative ionization wave depended less on the pre-ionization level than the positive ionization wave. Finally, the effect of the radius of curvature was studied. Simulations have shown that the propagation speeds were sensitive to the radii of the curvature of the channels for both polarities. Higher radii of curvature tended to have higher speed and longer length of plasma. The simulation results were supported by experimental observations under similar discharge conditions.

  17. Personal Access Satellite System (PASS) study. Fiscal year 1989 results

    Science.gov (United States)

    Sue, Miles K. (Editor)

    1990-01-01

    The Jet Propulsion Laboratory is exploring the potential and feasibility of a personal access satellite system (PASS) that will offer the user greater freedom and mobility than existing or currently planned communications systems. Studies performed in prior years resulted in a strawman design and the identification of technologies that are critical to the successful implementation of PASS. The study efforts in FY-89 were directed towards alternative design options with the objective of either improving the system performance or alleviating the constraints on the user terminal. The various design options and system issues studied this year and the results of the study are presented.

  18. Malware Propagation on Social Time Varying Networks: A Comparative Study of Machine Learning Frameworks

    Directory of Open Access Journals (Sweden)

    A.A. Ojugo

    2014-08-01

    Full Text Available Significant research into the logarithmic analysis of complex networks yields solution to help minimize virus spread and propagation over networks. This task of virus propagation is been a recurring subject, and design of complex models will yield modeling solutions used in a number of events not limited to and include propagation, dataflow, network immunization, resource management, service distribution, adoption of viral marketing etc. Stochastic models are successfully used to predict the virus propagation processes and its effects on networks. The study employs SI-models for independent cascade and the dynamic models with Enron dataset (of e-mail addresses and presents comparative result using varied machine models. Study samples 25,000 emails of Enron dataset with Entropy and Information Gain computed to address issues of blocking targeting and extent of virus spread on graphs. Study addressed the problem of the expected spread immunization and the expected epidemic spread minimization; but not the epidemic threshold (for space constraint.

  19. A study of multiple access schemes in satellite control network

    Science.gov (United States)

    Mo, Zijian; Wang, Zhonghai; Xiang, Xingyu; Wang, Gang; Chen, Genshe; Nguyen, Tien; Pham, Khanh; Blasch, Erik

    2016-05-01

    Satellite Control Networks (SCN) have provided launch control for space lift vehicles; tracking, telemetry and commanding (TTC) for on-orbit satellites; and, test support for space experiments since the 1960s. Currently, SCNs encounter a new challenge: how to maintain the high reliability of services when sharing the spectrum with emerging commercial services. To achieve this goal, the capability of multiple satellites reception is deserved as an update/modernization of SCN in the future. In this paper, we conducts an investigation of multiple access techniques in SCN scenario, e.g., frequency division multiple access (FDMA) and coded division multiple access (CDMA). First, we introduce two upgrade options of SCN based on FDMA and CDMA techniques. Correspondingly, we also provide their performance analysis, especially the system improvement in spectrum efficiency and interference mitigation. Finally, to determine the optimum upgrade option, this work uses CRISP, i.e., Cost, Risk, Installation, Supportability and Performance, as the baseline approach for a comprehensive trade study of these two options. Extensive numerical and simulation results are presented to illustrate the theoretical development.

  20. Simobiz-Simulation Tool to Study the Impact of Small Satellites in Mobile Market

    Science.gov (United States)

    Burlacu, M.-M.; Kohlenberg, J.; Prathaban, M.

    2008-08-01

    Interest in small satellites is growing fast world- wide. Businesses, governments, universities and other organizations around the world are starting their own small satellite programs. The surveys conducted by the space agencies and universities shows a promising increase in the use of small satellites for commercial applications. More number of operators offers or plans to offer mobile phone services by satellite. With the help of cost effective small satellite, mobile operators can be able to provide the services cheaper. Hence, it is always interesting to study the effect of low cost small satellite over the mobile market. In this article, we present SmartSim (Small Satellites Mobile Market Simulator) - the new module of Simobiz business simulation game, in which we have implemented two operators, a normal satellite operator and a nanosatellite operator, with specific terminals and services. Our main focus in this work is to understand the future market of small satellite in mobile telecommunication network.

  1. Study of tsunami propagation in the Ligurian Sea

    Directory of Open Access Journals (Sweden)

    E. Pelinovsky

    2001-01-01

    Full Text Available Tsunami propagation is analyzed for the Ligurian Sea with particular attention on the French coasts of the Mediterranean. Historical data of tsunami manifestation on the French coast are analyzed for the period 2000 B.C.–1991 A.D. Numerical simulations of potential and historical tsunamis in the Ligurian Sea are done in the context of the nonlinear shallow water theory. Tsunami wave heights as well as their distribution function is calculated for historical tsunamis and it is shown that the log-normal distribution describes reasonably the simulated data. This demonstrates the particular role of bottom irregularities for the wave height distribution function near the coastlines. Also, spectral analysis of numerical tide-gauge records is done for potential tsunamis, revealing the complex resonant interactions between the tsunami waves and the bottom oscillations. It is shown that for an earthquake magnitude of 6.8 (averaged value for the Mediterranean Sea the tsunami phenomenon has a very local character but with long duration. For sources located near the steep continental slope in the vicinity of the French-Italian Rivera, the tsunami tide-gauge records in the vicinity of Cannes – Imperia present irregular oscillations with a characteristic period of 20–30 min and a total duration of 10–20 h. For the western French coasts the amplitudes are significantly less with characteristic low-frequency oscillations (period of 40 min–1 h.

  2. A detailed study of guided wave propagation in a viscoelastic multilayered anisotropic plate

    Energy Technology Data Exchange (ETDEWEB)

    Taupin, L; Lhemery, A [CEA, institut LIST, centre de Saclay, bat. 611, point courrier 120, F-91191 Gif-sur-Yvette cedex (France); Inquiete, G, E-mail: alain.lhemery@cea.fr [EADS - Innovation Works, 12, rue Pasteur, BP76, F-92152 Suresnes cedex (France)

    2011-01-01

    Guided waves (GW) are very attractive in nondestructive technique applications (eg. Structural Health Monitoring) because of their ability to propagate at long range. In a structure made of composite materials, their propagation is complex due to material anisotropy and to their dispersive and multi-modal nature. Interpreting measurements of GW in such a structure requires a sound grasp of their behaviour. Here, the Semi-Analytical Finite Element (SAFE) method is used for studying GW propagation in viscoelastic multilayered anisotropic plates. Beside classical post-processing techniques used to compute the displacement, dispersion and slowness curves, the Poynting vector is also obtained, allowing us to study energy propagation in complex plate structures. Then, GW propagation in multilayered viscoelastic composite (C-epoxy) plates is studied; different stacking sequences typical of those used to build aeronautical parts are considered. Phase, energy velocities and attenuation are studied for different propagation directions and frequencies. It appears that symmetries of GW behaviour are complex: the axes of symmetry depicting this behaviour do not coincide with those of stacking sequences and depend on frequency. Modes appearing above the first cut-off frequency have such a complex behaviour that they cannot be used in practical applications.

  3. Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites

    Science.gov (United States)

    Ryan, W.; Ryan, E.

    A satellites general characteristics can be substantially influenced by changes in the space environment. Rapidly spinning decommissioned satellites provide an excellent opportunity to study the rotation-dependent physical processes that affect a resident space objects (RSO) spin kinematics over time. Specifically, inactive satellites at or near geosynchronous Earth-orbit (GEO) provide easy targets for which high quality data can be collected and analyzed such that small differences can be detected under single-year or less time frames. Previous workers have shown that the rotational periods of defunct GEOs have been changing over time [1]. Further, the Yarkovsky-OKeefe-Radzievskii-Paddak (YORP) effect, a phenomenon which has been well-studied in the context of the changing the spin states of asteroids, has recently been suggested to be the cause of secular alterations in the rotational period of inactive satellites [2]. Researchers at the Magdalena Ridge Observatory 2.4-meter telescope (operated by the New Mexico Institute of Mining and Technology) have been investigating the spins states of retired GEOs and other high altitude space debris since 2007 [3]. In this current work, the 2.4-meter telescope was used to track and observe the objects typically over a one- to two-hour period, repeated several times over the course of weeks. When feasible, this is then repeated on a yearly basis. Data is taken with a 1 second cadence, nominally in groups of three 600 second image sets. With the current equipment, the cadence of the image sequences is very precise while the start time is accurate only to the nearest second. Therefore, periods are determined individually using each image sequence. Repeatability of the period determination for each of these sequences is typically on the order of 0.01 second or better for objects where a single period is identified. Spin rate periods determined from the GEO light curves collected thus far have been found to range from ~3 sec to

  4. A numerical solution algorithm and its application to studies of pulsed light fields propagation

    Science.gov (United States)

    Banakh, V. A.; Gerasimova, L. O.; Smalikho, I. N.; Falits, A. V.

    2016-08-01

    A new method for studies of pulsed laser beams propagation in a turbulent atmosphere was proposed. The algorithm of numerical simulation is based on the solution of wave parabolic equation for complex spectral amplitude of wave field using method of splitting into physical factors. Examples of the use of the algorithm in the case the propagation pulsed Laguerre-Gaussian beams of femtosecond duration in the turbulence atmosphere has been shown.

  5. 3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight

    Science.gov (United States)

    2016-06-07

    bathymetric features and ocean fronts near the shelf break of the mid-Atlantic Bight, and use of various data for geoacoutic inversion studies . The results ...Island (using a propagation model with a genetic algorithm approach). WORK COMPLETED Numerical analysis of significance of 3D propagation influences ... influences of geoacoustic properties have been completed. RESULTS The numerical analysis showed that the dominant mechanism for 3-D azimuthal

  6. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  7. Study of the mechanisms of the flame propagation and stabilization in porous media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CH4/air premixed gas combustion processes in porous media were numerically studied using the two-temperature reacting fluid model with dispersions and detailed chemical reaction mechanism GRI 3.0. The mechanisms of the propagation and stabilization of submerge flames and surface flames in porous media were illuminated distinctly by considering the magnitude of the terms in the two energy equations, analyzing the sensibility of flame propagation speed to flame location, heat exchange coefficient between gas and solid, thermal conductivity and radiative extinction coefficient of porous media. It was concluded that the propagation mechanism of a submerged flame is similar to that of a free flame with an additional preheat zone and that the surface-flame propagation mechanism in porous media is similar to that of a free flame with heat loss in reaction zone.

  8. Alloying propagation in nanometric Ni/Al multilayers: A molecular dynamics study

    Science.gov (United States)

    Turlo, V.; Politano, O.; Baras, F.

    2017-02-01

    In nanometric metallic multilayers such as Ni/Al, the alloying reaction proceeds in the form of a propagating wave. We studied the different phase transformations involved in the reactive wave propagation by means of molecular dynamics. The focus was on a specific regime that involves melting of reactants, intermixing of reactants, and formation of an intermetallic compound. We found that the wave consists of two stages. The first front is associated with a dissolution process and propagates at several meters per second, while the second front is due to the crystallization of the final product and is slower, leading to a specific microstructure with alternated large grains of NiAl and liquid regions in the front propagation direction. Three main exothermic processes were identified, including grain coarsening. Their respective contributions were evaluated. We developed a new texture analysis tool that allowed us to follow the evolution of the microstructure and the dynamics of the grain orientation.

  9. A Comparative Study of Actuator Configurations for Satellite Attitude Control

    Directory of Open Access Journals (Sweden)

    Raymond Kristiansen

    2005-10-01

    Full Text Available In this paper a controllability study of different actuator configurations consisting of magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical analysis is performed with use of controllability gramians, and simulation results with the different configurations are presented and compared regarding settling time and power consumption to substantiate the theoretical analysis. A reference model is also introduced to show how the power consumption can he lowered to the same magnitude as when magnetic torquers are used, without degrading the satellite response significantly.

  10. Crack propagation studies and bond coat properties in thermal barrier coatings under bending

    Indian Academy of Sciences (India)

    A K Ray; N Roy; K M Godiwalla

    2001-04-01

    Ceramic based thermal barrier coatings (TBC) are currently considered as a candidate material for advanced stationary gas turbine components. Crack propagation studies under bending are described that were performed on plasma sprayed ZrO2, bonded by MCrAlY layer to Ni base superalloy. The crack propagation behaviour of the coatings at room temperature in as received and oxidized conditions revealed a linear growth of the cracks on the coating till the yield point of the super alloy was reached. High threshold load at the interface between the ceramic layer and the bond coat was required to propagate the crack further into the bond coat. Once the threshold load was surpassed the crack propagated into the brittle bond coat without an appreciable increase in the load. At temperatures of 800°C the crack propagated only in the TBC (ceramic layer), as the ductile bond coat offered an attractive sink for the stress relaxation. Effects of bond coat oxidation on crack propagation in the interface region have been examined and are discussed.

  11. Formation and propagation of the Aleutian eddy

    Science.gov (United States)

    Ishiyama, H.; Ueno, H.; Inatsu, M.

    2012-12-01

    Aleutian eddies are anticyclonic eddies which form south of the Aleutian Islands between 170°E and 175°E and propagate southwestward. In this study we investigated formation and propagation of the Aleutian eddy through analysis of 18-year time series of satellite altimeter data distributed by AVISO. Neighbor enclosed area tracking algorithm was applied to track each eddy identified using Okubo-Weiss parameter. Zero to five Aleutian eddies were formed per year and the number of Aleutian eddy formed per year changed with a period of three to four years. Meanwhile, the propagation route of the Aleutian eddy did not show marked interannual variation. Most of the Aleutian eddies propagate toward the center of western subarctic gyre; the rest propagate toward Kamchatka Peninsula or into the Bering Sea.

  12. Study on feasibility of laser reflective tomography with satellite-accompany

    Science.gov (United States)

    Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang

    2015-10-01

    Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.

  13. A Time and Space-based Dynamic IP Routing in Broadband Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The topology architecture, characteristics and routing technologies of broadband satellite networks are studied in this paper. The authors propose the routing scheme of satellite networks and design a time and space-based distributed routing algorithm whose complexity is O(1). Simulation results aiming at satellite mobility show that the new algorithm can determine the minimum propagation delay paths effectively.

  14. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  15. Theoretical study of solitonlike propagation of picosecond light pulses interacting with Wannier excitons

    Science.gov (United States)

    Talanina, I.; Burak, D.; Binder, R.; Giessen, H.; Peyghambarian, N.

    1998-07-01

    An analytical and numerical study of light pulse propagation in semiconductors, with pulses spectrally centered at the lowest exciton resonance, is presented. It is shown that, in the limit of negligible phase-space blocking effects, the equation for the excitonic polarization is equivalent to a modified version of the nonlinear Schrödinger equation, for which soliton solutions have been derived by Mihalache et al. [D. Mihalache et al., Phys. Rev. A 47, 3190 (1993)]. The numerical study demonstrates the solitonlike propagation of experimentally relevant input pulses in CdSe crystal and assesses the influence of phase-space blocking effects and dephasing processes.

  16. Experimental study on ultrasonic propagation in water-based bentonite slurry

    Institute of Scientific and Technical Information of China (English)

    LAN Kai; YAN Taining

    2009-01-01

    Drilling fluid is a common flushing medium used in pile foundation, geological drilling and petroleum drilling. Study on ultrasonic propagation properties in drilling fluid is of vital importance, not only for developing equipments to non-contact measuring concrete casting level for bored pile, but also for developing equipments considering drilling fluid as signal channel. The existence of clay particles makes the ultrasonic propagation and attenuation in drilling fluid much different from pure water. In order to know the relation among ultrasound frequency, slurry density and depth, a series of laboratory experiments about ultrasound propagation in water-based bentonite slurry were finished. Wavelet method was adopted to process the gained original waves of ultrasonic propagation in slurry, so we knew the velocity and attenuation coefficient of ultrasound propagated in different drilling fluids with different density. The first group experiments shows that with density of drilling fluid increase, ultrasonic velocity will decrease but attenuation coefficient will increase if ultrasonic frequency keep constant. The second group experiments shows that the power of ultrasound will intensify in small bore hole, the attenuation coefficient is much smaller than theoretical value.

  17. Assessment of Satellite Images for Soil Salinity Studies

    Directory of Open Access Journals (Sweden)

    S.H. Sanaeinejad

    2012-04-01

    Full Text Available Soil salinity is one of the main environmental problems affecting extensive area in the world. There are some problems with traditional data collection methods for soil studies. Using the new methods and techniques such as remote sensing could overcome most of these problems. However using these data in areas with uncommon usages needed some researches to find the best calibration between the data and real situations in soil. This research was carried out using Landsat satellite images in Neyshabour area, North East of Iran. In order to prepare suitable learning samples for the image processing in this study, 300 locations were randomly selected in the area, among which 273 locations were finally selected as suitable surface soil samples. All samples were moved to laboratory and their electrical conductivity was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for the image processing analysis. Classification of different soil salinities was carried out using common algorithms of image classification based on the best composition bands and using statistical methods between soil salinity variables and digital numbers of the images to represent a suitable method. the research results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images and for the classification of the salinity in this area. The highest coefficient of determination was R2=0.311 and R2=0.44 for saline and non-saline soil respectively using band 2 and 3 of the images at 5% significant level. Based on the results, it can be concluded that the potential of ETM+ images for delineation and identification of different soil salinity are limited.

  18. Study on pile drivability with one dimensional wave propagation theory

    Institute of Scientific and Technical Information of China (English)

    陈仁朋; 王仕方; 陈云敏

    2003-01-01

    Pile drivability is a key problem during the stage of design and construction installation of pile foundations. The solution to the one dimensional wave equation was used to determine the impact force at the top of a concrete pile for a given ram mass, cushion stiffness, and pile impedance. The kinematic equation of pile toe was established and solved based on wave equation theory. The movements of the pile top and pile toe were presented, which clearly showed the dynamic displacement, including rebound and penetration of pile top and toe. A parametric study was made with a full range of practical values of ram weight, cushion stiffness, dropheight, and pile impedance. Suggestions for optimizing the parameters were also presented. Comparisons between the results obtained by the present solution and in-situ measurements indicated the reliability and validity of the method.

  19. Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei

    2008-01-01

    Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.

  20. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study.

    Science.gov (United States)

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-10

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the "mode transition" phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  1. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study

    Science.gov (United States)

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-01

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  2. Infection Functions for Virus Propagation in Computer Networks: An Empirical Study

    Institute of Scientific and Technical Information of China (English)

    YUAN Hua; WU Junjie; CHEN Guoqing

    2009-01-01

    There has been an increasing amount of interest in modeling virus propagation in recent years. However, the group-based infection mechanism of computer viruses is not well understood and the selec-tion of infection function in virus propagation modeling has not been well studied. This paper describes a point-to-group (P2G) infection mode to describe" virus propagation in networks with information sharing groups. Simulations compare the constant infection and I-type infection functions with the new E-type infec-lion function in the small-world-network environment. The simulation results show that the E-type infection function shows supedor performances to that of the traditional I-type infection function in modeling the P2G virus infection mechanism and the Ⅰ-type infection function shows better performance in modeling the ran-dom infection mechanism.

  3. Wave Propagation In Plates Studied By Pulsed Hologram Interferometry

    Science.gov (United States)

    Wahlin, Anders; Fallstrom, Karl-Evert; Gustavsson, H.; Molin, Nils-Erik

    1989-07-01

    Isotropic and non-isotropic plates are impacted by a ballistic pendulum. The bending waves that are generated are studied with holographic interferometry using a double pulsed ruby laser as light source. The pulse shape changes with time because of the dispersivity of the waves. Initially the fringe pattern in the isotropic case is cylindrically symmetric and determined from an initial value problem. Later, when the waves have reached the plate rim, in-and outgoing waves gradually develop fringe patterns which in the end will be a combination of eigenmodes of the plate. A solution to the corresponding Kirchhoff plate equation is presented, which in the special case when the impact is modelled as a Dirac-pulse in space and time, is shown to depend only of the distance to the impact point divided by the square root of the time after impact and a parameter containing plate parameters. From the slope of the central deflection material parameters can be determined. Another solution, assuming a finite inpact time, is shown to agree better with experiments. Results from investigations of non-isotropic materials are also presented.

  4. Study of transient wave propagation in plates using double pulse TV holography

    OpenAIRE

    Lopes, H.; Guedes, R. M.; M. A. P. Vaz; Rodrigues, J.D.

    2004-01-01

    This work presents a numerical and experimental study of the transient response of an isotropic plate. A low mass impact is used to generate the bending wave propagation. Displacements due to the bending wave propagation were assessed using an out-of-plane double pulse TV holography set-up. A PZT transducer is used to record the impact force and its temporal evolution. A novel experimental technique is presented for determination of the stress field in the plate using the out-of-plane ...

  5. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    Science.gov (United States)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  6. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia

    Science.gov (United States)

    Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.

    2010-06-01

    Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.

  7. A study of seismic wave propagation in heterogeneous crust

    Science.gov (United States)

    Akerberg, Peeter Michael

    Three different aspects of estimating properties from seismic data are treated in this thesis: (1) Deterministic processing of a high resolution shallow seismic data set with good geologic control, (2) traveltime estimation from complicated models described statistically, and (3) estimation of a the vertical autocorrelation length of such models. The first part of this thesis is the processing and interpretation of a shallow seismic dataset collected in an open pit copper mine near Tyrone, New Mexico. The seismic image is compared with the outcrop in the open pit mine wall along which the seismic line was collected, and with drill data obtained from the mine operators. Specific features imaged by the experiment include the base of the overlaying sediment, the base of the leached capping, and fractures and shear zones that control local ground water flow. The features in the migrated section compare well with outcrop and drill data. The second part of the thesis studies the systematic bias of velocities estimated from first arrival travel times measured from a class of very complicated velocity models. Traveltimes were computed for statistically described velocity models with anisotropic von Karman correlation functions. The results of a finite difference eikonal solver, corresponding to very small wavelength experiments, are compared to results from picking first arrivals of full wavefield finite difference simulations. The eikonal solver results show the largest systematic bias, corresponding to the ray theoretical limit, and the results from the full wavefield experiments are smaller, but with very similar dependence on aspect ratio of the anisotropic correlation function. The third part defines two methods to obtain the vertical correlation length from seismic data approximated by the primary reflectivity series, which conventionally is used as the ideal result of seismic imaging. The first method is based on fitting a theoretical power spectrum based on the

  8. Light propagation studies on laser modified waveguides using scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Borrise, X.; Berini, Abadal Gabriel; Jimenez, D.

    2001-01-01

    By means of direct laser writing on Al, a new method to locally modify optical waveguides is proposed. This technique has been applied to silicon nitride waveguides, allowing modifications of the optical propagation along the guide. To study the formed structures, a scanning near-held optical...

  9. Study on fault locating technology for satellite power system

    Institute of Scientific and Technical Information of China (English)

    LONG Bing; JIANG Xing-wei; SONG Zheng-ji

    2005-01-01

    It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.

  10. Next generation communications satellites: multiple access and network studies

    Science.gov (United States)

    Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.

    1982-01-01

    Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.

  11. Study on Service Level Management in Integrated Satellite Information Network

    Institute of Scientific and Technical Information of China (English)

    SHANG Rui-qiang; ZHAO Jian-li; WANG Guang-xing

    2005-01-01

    Integrated Satellite Information Network (ISIN) includes those nodes in space and those on ground. It is the way to realize the fusion of satellite communication and traditional network technology. A satellite network management system based on Multiplex Network Management Protocol (MNMP) has accomplished traditional management, such as configuration, performance and fault management. An architecture of Service Level Management (SLM) in ISIN is proposed, and a service topology management and Service Level Agreement (SLA) are deeply researched. At last, service security and fault management are briefly discussed, and a simulation system is accomplished.

  12. Use of charging control guidelines for geosynchronous satellite design studies

    Science.gov (United States)

    Steves, N. J.

    1980-01-01

    Several of the principle guidelines from the Spacecraft Charging Design Guidelines Handbook are presented with illustrative examples. Use of the geomagnetic substorm specification to qualify satellite designs, the evaluation of satellite designs by using analytical modelling techniques, the use of selected materials and coatings to minimize charging, the tying of all conducting elements to a common ground, and the use of electrical filtering to protect circuits from discharge induced upsets are discussed. Discharge criteria and SCATHA data are excluded.

  13. Study of Some Strategies for Disposal of the GNSS Satellites

    Directory of Open Access Journals (Sweden)

    Diogo Merguizo Sanchez

    2015-01-01

    Full Text Available The complexity of the GNSS and the several types of satellites in the MEO region turns the creation of a definitive strategy to dispose the satellites of this system into a hard task. Each constellation of the system adopts its own disposal strategy; for example, in the American GPS, the disposal strategy consists in changing the altitude of the nonoperational satellites to 500 km above or below their nominal orbits. In this work, we propose simple but efficient techniques to discard satellites of the GNSS by exploiting Hohmann type maneuvers combined with the use of the 2ω˙+Ω˙≈0 resonance to increase its orbital eccentricity, thus promoting atmospheric reentry. The results are shown in terms of the increment of velocity required to transfer the satellites to the new orbits. Some comparisons with direct disposal maneuvers (Hohmann type are also presented. We use the exact equations of motion, considering the perturbations of the Sun, the Moon, and the solar radiation pressure. The geopotential model was considered up to order and degree eight. We showed the quantitative influence of the sun and the moon on the orbit of these satellites by using the method of the integral of the forces over the time.

  14. Study of Gaussian and Bessel beam propagation using a new analytic approach

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.

    2012-03-01

    The main feature of Bessel beams realized in practice is their ability to resist diffractive effects over distances exceeding the usual diffraction length. The theory and experimental demonstration of such waves can be traced back to the seminal work of Durnin and co-workers already in 1987. Despite that fact, to the best of our knowledge, the study of propagation of apertured Bessel beams found no solution in closed analytic form and it often leads to the numerical evaluation of diffraction integrals, which can be very awkward. In the context of paraxial optics, wave propagation in lossless media is described by an equation similar to the non-relativistic Schrödinger equation of quantum mechanics, but replacing the time t in quantum mechanics by the longitudinal coordinate z. Thus, the same mathematical methods can be employed in both cases. Using Bessel functions of the first kind as basis functions in a Hilbert space, here we present a new approach where it is possible to expand the optical wave field in a series, allowing to obtain analytic expressions for the propagation of any given initial field distribution. To demonstrate the robustness of the method two cases were taken into account: Gaussian and zeroth-order Bessel beam propagation.

  15. Study of the NWC electrons belt observed on DEMETER Satellite

    CERN Document Server

    Li, Xinqiao; Wang, Ping; Wang, Huanyu; Lu, Hong; Zhang, Xuemin; Huang, Jianping; Shi, Feng; Yu, Xiaoxia; Xu, Yanbing; Meng, Xiangcheng; Wang, Hui; Zhao, Xiaoyun; Parrot, M

    2010-01-01

    We analyzed the data from 2007 to 2008, which is observed by IDP onboard DEMETER satellite, during ten months of NWC working and seven months of NWC shutdown. The characteristic of the space instantaneous electron belts, which come from the influence of the VLF transmitted by NWC, is studied comprehensively. The main distribution region of the NWC electron belts and the flux change are given. We also studied the distribution characteristic of the average energy spectrum in different magnetic shell at the height of DEMETER orbit and the difference of the average energy spectrum of the electrons in the drift loss-cone between day and night. As a result, the powerful power of NWC transmitter and the 19.8 kHz narrow bandwidth VLF emission not only created a momentary electrons enhancement region, which strides 180 degree in them longitude direction and from 1.6 to 1.9 in L value, with the rise of the electrons flux reaching to 3 orders of magnitude mostly, but also induced the enhancement or loss of electrons in ...

  16. Versatile Satellite Architecture and Technology: A New Architecture for Low Cost Satellite Missions for Solar-Terrestrial Studies

    Science.gov (United States)

    Cook, T. A.; Chakrabarti, S.; Polidan, R.; Jaeger, T.; Hill, L.

    2011-12-01

    Early in the 20th century, automobiles appeared as extraordinary vehicles - and now they are part of life everywhere. Late in the 20th century, internet and portable phones appeared as innovations - and now omni-present requirements. At mid-century, the first satellites were launched into space - and now 50 years later - "making a satellite" remains in the domain of highly infrequent events. Why do all universities and companies not have their own satellites? Why is the work force capable of doing so remarkably small? Why do highly focused science objectives that require just a glimpse from space never get a chance to fly? Historically, there have been two primary impediments to place an experiment in orbit - high launch costs and the high cost of spacecraft systems and related processes. The first problem appears to have been addressed through the availability of several low-cost (< $10M) commercial launch opportunities. The Versatile Satellite Architecture and Technology (VerSAT) will address the second. Today's space missions are often large, complex and require development times typically a decade from conception to execution. In present risk-averse scenario, the huge expense of these one-of-a-kind mission architecture can only be justified if the technology required to make orders of magnitude gains is flight-proven at the time mission conception. VerSAT will complement these expensive missions which are "too large to fail" and the CUBESATs. A number of Geospace science experiments that could immediately take advantage of VerSAT have been identified. They range from the study of fundamental questions of the "ignorosphere" from a single satellite lasting a few days - a region of space that was probed once about 40 years ago, to a constellation of satellites which will disentangle the space and time ambiguity of the variability of ionospheric structures and their link to the storms in the Sun to long-term studies of the Sun-Earth system. VerSAT is a true

  17. Propagation of Bayesian Belief for Near-Real Time Statistical Assessment of Geosynchronous Satellite Status Based on Non-Resolved Photometry Data

    Science.gov (United States)

    2014-09-01

    indifference (PMFI) [References 1-3]. This work draws upon the hidden richness of information in the Brightness data as compared to the traditional...vector directions of solar illumination and sensor observations for a satellite. The record of Brightness Data represents SSA information… hidden in...distribution”, at http://en.wikipedia.org/ wiki /Marginal_distribution 7 Payne, T.E., Gregory, S.A., Tombasco, J., Luu, K., and Durr, L., “Satellite

  18. Study of the propagation and detection of the orbital angular momentum of light for astrophysical applications

    OpenAIRE

    Sponselli, Anna

    2013-01-01

    The aim of this work is to study the propagation of orbital angular momentum (OAM) of light for astrophysical applications and a method for OAM detection with optical telescopes. The thesis deals with the study of the orbital angular momentum (OAM) as a new observable for astronomers, which could give additional information with respect to those already inferred from the analysis of the intensity, frequency and polarization of light. Indeed, the main purpose of this work is to highlight th...

  19. Photoelastic studies of crack propagation and arrest in polymers and 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, G.R.; Fourney, W.L.; Kobayashi, T.; Metcalf, J.T.; Dally, J.W.

    1978-11-01

    Progress is reported concerning the further evaluation of proposed standard procedures for determining arrest toughness; study of crack behavior of 4340 steel with firefringent coatings; comparison of crack behavior in plastic and steel duplex specimen; a dynamic photoelastic study of crack propagation in a ring specimen; characterization of effect of damping on crack behavior; comparison of crack behavior in Araldite B and Homalite 100; and parametric aspects of crack tip stress fields.

  20. Satellite-Based Study of Glaciers Retreat in Northern Pakistan

    Science.gov (United States)

    Munir, Siraj

    Glaciers serve as a natural regulator of regional water supplies. About 16933 Km 2 area of glaciers is covered by Pakistan. These glaciers are enormous reservoirs of fresh water and their meltwater is an important resource which feed rivers in Pakistan. Glacier depletion, especially recent melting can affect agriculture, drinking water supplies, hydro-electric power, and ecological habitats. This can also have a more immediate impact on Pakistan's economy that depends mainly on water from glacier melt. Melting of seasonal snowfall and permanent glaciers has resulted not only in reduction of water resources but also caused flash floods in many areas of Pakistan. With the advent of satellite technology, using optical and SAR data the study of glaciers, has become possible. Using temporal data, based on calculation of snow index, band ratios and texture reflectance it has been revealed that the rate of glacier melting has increased as a consequent of global warming. Comparison of Landsat images of Batura glacier for October 1992 and October 2000 has revealed that there is a decrease of about 17 sq km in Batura glaciers. Although accurate changes in glacier extent cannot be assessed without baseline information, these efforts have been made to analyze future changes in glaciated area.

  1. Study of Remote Globular Cluster Satellites of M87

    Science.gov (United States)

    Sahai, Arushi; Shao, Andrew; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Zhang, Hao

    2017-01-01

    We present a sample of “orphan” globular clusters (GCs) with previously unknown parent galaxies, which we determine to be remote satellites of M87, a massive elliptical galaxy at the center of the Virgo Cluster of Galaxies. Because GCs were formed in the early universe along with their original parent galaxies, which were cannibalized by massive galaxies such as M87, they share similar age and chemical properties. In this study, we first confirm that M87 is the adoptive parent galaxy of our orphan GCs using photometric and spectroscopic data to analyze spatial and velocity distributions. Next, we increase the signal-to-noise ratio of our samples’ spectra through a process known as coaddition. We utilize spectroscopic absorption lines to determine the age and metallicity of our orphan GCs through comparison to stellar population synthesis models, which we then relate to the GCs’ original parent galaxies using a mass-metallicity relation. Our finding that remote GCs of M87 likely developed in galaxies with ~1010 solar masses implies that M87’s outer halo is formed of relatively massive galaxies, serving as important parameters for developing theories about the formation and evolution of massive galaxies.This research was funded in part by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  2. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.

  3. A Study of the Weak Shock Wave Propagating over a Porous Wall/Cavity System

    Institute of Scientific and Technical Information of China (English)

    H.D.KIM; S.J.JUNG; T.AOKI; T.SETOGUCHI

    2005-01-01

    The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.

  4. A Satellite Based Fog Study of the Korean Peninsula

    Science.gov (United States)

    2007-06-01

    total number of fog and fog likely days detected from the two MODIS satellites, Aqua and Tera , respectively. Results from all nine areas of...trends in fog detection based on the satellite differences. 46 0 20 40 60 80 100 120 N um be r o f D ay s 1 2 3 4 5 6 7 8 9 Areas Four Month Tera vs...Aqua Fog Totals Tera Fog Tera Fog Likely Aqua Fog Aqua Fog Likely Figure 29. Comparisons of the four month total number of fog and fog likely days

  5. Study of Damage Propagation at the Interface Localization-Delocalization Transition of the Confined Ising Model

    OpenAIRE

    Puzzo, M. Leticia Rubio; Albano,Ezequiel V.

    2007-01-01

    The propagation of damage in a confined magnetic Ising film, with short range competing magnetic fields ($h$) acting at opposite walls, is studied by means of Monte Carlo simulations. Due to the presence of the fields, the film undergoes a wetting transition at a well defined critical temperature $T_w(h)$. In fact, the competing fields causes the occurrence of an interface between magnetic domains of different orientation. For $T T_w(h)$) such interface is bounded (unbounded) ...

  6. Study on the propagation of some sugar cane clones derived from tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Chagvardieff, P.; Mauboussin, J.C.; Weil, J.

    1983-01-01

    The study of the propagation by cuttings of sugar-cane clones derived from tissue cultures showed that the emergence of one bud setts was variable. A definition of parameters for this germination is proposed: germination vigour, germination capacity, shooting vigour, shooting capacity. Variants optained, among them germination or shooting vigour, were always improved when compared with the control; this might result from a cell rejuvenation induced by the tissue culture. 11 references.

  7. Terrestrial kilometric radiation: 1: Spatial structures studies. [from satellite observation (Explorer 2 satellite) of lunar occultation

    Science.gov (United States)

    Alexander, J. K.; Kaiser, M. L.

    1976-01-01

    Observations are presented of lunar occultations of the earth at 250 kHz obtained with the Radio-Astronomy-Explorer-2 satellite which were used to derive two dimensional maps of the location of the sources of terrestrial kilometric radiation (TKR). By examining the two dimensional source distributions as a function of the observer's location (lunar orbit) with respect to the magnetosphere, the average three dimensional location of the emission regions can be estimated. Although TKR events at 250 kHz can often be observed at projected distances corresponding to the 250 kHz electron gyro or plasma level (approximately 2 earth radii), many events are observed much farther from the earth (between 5 and 15 earth radii). Dayside emission apparently in the region of the polar cusp and the magnetosheath and night emission associated with regions of the magnetotail are examined. The nightside emission is suggestive of a mechanism involving plasma sheet electron precipitation in the pre-midnight sector.

  8. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  9. Analytical and experimental study on wave propagation problems in orthotropic media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Wave propagation problems in orthotropic media are studiedjointly by analytical and experimental methods in this paper. Dynamic orthotropic photoelasticity, which studies experimentally the dynamic behavior of orthotropic materials on a macroscopic scale by employing orthotropic birefringent materials, is established. A dynamic stress-optic law for orthotropic birefringent materials is postulated and practical methods of calibrating dynamic mechanical constants and dynamic stress-fringe values are proposed. Meanwhile, time domain boundary element method (BEM) for wave propagation in orthotropic media, is also presented based on the theory of elastodynamics. A scheme of stress calculations that is necessary for strength analysis is established. The paper stresses on the applications in wave propagation problems in orthotropic media by demonstrating three examples. The semi-infinite orthotropic plates with and without a circular hole modeled by a unidirectional fiber-reinforced composite under impact loading are analyzed. Time histories of birefringent fringe orders or stresses for specific points of the plates are obtained respectively from the two methods and compared with each other. Based on the above comparative study, the dynamic response of an underground workshop under seismic waves is studied by time domain BEM. The responses of displacements and stresses are solved. The effects of angle and frequency of incident waves and the degree of media anisotropy on dynamic response of the underground workshop are investigated.

  10. Mean field study of a propagation-turnover lattice model for the dynamics of histone marking

    Science.gov (United States)

    Yao, Fan; Li, FangTing; Li, TieJun

    2017-02-01

    We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.

  11. Study of the stability of a SEIRS model for computer worm propagation

    Science.gov (United States)

    Hernández Guillén, J. D.; Martín del Rey, A.; Hernández Encinas, L.

    2017-08-01

    Nowadays, malware is the most important threat to information security. In this sense, several mathematical models to simulate malware spreading have appeared. They are compartmental models where the population of devices is classified into different compartments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is to propose an improved SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) mathematical model to simulate computer worm propagation. It is a continuous model whose dynamic is ruled by means of a system of ordinary differential equations. It considers more realistic parameters related to the propagation; in fact, a modified incidence rate has been used. Moreover, the equilibrium points are computed and their local and global stability analyses are studied. From the explicit expression of the basic reproductive number, efficient control measures are also obtained.

  12. A study of reactant interfaces in Ni+Al particle systems during shock wave propagation

    Science.gov (United States)

    Austin, Ryan A.; McDowell, David L.; Horie, Yasuyuki; Benson, David J.

    2007-06-01

    Macro-scale responses of energetic materials during shock compression are influenced strongly by thermo-mechano-chemical processes occurring at the level of the microstructure. For example, it is believed that the propagation of chemical reactions in reactive particle systems is intimately linked to conditions at reactant interfaces such as surface temperature, phase changes, defect density, and mass mixing due to inelastic deformation. To provide explicit resolution of such interfacial conditions, numerical models are constructed. The finite element method is used to numerically solve the differential equations that govern the coupled thermomechanical response of micron-size particle mixtures of Ni and Al during shock wave propagation (interface chemistry is not yet modeled). The size and temperature distributions of contiguous reactant contact surfaces are quantified for a range of shock strengths. A parametric study of mixture attributes is undertaken to assess the sensitivity of the aforementioned distributions to variations of the microstructure.

  13. Continuum study on QCD phase diagram through an OPE-modified gluon propagator

    CERN Document Server

    Shi, Chao; Xu, Shu-Sheng; Liu, Xiao-Jun; Zong, Hong-Shi

    2016-01-01

    Within the Dyson-Schwinger equations (DSEs) framework, a gluon propagator model incorporating quark's feedback through operator product expansion (OPE) is introduced to investigate the QCD phase diagram in the temperature--chemical-potential ($T-\\mu$) plane. Partial restoration of chiral symmetry at zero temperature and finite temperature are both studied, suggesting a first order phase transition point on the $\\mu$ axis and a critical end point at $(T_E,\\mu_E)/T_c = (0.85,1.11)$, where $T_c$ is the pseudo-critical temperature. In addition, we find the pseudo-critical line can be well parameterized with the curvature parameter $\\kappa$ and a consistent decrease in $\\kappa$ with more of gluon propagator distributed to quark's feedback.

  14. Supplementary motor area seizures: propagation pathways as studied with invasive recordings.

    Science.gov (United States)

    Baumgartner, C; Flint, R; Tuxhorn, I; Van Ness, P C; Kosalko, J; Olbrich, A; Almer, G; Novak, K; Lüders, H O

    1996-02-01

    We studied propagation of epileptic discharges in five patients with supplementary motor area (SMA) seizures with subdural grid electrodes implanted over the dorsolateral frontal neocortex and in the interhemispheric fissure. We found that both interictal and ictal epileptic discharges occurred synchronously in the SMA and the primary cortex. The actively involved electrodes were separated by silent electrodes. The time lag between the SMA and the primary motor cortex averaged 25 msec for interictal and 100 msec for ictal discharges. Cortical stimulations of the affected electrodes showed motor effects in corresponding body parts. All patients underwent resections of the EEG onset zone within the SMA while sparing the primary motor cortex and experienced a significant (>90%) reduction of seizure frequency. We conclude that epileptic activity is propagated between the SMA and the primary motor cortex by a somatotopically organized monosynaptic pathway.

  15. Charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study

    CERN Document Server

    Bliokh, Yury; Nori, Franco

    2013-01-01

    We explore the optical properties of periodic layered media containing left-handed metamaterials. This study is facilitated by several analogies between the propagation of light in such media and charge transport in graphene. We derive conditions when these two problems become equivalent, i.e., the equations and the boundary conditions for the corresponding wave functions coincide. It is shown that the photonic band-gap structure of a periodic system built of alternating left- and right-handed dielectrics contains conical singularities similar to the Dirac points in the energy spectrum of charged quasiparticles in graphene. Such singularities in the zone structure of the infinite systems give rise to rather unusual properties of the light transport in finite samples. In a single numerical experiment (propagation of a Gaussian beam through a mixed stack of normal and meta-dielectrics) we demonstrate simultaneously four Dirac point-induced anomalies: (i) diffusion-like decay of the intensity at forbidden freque...

  16. Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading

    Directory of Open Access Journals (Sweden)

    Martin E.

    2013-07-01

    Full Text Available Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure, can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.

  17. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies

    Science.gov (United States)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.

    2004-01-01

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  18. Advancements in satellite gravity gradient data for crustal studies

    NARCIS (Netherlands)

    Ebbing, J.; Bauman, J.; Fuchs, M.; Lieb, V.; Haagmans, R.; Meekes, J.A.C.; Abdul Fattah, R.

    2013-01-01

    In recent years, global gravity models, both based only on satellite data and from combination with terrestrial data, are increasingly available and particularly useful to construct regional models before more local interpretations on the exploration scale are carried out. Often it is challenging to

  19. Advancements in satellite gravity gradient data for crustal studies

    NARCIS (Netherlands)

    Ebbing, J.; Bauman, J.; Fuchs, M.; Lieb, V.; Haagmans, R.; Meekes, J.A.C.; Abdul Fattah, R.

    2013-01-01

    In recent years, global gravity models, both based only on satellite data and from combination with terrestrial data, are increasingly available and particularly useful to construct regional models before more local interpretations on the exploration scale are carried out. Often it is challenging to

  20. A long term (1999-2008) study of radar anomalous propagation conditions in the Western Mediterranean

    Science.gov (United States)

    Magaldi, A. V.; Mateu, M.; Bech, J.; Lorente, J.

    2016-03-01

    In this paper a study of the radio propagation environment of electromagnetic waves prevailing in the lower troposphere of the Western Mediterranean basin is presented. Deviations from atmospheric average or standard radio propagation conditions (anomalous propagation or AP) can affect significantly the quality of weather radar observations and other telecommunication systems. This is particularly important when ducting or superrefraction is present and spurious echoes resulting from the interaction of the beam with the ground or sea surface may appear. These AP conditions occur mainly when temperature inversions or strong moisture gradients are present. The period covered in this study ranges from 1999 to 2008 and conditions were derived from the Weather Research and Forecasting (WRF) modeling system, using the Japanese 25-year Reanalysis (JRA25) dataset as initial and boundary data. From the WRF model, we use the temperature, moisture, and pressure fields with a grid length of 30-km horizontal resolution and 250 m vertical resolution to compute several indices such as the Vertical Refractivity Gradient, Vertical Modified Refractivity Gradient and a Ducting Index. Results obtained show that on the Western Mediterranean coast the most favorable conditions for superrefraction are found in summer, while the most affected areas are the Gulf of Valencia, the Strait of Gibraltar and the Northern Gulf of Lion. Additionally, a comparison with radiosonde data recorded in Barcelona (NE Spain) is also performed indicating an overall agreement between model and observational data despite a tendency to decrease subrefractive events by the WRF model.

  1. Satellite RNAs and Satellite Viruses.

    Science.gov (United States)

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  2. Time-resolved study of laser initiated shock wave propagation in superfluid 4He

    Science.gov (United States)

    Garcia, Allan; Buelna, Xavier; Popov, Evgeny; Eloranta, Jussi

    2016-09-01

    Intense shock waves in superfluid 4He between 1.7 and 2.1 K are generated by rapidly expanding confined plasma from laser ablation of a metal target immersed in the liquid. The resulting shock fronts in the liquid with initial velocities up to ca. Mach 10 are visualized by time-resolved shadowgraph photography. These high intensity shocks decay within 500 ns into less energetic shock waves traveling at Mach 2, which have their lifetime in the microsecond time scale. Based on the analysis using the classical Rankine-Hugoniot theory, the shock fronts created remain in the solid phase up to 1 μs and the associated thermodynamic state appears outside the previously studied region. The extrapolated initial shock pressure of 0.5 GPa is comparable to typical plasma pressures produced during liquid phase laser ablation. A secondary shock originating from fast heat propagation on the metal surface is also observed and a lower limit estimate for the heat propagation velocity is measured as 7 × 104 m/s. In the long-time limit, the high intensity shocks turn into liquid state waves that propagate near the speed of sound.

  3. Studying propagation of seismic waves across the Valley of Mexico from correlations of seismic noise

    Science.gov (United States)

    Rivet, D. N.; Campillo, M.; Shapiro, N. M.; Singh, S.; Cruz Atienza, V. M.; Quintanar, L.; Valdés, C.

    2009-12-01

    We reconstruct Rayleigh and Love waves from cross-correlations of ambient seismic noise recorded at 22 broad-band stations of the MesoAmerica Seismic Experiment (MASE) and Valley of Mexico Experiment (VMEX). The cross-correlations are computed over 2 years of noise data for the 9 MASE stations and over 1 year for the 13 VMEX stations. Surface waves with sufficient signal-to-noise ratio are then used in the group velocity dispersion analysis. We use the reconstructed waveforms to measure group velocity dispersion curves at period of 0.5 to 5 seconds. For traveling path inside the lake-bed zone, the maximum energy is observed at velocity higher than expected for the fundamental mode. This indicates that the propagation within the Mexico basin is dominated by higher modes of surface waves that propagate deeper in the basin. We identify the propagation modes by comparing observations with theoretical dispersion curves and eigenfunctions calculated for Rayleigh and Loves waves associated with a given model of the upper crust. The fundamental mode shows a very low group velocity, <100m/s, which is consistent with previous studies. The domination of the higher modes in the Valley of Mexico may be a determining factor in the long duration of the seismic signal. A better velocity constraint on the deeper structure of the basin is thus needed to fully understand this phenomenon.

  4. Comparative Study on Prediction Effects of Short Fatigue Crack Propagation Rate by Two Different Calculation Methods

    Science.gov (United States)

    Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao

    2017-05-01

    To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.

  5. STUDY OF THE PROPAGATION OF SHORT PULSE LASER WITH CAVITY USING NUMERICAL SIMULATION SOFTWARE

    Directory of Open Access Journals (Sweden)

    S. Terniche

    2015-07-01

    Full Text Available The purpose of this representation is to show the potentialities (Computational Time, access to the dynamic and feasibility of systematic studies of the numerical study of the nonlinear dynamics in laser cavity, assisted by software. We will give as an example, one type of cavity completely fibered composed of several elements and then studying the physical parameters of a pulse propagating into this cavity, determining its characteristics at the output. The results are interesting but we also projects to verify them experimentally by making assemblies similar to this type of cavities.

  6. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    Science.gov (United States)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  7. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  8. Analytic Matrix Method for the Study of Propagation Characteristics of a Bent Planar Waveguide

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; CAO Zhuang-Qi; SHEN Qi-Shun; DOU Xiao-Ming; CHEN Ying-Li

    2000-01-01

    An analytic matrix method is used to analyze and accurately calculate the propagation constant and bendinglosses of a bent planar waveguide. This method gives not only a dispersion equation with explicit physical insight,but also accurate complex propagation constants.

  9. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    Science.gov (United States)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  10. ETS-V propagation experiments in Japan

    Science.gov (United States)

    Ohmori, Shingo

    1988-01-01

    Propagation experiments on ship, aircraft, and land mobile earth stations were carried out using the Engineering Test Satellite-V (ETS-V), which was launched in August 1987. The propagation experiments are one of the missions of the Experimental Mobile Satellite System (EMSS). Initial experimental results of ETS-V/EMSS on propagation using ship, aircraft, and land mobiles with ETS-V are given.

  11. A study of warm rain detection using A-Train satellite data

    National Research Council Canada - National Science Library

    Ruiyue Chen; Zhanqing Li; Robert J. Kuligowski; Ralph Ferraro; Fuzhong Weng

    2011-01-01

    .... This study exploits multi-sensor data from the A-Train satellite constellation to investigate the rain contribution from warm clouds and the potential of using cloud microphysical parameters for warm rain detection...

  12. A Study on the Timing Technology of Digital Satellite TV

    Science.gov (United States)

    Song, K. X.

    2013-03-01

    Based on analyzing and summarizing the modern timing technologies, through intensive analyzing the characteristics of the current digital satellite TV signals, and without changing equipment configuration of the digital satellite TV transmitter and signal system, this thesis puts forward the method of using the digital TV signal to transmit the standard time and frequency, and carries out the relevant researches on the key technologies. Meanwhile, we make experiments on the digital satellite TV timing system, which are based on the proposed timing method. Through analyzing the test data, the timing method is proved practicable and with a high precision. The main research work is as follows: (1) Firstly, we summarize the necessary conditions and key elements required for timing by analyzing the characteristics of modern timing methods, and analyze China’s digital satellite TV signal system; Secondly, we propose the idea that the inherent flag bit of source coding signals of TV is used to trigger event of timing and then complete this task; Thirdly, we propose the principle of transmitting the standard time and frequency through digital satellite TV signal, analyze the error sources which affect the accuracy of timing, and find the ways to reduce the error effect. (2) Synchronization clock signal is recovered from asynchronous serial interface (ASI) data to achieve bit synchronization, so that the transmitter can accurately access to the high-precision standard time code. At the same time, the TV signal transmission delay on the transmission channel is accurately measured in order to supply the necessary information for timing. Based on the analysis of the ASI data transmission characteristics and transmission standards, a method using over-sampling to recover the ASI clock signal and synchronize the digital TV signal source coding is proposed in this paper. This method is proved effective by the implementation on the FPGA (Field Programmable Gate Array). (3) Using

  13. EXPERIMENTAL STUDY ON CRACK CURVING PROPAGATION IN BENDING BEAMS UNDER IMPULSIVE LOAD

    Institute of Scientific and Technical Information of China (English)

    Fang Jing; Yao Xuefeng; Xiong Chunyang

    2000-01-01

    Dynamic fracture behaviour of crack curving in bent beams has been investigated.In order to understand the propagation mechanism of such cracks under impact,an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack.From the state change of the transient stresses in polymer specimen,the curving fracture in the impulsively loaded beams is analyzed.The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave.

  14. Experimental study on fire propagation over combustible exterior facades in Japan

    Directory of Open Access Journals (Sweden)

    Nishio Yuhei

    2013-11-01

    Full Text Available With regard to the fire protection for exterior walls of building, only the fire resistance has been considered, according to the current building law of Japan. In the previous studies of the authors, a new test method for evaluation of fire propagation along combustible cladding was proposed using primarily test specimens of façade walls with exterior thermal insulation without vent layers. In this paper, newly obtained test results are discussed on other specimens of combustible façades such as wood, sandwich panel, photovoltaic sheet mounted on composite panel, combustible coating material, and exterior thermal insulation with vent layer.

  15. Study of the coherent propagation of charged leptons coming from pion and W decay in Bohmian mechanics

    Directory of Open Access Journals (Sweden)

    H Azizakram

    2015-12-01

    Full Text Available Although charged leptons, contrary to neutrinos, cannot oscillate, exploring whether a coherent  superposition of charged lepton states can change to others during the propagation is an important problem in the neutrino oscillation theory. In this paper, we consider electrons and muons coming from the pions and W decays and study their propagation in relativistic Bohmian quantum mechanics. We find out that the Bohmian trajectories of them are separated after atomic distance propagations. In fact, the computed Bohmian trajectories of electrons and muons coming from W and pion decays show that Bohmin results are consistent with those of standard quantum mechanics.

  16. Toward lean satellites reliability improvement using HORYU-IV project as case study

    Science.gov (United States)

    Faure, Pauline; Tanaka, Atomu; Cho, Mengu

    2017-04-01

    Lean satellite programs are programs in which the satellite development philosophy is driven by fast delivery and low cost. Though this concept offers the possibility to develop and fly risky missions without jeopardizing a space program, most of these satellites suffer infant mortality and fail to achieve their mission minimum success. Lean satellites with high infant mortality rate indicate that testing prior to launch is insufficient. In this study, the authors monitored failures occurring during the development of the lean satellite HORYU-IV to identify the evolution of the cumulative number of failures against cumulative testing time. Moreover, the sub-systems driving the failures depending on the different development phases were identified. The results showed that half to 2/3 of the failures are discovered during the early stage of testing. Moreover, when the mean time before failure was calculated, it appeared that for any development phase considered, a new failure appears on average every 20 h of testing. Simulations were also performed and it showed that for an initial testing time of 50 h, reliability after 1 month launch can be improved by nearly 6 times as compared to an initial testing time of 20 h. Through this work, the authors aim at providing a qualitative reference for lean satellites developers to better help them manage resources to develop lean satellites following a fast delivery and low cost philosophy while ensuring sufficient reliability to achieve mission minimum success.

  17. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    Science.gov (United States)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  18. The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme

    Institute of Scientific and Technical Information of China (English)

    Rui-Jie Wang; Kun Xu

    2012-01-01

    Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS).The numerical calculations are carried out for a wide range of wave oscillating frequencies.The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency.The simulation covers the flow regime from the continuum to free molecule one.The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail.The simulation results from the UGKS are compared to the Navier-Stokes solutions,the direct simulation Monte Carlo (DSMC) simulation,and experimental measurements.Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32.The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.

  19. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence

    Science.gov (United States)

    Yu, Rixin; Lipatnikov, Andrei N.

    2017-06-01

    A three-dimensional (3D) direct numerical simulation (DNS) study of the propagation of a reaction wave in forced, constant-density, statistically stationary, homogeneous, isotropic turbulence is performed by solving Navier-Stokes and reaction-diffusion equations at various (from 0.5 to 10) ratios of the rms turbulent velocity U' to the laminar wave speed, various (from 2.1 to 12.5) ratios of an integral length scale of the turbulence to the laminar wave thickness, and two Zeldovich numbers Ze=6.0 and 17.1. Accordingly, the Damköhler and Karlovitz numbers are varied from 0.2 to 25.1 and from 0.4 to 36.2, respectively. Contrary to an earlier DNS study of self-propagation of an infinitely thin front in statistically the same turbulence, the bending of dependencies of the mean wave speed on U' is simulated in the case of a nonzero thickness of the local reaction wave. The bending effect is argued to be controlled by inefficiency of the smallest scale turbulent eddies in wrinkling the reaction-zone surface, because such small-scale wrinkles are rapidly smoothed out by molecular transport within the local reaction wave.

  20. Experimental study of mountain lee—waves by means of satellite photographs and aircraft measurements

    OpenAIRE

    Cruette, Denise

    2011-01-01

    This paper is a summary of a Ph.D. Thesis1 which was a systematic study of the influence of various meteorological factors on the occurrence and characteristics of mountain waves, more specifically of lee-waves of great horizontal extent. The data used are, beside classical meteorological informations, that given by satellite pictures completed by quasi-simultaneous measurements from planes or gliders. The analysis of many satellite pictures received at the french station of Lannion (Brittany...

  1. Adaptation of the HBV model for the study of drought propagation in European catchments

    Science.gov (United States)

    van Loon, A. F.; van Lanen, H. A. J.; Seibert, J.; Torfs, P. J. J. F.

    2009-04-01

    Drought propagation is the conversion of a meteorological drought signal into a hydrological drought (e.g. groundwater and streamflow) as it moves through the subsurface part of the hydrological cycle. The lag, attenuation and possibly pooling of parts of the signal are dependent on climate and catchment characteristics. The understanding of processes underlying drought propagation is still very limited. Our aim is to study these processes in small catchments across Europe with different climate conditions and physical structures (e.g. hard rock, porous rock, flat areas, steep slopes, snow, lakes). As measurements of soil moisture and groundwater storage are normally scarce, simulation of these variables using a lumped hydrological model is needed. However, although a simple model is preferable, many conceptual rainfall-runoff models are not suitable for this purpose because of their focus on fast reactions and therefore unrealistic black box approach of the soil moisture and groundwater system. We studied the applicability of the well-known semi-distributed rainfall-runoff model HBV for drought propagation research. The results show that HBV reproduces observed discharges fairly well. However, in simulating groundwater storage in dry periods, HBV has some conceptual weaknesses: 1) surface runoff is approximated by a quick flow component through the upper groundwater box; 2) the storage in the upper groundwater box has no upper limit; 3) lakes are simulated as part of the lower groundwater box; 4) the percolation from the upper to the lower groundwater box is not continuous, but either zero or constant. So, adaptation of the HBV model structure was needed to be able to simulate realistic groundwater storage in dry periods. The HBV Light model (Seibert et al., 2000) was used as basis for this work. As the snow and soil routines of this model have proven their value in previous (drought) studies, these routines are left unchanged. The lower part of HBV Light, the

  2. Thermal front propagation in variable aperture fracture-matrix system: A numerical study

    Indian Academy of Sciences (India)

    Nikhil Bagalkot; G Suresh Kumar

    2015-04-01

    A numerical study on the effect of complex fracture aperture geometry on propagation of thermal front in a coupled single fracture-matrix system has been carried out. Sinusoidal and logarithmic functions have been used to capture the variation in fracture aperture. Modifications have been made to existing coupled partial differential governing equations to consider the variation of fracture aperture. Effect of temperature on the thermal and physical properties of rock have been incorporated. A fully implicit finite difference scheme has been used to discretize the coupled governing equations. Thermal convection, dispersion and conduction are the major transport processes within fracture, while conduction is the major transport process within rock matrix. The results suggest that variation of fracture aperture increases the heat transfer rate at the fracture-matrix interface. Sensitivity analysis on rock thermal conductivity and fracture aperture have been carried out. The results suggest that the heat transfer from rock matrix to fracture for the case of the parallel plate model is greatly dependent on the rock thermal conductivity (m) as compared to variable aperture model. Further, the thermal front propagation for both parallel plate model and variable aperture model is sensitive to changes in fracture aperture. The heat transfer rate at the interface is greater at smaller fracture apertures and decreases with increase in aperture.

  3. Study of Temperature Wave Propagation in Superfluid Helium Focusing on Radio-Frequency Cavity Cooling

    CERN Document Server

    Koettig, T; Avellino, S; Junginger, T; Bremer, J

    2015-01-01

    Oscillating Superleak Transducers (OSTs) can be used to localize quenches of superconducting radio-frequency cavities. Local hot spots at the cavity surface initiate temperature waves in the surrounding superfluid helium that acts as cooling fluid at typical temperatures in the range of 1.6 K to 2 K. The temperature wave is characterised by the properties of superfluid helium such as the second sound velocity. For high heat load densities second sound velocities greater than the standard literature values are observed. This fast propagation has been verified in dedicated small scale experiments. Resistors were used to simulate the quench spots under controlled conditions. The three dimensional propagation of second sound is linked to OST signals. The aim of this study is to improve the understanding of the OST signal especially the incident angle dependency. The characterised OSTs are used as a tool for quench localisation on a real size cavity. Their sensitivity as well as the time resolution was proven to b...

  4. Experimental Study of Umts Radio Signal Propagation Characteristics by Field Measurement

    Directory of Open Access Journals (Sweden)

    Isabona Joseph

    2013-07-01

    Full Text Available Knowledge of propagation characteristics in the mobile channel is important to the design, analysis and optimisation of a cellular system. Such need is of great concern to achieve higher quality standards, lower overall running cost, minimize transmit power, better covering of different areas with different environmental situations. Thus, received signal prediction models play an important role in the RF coverage optimization and efficient use of the available resources in wireless communication. As the demand of location based services (LBS increases in non-line of site (NLOS environment, a robust received signal prediction model is needed to enhance the accuracy of the LBS techniques. This paper presents a large scale received signal prediction model for various types of propagation environment from field measured signal data. Based on the experimental data obtained, path loss exponent and standard deviation of signal strength variability are determined. It is shown that the values of these parameters vary from study location to location in the coverage area. The results indicate that different empirical models for mean signal strength should be used in different regions of the coverage area for cellular network planning.

  5. Experimental study and theoretical analysis on the effect of electric field on gas explosion and its propagation

    Institute of Scientific and Technical Information of China (English)

    YE Qing; LIN Bai-quan; JIAN Cong-guang; JIA Zhen-zhen

    2011-01-01

    The effect of the electric field with different intensity on explosion wave pressure and flame propagation velocity of gas explosion was experimentally studied, and the effect of electric field on gas explosion and its propagation was theoretically analyzed from heat transportation, mass transportation, and reaction process of gas explosion. The results show that the electric field can affect gas explosion by enhancing explosion intensity and explosion pressure, thus increasing flame velocity. The electric field can offer energy to the gas explosion reaction; the effect of the electric field on gas explosion increases with the increase of electric field intensity. The electric field can increase mass transfer action, heat transfer action, convection effects, diffusion coefficient, and the reaction system entropy, which make the turbulence of gas explosion in electric field increase; therefore, the electric field can improve flame combustion velocity and flame propagation velocity, release more energy, increase shock wave energy, and then promote the gas explosion and its propagation.

  6. Light propagation through weakly scattering media: a study of Monte Carlo vs. diffusion theory with application to neuroimaging

    Science.gov (United States)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2015-07-01

    One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.

  7. Sampling error study for rainfall estimate by satellite using a stochastic model

    Science.gov (United States)

    Shin, Kyung-Sup; North, Gerald R.

    1988-01-01

    In a parameter study of satellite orbits, sampling errors of area-time averaged rain rate due to temporal sampling by satellites were estimated. The sampling characteristics were studied by accounting for the varying visiting intervals and varying fractions of averaging area on each visit as a function of the latitude of the grid box for a range of satellite orbital parameters. The sampling errors were estimated by a simple model based on the first-order Markov process of the time series of area averaged rain rates. For a satellite of nominal Tropical Rainfall Measuring Mission (Thiele, 1987) carrying an ideal scanning microwave radiometer for precipitation measurements, it is found that sampling error would be about 8 to 12 pct of estimated monthly mean rates over a grid box of 5 X 5 degrees. It is suggested that an observation system based on a low inclination satellite combined with a sunsynchronous satellite simultaneously might be the best candidate for making precipitation measurements from space.

  8. Study of pion propagation in hot hadronic matter; Etude de la propagation des pions dans la matiere hadronique chaude

    Energy Technology Data Exchange (ETDEWEB)

    Davesne, D. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1995-11-15

    Considering the very high values of temperature and density reached in ultra-relativistic heavy ions collisions, it might be possible that the hadronic matter produced in such experiments undergoes a phase transition to a state called quark-gluon plasma. Even if this transition has not been proved experimentally yet, it is perfectly clear that these collisions produce some macroscopic systems of hot hadronic matter mainly constituted of pions. Moreover, the spectrum of these pions exhibits a surprising low transverse momentum enhancement which seems to be in contradiction with the low energy theorems. This work is first devoted to a possible explanation of this experimental result. However this explanation, being static, is insufficient: actually, a full description of the space-time evolution in terms of transport theory is needed to understand the global behaviour of the system. The approach proposed here takes into account the in-medium effects not only in the collision term of the transport equations but also in the streaming term. Moreover, a detailed study of the dissipative properties of an interacting Bose system is presented. (author)

  9. Study Of Three Dimensional Propagation Of Waves In Hollow Poroelastic Circular Cylinders

    OpenAIRE

    Shah S. A.

    2015-01-01

    Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a hollow poroelastic circular cylinder of infinite extent are investigated. General frequency equations for propagation of waves are obtained each for a pervious and an impervious surface. Degenerate cases of the general frequency equations of pervious and impervious surfaces, when the longitudinal wavenumber k and angular wavenumber n are zero, are considered. When k=0, the plane-strain vibrati...

  10. Development of Depletion Code Surrogate Models for Uncertainty Propagation in Scenario Studies

    Science.gov (United States)

    Krivtchik, Guillaume; Coquelet-Pascal, Christine; Blaise, Patrick; Garzenne, Claude; Le Mer, Joël; Freynet, David

    2014-06-01

    The result of transition scenario studies, which enable the comparison of different options of the reactor fleet evolution and management of the future fuel cycle materials, allow to perform technical and economic feasibility studies. The COSI code is developed by CEA and used to perform scenario calculations. It allows to model any fuel type, reactor fleet, fuel facility, and permits the tracking of U, Pu, minor actinides and fission products nuclides on a large time scale. COSI is coupled with the CESAR code which performs the depletion calculations based on one-group cross-section libraries and nuclear data. Different types of uncertainties have an impact on scenario studies: nuclear data and scenario assumptions. Therefore, it is necessary to evaluate their impact on the major scenario results. The methodology adopted to propagate these uncertainties throughout the scenario calculations is a stochastic approach. Considering the amount of inputs to be sampled in order to perform a stochastic calculation of the propagated uncertainty, it appears necessary to reduce the calculation time. Given that evolution calculations represent approximately 95% of the total scenario simulation time, an optimization can be done, with the development and implementation of a surrogate models library of CESAR in COSI. The input parameters of CESAR are sampled with URANIE, the CEA uncertainty platform, and for every sample, the isotopic composition after evolution evaluated with CESAR is stored. Then statistical analysis of the input and output tables allow to model the behavior of CESAR on each CESAR library, i.e. building a surrogate model. Several quality tests are performed on each surrogate model to insure the prediction power is satisfying. Afterward, a new routine implemented in COSI reads these surrogate models and using them in replacement of CESAR calculations. A preliminary study of the calculation time gain shows that the use of surrogate models allows stochastic

  11. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  12. Experimental Study on Igniting Self-propagating High-temperature Synthesis by Laser

    Institute of Scientific and Technical Information of China (English)

    CHEN Senchang; SHI Yusheng; HUANG Shuhuai

    2002-01-01

    An applied range of self-propagating high-temperature synthesis (SHS) is extended under igniting by laser, but there is no study in detail on its ignition process. The ignition time of SHS by laser is studied in detail in this paper for searching igniting law. A laser beam produced by CO2 laser scans back and forth along a straight line on the surface of a sample, and an ignition time is measured under different testing conditions. The results show that the ignition time is the shortest at certain mixing time, the ignition time is longer with decreasing of the density and increasing of the sample density, and the ignition time becomes shorter when pre-heat temperature rises, but the ignition time has no relation with the area and the thickness of samples when the thickness is thicker, and it has no close relation with shield gas of N2.

  13. Mobile radio alternative systems study satellite/terrestrial (hybrid) systems concepts

    Science.gov (United States)

    Kiesling, J. D.; Anderson, R. E.

    1983-01-01

    The use of satellites for mobile radio service in non-urban areas of the United States in the years from 1985 to 2000 was investigated. Several satellite concepts are considered: a system with single-beam coverage of the fifty United States and Puerto Rico, and multi-beam satellites with greater capacity. All of the needed functions and services identified in the market study are provided by the satellite systems, including nationwide radio access to vehicles without knowledge of vehicle location wideband data transmission from remote sites, two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The costs of providing the services are within acceptable limits, and the desired returns to the system investors are attractive. The criteria by which the Federal Communication judges the competing demands for public radio spectrum are reviewed with comments on how the criteria might apply to the consideration of land mobile satellites. Institutional arrangements for operating a mobile satellite system are based on the present institutional arrangements in which the services are offered to the end users through wireline and radio common carriers, with direct access by large private and government users.

  14. Multi-satellite rainfall sampling error estimates – a comparative study

    Directory of Open Access Journals (Sweden)

    A. Loew

    2012-10-01

    Full Text Available This study focus is set on quantifying sampling related uncertainty in the satellite rainfall estimates. We conduct observing system simulation experiment to estimate sampling error for various constellations of Low-Earth orbiting and geostationary satellites. There are two types of microwave instruments currently available: cross track sounders and conical scanners. We evaluate the differences in sampling uncertainty for various satellite constellations that carry instruments of the common type as well as in combination with geostationary observations. A precise orbital model is used to simulate realistic satellite overpasses with orbital shifts taken into account. With this model we resampled rain gauge timeseries to simulate satellites rainfall estimates free of retrieval and calibration errors. We concentrate on two regions, Germany and Benin, areas with different precipitation regimes. Our results show that sampling uncertainty for all satellite constellations does not differ greatly depending on the area despite the differences in local precipitation patterns. Addition of 3 hourly geostationary observations provides equal performance improvement in Germany and Benin, reducing rainfall undersampling by 20–25% of the total rainfall amount. Authors do not find a significant difference in rainfall sampling between conical imager and cross-track sounders.

  15. Wave Propagation in Modified Gravity

    CERN Document Server

    Lindroos, Jan Ø; Mota, David F

    2015-01-01

    We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the non-linear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within General Relativity such approximation is good and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and non-linearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated to the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that t...

  16. External field characterization using CHAMP satellite data for induction studies

    Indian Academy of Sciences (India)

    Praveen Kunagu; E Chandrasekhar

    2013-06-01

    Knowledge of external inducing source field morphology is essential for precise estimation of electromagnetic (EM) induction response. A better characterization of the external source field of magnetospheric origin can be achieved by decomposing it into outer and inner magnetospheric contributions, which are best represented in Geocentric Solar Magnetospheric (GSM) and Solar Magnetic (SM) reference frames, respectively. Thus we propose a spherical harmonic (SH) model to estimate the outer magnetospheric contribution, following the iterative reweighted least squares approach, using the vector magnetic data of the CHAMP satellite. The data covers almost a complete solar cycle from July 2001 to September 2010, spanning 54,474 orbits. The SH model, developed using orbit-averaged vector magnetic data, reveals the existence of a stable outer magnetospheric contribution of about 7.39 nT. This stable field was removed from the CHAMP data after transforming to SM frame. The residual field in the SM frame acts as a primary source for induction in the Earth. The analysis of this time-series using wavelet transformation showed a dominant 27-day periodicity of the geomagnetic field. Therefore, we calculated the inductive EM -response function in a least squares sense considering the 27-day period variation as the inducing signal. From the estimated -response, we have determined that the global depth to the perfect substitute conductor is about 1132 km and its conductivity is around 1.05 S/m.

  17. Studies of outer planet satellites, Mercury and Uranus

    Science.gov (United States)

    Mckinnon, William B.; Schenk, Paul M.

    1987-01-01

    Arguments were made, based on geometry, for both an impact and an internal origin for the ancient, partially preserved furrow system of Ganymede. It was concluded that furrows were not concentric, but could be impact related if multiringed structures on icy satellites are initially noncircular. The geometry of the Valhalla ring structure on Callisto was examined in order to assess the circularity of an unmodified ring system. The Ganymede furrow system was remapped to make use of improvements in coordinate control. The least-squares center of curvature for all furrows in the Marius and Galileao Regio is -20.7, and 179.2 degrees. Furrows in Marius and Galileo Regio are reasonably concentric, and are much more circular than previously estimated. The perceived present nonalignment of the assumed originally concentric furrows were used to argue for large-scale lateral motion of dark terrain blocks in Ganymede's crust, presumably in association with bright terrain formation., The overall alignment of furrows as well as the inherent scatter in centers of curvature from subregions of Galileo and Marius do not support this hypothesis.

  18. Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

    CERN Document Server

    Lei, Jiang

    2011-01-01

    In this paper, we investigate two new candidate transmission schemes, Non-Orthogonal Frequency Reuse (NOFR) and Beam-Hoping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the Signal-to-Interference plus Noise Ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g. power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performa...

  19. Study on Cell Error Rate of a Satellite ATM System Based on CDMA

    Institute of Scientific and Technical Information of China (English)

    赵彤宇; 张乃通

    2003-01-01

    In this paper, the cell error rate (CER) of a CDMA-based satellite ATM system is analyzed. Two fading models, i.e. the partial fading model and the total fading model are presented according to multi-path propagation fading and shadow effect. Based on the total shadow model, the relation of CER vs. the number of subscribers at various elevations under 2D-RAKE receiving and non-diversity receiving is got. The impact on cell error rate with pseudo noise (PN) code length is also considered. The result that the maximum likelihood combination of multi-path signal would not improve the system performance when multiple access interference (MAI) is small, on the contrary the performance may be even worse is abtained.

  20. Satellite Attitude from a Raven Class Telescope

    Science.gov (United States)

    2010-09-01

    Cache MATLAB was used as an interface to the jSim libraries, including orbit propagation, Earth Track determination, and satellite orientation methods...collection opportunities of the satellite. The combined software tool calculates the satellite orientation required to image the asset location... satellite orientation estimations, with only the photometric signatures with strong features being correctly estimated. The strong features that

  1. How to measure propagation velocity in cardiac tissue: a simulation study

    Directory of Open Access Journals (Sweden)

    Andre C. Linnenbank

    2014-07-01

    Full Text Available To estimate conduction velocities from activation times in myocardial tissue, the average vector method computes all the local activation directions and velocities from local activation times and estimates the fastest and slowest propagation speed from these local values. The single vector method uses areas of apparent uniform elliptical spread of activation and chooses a single vector for the estimated longitudinal velocity and one for the transversal. A simulation study was performed to estimate the influence of grid size, anisotropy, and vector angle bin size. The results indicate that the average vector method can best be used if the grid- or bin-size is large, although systematic errors occur. The single vector method performs better, but requires human intervention for the definition of fiber direction. The average vector method can be automated.

  2. A study of spectrum fatigue crack propagation in two aluminum alloys. 1: Spectrum simplification

    Science.gov (United States)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The fatigue crack propagation behavior of two commercial Al alloys was studied using spectrum loading conditions characteristics of those encountered at critical locations in high performance fighter aircraft. A tension dominated (TD) and tension compression (TC) spectrum were employed for each alloy. Using a mechanics-based analysis, it was suggested that negative loads could be eliminated for the TC spectrum for low to intermediate maximum stress intensities. The suggestion was verified by subsequent testing. Using fractographic evidence, it was suggested that a further similification in the spectra could be accomplished by eliminating low and intermediate peak load points resulting in near or below threshold maximum peak stress intensity values. It is concluded that load interactions become more important at higher stress intensities and more plasticity at the crack tip. These results suggest that a combined mechanics/fractographic mechanisms approach can be used to simplify other complex spectra.

  3. Numerical study of shock waves propagating through right angled multiple elbows

    Science.gov (United States)

    Kage, Kazuyuki; Shiroyama, Mihoko; Ishimatsu, Katsuya

    2005-09-01

    The details of the shock propagated through the right angled multiple elbows (mainly double elbow and fourfold elbow) are investigated by the numerical study. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by using the total variation diminishing (TVD) scheme. Computations were performed for six types of elbow (two types of double elbow and four types of fourfold elbow) and two incident shock Mach numbers (Ms=1.5, 2.3). The effects of the direction and number of the bends in the stabilizing, merging and attenuating processes of the shock are numerically explored by various diagrams such as pressure contours, pressure distributions on the walls and time histories of the pressure contours, and the strength of the shock front at the location of about 20 times the length for each type of elbows was displayed.

  4. Numerical Study of Shock Waves Propagating through Right Angled Multiple Elbows

    Institute of Scientific and Technical Information of China (English)

    Kazuyuki KAGE; Mihoko SHIROYAMA; Katsuya ISHIMATSU

    2005-01-01

    The details of the shock propagated through the right angled multiple elbows (mainly double elbow and fourfold elbow) are investigated by the numerical study. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by using the total variation diminishing (TVD) scheme. Computations were performed for six types of elbow (two types of double elbow and four types of fourfold elbow) and two incident shock Mach numbers (Ms=1.5, 2.3). The effects of the direction and number of the bends in the stabilizing, merging and attenuating processes of the shock are numerically explored by various diagrams such as pressure contours, pressure distributions on the walls and time histories of the pressure contours, and the strength of the shock front at the location of about 20 times the length for each type of elbows was displayed.

  5. Ion injection optimization for a linear Paul trap to study intense beam propagation

    Directory of Open Access Journals (Sweden)

    Moses Chung

    2007-01-01

    Full Text Available The Paul Trap Simulator Experiment (PTSX is a linear Paul trap whose purpose is to simulate the nonlinear transverse dynamics of intense charged particle beam propagation in periodic-focusing quadrupole magnetic transport systems. Externally created cesium ions are injected and trapped in the long central electrodes of the PTSX device. In order to have well-matched one-component plasma equilibria for various beam physics experiments, it is important to optimize the ion injection. From the experimental studies reported in this paper, it is found that the injection process can be optimized by minimizing the beam mismatch between the source and the focusing lattice, and by minimizing the number of particles present in the vicinity of the injection electrodes when the injection electrodes are switched from the fully oscillating voltage waveform to their static trapping voltage.

  6. Photoluminescence studies on rare earth titanates prepared by self-propagating high temperature synthesis method.

    Science.gov (United States)

    Joseph, Lyjo K; Dayas, K R; Damodar, Soniya; Krishnan, Bindu; Krishnankutty, K; Nampoori, V P N; Radhakrishnan, P

    2008-12-15

    The laser-induced luminescence studies of the rare earth titanates (R2Ti2O7) (R=La, Nd and Gd) using 355 nm radiation from an Nd:YAG laser are presented. These samples with submicron or nanometer size are prepared by the self-propagating high temperature synthesis (SHS) method and there is no known fluorescence shown by these rare earths in the visible region. Hence, the luminescence transitions shown by the La2Ti2O7 near 610 nm and Gd2Ti2O7 near 767 nm are quite interesting. Though La3+ ions with no 4f electrons have no electronic energy levels that can induce excitation and luminescence processes in the visible region, the presence of the Ti3+ ions leads to luminescence in this region.

  7. High-latitude propagation studies using a meridional chain of LF/MF/HF receivers

    Directory of Open Access Journals (Sweden)

    J. LaBelle

    2004-04-01

    Full Text Available For over a decade, Dartmouth College has operated programmable radio receivers at multiple high-latitude sites covering the frequency range 100-5000kHz with about a 1-s resolution. Besides detecting radio emissions of auroral origin, these receivers record characteristics of the ionospheric propagation of natural and man-made signals, documenting well-known effects, such as the diurnal variation in the propagation characteristics of short and long waves, and also revealing more subtle effects. For example, at auroral zone sites in equinoctial conditions, the amplitudes of distant transmissions on MF/HF frequencies are often enhanced by a few dB just before they fade away at dawn. The polarization and/or direction of the arrival of ionospherically propagating signals in the lower HF range (3-5MHz show a consistent variation between pre-midnight, post-midnight, and pre-dawn conditions. As is well known, magnetic storms and substorms dramatically affect ionospheric propagation; data from multiple stations spanning the invariant latitude range 67-79° reveal spatial patterns of propagation characteristics associated with magnetic storms and substorms. For example, in the hours preceding many isolated substorms, favorable propagation conditions occur at progressively lower latitudes as a function of time preceding the substorm onset. For some of these effects, explanations follow readily from elementary ionospheric physics, but understanding others requires further investigation.

    Key words. Magnetospheric physics (annual phenomena – Radio science (ionosphere propagation; radio-wave propagation6

  8. A statistical study on the brightening propagation of post-flare loops

    Institute of Scientific and Technical Information of China (English)

    LI LePing; DUAN HongYu; ZHANG Jun

    2009-01-01

    After examining the data observed by TRACE 171 and 195 A from May 1998 to December 2006, we choose as our sample 190 (39 X-class and 151 M-class) flare events which display post-flare loops (PFLs). We investigate the brightening propagation of these PFLs of the events in the sample along the magnetic neutral lines. In most of the cases, the length of the flare ribbons (FRs) ranges from 20 to 170 Mm. The propagating duration of the brightening lasts 10-60 min. The velocities of the propagation associated with the flare strenght and the legth of the FRs,range from 5 to 35 km·s~(-1).Furthermore,a greater propagating velocity corresponds to a greater deceleration (or acceleration). These PFLs display three types of propagating patterns: (1) the brightening begins at the middle part of a set of PFLs, and propagates bi-directionally towards its both ends; (2) the brightening first appears at one end of a set of PFLs, and then propagates to the other; (3) the initial brightening takes place at two (or more than two) positions on two (or more than two) sets of PFLs, and each brightening propagates bi-directionally along the magnetic neutral line.

  9. A statistical study on the brightening propagation of post-flare loops

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After examining the data observed by TRACE 171 and 195  from May 1998 to December 2006, we choose as our sample 190 (39 X-class and 151 M-class) flare events which display post-flare loops (PFLs). We investigate the brightening propagation of these PFLs of the events in the sample along the magnetic neutral lines. In most of the cases, the length of the flare ribbons (FRs) ranges from 20 to 170 Mm. The propagating duration of the brightening lasts 10-60 min. The velocities of the propagation associated with the flare strength and the length of the FRs, range from 5 to 35 km·s-1. Furthermore, a greater propagating velocity corresponds to a greater deceleration (or acceleration). These PFLs display three types of propagating patterns: (1) the brightening begins at the middle part of a set of PFLs, and propagates bi-directionally towards its both ends; (2) the brightening first appears at one end of a set of PFLs, and then propagates to the other; (3) the initial brightening takes place at two (or more than two) positions on two (or more than two) sets of PFLs, and each brightening propagates bi-directionally along the magnetic neutral line.

  10. Experimental study on impact-induced seismic wave propagating through quartz sand simulating asteroid regolith

    Science.gov (United States)

    Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao

    2015-08-01

    Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance

  11. The Wheeler Propagator

    OpenAIRE

    Bollini, C. G.; Rocca, M. C.

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples tha...

  12. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  13. TOLNET – A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Directory of Open Access Journals (Sweden)

    Newchurch Michael J.

    2016-01-01

    Full Text Available Ozone lidars measure continuous, high-resolution ozone profiles critical for process studies and for satellite validation in the lower troposphere. However, the effectiveness of lidar validation by using single-station data is limited. Recently, NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly timeresolved (few minutes tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation. This article briefly describes the concept, stations, major specifications of the TOLNet instruments, and data archiving.

  14. Numerical study of the propagation of small-amplitude atmospheric gravity wave

    Institute of Scientific and Technical Information of China (English)

    YUE Xianchang; YI Fan; LIU Yingjie; LI Fang

    2005-01-01

    By using a two-dimensional fully nonlinear compressible atmospheric dynamic numerical model, the propagation of a small amplitude gravity wave packet is simulated. A corresponding linear model is also developed for comparison. In an isothermal atmosphere, the simulations show that the nonlinear effects impacting on the propagation of a small amplitude gravity wave are negligible. In the nonisothermal atmosphere, however, the nonlinear effects are remarkable. They act to slow markedly down the propagation velocity of wave energy and therefore reduce the growth ratio of the wave amplitude with time. But the energy is still conserved. A proof of this is provided by the observations in the middle atmosphere.

  15. A formalism for cosmic ray propagation studies. [model based on continuity equation of multiply charged nuclei

    Science.gov (United States)

    Golden, R. L.; Badhwar, G. D.; Stephens, S. A.

    1975-01-01

    The continuity equation for cosmic ray propagation is used to derive a set of linear equations interrelating the fluxes of multiply charged nuclei as observed at any particular part of the galaxy. The derivation leads to model independent definitions for cosmic ray storage time, mean density of target nuclei and effective mass traversed. The set of equations form a common framework for comparisons of theories and observations. As an illustration, it is shown that there exists a large class of propagation models which give the same result as the exponential path length model. The formalism is shown to accommodate dynamic as well as equilibrium models of production and propagation.

  16. Analysis of internal crack propagation in silicon due to permeable pulse laser irradiation: study on processing mechanism of stealth dicing

    Science.gov (United States)

    Ohmura, Etsuji; Kawahito, Yuta; Fukumitsu, Kenshi; Okuma, Junji; Morita, Hideki

    2011-02-01

    Stealth dicing (SD) is an innovative dicing method developed by Hamamatsu Photonics K.K. In the SD method, a permeable nanosecond laser is focused inside a silicon wafer and scanned horizontally. A thermal shock wave propagates every pulse toward the side to which the laser is irradiated, then a high dislocation density layer is formed inside the wafer after the thermal shock wave propagation. In our previous study, it was concluded that an internal crack whose initiation is a dislocation is propagated when the thermal shock wave by the next pulse overlaps with this layer partially. In the experimental result, the trace that a crack is progressed gradually step by step was observed. In this study, the possibility of internal crack propagation by laser pulses was investigated. A two-dimensional thermal stress analysis based on the linear fracture mechanics was conducted using the stress distribution obtained by the axisymmetric thermal stress analysis. As a result, the validity of the hypothesis based on a heat transfer analysis result previously presented was supported. Also it was concluded that the internal crack is propagated by at least two pulses.

  17. A study on quality and availability of COCTS images of HY- 1 satellite by simulation

    Institute of Scientific and Technical Information of China (English)

    李淑菁; 毛天明; 潘德炉

    2002-01-01

    Hy-1 is a first China's ocean color satellite which will be launched as a piggyback satellite on FY- 1 satellite using Long March rocket. On the satellite there are two sensors: one is the China's ocean color and temperature scanner (COCTS), the other is CCD coastal zone imager (CZI).The COCTS is considered to be a main sensor to play a key role. In order to understand the characteristics of future ocean color images observed, a simulation and evaluation study on the quality and availability of the COCTS image has been done. First, the simulation models are introduced briefly, and typical simulated cases of radiance images at visible bands are introduced, in which the radiance distribution is based on geographic location, the satellite orbital parameters and sensor properties, the simulated method to evaluate the image quality and availability is developed by using the characteristics of image called the complex signal noise ratio ( CSNR ). Meanwhile, a series of the CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of the COCTS images before the HY - 1 is placed in orbit. Finally, the quality and availability of the COCTS images are quantitatively analyzed with the simulated CSNR data. The results will be beneficial to all scientists who are in charge of the COCTS mission and to those who plan to use the data from the COCTS.

  18. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Jens Wickert

    2013-03-01

    Full Text Available The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO, five Inclined Geosynchronous Orbit (IGSO satellites and four Medium Earth Orbit (MEO satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  19. Second-generation mobile satellite system. A conceptual design and trade-off study

    Science.gov (United States)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  20. Digital Radio Broadcasting using the mixed satellite/terrestrial approach: An application study

    Science.gov (United States)

    Paiement, Richard V.; Voyer, Rene; Prendergast, Doug

    1995-01-01

    Digital radio broadcasting (DRB) is a new service that offers CD quality stereo programs to fixed, portable and mobile receivers. Terrestrial DRB in Canada is considered as a replacement technology for existing AM and FM services, and it is expected to start up in 1996. Canada currently favors Eureka 147 technology operating in the L-band, in the 1452-1492 MHz frequency band allocated during WARC'92 for DRB. Terrestrial DRB delivery is appropriate for small to medium sized service areas, such as cities and their associated suburbs. For larger areas such as provinces, as well as for sparsely populated areas such as the regions in northern Canada, satellite delivery is more appropriate. The mixed approach is based on both satellite and terrestrial broadcasting services using a common frequency band. Spectrum efficiency is achieved through close coordination of both service types, to achieve proper frequency sharing and spectrum re-use. As well, use of a common transmission format by both types of services allows for a common receiver. This mixed satellite/terrestrial approach to DRB is being seriously considered in Canada and in other countries. This paper studies the feasibility of such a mixed satellite/terrestrial DRB system. It looks at possible coverage scenarios for Canada, and at the satellite and receiver technology requirements.

  1. The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp.

    Science.gov (United States)

    Morkun, V; Morkun, N; Pikilnyak, A

    2015-02-01

    The results of research of the volume ultrasonic waves propagation in the gas-containing iron ore slurry using ultrasonic phased array technology is presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study

    Science.gov (United States)

    Wilke, Stephen; Schweitzer, Ben; Khateeb, Siddique; Al-Hallaj, Said

    2017-02-01

    The safety issues of lithium ion batteries pose ongoing challenges as the market for Li-ion technology continues to grow in personal electronics, electric mobility, and stationary energy storage. The severe risks posed by battery thermal runaway necessitate safeguards at every design level - from materials, to cell construction, to module and pack assembly. One promising approach to pack thermal management is the use of phase change composite materials (PCC™), which offer passive protection at low weight and cost while minimizing system complexity. We present experimental nail penetration studies on a Li-ion pack for small electric vehicles, designed with and without PCC, to investigate the effectiveness of PCC thermal management for preventing propagation when a single cell enters thermal runaway. The results show that when parallel cells short-circuit through the penetrated cell, the packs without PCC propagate fully while those equipped with PCC show no propagation. In cases where no external short circuits occur, packs without PCC sometimes propagate, but not consistently. In all test conditions, the use of PCC lowers the maximum temperature experienced by neighboring cells by 60 °C or more. We also elucidate the propagation sequence and aspects of pack failure based on cell temperature, voltage, and post-mortem data.

  3. Nitroglycerin enhances the propagation of cortical spreading depression: comparative studies with sumatriptan and novel kynurenic acid analogues

    Science.gov (United States)

    Knapp, Levente; Szita, Bence; Kocsis, Kitti; Vécsei, László; Toldi, József

    2017-01-01

    Background The complex pathophysiology of migraine is not yet clearly understood; therefore, experimental models are essential for the investigation of the processes related to migraine headache, which include cortical spreading depression (CSD) and NO donor-induced neurovascular changes. Data on the assessment of drug efficacy in these models are often limited, which prompted us to investigate a novel combined migraine model in which an effective pharmacon could be more easily identified. Materials and methods In vivo electrophysiological experiments were performed to investigate the effect of nitroglycerin (NTG) on CSD induced by KCl application. In addition, sumatriptan and newly synthesized neuroactive substances (analogues of the neuromodulator kynurenic acid [KYNA]) were also tested. Results The basic parameters of CSDs were unchanged following NTG administration; however, propagation failure was decreased compared to the controls. Sumatriptan decreased the number of CSDs, whereas propagation failure was as minimal as in the NTG group. On the other hand, both of the KYNA analogues restored the ratio of propagation to the control level. Discussion The ratio of propagation appeared to be the indicator of the effect of NTG. This is the first study providing direct evidence that NTG influences CSD; furthermore, we observed different effects of sumatriptan and KYNA analogues. Sumatriptan changed the generation of CSDs, whereas the analogues acted on the propagation of the waves. Our experimental design overlaps with a large spectrum of processes present in migraine pathophysiology, and it can be a useful experimental model for drug screening. PMID:28053504

  4. How study of hurricane swell can help to provide a better prediction of the tsunami wave propagation on Caribbean coasts?

    Science.gov (United States)

    Dorville, Jean-François; Dondin, Frédéric; Cécé, Raphael; Bernard, Didier

    2014-05-01

    Prediction of tsunami wave propagation on a complex bathymetry can be fatal. Do a mistake on the location of the tsunami wave impact on the coast is highly dangerous. The destruction due to mechanical impact or submersion of the large area of the coast zone can be avoid with a good estimation (i.e.; height, location, duration) of the hazard. Features of the propagation are important in term of values but also in term of dynamic, an evacuation plan is directly base on the prediction of the sequence of events. The frequency of large tsunami is low, but the study of real case may help to have a complete comprehension of the process. We would be better prepare for a tsunami if we had more tsunami. Caribbean arc was generated by an intense tectonic motion and volcanic activity. The risk of tsunami is high in the area both generated by tectonic motion and volcanic landslide. The quality of a numerical propagation of tsunami is highly dependent of the quality of the DEM Caribbean coast are impact by large Hurricane wave. The study of those can be helpful in the tsunami study, particularly for the bathymetry effect on large wave. The shape of the both types of wave are not the same, we do not try to do a direct comparison, but used the information of the dispersion of large swell wave to applied it to the tsunami dispersion and fill the lack of information of the bathymetry. We focus on the comparative study of the propagation of tsunami wave generated by submarine volcano land slide and hurricane wave on a small scale bathymetry (10 m, Lito 3d). The case of Guadeloupe and Martinique island are detailed in this study, due to the available dataset. We used those two territories as reference area. The numerical propagation of the waves is done with FUNWAVE on two different bathymetry (10 m & 50 m). The tsunami wave was generated by VolcFlow in case of submarine volcano collapse and the swell determine by coupling of WaveWatchIII and SWAN in case of past Hurricane. The

  5. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    OpenAIRE

    2016-01-01

    Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main paramet...

  6. Study on application potentiality of the first China's ocean satellite HY- 1A

    Institute of Scientific and Technical Information of China (English)

    Pan Delu; He Xianqiang; Li Shujing; Gong Fang

    2003-01-01

    China has launched her first ocean color satellite HY- 1A on May 15, 2002 since American ocean color satellite SeaSTAR was on the orbit in 1997. First, the properties and characteristics of HY - 1A are briefly introduced; second, the quality and availability are evaluated by means of the complex signal noise ratio (CSNR) which is simulated theoretically; third, the received HY- 1A data are compared with SeaSTAR data to understand the accuracy of radiance measurement by the HY- 1A; finally, the remote sensing products of ocean color and temperature are mapped to study the application potentiality of HY- 1A. The results show that the HY- 1A has its latent capability for the application of marine environment detection, the management and protection of marine resources, and the national rights and interests. Meanwhile some suggestions are proposed to modify the next ocean satellite.

  7. An experimental study of shock wave propagation through a polyester film

    Science.gov (United States)

    Eliasson, Veronica; Jeon, Hongjoo

    2016-11-01

    A polyester film is available in a variety of uses such as packaging, protective overlay, barrier protection, and other industrial applications. In the current study, shock tube experiments are performed to study the influence of a polyester film on the propagation of a planar shock wave. A conventional shock tube is used to create incident shock Mach numbers of Ms = 1.34 and 1.46. A test section of the shock tube is designed to hold a 0.009 mm, 0.127 mm, 0.254 mm, or 0.508 mm thick polyester film (Dura-Lar). High-temporal resolution schlieren photography is used to visualize the shock wave mitigation caused by the polyester film. In addition, four pressure transducers are used to measure the elapsed time of arrival and overpressure of the shock wave both upstream and downstream of the test section. Results show that the transmitted shock wave in the polyester film is clearly observed and the transmitted shock Mach number is decreased by increasing film thickness. This study is supported by the National Science Foundation under Grant No. CBET-1437412.

  8. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  9. The FODA-TDMA satellite access scheme - Presentation, study of the system, and results

    Science.gov (United States)

    Celandroni, Nedo; Ferro, Erina

    1991-12-01

    A description is given of FODA-TDMA, a satellite access scheme designed for mixed traffic. The study of the system is presented and the choice of some parameters is justified. A simplified analytic solution is found, describing the steady-state behavior of the system. Some results of the simulation tests for an already existing hardware environment are also presented for the channel speeds of 2 and 8 Mb/s, considering both the stationary and the transient cases. The results of the experimentation at 2 Mb/s on the satellite Eutelsat-F2 are also presented and compared with the results of the simulation.

  10. Study of long path VLF signal propagation characteristics as observed from Indian Antarctic station, Maitri

    Science.gov (United States)

    Sasmal, Sudipta; Pal, Sujay; Chakrabarti, Sandip K.

    2014-10-01

    To examine the quality and propagation characteristics of the Very Low Frequency (VLF) radio waves in a very long propagation path, Indian Centre for Space Physics, Kolkata, participated in the 27th Indian scientific expedition to Antarctica during 2007-2008. One Stanford University made AWESOME VLF receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data were recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. The quality of the signal from the VTX transmitter was found to be very good, consistent and highly stable in day and night. The signal shows the evidences of the presence of the 24 h solar radiation in the Antarctic region during local summer. Here we report the both narrow band and broadband VLF observations from this site. The diurnal variations of VTX signal (18.2 kHz) are presented systematically for Antarctica path and also compared the same with the variations for a short propagation path (VTX-Kolkata). We compute the spatial distribution of the VTX signal along the VTX-Antarctica path using the most well-known LWPC model for an all-day and all-night propagation conditions. The calculated signal amplitudes corresponding to those conditions relatively corroborate the observations. We also present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible.

  11. Sub-basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in the North Atlantic Ocean

    Science.gov (United States)

    Kleinherenbrink, Marcel; Riva, Riccardo; Sun, Yu

    2016-11-01

    In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance-covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr-1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance-covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr-1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10-20 % is applied; however, the performance of the DDK5-filtered solution strongly depends

  12. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  13. Updating Object for GIS Database Information Using High Resolution Satellite Images: a Case Study Zonguldak

    Science.gov (United States)

    Alkan, M.; Arca, D.; Bayik, Ç.; Marangoz, A. M.

    2011-09-01

    Nowadays Geographic Information Systems (GIS) uses Remote Sensing (RS) data for a lot of applications. One of the application areas is the updating of the GIS database using high resolution imagery. In this context high resolution satellite imagery data is very important for many applications areas today's and future. And also, high resolution satellite imagery data will be used in many applications for different purposes. Information systems needs to high resolution imagery data for updating. Updating is very important component for the any of the GIS systems. One of this area will be updated and kept alive GIS database information. High resolution satellite imagery is used with different data base which serve map information via internet and different aims of information systems applications in future topographic and cartographic information systems will very important in our country in this sense use of the satellite images will be unavoidable. In this study explain to how is acquired to satellite images and how is use this images in information systems for object and roads. Firstly, pan-sharpened two of the IKONOS's images have been produced by fusion of high resolution PAN and MS images using PCI Geomatica v9.1 software package. Automatic object extraction has been made using eCognition v4.0.6. On the other hand, these objects have been manually digitized from high resolution images using ArcGIS v9.3. software package. Application section of in this study, satellite images data will be compared each other and GIS objects and road database. It is also determined which data is useful in Geographic Information Systems. Finally, this article explains that integration of remote sensing technology and GIS applications.

  14. Preliminary Study on Active Modulation of Polar Mesosphere Summer Echoes with the Radio Propagation in Layered Space Dusty Plasma

    Science.gov (United States)

    Zhou, Shengguo; Li, Hailong; Fu, Luyao; Wang, Maoyan

    2016-06-01

    Radar echoes intensity of polar mesosphere summer echoes (PMSE) is greatly affected by the temperature of dusty plasma and the frequency of electromagnetic wave about the radar. In this paper, a new method is developed to explain the active experiment results of PMSE. The theory of wave propagation in a layered media is used to study the propagation characteristics of an electromagnetic wave at different electron temperatures. The simulation results show that the variation tendency of the reflected power fraction almost agrees with the results observed by radar in the European Incoherent Scatter Scientific Association (EISCAT). The radar echoes intensity of PMSE greatly decreases with the increase of the radio frequency and the enhancement of the electron temperature. supported by National Natural Science Foundation of China (Nos. 41104097 and 41304119) and by the National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation (CRIRP)

  15. Study of the initiation and the propagation of cracks under 3D thermal cyclic loading; Etude de l'amorcage et de la propagation des fissures sous chargement thermique cyclique 3D

    Energy Technology Data Exchange (ETDEWEB)

    Ancelet, O

    2005-07-01

    The incident which has occurred on the Civaux power plant has shown the noxiousness of thermal loading and the difficulty to take it into account at design level. The objective of this report is to study the initiation and the propagation of crack under thermal loading. In this aim the CEA has developed a new experiment named FAT3D. The various experiments carried out showed the harmfulness of a thermal loading, which makes it possible to rapidly initiate a network of cracks and to propagate one (or some) cracks through the totally thickness of the component under certain conditions. These experimental results associated with a mechanical analysis put at fault the usual criteria of damage based on the variations of the equivalent strain. In addition, the study of the propagation stage shows the importance of the plasticity which, in the case of a thermal loading, slows down the propagation of the crack. (author)

  16. Parameter Impact on Sharing Studies Between UAS CNPC Satellite Transmitters and Terrestrial Systems

    Science.gov (United States)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2015-01-01

    In order to provide a control and non-payload communication (CNPC) link for civil-use unmanned aircraft systems (UAS) when operating in beyond-line-of-sight (BLOS) conditions, satellite communication links are generally required. The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation safety spectrum allocations. Although a suitable allocation exists in the 5030-5091 MHz band, no satellites provide operations in this band and none are currently planned. In order to avoid a very lengthy delay in the deployment of UAS in BLOS conditions, it has been proposed to use existing satellites operating in the Fixed Satellite Service (FSS), of which many operate in several spectrum bands. Regulatory actions by the International Telecommunications Union (ITU) are needed to enable such a use on an international basis, and indeed Agenda Item (AI) 1.5 for the 2015 World Radiocommunication Conference (WRC) was established to decide on the enactment of possible regulatory provisions. As part of the preparation for AI 1.5, studies on the sharing FSS bands between existing services and CNPC for UAS are being contributed by NASA and others. These studies evaluate the potential impact of satellite CNPC transmitters operating from UAS on other in-band services, and on the potential impact of other in-band services on satellite CNPC receivers operating on UAS platforms. Such studies are made more complex by the inclusion of what are essentially moving FSS earth stations, compared to typical sharing studies between fixed elements. Hence, the process of determining the appropriate technical parameters for the studies meets with difficulty. In order to enable a sharing study to be completed in a less-than-infinite amount of time, the number of parameters exercised must be greatly limited. Therefore, understanding the impact of various parameter choices is accomplished through selectivity analyses. In the case of sharing

  17. Mathematical analysis study for radar data processing and enchancement. Part 2: Modeling of propagation path errors

    Science.gov (United States)

    James, R.; Brownlow, J. D.

    1985-01-01

    A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.

  18. A study of the climate change impacts on fluvial flood propagation in the Vietnamese Mekong Delta

    Directory of Open Access Journals (Sweden)

    V. P. Dang Tri

    2012-06-01

    Full Text Available The present paper investigated what would be the flood propagation in the Vietnamese Mekong Delta (VMD, due to different projected climate change scenarios, if the 2000 flood event (the most recent highest flood in the history was taken as a base for computation. The analysis herein was done to demonstrate the particular complexity of the flood dynamics. The future floods, on short term horizon, year 2050, were studied by considering the projected sea level rise (SLR (+30 cm. At the same time, future flood hydrograph changes at Kratie, Cambodia were applied for the upstream boundary condition. In this study, the future flood hydrograph was separated into two scenarios in which: (i Scenario 1 was projected in 2050 according to the adjusted regional climate model without any development in the Upper Mekong Basin; and, (ii Scenario 2 was projected as in Scenario 1 but with the development of the Upper Mekong Basin after 2030. Analyses were done to identify the high sensitive areas in terms of flood conditions (i.e. with and without flood according to the uncertainty of the projection of both the upstream and downstream boundary conditions. In addition, due to the rice-dominated culture in the VMD, possible impacts of flood on the rice-based farming systems were analysed.

  19. TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies

    Science.gov (United States)

    Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.; hide

    2015-01-01

    NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.

  20. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    Science.gov (United States)

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  1. Experimental study on waves propagation over a coarse-grained sloping beach

    Science.gov (United States)

    Hsu, Tai-Wen; Lai, Jian-Wu

    2013-04-01

    This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave

  2. Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom

    Science.gov (United States)

    Chen, Y. Y.; Hsu, H. C.; Li, M. S.

    2012-04-01

    In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the

  3. Environmental propagation of noise in mines and nearby villages: A study through noise mapping

    Directory of Open Access Journals (Sweden)

    Veena D Manwar

    2016-01-01

    Full Text Available Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS. As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A, and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B or only by increased mechanization and not changing the duration of work (Situation C. Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A and 70–80 dB(A near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A in Situations A and C whereas it was 85–90 dB(A in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A in Situations A and C and between 85 and 95 dB(A in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB limits, i.e., 55 dB(A. Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.

  4. Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling

    Directory of Open Access Journals (Sweden)

    Yuri B. Shtessel

    2016-08-01

    Full Text Available Electrostimulation of electrical networks in plants can induce electrotonic or action potentials propagating along their leaves and stems. Both action and electrotonic potentials play important roles in plant physiology and in signal transduction between abiotic or biotic stress sensors and plant responses. It is well known that electrostimulation of plants can induce gene expression, enzymatic systems activation, electrical signaling, plant movements, and influence plant growth. Here we present the mathematical model of electrotonic potentials in plants, which is supported by the experimental data. The information gained from this mathematical model and analytical study can be used not only to elucidate the effects of electrostimulation on higher plants, but also to observe and predict the intercellular and intracellular communication in the form of electrical signals within electrical networks of plants. For electrostimulation, we used the pulse train, sinusoidal and a triangular saw-shape voltage profiles. The amplitude and sign of electrotonic potentials depend on the amplitude, rise and fall of the applied voltage. Electrostimulation by a sinusoidal wave from a function generator induces electrical response between inserted Ag/AgCl electrodes with a phase shift of 90o. This phenomenon shows that electrical networks in leaves of Aloe vera have electrical differentiators. Electrostimulation is an important tool for the evaluation of mechanisms of phytoactuators’ responses in plants without stimulation of abiotic or biotic stress phytosensors.

  5. Preliminary study on the effect of stiffness on lamb wave propagation in bovine corneas.

    Science.gov (United States)

    Zhang, Xin-Yu; Yin, Yin; Guo, Yan-Rong; Diao, Xian-Fen; Chen, Xin

    2013-01-01

    The viscoelastic properties of human cornea could provide valuable information for various clinical applications. Particularly, it will be helpful to achieve a patient-specific biomechanical optimization in LASIK refractive surgery, early detection of corneal ecstatic disease or improved accuracy of intraocular pressure (IOP) measurement. However, there are few techniques that are capable of accurately assessing the corneal elasticity in situ in a nondestructive fashion. In order to develop a quantitative method for assessing both elasticity and viscosity of the cornea, we use ultrasound radiation force to excite Lamb waves in cornea, and a pulse echo transducer to track the tissue vibration. The fresh postmortem bovine eyes were treated via collagen cross-linking to make the cornea stiff. The effect of stiffness was studied by comparing the propagation of Lamb waves in normal and treated corneas. It was found that the waveform of generated Lamb waves changed significantly due to the increase in higher modes in treated corneas. This result indicated that the generated waveform was a complex of multiple harmonics and the varied stiffness will affect the energy distribution over different components. Therefore, it is important for assessing the viscoelastic properties of the cornea to know the components of Lamb wave and calculate the phase velocity appropriately.

  6. M82 - A radio continuum and polarisation study I. Data reduction and cosmic ray propagation

    CERN Document Server

    Adebahr, B; Klein, U; Wezgowiec, M; Bomans, D J; Dettmar, R -J

    2012-01-01

    The potential role of magnetic fields and cosmic ray propagation for feedback processes in the early Universe can be probed by studies of local starburst counterparts with an equivalent star-formation rate. Archival data from the WSRT was reduced and a new calibration technique introduced to reach the high dynamic ranges needed for the complex source morphology of M82. This data was combined with archival VLA data, yielding total power maps at 3cm, 6cm, 22cm and 92cm. The data shows a confinement of the emission at wavelengths of 3/6cm to the core region and a largely extended halo reaching up to 4kpc away from the galaxy midplane at wavelengths of 22/92cm up to a sensitivity limit of 90muJy and 1.8mJy respectively. The results are used to calculate the magnetic field strength in the core region to 98muG and to 24muG in the halo regions. From the observation of ionisation losses the filling factor of the ionised medium could be estimated to 2%. We find that the radio emission from the core region is dominated...

  7. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation)

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  8. Propagation of seizures in a case of lesional mid-cingulate gyrus epilepsy studied by stereo-EEG.

    Science.gov (United States)

    Alkawadri, Rafeed; Gonzalez-Martinez, Jorge; Gaspard, Nicolas; Alexopoulos, Andreas V

    2016-12-01

    Little is known about the propagation of seizures arising from the cingulate gyrus, as cingulate coverage with interhemispheric subdural electrodes is usually challenging and incomplete due to inherent anatomical and vascular limitations. We present a case of lesional mid-cingulate epilepsy confirmed by stereotactically implanted intracranial depth electrodes and subsequent surgical resection. Hypermotor symptomatology was seen during the first seven seconds of seizure onset while the seizure was still confined to the mid-cingulate gyrus contacts. The patient had brief contralateral clonic movements as seizure propagated to the primary motor cortex. There was a high concordance between the primary propagation contacts, as delineated by intracranial EEG, and the contacts, with higher coherence values in the connectivity matrix. Interestingly, cingulate-extra-cingulate connectivity and spread to the primary motor, premotor, and prefrontal cortex was seen preceding spread to other cingulate contacts, of which one was less than 15 mm from the onset contact. This report is one of a few published, documenting propagation of seizures arising from the mid-cingulate cortex. As illustrated by these data, hypermotor semiology correlated with direct activation of the cingulate cortex. Subsequent seizure propagation activated an extensive extra-cingulate rather than an intra-cingulate epileptogenic network. Interestingly, had the region of onset not sampled, the seizure onset would have appeared as non-localizing widespread rhythms over the fronto-parietal convexities. Further studies to explore the propagation of seizures arising from the cingulate gyrus and the physiological and pathological connectivity patterns within the cingulate gyrus in humans are needed, preferably using stereotactic implantation. Specific targets to be investigated are also discussed.

  9. Satellite microwave estimates of soil moisture and applications for desertification studies

    Science.gov (United States)

    Owe, Manfred; Van de Griend, Adriaan A.; de Jeu, Richard A.; de Vries, Jorrit; Seyhan, E.

    1998-12-01

    Based on a series of studies conducted in Botswana and preliminary results from an ongoing study in Spain, developments in microwave remote sensing by satellite which can be used to monitor near real-time surface moisture and also study long term soil moisture climatology are described. A progression of methodologies beginning with single polarization studies and leading to both dual polarization and multiple frequency techniques are described. Continuing analysis of a nine year data set of satellite-derived surface moisture in Spain is ongoing. Preliminary results from this study appear to provide some evidence of long term decertification in certain parts of this region. The methodologies developed during these investigations can be applied to other regions, and have the potential for providing modelers with extended data sets of independently derived surface moisture for simulation and validation studies, and climate change studies at the global scale.

  10. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  11. Asymptotic study and numerical simulation of laser wave propagation in an inhomogeneous medium; Etude asymptotique et simulation numerique de la propagation laser en milieu inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Doumic, M

    2005-05-15

    To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations. In a first part, we make an asymptotic analysis of the Klein-Gordon equation. We obtain approximated problems, either of Schroedinger or of transport-Schroedinger type. We prove the existence and uniqueness of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation. In a second part, we study the boundary problem for the advection Schroedinger equation, and show what the boundary condition must be so that the problem on our domain should be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition. In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations. (author)

  12. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  13. Intercellular waves propagation in an array of cells coupled through paracrine signaling: A computer simulation study

    Science.gov (United States)

    Kepseu, W. D.; Woafo, P.

    2006-04-01

    A linear chain of cells is considered in which calcium (Ca2+) fluctuations within a cell are described by a simple minimal model. Cells are coupled together by bidirectional paracrine signaling via calcium oscillations. Two typical zones of propagation are observed: a transition zone and a regular zone. The transition zone exhibits the same phenomena that can be observed in single cells, pairs or triplets of cells. Within the regular zone, simple periodic oscillations of calcium propagate and the Ca2+ signal is similar from one cell to another (same amplitude and same frequency). But, the signals are separated by a slight phase shift characterizing the propagation of Ca2+ waves due to the type of coupling used. We also consider the colonization of the lattice by the abnormal oscillations of sick cells.

  14. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    CERN Document Server

    Casolari, Andrea

    2013-01-01

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  15. Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LI Qing; LU Wenqiang

    2005-01-01

    A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.

  16. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    Energy Technology Data Exchange (ETDEWEB)

    Casolari, A. [Università di Pisa, Pisa (Italy); Cardinali, A. [Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati, Rome (Italy)

    2014-02-12

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  17. Study on peak overpressure and flame propagation speed of gas deflagration in the tube with obstacles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The on-way peak overpressure and flame propagation speed of gas deflagration in the tube with obstacles are important data for process safety. Based on carbon monoxide deflagration experiments, the paper presents a multi-zone integration model for calculation of on-way peak overpressure, in which the tube with obstacles is considered as a series of venting explosion enclosures which link each others. The analysis of experimental data indicates that the on-way peak overpressure of gas deflagration can be correlated as an empirical formula with equivalence ratio of carbon monoxide oxidation, expansion ratio, flame path length, etc., and that the on-way peak overpressure exhibits a linear relationship with turbulence factor and flame propagation speed. An empirical formula of flame propagation speed is given.

  18. Managing Data From Signal-Propagation Experiments

    Science.gov (United States)

    Kantak, Anil V.

    1992-01-01

    Report dicusses system for management of data from Pilot Field Experiment (PiFEx) program, which consists of series of experiments on propagation of signals from transmitter at one fixed location to transponder on tower at another fixed location and from transponder to mobile receiver in van. Purpose of experiments to simulate signal-propagation conditions of land-mobile/satellite communication system.

  19. Flood Monitoring and Hydrologic Studies Using Retracked Satellite Radar Altimetry

    Science.gov (United States)

    Zhang, M.; Shum, C.; Lee, H.; Alsdorf, D.; Schwartz, F.

    2008-12-01

    Nadir, pulse-limited radar altimetry measurements have been used to monitor large surface-water bodies. In spite of progress, there is a need for a robust and automated procedure, which allows classification and stage measurements in small water bodies, which lying along the orbital path, using multiple radar altimeter measurements. Here we used an algorithm, which is mainly based on radar scatter waveform response and statistical analysis of mean and standard deviation of the resulting water level change to classify surface- waters from other land covers. We tested the algorithm using 10-Hz retracked radar altimetry measurements from TOPEX over regions including the Amazon River basin, the Prairie Pothole Region in North America, and south-western Taiwan. The estimated water-level stages are compared with data from available stage measurements, and altimetry data available from public data centers. We also applied the algorithm to study the 1997 hundred-year Red River flood, and the June 2008 fifty-year flood in the Upper Midwest of the United States. For the1997 flood, it is found that the flooded regions detected by altimetry include the Red River Basin in North Dakota and Minnesota, the Missouri River Basin in North Dakota and South Dakota, the Minnesota River Basin and the Mississippi River Basin in Minnesota and Iowa. The extent of the flood agrees with the USGS record. The observed water height in Grand Forks reaches 6 meters above the normal. The ENVISAT altimetry is shown to be able to track the ebb and recede of the 2008 Iowa City flood. The results of this study could be applied to provide improved accuracy and potentially automated classification of nadir radar altimetry observed small inland water body measurements for hydrologic studies and for flood monitoring.

  20. Studies of oceanic tectonics based on GEOS-3 satellite altimetry

    Science.gov (United States)

    Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.

    1979-01-01

    Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.

  1. An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-01-01

    Full Text Available In the Earth Observation sensor web environment, the rapid, accurate, and unified discovery of diverse remote sensing satellite sensors, and their association to yield an integrated solution for a comprehensive response to specific emergency tasks pose considerable challenges. In this study, we propose a remote sensing satellite sensor object model, based on the object-oriented paradigm and the Open Geospatial Consortium Sensor Model Language. The proposed model comprises a set of sensor resource objects. Each object consists of identification, state of resource attribute, and resource method. We implement the proposed attribute state description by applying it to different remote sensors. A real application, involving the observation of floods at the Yangtze River in China, is undertaken. Results indicate that the sensor inquirer can accurately discover qualified satellite sensors in an accurate and unified manner. By implementing the proposed union operation among the retrieved sensors, the inquirer can further determine how the selected sensors can collaboratively complete a specific observation requirement. Therefore, the proposed model provides a reliable foundation for sharing and integrating multiple remote sensing satellite sensors and their observations.

  2. a Detailed Study about Digital Surface Model Generation Using High Resolution Satellite Stereo Imagery

    Science.gov (United States)

    Gong, K.; Fritsch, D.

    2016-06-01

    Photogrammetry is currently in a process of renaissance, caused by the development of dense stereo matching algorithms to provide very dense Digital Surface Models (DSMs). Moreover, satellite sensors have improved to provide sub-meter or even better Ground Sampling Distances (GSD) in recent years. Therefore, the generation of DSM from spaceborne stereo imagery becomes a vivid research area. This paper presents a comprehensive study about the DSM generation of high resolution satellite data and proposes several methods to implement the approach. The bias-compensated Rational Polynomial Coefficients (RPCs) Bundle Block Adjustment is applied to image orientation and the rectification of stereo scenes is realized based on the Project-Trajectory-Based Epipolarity (PTE) Model. Very dense DSMs are generated from WorldView-2 satellite stereo imagery using the dense image matching module of the C/C++ library LibTsgm. We carry out various tests to evaluate the quality of generated DSMs regarding robustness and precision. The results have verified that the presented pipeline of DSM generation from high resolution satellite imagery is applicable, reliable and very promising.

  3. Assessment studies on the inversion of satellite to satellite electron content to obtain electron density profiles in the ionosphere

    CERN Document Server

    Hochegger, G P

    2000-01-01

    The electron content data, obtained by satellite-to-satellite occultations of radio signals can lead to height profiles of electron density by discrete inversion. Since there is no possibility to verify such profiles by means of other measurements (practically never measurements at the same time and same location) it was necessary to simulate occultation scenarios by means of an ionosphere model to obtain a large number of comparisons sufficient for investigations on a statistical basis. The obtained electron contents were inverted and compared with electron density height profiles, obtained with the same ionospheric model for the occultation point. The differences between these profiles were investigated (difference between the F2-peak maxima, the height of the maxima, the shape of the topside and bottom side ionosphere). Since simulations were done for chosen locations (250 randomly spread on the globe) for every month and every second hour and for two solar activity levels (HSA and LSA), a whole year was '...

  4. Evaluation of Satellite Rainfall Products over NASA's Iowa Flood Studies (IFloodS) Domain

    Science.gov (United States)

    ElSaadani, Mohamed; Quintero, Felipe; Krajewski, Witold F.; Goska, Radoslaw; Seo, Bongchul

    2014-05-01

    Iowa Flood Studies (IFloodS) is a NASA Global Precipitation Measurement (GPM) Mission to provide better understanding of the strengths and limitations of satellite products in the context of hydrologic applications. IFloodS took place in the central to north eastern part of Iowa in Midwestern United States during the months of April-June, 2013. Quantifying the physical characteristics, space/time variability and assessing satellite rainfall retrieval uncertainties at instantaneous to daily time scales are of the main objectives of IFloodS field experiment beside assessing hydrologic predictive skills as a function of space/time scales and discerning the relative roles of rainfall quantities in flood genesis. The errors of rainfall estimation of three satellite rainfall products (TRMM's TMPA 3B42 V7, CPC's CMORPH and CHRS at UCI's PERSIANN) have been characterized in space and time using NCEP Stage IV radar-rainfall product as a benchmark for comparison. The satellite rainfall products used in this study represent 3 hourly, quarter degree, rainfall accumulation. The benchmark rainfall accumulation has an hourly, four kilometers, resolutions in time and space respectively. We also investigate the adequacy of satellite rainfall products as inputs for hydrological modeling. To this end, these products were used as forcing for the Iowa Flood Center (IFC) hydrological model and produced discharge simulations in a high-resolution drainage network. The IFC hydrological model has been validated using radar rainfall product and thus, the hydrological outputs becomes the reference of comparison for the other rainfall products. We evaluated the hydrological performance of the rainfall products at different spatial scales, ranging from 2 to 14,000 square miles using stream discharge information from USGS gauges network. We discuss the adequacy of the rainfall products for flood forecasting at different spatial scales.

  5. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  6. Study of the Nevada Test Site using Landsat satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, P.D. [Georgetown Univ., Washington, DC (United States). Center for Strategic and International Studies

    1993-07-01

    In the period covered by the purchase order CSIS has obtained one Landsat image and determined that two images previously supplied to the principal investigator under a subcontract with George Washington University were inherently defective. We have negotiated with EOSAT over the reprocessing of those scenes and anticipate final delivery within the next few weeks. A critical early purchase during the subcontract period was of an EXABYTE tape drive, Adaptec SCSI interface, and the appropriate software with which to read Landsat images at CSIS. This gives us the capability of reading and manipulating imagery in house without reliance on outside services which have not proven satisfactory. In addition to obtaining imagery for the study, we have also performed considerable analytic work on the newly and previously purchased images. A technique developed under an earlier subcontract for identifying underground nuclear tests at Pahute Mesa has been significantly refined, and similar techniques were applied to the summit of Rainier Mesa and to the Yucca Flats area. An entirely new technique for enhancing the spectral signatures of different regions of NTS was recently developed, and appears to have great promise of success.

  7. Simulation Studies of Satellite Laser CO2 Mission Concepts

    Science.gov (United States)

    Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.

    2011-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.

  8. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress

    Directory of Open Access Journals (Sweden)

    Yongshui Kang

    2014-10-01

    Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.

  9. Parcel-based connectivity analysis of fMRI data for the study of epileptic seizure propagation.

    Science.gov (United States)

    Tana, Maria Gabriella; Bianchi, Anna Maria; Sclocco, Roberta; Franchin, Tiziana; Cerutti, Sergio; Leal, Alberto

    2012-10-01

    The aim of this work is to improve fMRI Granger Causality Analysis (GCA) by proposing and comparing two strategies for defining the topology of the networks among which cerebral connectivity is measured and to apply fMRI GCA for studying epileptic seizure propagation. The first proposed method is based on information derived from anatomical atlas only; the other one is based on functional information and employs an algorithm of hierarchical clustering applied to fMRI data directly. Both methods were applied to signals recorded during seizures on a group of epileptic subjects and two connectivity matrices were obtained for each patient. The performances of the different parcellation strategies were evaluated in terms of their capability to recover information about the source and the sink of the network (i.e., the starting and the ending point of the seizure propagation). The first method allows to clearly identify the seizure onset in all patients, whereas the network sources are not so immediately recognizable when the second method was used. Nevertheless, results obtained using functional clustering do not contradict those obtained with the anatomical atlas and are able to individuate the main pattern of propagation. In conclusion, the way nodes are defined can influence the easiness of identification of the epileptogenic focus but does not produce contradictory results showing the effectiveness of proposed approach to formulate hypothesis about seizure propagation at least in the early phase of investigation.

  10. A study of the climate change impacts on fluvial flood propagation in the Vietnamese Mekong Delta

    NARCIS (Netherlands)

    Van, P.D.T.; Popescu, I.; Van Griensven, A.; Solomatine, D.P.; Trung, N.H.; Green, A.

    2012-01-01

    The present paper investigated the extent of the flood propagation in the Vietnamese Mekong Delta under different projected flood hydrographs, considering the 2000 flood event (the 20-yr return period event, T. V. H. Le et al., 2007) as the basis for computation. The analysis herein was done to demo

  11. Numerical study of Balearic meteotsunami generation and propagation under synthetic gravity wave forcing

    Science.gov (United States)

    Ličer, Matjaž; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Jansá, Agusti; Tintoré, Joaquín

    2017-03-01

    We use a high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves to investigate Balearic meteotsunami generation, amplification and propagation properties. We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. We quantify the contributions of Mallorca shelves and Menorca Channel for different gravity wave forcing angles and speeds. The Channel is demonstrated to be the key build-up region determining meteotsunami amplitude in Ciutadella while northern and southern Mallorca shelves serve mostly as barotropic wave guides but do not significantly contribute to seiche amplitude in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. We track meteotsunami propagation paths in the Menorca Channel for several forcing velocities and show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. We show that faster meteotsunamis propagate over deeper ocean regions, as required by Proudman resonance. We estimate meteotsunami speed under sub- and supercritical forcing and derive a first order estimate of its magnitude. We show that meteotsunamis, generated by supercritical gravity waves, propagate with a velocity which is equal to an arithmetic mean of the forcing velocity and local barotropic ocean wave speed.

  12. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.

    2016-09-01

    Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.

  13. Satellite Constellations for Space Weather and Ionospheric Studies: Overview of the COSMIC and COSMIC-2 Missions

    Science.gov (United States)

    Schreiner, W. S.; Pedatella, N. M.; Weiss, J.

    2016-12-01

    Measurements from constellations of low Earth orbiting (LEO) satellites are proving highly useful for ionospheric science and space weather studies. The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), a joint US/Taiwan mission launched in April 2006, is a six micro-satellite constellation carrying Global Positioning System (GPS) radio occultation (RO) receivers. COSMIC has collected a large amount of useful data from these scientific payloads and is still currently collecting up to 1,000 RO measurement events per day on average. The GPS RO dual-frequency L-band phase and amplitude measurements can be used to observe absolute Total Electron Content (TEC) and scintillation on lines of sight between the LEO and GPS satellites, and electron density profiles via the RO method. The large number and complete global and local time coverage of COSMIC data are allowing scientists to observe ionospheric and plasmaspheric phenomena that are difficult to see with other instruments. The success of COSMIC has prompted U.S. agencies and Taiwan to execute a COSMIC follow-on mission (called COSMIC-2) that will put twelve satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2017-20 time frame. The first launch in 2017 will place six satellites in a 520-km altitude 24 deg inclination orbit, which is ideal for low latitude ionospheric research and space weather forecasting. The planned second launch (not currently funded) places six additional satellites in a 750 km 72 deg inclination orbit to provide global coverage and increased sampling density. COSMIC-2 will make use of an advanced radio occultation receiver with an innovative beam-forming antenna design, and is expected to produce at least 10,000 high-quality atmospheric and ionospheric profiles per day from GPS and GLONASS signals to support operational weather prediction, climate monitoring, and space weather forecasting. Each COSMIC-2 spacecraft

  14. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    Science.gov (United States)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  15. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  16. A satellite born charged particles telescope for the study of cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    The description of the high energy particle telescope NINA for the study of cosmic ray nuclei is presented. The instrument will be installed on board of the Resource 01 satellite and will fly on a polar orbit at 690 Km. The telescope consists on a pile of 16 detecting planes each of them is composed by two silicon strip detectors with perpendicular strips and has a total area of 60x60mm{sup 2}. The experiment goals are the study of cosmic ray protons and nuclei in the energy range 12-100 MeV/amu. It will be sensitive to the anomalous component and will also make the observation of the large solar flare events and geophysical phenomena as well. This experiment is the first step of the program RIM whose goal is the satellite study of anti particles in primary cosmic rays.

  17. Geometric Calibration and Accuracy Verification of the GF-3 Satellite.

    Science.gov (United States)

    Zhao, Ruishan; Zhang, Guo; Deng, Mingjun; Xu, Kai; Guo, Fengcheng

    2017-08-29

    The GF-3 satellite is the first multi-polarization synthetic aperture radar (SAR) imaging satellite in China, which operates in the C band with a resolution of 1 m. Although the SAR satellite system was geometrically calibrated during the in-orbit commissioning phase, there are still some system errors that affect its geometric positioning accuracy. In this study, these errors are classified into three categories: fixed system error, time-varying system error, and random error. Using a multimode hybrid geometric calibration of spaceborne SAR, and considering the atmospheric propagation delay, all system errors can be effectively corrected through high-precision ground control points and global atmospheric reference data. The geometric calibration experiments and accuracy evaluation for the GF-3 satellite are performed using ground control data from several regions. The experimental results show that the residual system errors of the GF-3 SAR satellite have been effectively eliminated, and the geometric positioning accuracy can be better than 3 m.

  18. Traveling ionospheric disturbances propagating ahead of the Tohoku-Oki tsunami: a case study

    Science.gov (United States)

    Kherani, E. A.; Rolland, L.; Lognonné, P.; Sladen, A.; Klausner, V.; de Paula, E. R.

    2016-02-01

    We document two kinds of traveling ionospheric disturbances, namely, CTIDs (Co-tsunami-Traveling-Ionospheric-disturbances) and ATIDs (Ahead-of-Tsunami-Traveling-Ionospheric-disturbances) related to the Tohoku-Oki tsunami of 2011 March 11. They are referred to the disturbances that remain behind and ahead of the principal tsunami wave front, respectively. We first note their presence in a numerical experiment performed using a simulation code coupling the tsunami, atmosphere and ionosphere. This code uses the tsunami wavefield as an input and simulates acoustic-gravity waves (AGWs) in the atmosphere and TIDs, in the form of total electron content (TEC) disturbance, in the ionosphere. The simulated TEC reveals the excitation of CTIDs (at about 2 TECU) and ATIDs (at about 1 TECU), representing up to 5 per cent disturbance over the ambient electron density, and they arise from the dissipation of AGWs in the thermosphere. A novel outcome is that during the tsunami passage between ˜6° and 12° of epicentral distance, strong ATIDs arrive ˜20-60 min ahead of the tsunami wave front covering ˜3°-10° of distance from the tsunami location. Simulation results are compared with the far-field observations using GNSS satellites and confirm that ATIDs are the first detected TEC maximum, occurring 20-60 min ahead of the tsunami arrival. Our simulation also confirms the presence of largest TEC maximum representing CTIDs, 10-20 min after the first tsunami wave. ATIDs reported in this study have characteristics that can be potentially used for the early warning of the tsunami.

  19. S-Band propagation measurements

    Science.gov (United States)

    Briskman, Robert D.

    1994-08-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  20. Sound propagation around off-shore wind power plants. Results from a literature study; Ljudutbredning kring havsbaserade vindkraftverk. Resultat fraan en litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Ljunggren, Sten [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2000-10-01

    This report describe results from a literature study concerning sound wave propagation around off-shore wind power plants influenced by wind speed gradients. The study show measurement results from three different campaigns (two of them unpublished) and from two different theoretical models (one unpublished). Both measurements and models clearly confirms that the sound propagation differs strongly from the conditions over land.

  1. Nitroglycerin enhances the propagation of cortical spreading depression: comparative studies with sumatriptan and novel kynurenic acid analogues

    Directory of Open Access Journals (Sweden)

    Knapp L

    2016-12-01

    Full Text Available Levente Knapp,1 Bence Szita,1 Kitti Kocsis,1,2 László Vécsei,2,3 József Toldi1,2 1Department of Physiology, Anatomy, and Neuroscience, University of Szeged, 2MTA-SZTE Neuroscience Research Group, 3Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary Background: The complex pathophysiology of migraine is not yet clearly understood; therefore, experimental models are essential for the investigation of the processes related to migraine headache, which include cortical spreading depression (CSD and NO donor-induced neurovascular changes. Data on the assessment of drug efficacy in these models are often limited, which prompted us to investigate a novel combined migraine model in which an effective pharmacon could be more easily identified. Materials and methods: In vivo electrophysiological experiments were performed to investigate the effect of nitroglycerin (NTG on CSD induced by KCl application. In addition, sumatriptan and newly synthesized neuroactive substances (analogues of the neuromodulator kynurenic acid [KYNA] were also tested. Results: The basic parameters of CSDs were unchanged following NTG administration; however, propagation failure was decreased compared to the controls. Sumatriptan decreased the number of CSDs, whereas propagation failure was as minimal as in the NTG group. On the other hand, both of the KYNA analogues restored the ratio of propagation to the control level. Discussion: The ratio of propagation appeared to be the indicator of the effect of NTG. This is the first study providing direct evidence that NTG influences CSD; furthermore, we observed different effects of sumatriptan and KYNA analogues. Sumatriptan changed the generation of CSDs, whereas the analogues acted on the propagation of the waves. Our experimental design overlaps with a large spectrum of processes present in migraine pathophysiology, and it can be a useful experimental model

  2. Theoretical studies in spiral edge-flame propagation and particle hydrodynamics

    Science.gov (United States)

    Urzay, Javier

    Applied mathematics techniques are used in this investigation to gain insight into three different physical processes of current interest in combustion and fluid dynamics. The first problem addresses the propagation of spiral edge flames found in von Karman swirling flows induced in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the framework of one-step chemistry with large activation energies. Conditions for extinction of the underlying uniform diffusion flame are obtained by using activation energy asymptotics. Edge-flame propagation regimes are obtained by scaling analyses of the conservation equations and exemplified by numerical simulations of nearly straight two-dimensional edge flames near a cold porous wall in a von Karman boundary layer, for which lateral heat losses to the disk induce extinction of the trailing diffusion flame but are relatively unimportant in the front region, consistent with the existence of the cooling tail found in the experiments. The propagation dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic Markstein length is much smaller than the distance from the center at which the spiral tip is

  3. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    Science.gov (United States)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  4. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  5. Study in the Area of Satellite Meteorology. Volume 1. Mesoscale Weather Analysis and Prediction

    Science.gov (United States)

    1974-11-01

    and E. J. Wiegman , "Study of Time-Lapse Processing for Dynamic Hydrologie Conditions," Final Report, NASA Contract NAS5-21841...J. Wiegman , R. G. Hadfield, and W. E. Evans, "Electronic System for Utilization of Satellite Cloud Pictures, " Bull. Amer...Photographs," S~mp Research Paper 71, University of Chicago, Chicago, Ill., 25 pp. (1968). 21. S. M. Serebreny, E. J. Wiegman , R. G. Hadfield, and W. E

  6. The Wheeler Propagator

    CERN Document Server

    Bollini, C G

    1998-01-01

    We study the half advanced and half retarded Wheeler Green function and its relation to Feynman propagators. First for massless equation. Then, for Klein-Gordon equations with arbitrary mass parameters; real, imaginary or complex. In all cases the Wheeler propagator lacks an on-shell free propagation. The Wheeler function has support inside the light-cone (whatever the mass). The associated vacuum is symmetric with respect to annihilation and creation operators. We show with some examples that perturbative unitarity holds, whatever the mass (real or complex). Some possible applications are discussed.

  7. Experiment study on the propagation laws of gas and coal dust explosion in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Rong-jun Si; Run-zhi Li; Lei Wang; Zi-ke Wu [China Coal Research Institute, Chongqing (China). Chongqing Research Institute

    2009-09-15

    An experiment of gas and coal dust explosion propagation in a single laneway was carried out in a large experimental roadway that is nearly the same with actual environment and geometry conditions. In the experiment, the time when the gas and coal dust explosion flame reaches test points has a logarithmic function relation with the test point distances. The explosion flame propagation velocity rises rapidly in the foreside of the coal dust segment and then decreases. The length of the flame area is about 2 times that of the original coal dust accumulation area. Shock wave pressure comes down to the rock bottom in the coal dust segment, then reaches a maximum peak rapidly and decreases. The theoretical basis of the research and assemble of across or explosion is supplied by the experiment conclusion. Compared with gas explosion, the force and destruction degree of a gas and coal dust explosion is much larger. 3 refs., 6 figs., 3 tabs.

  8. Experimental study of flame microstructure and propagation behavior of mine-gas explosion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; ZHANG Jian-hua; WANG Yu-jie; REN Shao-feng

    2008-01-01

    The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process. Meanwhile, the ionization current probes were set up to detect the reaction intensity of the reaction zone. The characteristics of methane/air flame propagation and microstructure were analyzed in detail by the experi-mental results coupled with chemical reaction thermodynamics. The high speed schlieren image showed the transition from laminar flame to turbulence combustion. The ion current curves disclosed the reaction intensity and combustion characteristic of flame front. In the test, the particular tulip flame was formed clearly, which was induced to some extent by turbulent combustion. Based on the schlieren images and iron current result, it can be drawn that the small scale turbulence combustion also appears in laminar flame, which thickens the flame front, but makes little influence on the flame front shape. During the laminar-turbulent transition, the explosion pressure plays an important role on the flame structure change.

  9. A study of the propagation of ulf electromagnetic fields in collisional, inhomogeneous, magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, J.E.

    1987-02-01

    The propagation of ultralow-frequency (ulf) electromagnetic signals (Alfven and magnetosonic waves) in collisional, inhomogeneous, magnetized plasmas is analyzed by numerical simulation. The problem is formulated from a Maxwell-equation orbit-theory approach rather than from a magnetohydrodynamic point of view, and the problem is numerically treated in a fully time-dependent manner. Boundary-value-problem behavior is distinguished from initial-value-problem behavior. The propagation of two-dimensional small-amplitude electromagnetic disturbances in plasmas with spatially dependent densities and in plasmas with spatially dependent conductivities is numerically simulated, and when possible, the simulations are compared with theory. Changes in the plasma density lead to changes in the signal speed and to reflections; collisions lead to changes in the signal speed, to reflections, and to attenuations. Theoretical descriptions based upon discontinuities in the media are generally incorrect in predicting the amplitudes of signals reflected from plasma inhomogeneities. 19 refs., 16 figs.

  10. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  11. Experiment study on the propagation laws of gas and coal dust explosion in coal mine

    Institute of Scientific and Technical Information of China (English)

    SI Rong-jun; LI Run-zhi; WANG Lei; WU Zi-ke

    2009-01-01

    The experiment of gas and coal dust explosion propagation in a single laneway was carried out in a large experimental roadway that is nearly the same with actual envi-ronment and geometry conditions. In the experiment, the time when the gas and coal dust explosion flame reaches test points has a logarithmic function relation with the test point distances. The explosion flame propagation velocity rises rapidly in the foreside of the coal dust segment and comes down after that. The length of the flame area is about 2 times that of the original coal dust accumulation area. Shock wave pressure comes down to the rock bottom in the coal dust segment, then reaches the maximum peak rapidly and comes down. The theoretical basis of the research and assemble of across or explosion is sup-plied by the experiment conclusion. Compared with gas explosion, the force and destruc-tion degree of gas and coal dust explosion is much larger.

  12. Quantitative study on propagation and healing of Airy beams under experimental conditions.

    Science.gov (United States)

    Zhuang, Fei; Zhu, Ziyi; Margiewicz, Jessica; Shi, Zhimin

    2015-03-01

    We investigate the propagation and healing of Airy beams in two dimensions that are obtainable under practical experimental conditions. We introduce an intensity similarity factor to quantitatively describe how an Airy beam retains its original shape. Based on such a figure of merit, we define a shape-retaining distance to quantify how far an Airy beam can keep the shape of its main lobe upon propagation and a healing distance to quantify how soon an initially partially blocked Airy beam can restore its main lobe profile. We perform an analysis on how these two distances scale with experimental parameters. We further use an interference picture to interpret the healing phenomenon of an Airy beam. Our work can serve as a guideline for quantitative performance analysis for applications of Airy beams and can be extended to other special beams in a straightforward fashion.

  13. A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers

    Science.gov (United States)

    Belafhal, A.; Ez-zariy, L.; Hricha, Z.

    2016-11-01

    By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.

  14. Studies of beam propagation characteristics on apertured fractional Fourier transforming systems

    Institute of Scientific and Technical Information of China (English)

    Hongjie Liu(刘红婕); Daomu Zhao(赵道木); Haidan Mao(毛海丹); Shaomin Wang(王绍民); Feng Jing(景峰); Qihua Zhu(朱启华); Xiaofeng Wei(魏晓峰); Xiaomin Zhang(张小民)

    2004-01-01

    Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured fractional Fourier transforming systems are analyzed and corresponding analytical formulae are obtained. Analytical formulae in different fractional orders are numerically simulated and compared with the diffraction integral formulae, the applicable range and exactness of analytical formulae are confirmed.It is shown that the calculating speed of using the obtained approximate analytical formulae, is several hundred times faster than that of using diffraction integral directly. Meanwhile, by using analytical formulae the effect of different aperture sizes on Gaussian beam propagation characteristics is numerically simulated, it is shown that the diffraction effect can be neglected when the aperture size is 5 times larger than the beam waist size.

  15. Numerical Study of Shock Waves Propagating in an Elbow : 1st Report, A Rectangular Elbow

    OpenAIRE

    1993-01-01

    In this paper, the shock waves propagating in a rectangular elbow were investigated numerically in order to clarify how the transmitted shock wave past the elbow is stabilized to the uniform shock and the flow field induced by the shock. The computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by means of the TVD finite difference method. The calculations were performed for three incident shock strengths and three Reynolds numbers of the flow, and ...

  16. Gluon and ghost propagator studies in lattice QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aouane, Rafik

    2013-04-29

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  17. NSPT study of the three-loop lattice gluon propagator in Landau gauge

    CERN Document Server

    Torrero, C; Ilgenfritz, E -M; Perlt, H; Schiller, A

    2010-01-01

    By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a parametrization of both the hypercubic symmetry group H(4) and finite-size effects, we calculate the non-leading-log and non-logarithmic contributions iteratively, starting with the first-loop expression.

  18. Optical modulator based on propagating surface plasmon coupled fluorescent thin film: proof-of-concept studies

    Science.gov (United States)

    Cao, Shuo-Hui; Wang, Zheng-Chuang; Weng, Yu-Hua; Xie, Kai-Xin; Chen, Min; Zhai, Yan-Yun; Li, Yao-Qun

    2017-06-01

    We demonstrate that the propagating surface plasmon coupled fluorescent thin film can be utilized as a fluorescence modulator to mimic multiple representative Boolean logic operations. Surface plasmon mediated fluorescence presents characteristic properties including directional and polarized emission, which hold the feasibility in creating a universal optical modulator. In this work, through constructing the thin layer with the specific thickness, surface plasmon mediated fluorescence can be modulated with an ON-OFF ratio by more than 5-fold, under a series of coupling configurations.

  19. An experimental study of fault propagation in a jet-engine controller. M.S. Thesis

    Science.gov (United States)

    Choi, Gwan Seung

    1990-01-01

    An experimental analysis of the impact of transient faults on a microprocessor-based jet engine controller, used in the Boeing 747 and 757 aircrafts is described. A hierarchical simulation environment which allows the injection of transients during run-time and the tracing of their impact is described. Verification of the accuracy of this approach is also provided. A determination of the probability that a transient results in latch, pin or functional errors is made. Given a transient fault, there is approximately an 80 percent chance that there is no impact on the chip. An empirical model to depict the process of error exploration and degeneration in the target system is derived. The model shows that, if no latch errors occur within eight clock cycles, no significant damage is likely to happen. Thus, the overall impact of a transient is well contained. A state transition model is also derived from the measured data, to describe the error propagation characteristics within the chip, and to quantify the impact of transients on the external environment. The model is used to identify and isolate the critical fault propagation paths, the module most sensitive to fault propagation and the module with the highest potential of causing external pin errors.

  20. Study Of Three Dimensional Propagation Of Waves In Hollow Poroelastic Circular Cylinders

    Directory of Open Access Journals (Sweden)

    Shah S.A.

    2015-08-01

    Full Text Available Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a hollow poroelastic circular cylinder of infinite extent are investigated. General frequency equations for propagation of waves are obtained each for a pervious and an impervious surface. Degenerate cases of the general frequency equations of pervious and impervious surfaces, when the longitudinal wavenumber k and angular wavenumber n are zero, are considered. When k=0, the plane-strain vibrations and longitudinal shear vibrations are uncoupled and when k≠0 these are coupled. It is seen that the frequency equation of longitudinal shear vibrations is independent of the nature of the surface. When the angular (or circumferential wavenumber is zero, i.e., n=0, axially symmetric vibrations and torsional vibrations are uncoupled. For n≠0 these vibrations are coupled. The frequency equation of torsional vibrations is independent of the nature of the surface. By ignoring liquid effects, the results of a purely elastic solid are obtained as a special case.

  1. The BMV experiment : a novel apparatus to study the propagation of light in a transverse magnetic field

    CERN Document Server

    Battesti, Remy; Batut, Sebastien; Robilliard, Cecile; Bailly, Gilles; Michel, Christophe; Nardone, Marc; Pinard, Laurent; Portugall, Oliver; Trenec, Gerard; Mackowski, Jean-Marie; Rikken, Geert L J A; Vigue, Jacques; Rizzo, Carlo

    2007-01-01

    In this paper, we describe in detail the BMV (Bir\\'efringence Magn\\'etique du Vide) experiment, a novel apparatus to study the propagation of light in a transverse magnetic field. It is based on a very high finesse Fabry-Perot cavity and on pulsed magnets specially designed for this purpose. We justify our technical choices and we present the current status and perspectives.

  2. 荆芥扦插试验研究%Study on cutting propagation of Nepeta cataria

    Institute of Scientific and Technical Information of China (English)

    周亮; 谢桂林; 邹义萍

    2015-01-01

    以荆芥当年生枝条为材料,采用单因素完全随机区组试验方法,选用泥炭、珍珠岩、椰康、河沙配制成10种基质,IBA、NAA 两种生根剂,研究不同基质和生根剂种类及浓度对荆芥扦插生根率、生根体积和生根指数的影响.结果表明,泥炭∶珍珠岩(1∶1)为荆芥的最佳生根基质,生根率、生根体积和生根指数分别达86.67%、16.83 cm3和14.06;荆芥的最佳生根剂种类及浓度为 NAA 100 mg·L -1.荆芥穗条经100 mg·L -1 NAA 处理后以泥炭∶珍珠岩(1∶1)为基质,能获得最佳的生根效果.%Cuttings from Nepeta cataria were used as the experimental materials to study effects of ten different media(using peat,perlite,coconut tree branny and sand),hormone(IBA and NAA)on rooting percentage, root volume and root index of Nepeta cataria cuttings.The randomized method was applied.The results indica-ted that different kinds of media had significant effects on rooting percentage,root volume and root index of Nep-eta catariaS cuttings.The peat:perlite(1 ∶1 )was optimal medium for Nepeta cataria with the highest rooting percentage,root volume and root index,which was 86.67%、1 6.83 cm3 and 1 4.06 separately.The optimal hormone was NAA at 1 00 mg·L -1 concentration.The best treatment of cutting propagation of Nepeta cataria was cuttings treated with the concentration of NAA 1 00 mg·L -1 concentration and peat:perlite(1 ∶1 )as its medium.

  3. An Experimental Biotelemetric Study Based on Satellite Tracking During Post-nesting Migrations of Green Turtles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A biotelemetry experiment is conducted to study the migrant behavior of green turtles (Chelonia mydas) in South China Sea and acquire the physical environment data. The method in use is to track the post-nesting migrant routes of green turtles through the satellite linked transmitters attached on the back of turtles and the global satellite signal transmitting system of Argos. We obtained the posinestions of the post-nesting migrant routes of three green turtles and environment data, which are important in conservation of green turtles and the research of physical oceanography. Based on the test, the concept, principle and method of biotelemetry are also introduced in this paper with a discussion of the further development of this technique and its applying prospection in future.

  4. How can present and future satellite missions support scientific studies that address ocean acidification?

    Science.gov (United States)

    Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.

    2016-01-01

    Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

  5. Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2010-06-01

    Full Text Available Satellite-based aerosol observation is a useful tool for the estimation of microphysical and optical characteristics of aerosol during more than three decades. Until now, a lot of satellite remote sensing techniques have been developed for aerosol detection. In East Asian region, the role of satellite observation is quite important because aerosols originating from natural and man-made pollution in this region have been recognized as an important source for regional and global scale air pollution. However, it is still difficult to retrieve aerosol over land because of the complexity of the surface reflection and complex aerosol composition, in particular, aerosol absorption. In this study, aerosol retrievals using Look-up Table (LUT based method was applied to MODerate Resolution Imaging Spectroradiometer (MODIS Level 1 (L1 calibrated reflectance data to retrieve aerosol optical thickness (AOT over East Asia. Three case studies show how the methodology works to identify those differences to obtain a better AOT retrieval. The comparison between the MODIS and Aerosol Robotic Network (AERONET shows better results when the suggested methodology using the cluster based LUTs is applied (linear slope=0.94, R=0.92 than when operational MODIS aerosol products are used (linear slope=0.78, R=0.87. In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering the observation data in East Asia.

  6. Experimental and numerical study on crack propagation in pre-cracked beam specimens under three-point bending

    Institute of Scientific and Technical Information of China (English)

    Hadi Haeri

    2016-01-01

    A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens (concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coalescence paths of internal cracks in side beam specimens are experimentally studied by inserting double internal cracks. The effects of crack positions on the fracturing path in the bridge areas of the double cracked beam specimens are also studied. It has been observed that the breaking of concrete-like cracked beams specimens occurs mainly by the propagation of wing cracks emanating from the tips of the pre-existing cracks in the numerical and experimental analyses, respectively. The same specimens are numerically simulated by an indirect boundary element method (IBEM) known as displacement discontinuity method (DDM) using higher displacement discontinuity. These numerical results are compared with the existing experimental results. This comparison illustrates the higher accuracy of the results obtained by the indirect boundary element method by using only a small number of elements compared with the discrete element method (PFC2D code).

  7. A case study in carbon management during the design process Satellite 3, Stansted Airport, UK

    Institute of Scientific and Technical Information of China (English)

    PeterSHARRATT; CamiloDIAZ

    2003-01-01

    Set within the context of China''s growing need to develop a cleaner and more efficient energy supply infrastructure, this paper describes a procurement process for evaluating and reducing the carbon dioxide emissions arising from operational processes within buildings during the design stage when key decisions affecting long-term energy demand are often made but frequently not understood. The focus of the study is a case-study building, the 8275m2 two-storey arrivals/departures building, Satellite 3, at Stansted Airport, UK. The client set a challenging design performance target of a 20% net CO2 reduction below British Airways Authority''s (BAA) current most energy efficient building, Satellite 1, Stansted. This reduction was to be achieved without compromising the BAA corporate standards on passenger and staff comfort perceptions or appreciable increases in capital costs. The carbon assessment methodology involved the following stages:· Establish baseline CO2 footprint and target from real-time energy data for Satellite 1 of 103 kg CO2/m2/a.· Review of the ‘base-case'' building performance assessment for Satellite 3 using BAA''s standard specification criteria.· Assess the impact on energy demand and CO2 emissions of a number of variations to the ‘base-case'' design parameters ranging from solar shading, insulation levels to control systems and occupancy patterns.· Develop an evaluation methodology that iteratively balances capital cost and revenue expenditure with environmental benefits to enable informed choices to be made by the client on where the most ‘environmentally effective'' design responses lie. Outcomes:· A 23% net CO2 reduction by design was achieved at no additional capital cost.· Learning and environmental costs benefit methodology disseminated to the BAA supply chain and adopted at Gatwick and Heathrow Airports. ·CO2 is now a new key performance indicator for design efficiency within BAA.

  8. Mechanistic insight into self-propagation of organo-mediated Beckmann rearrangement: a combined experimental and computational study.

    Science.gov (United States)

    An, Na; Tian, Bo-Xue; Pi, Hong-Jun; Eriksson, Leif A; Deng, Wei-Ping

    2013-05-03

    Organo-mediated Beckmann rearrangement in the liquid phase, which has the advantage of high efficiency and straightforward experimental procedures, plays an important role in the synthesis of amides from oximes. However, the catalytic mechanisms of these organic-based promoters are still not well understood. In this work, we report a combined experimental and computational study on the mechanism of Beckmann rearrangement mediated by organic-based promoters, using TsCl as an example. A novel self-propagating cycle is proposed, and key intermediates of this self-propagating cycle are confirmed by both experiments and DFT calculations. In addition, the reason why cyclohexanone oxime is not a good substrate of the organo-mediated Beckmann rearrangement is discussed, and a strategy for improving the yield is proposed.

  9. 2D numerical modeling of ultrasonic wave propagation in concrete: A parameterization study in a multiple-scattering medium

    Science.gov (United States)

    Yu, Ting; Chaix, Jean-François; Komatitsch, Dimitri; Garnier, Vincent; Audibert, Lorenzo; Henault, Jean-Marie

    2017-02-01

    Multiple scattering is important when ultrasounds propagate in a heterogeneous medium such as concrete, the scatterer size of which is in the order of the wavelength. The aim of this work is to build a 2D numerical model of ultrasonic wave propagation integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering could be obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. After the creation of numerical model under several assumptions, its validation is completed in a case of scattering by one cylinder through the comparison with analytical solution. Two cases of multiple scattering by a set of cylinders at different concentrations are simulated to perform a parametric study (of frequency, scatterer concentration, scatterer size). The effective properties are compared with the predictions of Waterman-Truell model as well, to verify its validity.

  10. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  11. Gear Crack Propagation Investigation

    Science.gov (United States)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  12. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    Energy Technology Data Exchange (ETDEWEB)

    Antariksawan, A.R. [Reactor Safety Technology Research Center of BATAN (Indonesia); Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs.

  13. SRμCT study of crack propagation within laser-welded aluminum-alloy T-joints

    Science.gov (United States)

    Herzen, J.; Beckmann, F.; Riekehr, S.; Bayraktar, F. S.; Haibel, A.; Staron, P.; Donath, T.; Utcke, S.; Kocak, M.; Schreyer, A.

    2008-08-01

    Using laser welding in fabrication of metallic airframes reduces the weight and hence fuel consumption. Currently only limited parts of the airframes are welded. To increase laser beam welded parts, there is the need for a better understanding of crack propagation and crack-pore interaction within the welds. Laser beam welded Al-alloys may contain isolated small process pores and their role and interaction with growing crack need to be investigated. The present paper presents the first results of a crack propagation study in laser beam welded (LBW) Al-alloy T-joints using synchrotron radiation based micro computed tomography (SRμCT). A region-of-interest technique was used, since the specimens exceeded the field of view of the X-ray detector. As imaging with high density resolution at high photon energies is very challenging, a feasibility measurement on a small laser weld, cut cylindrically from the welded region of a T-joint, was done before starting the crack-propagation study. This measurement was performed at the beamline HARWI-II at DESY to demonstrate the potential of the SRμCT as non-destructive testing method. The result has shown a high density resolution, hence, the different Al alloys used in the T-joint and the weld itself were clearly separated. The quantitative image analysis of the 3D data sets allows visualizing non-destructively and calculating the pore size distribution.

  14. Study on TT&C resources scheduling technique based on inter-satellite link

    Science.gov (United States)

    Gu, Xiaosong; Bai, Jian; Zhang, Chunze; Gao, Huili

    2014-11-01

    The navigation constellation will have the capability of supporting Tracking Telemetry and Command (TT&C) operations by inter-satellite link (ISL). The ISL will become an important solution to reduce the shortage of ground TT&C resources. The problems need to be studied urgently in the field of space TT&C network resources scheduling management are how to determine the availability of ISL and how to allocate TT&C resources of ISL. The performance and scheduling constraints of navigation constellation's ISL are analyzed, and three utilization strategies of ISL to perform TT&C operations are proposed. The allocation of TT&C resources based on ISL falls into two successive phases. Firstly, master satellite determination equation is established by using 0-1 Programming model based on the availability matrix. Mathematical method is used to solve the equation to determine the master satellite and the topology of ISL. Secondly, Constraint Programming (CP) model is used to describe the ground TT&C resources scheduling problem with special requirements of TT&C operations based on master satellite, and a heuristic algorithm is designed to solve the CP model. The equations and algorithm are verified by simulation examples. The algorithm of TT&C resources scheduling based on ISL has realized the synthesized usage of both the ISL and ground resources on TT&C field. This algorithm can improve TT&C supports of territorial ground TT&C network for global navigation constellation, and provides technical reference for the TT&C mission planning of global constellation by using ISL.

  15. Cyber security with radio frequency interferences mitigation study for satellite systems

    Science.gov (United States)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  16. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  17. Temporal scaling in information propagation.

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-18

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  18. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  19. A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Guo-liang; LI Shu-zhi

    2009-01-01

    A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.

  20. Numerical Study of Shock Waves Propagating in an Elbow : Effects of Elbow Angle

    OpenAIRE

    1995-01-01

    In this paper, the shock wave propagating in an elbow and the transient flow induced by the shock were investigated numerically in order to clarify how the shock wave transmitted past the elbow is stabilized to uniformity by the effects of the elbow angle. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations using the total variation diminishing (TVD) scheme. Calculations were performed for six elbow angles between 5° to 120°, and the flow fields w...

  1. Numerical Study of Shock Waves Propagating in an Elbow : A Double Elbow

    OpenAIRE

    1999-01-01

    In this paper, the attenuation and the nonuniformity regarding the strength and the shape of the shock wave front propagating through a double elbow were explored by numerical simulation. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by using the total variation diminishing (TVD) scheme. Computations were performed for six types of elbow and two incident shock Mach numbers (M_s=1.3, 2.0). The flow field were numerically visualized by the pre...

  2. Development of X-FEM methodology and study on mixed-mode crack propagation

    Institute of Scientific and Technical Information of China (English)

    Zhuo Zhuang; Bin-Bin Cheng

    2011-01-01

    The extended finite element method (X-FEM) is a novel numerical methodology with a great potential for using in multi-scale computation and multi-phase coupling problems.The algorithm is discussed and a program is developed based on X-FEM for simulating mixed-mode crack propagation.The maximum circumferential stress criterion and interaction integral are deduced.Some numerical results are compared with the experimental data to prove the capability and efficiency of the algorithm and the program.Numerical analyses of sub-interfacial crack growth in bi-materials give a clear description of the effect on fracture made by interface and loading condition.

  3. Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-09-01

    Full Text Available This paper explores the fracture process based on finite element simulation. Both probabilistic and deterministic methods are employed to model crack initiation, and several commonly used criteria are utilized to predict crack growth. It is concluded that the criteria of maximum tensile stress, maximum normal stress, and maximum Mises stress, as well as the Coulomb-Mohr criterion are able to predict the initiation of the first crack. The mixed-mode criteria based on the stress intensity factor (SIF, energy release rate, and the maximum principal stress, as well as the SIF-based maximum circumferential stress criterion are suitable to predict the crack propagation.

  4. PRELIMINARY STUDY OF DIFFERENT HORMONE TREATMENTS IN THE ARTIFICIAL PROPAGATION OF PIKEPERCH (Sander luciopreca REGARDING THE ASPECTS OF ANIMAL WELFARE

    Directory of Open Access Journals (Sweden)

    Á. NÉMETH

    2013-07-01

    Full Text Available The pikeperch (Sander lucioperca is very important and valuable freshwater fish in Hungary. The quality of lash is very high (white, tasty and boneless thus the gastronomically demand grows year by year. Besides the pikeperch is an attractive game fish and as a top predator, plays an important role in the maintenance of ecological balance in freshwater ecosystems. The success of pond culture of pikeperch depends on the propagation and nursing methods. Recently the technological development of artificial reproduction ensures the production of more fry and fingerlings. Present study investigates the different reproduction methods in consideration of the spawning behaviour of the pikeperch breeders. Between the hormone treatment and spawning there were observed six stagers in the behaviour of pike-perch couples- In addition to the observations on behaviour of spawning, various hormone products were examined in order to stimulate and synchronise the ovulation of pike perch breeders. Best results were recorded in case of using dried carp pituitary as a hormone treatment (170g eggs/stripped females, while the treatment with GnRH analogs resulted 145 g respectively. Moreover the price and biological advances of GnRH analogs require more research in their use in the field of artificial propagation of pikeperch. These hormones do not interfere violently the neuro-humoral regulation of the ovulation, thus contributes to maintain better conditions of animal welfare during the propagation procedure.

  5. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  6. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  7. Experimental study of flame microstructure and propagation behavior of mine-gas explosion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; ZHANG Jian-hua; WANG Yu-jie; REN Shao-feng

    2008-01-01

    The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process.Meanwhile,the ionization current probeswere set up to detect the reaction intensity of the reaction zone.The characteristics ofmethane/air flame propagation and microstructure were analyzed in detail by the experi-mental results coupled with chemical reaction thermodynamics.The high speed schlieren image showed the transition from laminar flame to turbulence combustion.The ion current curves disclosed the reaction intensity and combustion characteristic of flame front.In the test,the particular tulip flame was formed clearly,which was induced to some extent by turbulent combustion.Based on the schlieren images and iron current result,it can be drawn that the small scale turbulence combustion also appears in laminar flame,which thickens the flame front,but makes little influence on the flame front shape.During the laminar-turbulent transition,the explosion pressure plays an important role on the flamestructure change.

  8. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  9. Recent studies in satellite observations of three-dimensional magnetic reconnection

    Institute of Scientific and Technical Information of China (English)

    XIAO ChiJie; WANG XiaoGang; PU ZuYin; MA ZhiWei; ZHAO Hui; ZHOU GuiPing; WANG JingXiu; LIU ZhenXing

    2007-01-01

    Magnetic reconnection is a main process converting the magnetic energy into thermal and kinetic energy in plasmas. It is one of the fundamental problems of crucial importance not only to space plasmas physics and space weather studies,such as the solar flare, coronal mass ejections and magnetospheric substorms, but also to the stability analysis in magnetically confined fusion. In general, except for cases with periodical boundary conditions, three-dimensional (3D) magnetic reconnection occurs on magnetic separatrices generated by magnetic nulls. Here we briefly introduce/review the theories and some recent satellite observations of 3D magnetic reconnection. Topics to be further studied are also discussed.

  10. Monitoring soil wetness variations by means of satellite passive microwave observations: the HYDROPTIMET study cases

    Directory of Open Access Journals (Sweden)

    T. Lacava

    2005-01-01

    Full Text Available Soil moisture is an important component of the hydrological cycle. In the framework of modern flood warning systems, the knowledge of soil moisture is crucial, due to the influence on the soil response in terms of infiltration-runoff. Precipitation-runoff processes, in fact, are related to catchment's hydrological conditions before the precipitation. Thus, an estimation of these conditions is of significant importance to improve the reliability of flood warning systems. Combining such information with other weather-related satellite products (i.e. rain rate estimation might represent a useful exercise in order to improve our capability to handle (and possibly mitigate or prevent hydro-geological hazards. Remote sensing, in the last few years, has supported several techniques for soil moisture/wetness monitoring. Most of the satellite-based techniques use microwave data, thanks to the all-weather and all-time capability of these data, as well as to their high sensitivity to water content in the soil. On the other hand, microwave data are unfortunately highly affected by the presence of surface roughness or vegetation coverage within the instantaneous satellite field of view (IFOV. Those problems, consequently, strongly limit the efficiency and the reliability of traditional satellite techniques. Recently, using data coming from AMSU (Advanced Microwave Sounding Unit, flying aboard NOAA (National Oceanic and Atmospheric Administration satellites, a new methodology for soil wetness estimation has been proposed. The proposed index, called Soil Wetness Variation Index (SWVI, developed by a multi-temporal analysis of AMSU records, seems able to reduce the problems related to vegetation and/or roughness effects. Such an approach has been tested, with promising results, on the analysis of some flooding events which occurred in Europe in the past. In this study, results achieved for the HYDROPTIMET test cases will be analysed and discussed in detail

  11. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHUJi-Zhen; ZHOULi-Juan; MAWei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  12. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-Zhen; ZHOU Li-Juan; MA Wei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions Af(p2), Bf(p2) and effective mass Mf(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  13. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    Science.gov (United States)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  14. Application of the Gaussian beam summation method to the study of the ultrasonic wave propagation in a turbulent medium; Application de la methode de sommation de faisceaux gaussiens a l`etude de la propagation ultrasonore en milieu turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, D

    1998-01-29

    Some systems for the control and the surveillance of fast reactors are based on the characteristics of the ultrasonic wave propagation. We present here the results of a numerical and experimental study of ultrasonic propagation in a thermal turbulent medium. A numerical model, based on the technique of superposition of discrete Fourier modes for representing isotropic and homogeneous turbulence and on the Gaussian beam summation method for calculating the acoustic field, has been implemented in order to study the propagation of a point source wave in a bidimensional turbulent medium. Our model is based on the following principle: the medium is represented by a great number of independent realizations of a turbulent field and for each of them we calculate the acoustic field in a deterministic way. Statistics over a great number of realizations enable us to access to the different quantities of the distorted acoustic field: variance of the time of flight fluctuations, scintillation index and intensity probability density function. In the case of small fluctuations, the results for these three quantities are in a good agreement with analytical solutions. When the level of the fluctuations grows, the model predicts correct evolutions. However, a great sensitivity to the location of a receiver in the vicinity of a caustic has been proved. Calculations in the temporal domain have also been performed. They give an illustration of the possible effects of the turbulence on an impulsion signal. An experimental device, fitted with thermocouples and acoustic transducers, has been used to study the ultrasonic propagation in turbulent water. The different measures permitted to characterize the turbulent field and to get aware of the effect of the turbulence on the acoustic propagation. The acoustical measures agree well with the analytical solution of Chernov and Rytov. They are show the importance of the knowledge of the real spectrum of the fluctuations and the limitations of

  15. Quantifying offshore wind resources from satellite wind maps: Study area the North Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Barthelmie, Rebecca Jane; Christiansen, Merete B.;

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atl...

  16. A Model To Address Design Constraints of Training Delivered via Satellite. Study Number Eight.

    Science.gov (United States)

    Montler, Joseph; Geroy, Gary D.

    This document: summarizes how some companies are addressing the design constraints involved in using satellite technology to deliver training, presents a model aimed at examining cost effectiveness of the satellite option, and includes a guide to designing instructional materials for delivery by satellite. A survey of 39 organizations, 12…

  17. A study on integrity of LMFBR secondary cooling system to hypothetical tube failure propagation in the steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihisa Shindo; Kazuo Haga [Japan Nuclear Energy Safety Organization (JNES) Kamiya-cho MT Bldg., 4-3-20 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2005-07-01

    Full text of publication follows: A fundamental safety issue of liquid-metal-cooled fast breeder reactor (LMFBR) is to maintain the integrity of the secondary cooling system components against violent chemical sodium-water reaction caused by the water leak from the heat transfer tube of steam generators (SG). The produced sodium-water reaction jet would attack more severely surrounding tubes and would cause other tube failures (tube failure propagation), if it was assumed that the water leak was not detected by function-less detectors and proper operating actions to mitigate the tube failure propagation, such as isolations of the SG from the secondary cooling system and turbine water/steam system, and blowing water and steam inside tubes in the SG, were not taken. This study has been made focusing on the affection of large-scale water leak enlarged due to SG tube failure propagation to the structural integrity of the secondary cooling system because the generated pressure pulse caused by a large-scale sodium-water reaction might break heat transfer tubes of the intermediate heat exchanger (IHX). The present work has been made as one part of the study of probabilistic safety assessment (PSA) of LMFBR, because if the heat-transfer tubes of IHX were failed, the reactor core may be affected by the pressure pulse and/or by the sodium-water reaction products transported through the primary cooling system. As tools for PSA of the water leak incident of SG, we have developed QUARK-LP Version 4 code that mainly analyzes the high temperature rupture phenomena and estimates the number of failed tubes during the middle-scale water leak. The pressure pulse behavior generated by sodium-water reaction in the failure SG and the pressure propagation in the secondary cooling system are calculated by using the SWAAM-2 code developed by ANL. Furthermore, the quasi-steady state high pressure and temperature of the secondary cooling system in a long term is estimated by using the SWAAM

  18. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  19. Experimental and Numerical Study of Interface Crack Propagation in Foam Cored Sandwich Beams

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup; Borum, Kaj Kvisgård

    2007-01-01

    This article deals with the prediction of debonding between core and face sheet in foam-cored sandwich structures. It describes the development, validation, and application of a FEM-based numerical model for the prediction of the propagation of debond damage. The structural mechanics is considered...... to be geometrically nonlinear while the local fracture mechanics problem is assumed to be linear. The presented numerical procedure for the local fracture mechanics is a further development of the crack surface displacement method, here denoted as the crack surface displacement extrapolation method. The considered...... application example is to tear off one of the face laminates from the sandwich. This configuration can be found in many applications but is considered here to be occurring in a ship structure, particularly at the hard spot where the superstructure meets the deck. Face tearing experiments are carried out...

  20. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    Science.gov (United States)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  1. An experimental study on shock waves propagating through a dusty gas in a horizontal channel

    Science.gov (United States)

    Sugiyama, H.; Takimoto, A.; Shirota, T.; Hatanaka, H.

    Experiments were run to characterize the propagation of shock fronts in a dusty gas shock tube. The 1 m long, 55 mm diam tube contained air and fly ash with a mean 3.3 micron diameter. The laser beam attenuation method was used to quantify the particle concentration and thereby the distribution of suspended particles and variations in the distribution over shock Mach numbers 1.38, 1.48 and 1.61. Among other results, it was found that the variations in particle concentration were affected by both the suspended particles and those which settled on the tube floor. When a vertical particle gradient was present, the shape of the particles was inclined in the flow direction.

  2. Study of mode propagation with 632.8-nm laser in tapered fiber

    Institute of Scientific and Technical Information of China (English)

    He Chen; Junliang Lu; Chengliang Zhao; Botao Cheng; Xuanhui Lu

    2009-01-01

    The material dispersion of a tapered fiber is described by Sellmeier's equation.The dependence of refractive index on wavelength and doping concentration is discussed.A He-Ne laser with the output wavelength of 632.8 nm is used in the experiment.When the cutoff frequency of the fiber is less than the laser frequency,the guiding modes of a single-mode fiber(at 1550 nm)are investigated.The results show that the original single-mode fiber becomes a multi-mode waveguide.The propagation and mode coupling of the light in the taper region are analyzed.By controlling the taper end size of the fiber,the unique tapered fiber can convert a multi-mode beam into a single-mode one.

  3. Study of land surface temperature and spectral emissivity using multi-sensor satellite data

    Indian Academy of Sciences (India)

    P K Srivastava; T J Majumdar; Amit K Bhattacharya

    2010-02-01

    In this study, an attempt has been made to estimate land surface temperatures (LST) and spectral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of about 6000 km2, is a part of Singhbhum–Orissa craton situated in the eastern part of India. TIR data from ASTER, MODIS and Landsat ETM+ have been used in the present study. Telatemp Model AG-42D Portable Infrared Thermometer was used for ground measurements to validate the results derived from satellite (MODIS/ASTER) data. LSTs derived using Landsat ETM+ data of two different dates have been compared with the satellite data (ASTER and MODIS) of those two dates. Various techniques, viz., temperature and emissivity separation (TES) algorithm, gray body adjustment approach in TES algorithm, Split-Window algorithms and Single Channel algorithm along with NDVI based emissivity approach have been used. LSTs derived from bands 31 and 32 of MODIS data using Split-Window algorithms with higher viewing angle (50°) (LST1 and LST2) are found to have closer agreement with ground temperature measurements (ground LST) over waterbody, Dalma forest and Simlipal forest, than that derived from ASTER data (TES with AST 13). However, over agriculture land, there is some uncertainty and difference between the measured and the estimated LSTs for both validation dates for all the derived LSTs. LST obtained using Single Channel algorithm with NDVI based emissivity method in channel 13 of ASTER data has yielded closer agreement with ground measurements recorded over vegetation and mixed lands of low spectral contrast. LST results obtained with TIR band 6 of Landsat ETM+ using Single Channel algorithm show close agreement over Dalma forest, Simlipal forest and waterbody with LSTs obtained using MODIS and ASTER data for a different date. Comparison of LSTs shows good agreement with ground measurements in thermally homogeneous area. However, results in agriculture area with less homogeneity show

  4. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  5. The algorithm study for using the back propagation neural network in CT image segmentation

    Science.gov (United States)

    Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi

    2017-01-01

    Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.

  6. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies

    Directory of Open Access Journals (Sweden)

    A. Loew

    2013-09-01

    Full Text Available Soil moisture is an essential climate variable (ECV of major importance for land–atmosphere interactions and global hydrology. An appropriate representation of soil moisture dynamics in global climate models is therefore important. Recently, a first multidecadal, observation-based soil moisture dataset has become available that provides information on soil moisture dynamics from satellite observations (ECVSM, essential climate variable soil moisture. The present study investigates the potential and limitations of this new dataset for several applications in climate model evaluation. We compare soil moisture data from satellite observations, reanalysis and simulations from a state-of-the-art land surface model and analyze relationships between soil moisture and precipitation anomalies in the different dataset. Other potential applications like model parameter optimization or model initialization are not investigated in the present study. In a detailed regional study, we show that ECVSM is capable to capture well the interannual and intraannual soil moisture and precipitation dynamics in the Sahelian region. Current deficits of the new dataset are critically discussed and summarized at the end of the paper to provide guidance for an appropriate usage of the ECVSM dataset for climate studies.

  7. Optimization of post-classification processing of high-resolution satellite image: A case study

    Institute of Scientific and Technical Information of China (English)

    DONG; Rencai; DONG; Jiajia; WU; Gang; DENG; Hongbing

    2006-01-01

    The application of remote sensing monitoring techniques plays a crucial role in evaluating and governing the vast amount of ecological construction projects in China. However, extracting information of ecological engineering target through high-resolution satellite image is arduous due to the unique topography and complicated spatial pattern on the Loess Plateau of China. As a result, enhancing classification accuracy is a huge challenge to high-resolution image processing techniques. Image processing techniques have a definitive effect on image properties and the selection of different parameters may change the final classification accuracy during post-classification processing. The common method of eliminating noise and smoothing image is majority filtering. However, the filter function may modify the original classified image and the final accuracy. The aim of this study is to develop an efficient and accurate post-processing technique for acquiring information of soil and water conservation engineering, on the Loess Plateau of China, using SPOT image with 2.5 rn resolution. We argue that it is vital to optimize satellite image filtering parameters for special areas and purposes, which focus on monitoring ecological construction projects. We want to know how image filtering influences final classified results and which filtering kernel is optimum. The study design used a series of window sizes to filter the original classified image, and then assess the accuracy of each output map and image quality. We measured the relationship between filtering window size and classification accuracy, and optimized the post-processing techniques of SPOT5satellite images. We conclude that (1) smoothing with the majority filter is sensitive to the information accuracy of soil and water conservation engineering, and (2) for SPOT5 2.5 m image, the 5×5 pixel majority filter is most suitable kernel for extracting information of ecological construction sites in the Loess Plateau of

  8. How Good Are Satellite Rainfall Products For Hydrologic Simulations Of A Small Watershed?

    Science.gov (United States)

    Zeweldi, D. A.; Gebremichael, M.; Downer, C. W.

    2009-12-01

    Despite recent advances in satellite rainfall technology, the use of satellite rainfall products for hydrological applications is very limited. Assessing the potential and utility of satellite rainfall products is crucially important to advance their utility. In this work, first we quantify the errors in satellite rainfall products. We considered different satellite rainfall algorithms; namely, CMORPH (~8km, 30-minute), PERSIANN-CCS (4km, hourly) and HydroEstimator (10 km, hourly). Second, we assess how these errors propagate to hydrologic model streamflow simulations. We used the fully-distributed hydrologic model known as GSSHA. Our study region is the Goodwin Creek experimental watershed (21 sq. km) in Mississippi, USA. Our results provide information on how good different satellite rainfall products are for hydrologic simulations of a small watershed.

  9. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa

    Directory of Open Access Journals (Sweden)

    Elodie Vintrou

    2014-02-01

    Full Text Available Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2 product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks, provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007 and temporal (two sites from 2002 to 2008 differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i the satellite-derived start-of-season (SOS was detected approximately 30 days before the model-derived SOS; and (ii the satellite-derived end-of-season (EOS was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better

  10. Parametrization of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui

    2005-01-01

    Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.

  11. Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown ErAlO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in the load ranging from 10~100 g. The variation of microhardness with load which is best explained by Hays and Kendall's law leads to the load independent values of hardness. Classification of cracks is dealt with and it is reported that the transition from Palmqvist to median types of cracks occurs at higher loads. The values of fracture toughness (Kc), and brittleness index (Bi) are calculated using median types of cracks.

  12. Plan of propagation and communication experiments using ETS-VI

    Science.gov (United States)

    Ohmori, Shingo

    1988-01-01

    In 1992, an Engineering Test Satellite VI is scheduled to be launched by an H-II rocket. The missions of ETS-VI are to establish basic technologies of inter-satellite communications using millimeter waves and optical beams and fix satellite communications using multibeam antenna on board the satellite. Several kinds of frequency bands will be used for the communications missions. However, these frequencies can be used for propagation experiments.

  13. Survey of propagation Model in wireless Network

    Directory of Open Access Journals (Sweden)

    Hemant Kumar Sharma

    2011-05-01

    Full Text Available To implementation of mobile ad hoc network wave propagation models are necessary to determine propagation characteristic through a medium. Wireless mobile ad hoc networks are self creating and self organizing entity. Propagation study provides an estimation of signal characteristics. Accurate prediction of radio propagation behaviour for MANET is becoming a difficult task. This paper presents investigation of propagation model. Radio wave propagation mechanisms are absorption, reflection, refraction, diffraction and scattering. This paper discuss free space model, two rays model, and cost 231 hata and its variants and fading model, and summarized the advantages and disadvantages of these model. This study would be helpful in choosing the correct propagation model.

  14. Preliminary study on migration pattern of the Tibetan antelope ( Pantholops hodgsonii) based on satellite tracking

    Science.gov (United States)

    Buho, Hoshino; Jiang, Z.; Liu, C.; Yoshida, T.; Mahamut, Halik; Kaneko, M.; Asakawa, M.; Motokawa, M.; Kaji, K.; Wu, X.; Otaishi, N.; Ganzorig, Sumiya; Masuda, R.

    2011-07-01

    The spatial and temporal patterns of the endangered Tibetan antelope or chiru ( Pantholops hodgsonii) have been studied using satellite-based ARGOS platform transmitter terminal (PTT) tracking data. The data was obtained from the satellite tracking of two female Tibetan antelopes that were collared with satellite transmitters and have been tracked from August 2007 to April 2009. Analysis of the locality data (LC) obtained, shows that both antelopes were migrant individuals, they shared the same calving ground surrounding lake Huiten (or Zhuonai lake), but different wintering pastures. Each antelope covered 250-300 km from the wintering to summer pastures. Annual range consisted of a core area that was used for at least 9 months; a calving ground used for a short time (from 8-20 days); and temporal pastures used during migration to and from the calving ground. Seasonal migration cycle was about 3 months, 27-30 days to reach the calving ground; 8-20 days staying there; and 36-40 days returning to the core area. Examination of the spatial distribution during migration showed that both chiru crossed the Qinghai-Tibetan railway (QTR) and the Golmud-Lhasa highway (GLH) at least two times, and reached calving ground (118-120 km from there) in 8 days, maintaining an average speed of 15 km per day. However, the return migration took twice as long (from 14 to 16 days). Each time, after reaching the QTR and GLH, the antelopes spent 20-40 days in that area, probably looking for passages and waiting. So far, we suppose that the QTR and the GLH have become a hindrance to the migration of the Tibetan antelopes and seriously delay their movement to and from the calving area. Extended aggregation of the herds of Tibetan antelopes along the QTR and the GLH may impact negatively with increased mortality among offspring, the spread of various diseases and overgrazing of pastures.

  15. Gold Minerogenetic Prognosis Using Satellite Data: Case Study of Paishanlou Gold Mine, Liaoning Province, China

    Institute of Scientific and Technical Information of China (English)

    Malogo J M Kongola; Wang Ende

    2005-01-01

    The major scientific goal of using satellite data for mineral prospecting in the study area was two-fold: (a) mapping geology, faults and fractures that localize ore deposits; (b) recognizing hydrothermally altered rocks by interpreting their spectral signatures. The lithology, properties, and geological relations of the rocks were key to understanding such varied phenomena as convection, melting and transport mechanisms, rock deformation and alteration, the sources of magnetic anomalies, and the hydrothermal circulation and formation of gold deposits. Satellite data were enhanced using the following techniques: band combinations, ratios, directional sharpening filtering, Laplacian transform, spatial convolution, and density slicing. By mapping a larger area, the Paishanlou Gold Mine was discovered to be located within an accommodation zone, with three significant populations of faults having bearings of 95, 145, and 180 degrees. Faults bearing 145 degrees make up the faults of the main shear zone. The faults bearing 180 degrees have large sinistral offsets, typically 1.5 km, and form a synthetic-antithetic set with the faults bearing 145 degrees, which have dextral displacements of tens of meters. In the Landsat ETM+ image composed of bands 7-4-2 RGB, gneiss rocks were clearly seen as red purple, and granitic and plagioclase bodies in pale brown/pink. The strongest alteration signature in the image was found along the detachment fault antiform located closest to the mine and the plutons responsible for the Paishanlou gold mineralization. Satellite image interpretation coupled with field surveys led to the identification of iron mineral composites, hydrothermally altered areas, fractures, and an accommodation zone. These anomalies finally resulted in the discovery of three new gold-mineralized sites.

  16. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, Richard Wood [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  17. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  18. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique

    Science.gov (United States)

    2016-06-07

    imaging to study the wave / sea -bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...elastic wave propagation and interaction with the ocean water and ocean bottom environment. The method will be applied to numerical simulations and

  19. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    Science.gov (United States)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  20. Study of the Solar Modulation and Heliospheric Propagation of Galactic Cosmic Rays with AMS-02

    Science.gov (United States)

    Corti, C.; Bindi, V.; Consolandi, C.; Whitman, K.

    2014-12-01

    AMS-02 is a high-precision general-purpose magnetic spectrometer installed on the International Space Station on May 2011 to investigate fundamental questions shared by physics, astrophysics and cosmology on the origin and structure of the Universe, looking for antimatter and dark matter. The travel of cosmic rays through the heliosphere is disturbed by the magnetic field of the Sun which is known to vary with a period of 11 years; this induces a solar modulation in the propagation of cosmic rays which affects their fluxes up to few tens of GeV, modifying the shape and the intensity of the local interstellar spectrum (LIS). The monthly fluxes of protons detected by AMS-02 in the first three years of data taking will be shown. Using the framework of the force-field approximation, the solar modulation parameter will be extracted from the time dependent proton fluxes measured by AMS-02 (2011-2014) and PAMELA (2006-2009); the proton flux from Voyager 1 (October-November 2012) will be assumed as the LIS. The results will be compared with the modulation parameter inferred from the neutron monitors. The limitations of the force-field approximation and the differences between the minimum and the maximum of the solar cycle will be discussed. The availability of cosmic ray modulation data directly from space will be very useful to the heliophysics community, to understand in more details the long term solar activity during an entire solar cycle.

  1. Study of ultrasonic characterization and propagation in austenitic welds: The MOSAICS project

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand, E-mail: bertrand.chassignole@edf.fr [EDF R and D, MMC department, Les Renardières, 77818 Moret sur Loing (France); Recolin, Patrick, E-mail: patrick.recolin@dcnsgroup.com [DCNS CESMAN, 44620 La montagne (France); Leymarie, Nicolas, E-mail: nicolas.leymarie@cea.fr [CEA LIST, 91191 Gif-sur-Yvette (France); Gueudré, Cécile, E-mail: cecile.gueudre@univ-amu.fr [LMA, Aix Marseille Université, CNRS, UPR 7051, F-13402 Marseille Cedex 20 (France); Guy, Philippe, E-mail: philippe.guy@insa-lyon.fr [INSA Lyon, LVA laboratory, 69621 Villeurbanne (France); Elbaz, Deborah, E-mail: deborah.elbaz@extende.com [Extende, 91400 Orsay (France)

    2015-03-31

    Regulatory requirements enforce a volumetric inspection of welded components of nuclear equipments. However, the multi-pass austenitic welds are characterized by anisotropic and heterogeneous structures which lead to numerous disturbances of the ultrasonic beam. The MOSAICS project supported by the ANR (French National Research Agency) aims at matching various approaches to improve the prediction of the ultrasonic testing in those welds. The first stage consists in characterizing the weld structure (determination of the columnar grain orientation and measurements of elastic constants and attenuation coefficients). The techniques of characterization provide input data for the modeling codes developed in another task of the project. For example, a 3D version of the finite elements code ATHENA is developed by EDF R and D to take into account anisotropic texture in any direction. Semi-analytical models included in CIVA software are also improved to better predict the ultrasonic propagation in highly anisotropic and heterogeneous structures. The last stage deals with modeling codes validation based on experimental inspections on representative mock-ups containing calibrated defects. The objective of this paper is to give an overview of the MOSAICS project and to present specific results illustrating the various tasks.

  2. THE STUDY OF ELECTROMAGNETIC PROPAGATION CONSTANT ON GaAs-BASED LASERS

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1998-01-01

    Full Text Available In the recent years the important of GaAs - based lasers has gradually increased. Injected current are confined, in the central region where the recombination of the carriers takes places in a semiconductor medium whose with is larger than height. The structures in forms of AlxGa1-xAs obtained by inserting Al in GaAs materials give the structure, whose lattices are almost identical constant, and the increased band gap and decreased index of refraction. These features give the possibilities of obtaining heterojunction structures formed with GaAs and AlxGa1-xAs, such as in semiconductor lasers, amplifying the electromagnetic energy, especially optical energy, and transmiting it by guiding in fiberglass. GaAs - based structures, especially lasers, are made very thin layers, (? 40-100 A o . These quantum sizes are so small, comparable to the used wavelength and give special effects. Quantum - well structures result from these effects. In this work it is investigated the behaviour of electromagnetic wave guided in semiconductor layers and propagation constants.

  3. A study of the climate change impacts on fluvial flood propagation in the Vietnamese Mekong Delta

    Science.gov (United States)

    Van, P. D. T.; Popescu, I.; van Griensven, A.; Solomatine, D. P.; Trung, N. H.; Green, A.

    2012-12-01

    The present paper investigated the extent of the flood propagation in the Vietnamese Mekong Delta under different projected flood hydrographs, considering the 2000 flood event (the 20-yr return period event, T. V. H. Le et al., 2007) as the basis for computation. The analysis herein was done to demonstrate the particular complexity of the flood dynamics, which was simulated by the 1-D modelling system ISIS used by the Mekong River Commission. The floods of the year 2050 are simulated using a projected sea level rise of +30 cm. The future flood hydrograph changes at Kratie, Cambodia, were also applied for the upstream boundary condition by using an adjusted regional climate model. Two future flood hydrographs were applied at the upstream part of the delta, the first one in a scenario of climate change without considering developments in the Mekong Basin,and the second one in a scenario of climate change taking into account future development of the delta. Analyses were done to identify the areas sensitive to floods, considering the uncertainty of the projection of both the upstream and downstream boundary conditions. In addition, due to the rice-dominated culture in the Vietnamese Mekong Delta, possible impacts of floods on the rice-based farming systems were also analysed.

  4. A study of the climate change impacts on fluvial flood propagation in the Vietnamese Mekong Delta

    Directory of Open Access Journals (Sweden)

    P. D. T. Van

    2012-12-01

    Full Text Available The present paper investigated the extent of the flood propagation in the Vietnamese Mekong Delta under different projected flood hydrographs, considering the 2000 flood event (the 20-yr return period event, T. V. H. Le et al., 2007 as the basis for computation. The analysis herein was done to demonstrate the particular complexity of the flood dynamics, which was simulated by the 1-D modelling system ISIS used by the Mekong River Commission. The floods of the year 2050 are simulated using a projected sea level rise of +30 cm. The future flood hydrograph changes at Kratie, Cambodia, were also applied for the upstream boundary condition by using an adjusted regional climate model. Two future flood hydrographs were applied at the upstream part of the delta, the first one in a scenario of climate change without considering developments in the Mekong Basin,and the second one in a scenario of climate change taking into account future development of the delta. Analyses were done to identify the areas sensitive to floods, considering the uncertainty of the projection of both the upstream and downstream boundary conditions. In addition, due to the rice-dominated culture in the Vietnamese Mekong Delta, possible impacts of floods on the rice-based farming systems were also analysed.

  5. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM).

    Science.gov (United States)

    Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2012-02-01

    An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.

  6. Study on Propagation of Chicken Infectious Bursal Disease Virus on Vero Cells Using Microcarriers in Fermentor

    Institute of Scientific and Technical Information of China (English)

    SHI Gang; WANG Hong-jun; SUN Hui-ling

    2002-01-01

    It was in flask optimization tests proved that 2% serum, pH 7.0, 5:10 000 inoculation concentration of infectious bursal disease virus (IBDV) and 108 hours cultivation for IBDV harvest after its inoculation were the optimal conditions when IBDV was propagated on Vero cells. 250 mi self-made spinner bottle and 5 L stirring fermentor tests proved that IBDV could maintain higher titers for a long time and the highest titers of IBDV in a spinner bottle and a fermentor were 8. 875 and 8.58 ( - lgTCID50/0.1 ml) respectively when IBDV was proliferated on Vero cells using 2 g/L microcarriers in a spinner bottle and a fermentor and was cultivated under the optimum conditions obtained from flask tests after Vero cells had developed a confluent monolayer on microcarriers, which were at least one titer higher than the highest titer in the traditional rolling bottle. All these results suggested that this technology could be applied to large scale production for IBDV.

  7. Hydraulic Fracture Propagation Through an Orthogonal Discontinuity: A Laboratory, Analytical and Numerical Study

    Science.gov (United States)

    Llanos, Ella María; Jeffrey, Robert G.; Hillis, Richard; Zhang, Xi

    2017-08-01

    Rocks are naturally fractured, and lack of knowledge of hydraulic fracture growth through the pre-existing discontinuities in rocks has impeded enhancing hydrocarbon extraction. This paper presents experimental results from uniaxial and biaxial tests, combined with numerical and analytical modelling results to develop a criterion for predicting whether a hydraulic fracture will cross a discontinuity, represented at the laboratory by unbonded machined frictional interfaces. The experimental results provide the first evidence for the impact of viscous fluid flow on the orthogonal fracture crossing. The fracture elliptical footprint also reflects the importance of both the applied loading stress and the viscosity in fracture propagation. The hydraulic fractures extend both in the direction of maximum compressive stress and in the direction with discontinuities that are arranged to be normal to the maximum compressive stress. The modelling results of fracture growth across discontinuities are obtained for the locations of slip starting points in initiating fracture crossing. Our analysis, in contrast to previous work on the prediction of frictional crossing, includes the non-singular stresses generated by the finite pressurised hydraulic fracture. Experimental and theoretical outcomes herein suggest that hydraulic fracture growth through an orthogonal discontinuity does not depend primarily on the interface friction coefficient.

  8. Numerical studies of vertically propagating acoustic and magneto-acoustic waves in an isothermal atmosphere

    Directory of Open Access Journals (Sweden)

    H. Y. Alkahby

    1999-12-01

    Full Text Available In this paper we investigate numerically the effect of viscosity and Newtonian cooling on upward and downward propagating magneto-acoustic waves, resulting from a uniform horizontal magnetic field in an isothermal atmosphere. The results of the numerical computations are compared with those of asymptotic evaluations. It is shown that the presence of a small viscosity creates a layer which acts like an absorbing and reflecting barrier for waves generated below it and that the presence of the magnetic field produces a reflecting layer only. The addition of Newtonian cooling affects mainly the lower region in which it produces waves attenuation and alters the wavelength. If the Newtonian cooling coefficient is large compared with the frequency of the waves, the temperature in the lower region evens out and the wave motion approaches an isothermal one. This eliminates the attenuation in the wave amplitude since the isothermal region is dissipationless. This problem is solved analytically and numerically. The results of the numerical computation are in a complete agreement with the analytical results.

  9. An updated approach to the study of proton propagation in the eROSITA mirror system

    Science.gov (United States)

    Perinati, E.; Mineo, T.; Freyberg, M.; Diebold, S.; Santangelo, A.; Tenzer, C.

    2016-07-01

    The German telescope eROSITA will be the first X-ray instrument orbiting around the L-2 lagrangian point. Therefore, modelling the radiation environment in that region of space and its interaction with the instrument is particularly important, as no measured data of other X-ray detectors can be used as a reference to predict how the space conditions will impact the instrumental capabilities. The orbit around L-2 extends well beyond the Earth's magnetosphere, where the flux of galactic cosmic particles is cut by the geomagnetic field, and fluxes of energetic particles one order of magnitude higher than in low Earth orbits are expected. Furthermore, as experienced by Chandra and XMM-Newton, softer protons may be scattered through the mirror shells and funneled to the focal plane, representing a potential additional source of background. To investigate and assess this component we are developing a ray tracing simulator for protons, that follows the track of each proton from the entrance pupil down to the focal plane. In this paper we report on an updated version of the code that allows to propagate protons in both the polar and azimuthal directions in elastic regime.

  10. Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs

    KAUST Repository

    Xu, Yanlong

    2015-08-01

    The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.

  11. CO2 laser as a possible candidate for optical transmitter in free-space satellite-ground-satellite laser communication: a case study

    Science.gov (United States)

    Kumar, M. A.; Naik, Govind; Shenoy, N. V.; Rao, Mandavilli M.

    1999-04-01

    Terrestrial fiber optic communication systems handle most of the inter-continental communication systems today. However recent studies indicate that these links, in spite of their huge bandwidth will be saturated in the near future. Hence attempts are being made is augment and may be even replace these by inter satellite links (ISLs). Though high power laser diodes have been found to be suitable for ISLs, they are unfortunately inadequate for satellite-ground links (SGL and GSL) as they are not powerful enough. So we have to look for more powerful lasers for SGLs & GSLs. One possible candidate is the CO2 laser. It is a gas laser. It provides a number of advantages over other sources. They include high life time, high efficiency and stability. Besides it can generate a high power continuous wave and requires only radiative cooling. CO2 can provide a high bit rate and long range transmission with low bit error rate. Also CO2 laser is in near infra-red and hence the turbulence effects due to clouds is minimum. All these make CO2 laser a very economical choice. The use of optical communication in GSLs provides many advantages over radio links. Laser being a high energy source provides the advantage of greater bandwidth, smaller beam divergence angles, smaller antennae, greater security and a new spectrum. Lesser power consumption and smaller size make it more suitable for use in a satellite. The present paper deals with a case study of a CO2 laser based free space optical communication link by making the link budget analysis.

  12. Sampling errors for satellite-derived tropical rainfall - Monte Carlo study using a space-time stochastic model

    Science.gov (United States)

    Bell, Thomas L.; Abdullah, A.; Martin, Russell L.; North, Gerald R.

    1990-01-01

    Estimates of monthly average rainfall based on satellite observations from a low earth orbit will differ from the true monthly average because the satellite observes a given area only intermittently. This sampling error inherent in satellite monitoring of rainfall would occur even if the satellite instruments could measure rainfall perfectly. The size of this error is estimated for a satellite system being studied at NASA, the Tropical Rainfall Measuring Mission (TRMM). First, the statistical description of rainfall on scales from 1 to 1000 km is examined in detail, based on rainfall data from the Global Atmospheric Research Project Atlantic Tropical Experiment (GATE). A TRMM-like satellite is flown over a two-dimensional time-evolving simulation of rainfall using a stochastic model with statistics tuned to agree with GATE statistics. The distribution of sampling errors found from many months of simulated observations is found to be nearly normal, even though the distribution of area-averaged rainfall is far from normal. For a range of orbits likely to be employed in TRMM, sampling error is found to be less than 10 percent of the mean for rainfall averaged over a 500 x 500 sq km area.

  13. Analytical Study of the Propagation of Fast Longitudinal Modes along wz-BN/AlN Thin Acoustic Waveguides

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2015-01-01

    Full Text Available The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs, travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2 dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s. The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields.

  14. Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones

    Directory of Open Access Journals (Sweden)

    Vassiliki T. Potsika

    2016-03-01

    Full Text Available Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL, on the velocity of the first arriving signal (FAS. Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity and derive a variation profile along the cortical surface. It was shown that: (a the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure.

  15. Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations

    Science.gov (United States)

    Razzaghi, Pourya; Assadian, Nima

    2015-11-01

    The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.

  16. Satellite-based Studies on Large-Scale Vegetation Changes in China

    Institute of Scientific and Technical Information of China (English)

    Xia Zhao; Daojing Zhou; Jingyun Fang

    2012-01-01

    Remotely-sensed vegetation indices,which indicate the density and photosynthetic capacity of vegetation,have been widely used to monitor vegetation dynamics over broad areas.In this paper,we reviewed satellite-based studies on vegetation cover changes,biomass and productivity variations,phenological dynamics,desertification,and grassland degradation in China that occurred over the past 2-3 decades.Our review shows that the satellite-derived index (Normalized Difference Vegetation Index,NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests,grasslands,shrubs,and croplands) have significantly increased,while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline.The start of the growing season continually advanced in China's temperate regions until the 1990s,with a large spatial heterogeneity.We also found that the coverage of sparsely-vegetated areas declined,and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas.However,these results depend strongly not only on the periods chosen for investigation,but also on factors such as data sources,changes in detection methods,and geospatial heterogeneity.Therefore,we should be cautious when applying remote sensing techniques to monitor vegetation structures,functions,and changes.

  17. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Glans, P.; Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.

  18. Time-domain study of acoustic pulse propagation in an ocean waveguide using a new normal mode model

    Science.gov (United States)

    Sidorovskaia, Natalia Anatol'evna

    1997-11-01

    This study is focused on issues of numerical modeling of sound propagation in diverse ocean waveguides. A new normal mode acoustical model (Shallow Water Acoustic Mode Propagation-SWAMP) has been developed. The algorithm for obtaining the vertical modal solution is based on a warping matrix transformation of the solution of an isovelocity (reference) waveguide to one of arbitrary velocity profile. An efficient mode coupling scheme with an adaptive step-size in range has been implemented for range-dependent environments. The new algorithm allows fairly arbitrary ocean layering and readily works at high frequency. An important advantage of the new procedure is that vertical modal eigenfunctions can easily be transformed to a spherical representation suitable for coupling in object scattering problems. Benchmarking results of the new code against established acoustic models based on parabolic equation and existing normal mode approaches show good agreement for range-independent and up-slope and down-slope bathymetries and a very competitive calculation speed. Broad-band pulse propagation in deep and shallow water with double (surface and bottom) ducts has been modeled using the new normal mode model for a variety of ocean waveguide parameters and different frequency bands. The surface duct generates a series of the surface-duct-trapped- modes, which form amplitude-modulated precursors in the far field pulse response. It has been found that the arrival times of the precursors could not be explained by the conventional concept of group velocity so that a more general principle based on the rate of energy transfer has been used. The Airy function solution was found to explain the amplitude modulation of the precursors. It has been learned from the numerical simulation that for a range-independent environment the time separation between precursors is fixed and any variations from this have been a result of range-dependence and mode coupling in the model. The time

  19. The study of gravity gradient effect on attitude of low earth orbit satellite

    Science.gov (United States)

    Hamzah, Nor Hazadura; Yaacob, Sazali; Muthusamy, Hariharan; Hamzah, Norhizam; Ghazali, Najah

    2013-04-01

    Simulations and mathematical models are increasingly used to assist the process of decision making in engineering design. The objective of this paper is to simulate the linear attitude dynamics of small satellites under gravity gradient torque which is inherent in low earth orbit. The equations were first derived in their nonlinear form, and then manipulated and simulated in their linear form. Simulation results demonstrate the importance of choosing the appropriate values of satellite's moment of inertia in designing phase of a satellite.

  20. Q/V-band communications and propagation experiments using ALPHASAT

    Science.gov (United States)

    Koudelka, O.

    2011-12-01

    The lower satellite frequency bands become more and more congested; therefore it will be necessary to exploit higher frequencies for satellite communications. New broadband applications (e.g. 3D-TV, fast Internet access) will require additional spectrum in the future. The Ku-band is highly utilised nowadays and Ka-band systems, which have been extensively studied in the 1990s, are already in commercial use. The next frontier is the Q/V-band. At millimetre waves the propagation effects are significant. The traditional approach of implementing large fade margins is impractical, since this leads to high EIRP and G/ T figures for the ground stations, resulting in unacceptable costs. Fade mitigation techniques by adaptive coding and modulation (ACM) offer a cost-effective solution to this problem. ESA will launch the ALPHASAT satellite in 2012. It will carry experimental Ka- and Q/V-band propagation and communications payloads, enabling propagation measurements throughout Europe and communications experiments. Three communications spot beams will be covering Northern Italy, Southern Italy and Austria with some overlap. Joanneum Research and Graz University of Technology are preparing for communications and propagation experiments using these new payloads of ALPHASAT in close cooperation with ESA, the Italian Space Agency ASI, Politecnico di Milano and Università Tor Vergata. The main focus of the communications experiments is on ACM techniques. The paper describes the design of the planned Q/V-band ground station with the planned ACM tests and investigations as well as the architecture of the communications terminal, based on a versatile software-defined radio platform.

  1. Study on Planetary Wave Propagation in the Lower Thermosphere using wind Measurements from Fabry-Perot Interferometers

    Science.gov (United States)

    Otoo Lomotey, Solomon; Meriwether, John; Buriti, Ricardo; Medeiros, Amauri; Paulino, Igo; Barros Silva, Diego

    2016-07-01

    This research is focused on the study of planetary wave propagation in the lower thermosphere. The Fabry-Perot Interferometer (FPI) is a passive optical sensing instrument used to estimate thermospheric winds and temperature. The data used in this paper were captured by the FPIs which are located at São João do Carirri (7.4°S, 36.5°W) and Cajazeiras (6.9ºS, 38.5ºW). The main objective of this research is looking for periodicities in the wind measurements with periods longer than few days in both component of the wind. This was done by using airglow emission of Atomic Oxygen OI630nm in the red line during the nighttime, i.e., from 20:00 to 03:00 local time (LT). Lomb-Scargle analysis was used to process the thermospheric winds and temperature. Phases (time of maximum) and amplitudes of these oscillations were estimated by using Least Square fitting method (LSF), almost all of periodicities propagation of planetary waves was above 2 days for the Zonal and Meriodional winds. A strong oscillation of quasi eight days were observed from September to December 2003

  2. Study on the propagation characteristic of the Thermal Fatigue Crack by cyclic thermal load in the STS 304 tube

    Energy Technology Data Exchange (ETDEWEB)

    An, Dae-Hwan; Hwang, Woong-Ki; Kim, Jae-Seong; Lee, Sang-Yul; Lee, Bo-Young [Korea Aerospace University, Goyang (Korea, Republic of)

    2008-05-15

    Thermal fatigue crack is one of the life-limiting mechanisms in nuclear power plant conditions. During the operation of a power plant thermal fatigue cracks can initiate and grow in various components (straight pipe sections, valve bodies, pipe elbows, and collector head screw holes). Causes for this are mixing, striping or stratification of hot and cold water. A typical component, where thermal fatigue cracking occurs, is a T-joint where hot and cold fluids meet and mix. The turbulent mixing of fluids with different temperatures induces rapid temperature changes to the pipe wall. The resulting uneven temperature distribution prevents thermal expansion and gives rise to thermal stresses. The successive thermal transients cause varying, cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack initiation and growth similar to cyclic mechanical stresses. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. In this study, in order to identify propagation characteristic of thermal fatigue crack, thermal fatigue crack specimens of 4000cycle, 6000cycle, 9000cycle were fabricated. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). Destructive testing and scanning electron microscopy were carried out to identify the crack propagation characteristic and fracture surface morphology.

  3. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  4. Recent studies in satellite observations of three-dimensional magnetic reconnection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Magnetic reconnection is a main process converting the magnetic energy into thermal and kinetic energy in plasmas. It is one of the fundamental problems of crucial importance not only to space plasmas physics and space weather studies,such as the solar flare,coronal mass ejections and magnetospheric substorms,but also to the stability analysis in magnetically confined fusion. In general,except for cases with periodical boundary conditions,three-dimensional(3D) magnetic re-connection occurs on magnetic separatrices generated by magnetic nulls. Here we briefly introduce/review the theories and some recent satellite observations of 3D magnetic reconnection. Topics to be further studied are also discussed.

  5. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    Science.gov (United States)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  6. To Study the Effect of Grating Length on Propagating Modes in Bragg Filters with AlxGa1-xN/GaN Material Composition

    CERN Document Server

    Banerji, Sourangsu

    2013-01-01

    In this paper, the forward and backward propagating modes in an optical waveguide structure namely the fiber Bragg filter also considered as a one dimensional photonic crystal, are analytically computed as a function of grating length for coupled optical modes. AlxGa1-xN/GaN material composition is considered as a unit block of the periodic organization, and refractive index of AlxGa1-xN/GaN is taken to be dependent on material composition, bandgap and operating wavelength following Adachis' model. Expressions of propagating wave are derived using coupled mode theory. Simulated results help us to study the propagation of forward and backward wave propagating modes inside fiber and waveguide devices.

  7. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  8. A study on the flame propagation characteristics for LPG and Gasoline fuels by using laser deflection method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Lee, C.S. [Hanyang University, Seoul (Korea); Kang, K.Y. [Korea Institute of Machinery and Materials, Taejeon (Korea); Kang, W. [Korea Automotive Technology Institute, Chonan (Korea)

    2000-12-01

    For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different initial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0, and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher. (author). 7 refs., 13 figs.

  9. Direct broadcast satellite-radio: Portable and mobile reception trade-offs

    Science.gov (United States)

    Golshan, Nasser

    1991-09-01

    There has been considerable international effort in the areas of system studies, system development, and regulatory work for a Direct Broadcast Satellite Radio (DBS-R). An important milestone will be the 1992 World Radio Administrative Conference (WARC 1992) consideration of frequency allocation in the 500 - 3000 MHz range for such a service. There is an interagency agreement between Voice of America and the National Aeronautics and Space Administration for a coordinated program in DBS-R. This program includes seven tasks: systems tradeoff studies, propagation measurements, satellite experiment and demonstration, receiver development, market studies, regulatory studies, and WARC preparations. The findings of ongoing work under the first task, systems tradeoff studies, are discussed. Topics covered include digital bit rate and audio quality, propagation considerations and link margin estimates for portable reception, link margin estimates for mobile reception, coverage, and satellite size and cost estimates for a regional DBS-R coverage example.

  10. Study of the propagation of fast neutrons in water, by Monte-Carlo methods; Etude de la propagation des neutrons rapides dans l'eau par des methodes de Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Lafore, P.; Lattes, R.; Millot, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We have studied the propagation in water of neutrons from mono-directional plane sources with energies ranging from 300 keV to 19,66 MeV, placed in an infinite water medium. The exact paths of a number of neutrons are determined, taking into account the microscopic sections, assuming that inelastic collisions of the neutrons on oxygen are absorptions, and neglecting the loss of energy by elastic collisions on oxygen. The neutron lifetimes have been made use of to study the propagation of neutrons from fission sources, Po-Be, Po-B and Ra-Be, as well as the reflection of fast neutrons on a semi-infinite water medium. We have taken complete account of the first collision in order to improve the precision of the results. The calculations were carried out by Mrs J. VASSEUR and Mr A. GUILLOU. (author)Fren. [French] Nous etudions la propagation dans l'eau des neutrons a partir de sources planes monodirectionnelles dont les energies sont repartis de 300 keV a 19,66 MeV, placees dans un milieu infini d'eau. Nous determinons les trajectoires exactes d'un certain nombre de neutrons en tenant compte des sections microscopiques, en supposant que les chocs inelastiques des neutrons sur l'oxygene sont des absorptions, et en negligeant la perte d'energie par chocs elastiques sur l'oxygene. Les vies de neutrons ont ete exploitees pour etudier la propagation des neutrons a partir de sources de fission, Po-Be, Po-B et Ra-Be, ainsi que la reflexion des neutrons rapides sur un milieu semi-infini d'eau. On a tenu compte integralement du premier choc pour ameliorer la precision des resultats. Les calculs ont ete effectues par Mme J. VASSEUR et M.A. GUILLOU. (auteur)

  11. Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor

    Science.gov (United States)

    Fisher, Rohan

    2012-06-01

    Deforestation in the world's tropics is an urgent international issue. One response has been the development of satellite based monitoring initiatives largely focused on the carbon rich forests of western Indonesia. In contrast this study focuses on one eastern Indonesian district, Kabupaten Kupang, which has some of the largest and least studied tracts of remaining forest in West Timor. A combination of remote sensing, GIS and social science methods were used to describe the state of forests in Kabupaten Kupang, how and why they are changing. Using satellite imagery, case studies and on-ground interviews, this study explores the proposition that transdisciplinary local social, cultural and biophysical knowledge is important for effectively using remotely sensed data as a tool to inform local management policies. When compared to some other parts of Indonesia, the rate and extent of deforestation in West Timor was found to be relatively small and a satellite based assessment alone could conclude that it is not a critical issue. However this study showed that when on-ground social data are coupled with (such) satellite-based data a more complex picture emerges, related to key livelihood issues. The causes of forest cover change were found to be multivariate and location specific, requiring management approaches tailored to local social issues. This study suggests that integrative research can maximise the utility of satellite data for understanding causation and thus informing management strategies. In addition, the satellite based assessment found that at the time of the study less than 4% of forested land was within national parks and nature reserves and less than a third of the protected catchment forest zone was forested. These data suggest considerable scope for upland re-forestation activities or the redrawing of protected forest boundaries.

  12. Propagation of perturbation energy fluxes in the subsolar magnetosheath - AMPTE IRM observations

    Science.gov (United States)

    Lin, N.; Engebretson, M. J.; Baumjohann, W.; Luehr, H.

    1991-01-01

    The propagation properties of perturbation energy fluxes of subsolar magnetosheath fluctuations were studied. The Poynting flux, kinetic energy flux, and enthalpy flux are calculated using magnetic field and plasma measurements from the AMPTE IRM satellite during five intervals in 1984. The results are then compared with a disturbance indicator R of the magnetic field in the same magnetosheath region. It is shown that during disturbed periods with large transverse variations (low R level), the perturbation Poynting flux and the kinetic energy flux increase, and a significant portion of the fluxes consistently propagates toward the magnetopause. The Poynting flux of those fluctuations which consist of mainly compressional perturbations does not appear to propagate in any certain direction. The enthalpy flux of the perturbations does not propagate in any certain direction in any of the cases. The kinetic energy flux appears to be more important in exciting harmonic ULF waves in the dayside magnetosphere.

  13. A study of temperature's spatial distribution in Neuquen River valley through satellite imaging

    Directory of Open Access Journals (Sweden)

    Marisa Gloria Cogliati

    2010-01-01

    Full Text Available This paper looks into the spatial distribution of brightness and surface temperature through the use of LAND SAT7 ETM+ and NO AA-AVHRR satellite imagery in the cultivated valley of the Neuquén river. Studying the spatial distribution of temperatures in an area with a somewhat complex terrain requires the use of a great density of meteorological measurements. It is often impossible to obtain the right density of the argometeorological network due to the high installation and maintenance costs. Remote sensors provide a large flow of information in various resolutions, at considerably lower costs. Determining the valley's warm and cold zones would allow for more efficient irrigation and frost-protection methods, and it would provide tools to improve the area's productive planning.

  14. A Deep Study of the Dwarf Satellites Andromeda XXVIII & Andromeda XXIX

    CERN Document Server

    Slater, Colin T; Martin, Nicolas F; Tollerud, Erik J; Ho, Nhung

    2015-01-01

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal poor, assumed to be older) and red (relatively more metal rich, assumed to be younger) populations shows that the metal rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the Calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity-metallicity relation for dwarf satellites. ...

  15. Rain induced attenuation studies for V-band satellite communication in tropical region

    Science.gov (United States)

    Badron, Khairayu; Ismail, Ahmad Fadzil; Din, Jafri; Tharek, Abd. Rahman

    2011-04-01

    Satellite communications operating at 10 GHz and above in the tropics suffer severe signal degradation due to rain. Attenuation due to rain at 38 GHz had been measured for a period of 20 months in Malaysia. Analyses carried out include seasonal variations, diurnal effects and the annual cumulative distributions. Obtained results were compared with several established prediction models including the ITU-R. The rain fade characteristics were also investigated in determining the levels of signal loss and fading. In addition, the studies highlight several potential fade mitigation techniques that can be embarked. These fundamental aprehensions are very critical for future earth space communication link design and can be exploited as preliminary groundwork plan for the researchers as well as engineers.

  16. Satellite Altimetry And Radiometry for Inland Hydrology, Coastal Sea-Level And Environmental Studies

    Science.gov (United States)

    Tseng, Kuo-Hsin

    In this study, we demonstrate three environmental-related applications employing altimetry and remote sensing satellites, and exemplify the prospective usage underlying the current progressivity in mechanical and data analyzing technologies. Our discussion starts from the improved waveform retracking techniques in need for altimetry measurements over coastal and inland water regions. We developed two novel auxiliary procedures, namely the Subwaveform Filtering (SF) method and the Track Offset Correction (TOC), for waveform retracking algorithms to operationally detect altimetry waveform anomalies and further reduce possible errors in determination of the track offset. After that, we present two demonstrative studies related to the ionospheric and tropospheric compositions, respectively, as their variations are the important error sources for satellite electromagnetic signals. We firstly compare the total electron content (TEC) measured by multiple altimetry and GNSS sensors. We conclude that the ionosphere delay measured by Jason-2 is about 6-10 mm shorter than the GPS models. On the other hand, we use several atmospheric variables to study the climate change over high elevation areas. Five types of satellite data and reanalysis models were used to study climate change indicators. We conclude that the spatial distribution of temperature trend among data products is quite different, which is probably due to the choice of various time spans. Following discussions about the measuring techniques and relative bias between data products, we applied our improved altimetry techniques to three environmental science applications with helps of remote sensing imagery. We first manifest the detectability of hydrological events by satellite altimetry and radiometry. The characterization of one-dimensional (along-track) water boundary using former Backscattering Coefficient (BC) method is assisted by the two-dimensional (horizontal) estimate of water extent using the Moderate

  17. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  18. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially ruli

  19. A long-term satellite study of aerosol effects on convective clouds in Nordic background air

    Directory of Open Access Journals (Sweden)

    M. K. Sporre

    2013-05-01

    Full Text Available Aerosol-cloud interactions constitute a~major uncertainty in future climate predictions. This study combines 10 yr of ground-based aerosol particle measurements from 2 Nordic background stations (Vavihill and Hyytiälä with MODIS (Moderate Resolution Imaging Spectroradiometer satellite data of convective clouds. The merged data are used to examine the indirect aerosol effects on convective clouds over the Nordic countries. From the satellite scenes, vertical profiles of cloud droplet effective radius (re are created by plotting re against cloud top temperature. The profiles have been divided according to aerosol loading but also modeled meteorological parameters from the ECMWF (European Centre for Medium-Range Forecasts. Furthermore, weather radar data from the BALTEX (Baltic Sea Experiment and ground based precipitation measurements from several ground-based meteorological measurement stations have been investigated to determine whether aerosols affect precipitation intensity and amount. Higher aerosol number concentrations result in smaller re throughout the entire profiles at both stations. Profiles associated with no or little precipitation have smaller droplets than those associated with more precipitation. Furthermore, an increase in aerosol loadings results in a suppression of precipitation rates, when the vertical extent of the clouds has been taken into account. Clouds with greater vertical extent have the highest precipitation rates and are most sensitive to aerosol perturbations. Nevertheless, meteorological parameters such as the vertical extent of the clouds, the atmospheric instability and the relative humidity in the lower atmosphere affect the amount of precipitation that reaches the ground more than the aerosols do. The combination of these ground-based and remote sensing datasets provides a unique long-term study of the effects of aerosols on convective clouds over the Nordic countries.

  20. A study of L-dependent Pc3 pulsations observed by low Earth orbiting CHAMP satellite

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2010-02-01

    Full Text Available Field line resonances (FLR driven by compressional waves are an important mechanism for the generation of ULF geomagnetic pulsations observed at all latitudes during local daytime. References to observations of toroidal standing Alfvén mode oscillations with clearly L-dependent frequencies from spacecraft in the outer magnetosphere for L>3 are limited in the literature. Such observations in the inner magnetosphere for L<3 have not yet been reported in the literature. This study offers two interesting case studies of observations of ULF waves by the low Earth orbiting CHAMP satellite. The magnetic field measurements from CHAMP, which are of unprecedented accuracy and resolution, are compared to Hermanus magnetometer data for times when CHAMP crosses the ground station L-shell, namely for 13 February 2002 and 18 February 2003. The data were analysed for Pc3 pulsation activity using the Maximum Entropy Spectral Analysis (MESA method to visualise FLRs in the vector magnetometer data. For the first time observations of Pc3 toroidal oscillations with clearly L-dependent frequencies for lower L-shell values (L<3 observed by an LEO satellite are reported. These observations show FLR frequencies increasing as a function of decreasing latitude down to L=1.6 and then decreasing as a result of the larger plasma density of the upper ionosphere. The L-dependent frequency oscillations were observed in the presence of a broadband compressional wave spectrum. Our observations thus confirm the well-known magnetohydrodynamic (MHD wave theoretical prediction of a compressional wave being the driver of the field line resonance.

  1. Cadastral Resurvey using High Resolution Satellite Ortho Image - challenges: A case study in Odisha, India

    Science.gov (United States)

    Parida, P. K.; Sanabada, M. K.; Tripathi, S.

    2014-11-01

    Advancements in satellite sensor technology enabling capturing of geometrically accurate images of earth's surface coupled with DGPS/ETS and GIS technology holds the capability of large scale mapping of land resources at cadastral level. High Resolution Satellite Images depict field bunds distinctly. Thus plot parcels are to be delineated from cloud free ortho-images and obscured/difficult areas are to be surveyed using DGPS and ETS. The vector datasets thus derived through RS/DGPS/ETS survey are to be integrated in GIS environment to generate the base cadastral vector datasets for further settlement/title confirmation activities. The objective of this paper is to illustrate the efficacy of a hybrid methodology employed in Pitambarpur Sasana village under Digapahandi Tahasil of Ganjam district, as a pilot project, particularly in Odisha scenario where the land parcel size is very small. One of the significant observations of the study is matching of Cadastral map area i.e. 315.454 Acres, the image map area i.e. 314.887 Acres and RoR area i.e. 313.815 Acre. It was revealed that 79 % of plots derived by high-tech survey method show acceptable level of accuracy despite the fact that the mode of area measurement by ground and automated method has significant variability. The variations are more in case of Government lands, Temple/Trust lands, Common Property Resources and plots near to river/nalas etc. The study indicates that the adopted technology can be extended to other districts and cadastral resurvey and updating work can be done for larger areas of the country using this methodology.

  2. Evaluating the Road Safety Design through High Resolution Satellite Image: A Case Study of Karachi Metropolitan

    Directory of Open Access Journals (Sweden)

    Zubair Salman

    2016-01-01

    Full Text Available Humanity is suffering from numerous natural, technological and health related hazards. Urban Road crash is one of the growing health issues these days in both developed and developing countries. Pakistan stands 1st in Asia and 48th in the world in this regard. Similarly, the metropolitan city of Pakistan, Karachi; ranks fourth in the list. Various reasons are responsible for these crashes in Karachi. Around 34% of crashes in the city were accounted due to errors in road geometry. In this study use of high resolution satellite imagery made it possible for identifying geometrical errors at the U-turns on major arteries of the city. It was also recognized that most of the U-turns were built on the fastest lane of the roads with average distance of 1.1 Km apart, are marked as vulnerable for considerable number of severe injury and fatal crashes. Moreover, inlet wall of all median U-turns were found broken, suggested that the car crash had occurred at least once. To cross check this observation, nearly 120 U-turns were surveyed and marked on the satellite imagery based on convenience. Trained professionals interviewed the people working/living nearby the U-turns. Out of 120 U-turns studied, 72.5% were without wall/median and 27.5% were with wall/median. Average number of people got injured or died due to crashes were statistically significant (p<0.05 between the above mentioned types of U-turns. In order to reduce geometrical errors use of RS (Remote Sensing and GIS (Geographical Information System techniques are strongly suggested to be incorporated while planning road design in the city. This would certainly save the resources particularly the lives of the people.

  3. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  4. Object-based Evaluation of Satellite Precipitation Retrievals: A Case Study of the Summer Season over CONUS

    Science.gov (United States)

    Li, J.; Xu, P.

    2015-12-01

    Satellite precipitation retrievals that have high spatial and temporal resolutions are suitable for various applications, such as hydrologic modeling and watershed management. Many validation studies have been established to understand the strengths and limitations of these satellite precipitation retrievals. In this study, an object-based validation approach is adopted to evaluate several satellite precipitation retrievals focusing on the spatial and geometric patterns of precipitation. This object-based validation approach identifies precipitation objects using an image processing technique referred to as watershed transform. Several object attributes are diagnosed and analyzed based on the distance measurement. Three object-based verification scores are summarized to determine the overall performances of satellite precipitation retrievals. The Integrated Multi-satellitE Retrievals for GPM (IMERG) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) were evaluated using the object-based approach. The NOAA stage IV MPE multi-sensor composite rain analysis was utilized as the ground observations. The comparative assessments were conducted at 0.25° by 0.25° on a daily scale in the summer season of 2014 over the continental United States (CONUS). The results suggest that IMERG possesses the similar spatial pattern of local-scale precipitation areas against stage IV observations. In addition, IMERG depicts the sizes and locations of precipitation areas more accurately against stage IV.

  5. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    Science.gov (United States)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop yields and

  6. Improving image quality in Electrical Impedance Tomography (EIT using Projection Error Propagation-based Regularization (PEPR technique: A simulation study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-03-01

    Full Text Available A Projection Error Propagation-based Regularization (PEPR method is proposed and the reconstructed image quality is improved in Electrical Impedance Tomography (EIT. A projection error is produced due to the misfit of the calculated and measured data in the reconstruction process. The variation of the projection error is integrated with response matrix in each iterations and the reconstruction is carried out in EIDORS. The PEPR method is studied with the simulated boundary data for different inhomogeneity geometries. Simulated results demonstrate that the PEPR technique improves image reconstruction precision in EIDORS and hence it can be successfully implemented to increase the reconstruction accuracy in EIT.>doi:10.5617/jeb.158 J Electr Bioimp, vol. 2, pp. 2-12, 2011

  7. A study of spectrum fatigue crack propagation in two aluminum alloys. I - Spectrum simplification. II - Influence of microstructures

    Science.gov (United States)

    Telesman, J.; Antolovich, S. D.

    1986-01-01

    An investigation of the fatigue crack propagation FCP behavior of two aluminum alloys is performed to simulate spectrum loading conditions found at critical locations in high performance fighter aircraft. Negative loads are shown to be eliminated for the tension-compression spectrum for low to intermediate maximum stress intensities, and load interactions are found to be more significant at higher stress intensities and with more plasticity at the crack tip. In the second part, the influence of microstructural features including grain size, inclusions, and dispersoids on constant amplitude and spectrum crack growth behavior in aluminum alloys is studied. At low stress intensities the I/M alloy demonstrated better FCP resistance than the P/M 7091 alloy for both constant amplitude and spectrum testing, and the inhomogeneous planar slip and large grain size of 7050 limit dislocation interactions, thereby improving FCP performance.

  8. Two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity: a numerical study.

    Science.gov (United States)

    Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin

    2009-03-01

    This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.

  9. A Case Study Examining Egypt, Nigeria, and Venezuela and their Flaring Behavior Utilizing VIIRS Satellite Data

    Science.gov (United States)

    Englander, J. G.; Austin, A. T.; Brandt, A. R.

    2016-12-01

    The need to quantify flaring by oil and gas fields is receiving more scrutiny, as there has been scientific and regulatory interest in quantifying the greenhouse gas (GHG) impact of oil and gas production. The National Oceanic and Atmospheric Administration (NOAA) has developed a method to track flaring activity using a Visible Infrared Imaging Radiometer Suite (VIIRS) satellite.[1] This reports data on the average size, power, and light intensity of each flare. However, outside of some small studies, the flaring intensity has generally been estimated at the country level.[2]While informative, country-level assessments cannot provide guidance about the sustainability of particular crude streams or products produced. In this work we generate detailed oil-field-level flaring intensities for a number of global oilfield operations. We do this by merging the VIIRS dataset with global oilfield atlases and other spatial data sources. Joining these datasets together with production data allows us to provide better estimates for the GHG intensity of flaring at the field level for these countries.[3]First, we compute flaring intensities at the field level for 75 global oil fields representing approximately 25% of global production. In addition, we examine in detail three oil producing countries known to have high rates of flaring: Egypt, Nigeria, and Venezuela. For these countries we compute the flaring rate for all fields in the country and explore within-and between-country variation. The countries' fields will be analyzed to determine the correlation of flare activity to a certain field type, crude type, region, or production method. [1] Cao, C. "Visible Infrared Imaging Radiometer Suite (VIIRS)." NOAA NPP VIIRS. NOAA, 2013. Web. 30 July 2016. [2] Elvidge, C. D. et al., "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, vol. 2, no. 3, pp. 595-622, Aug. 2009. [3] World Energy Atlas. 6th ed. London: Petroleum Economist, 2011. Print.

  10. The study of Be stars with the CoRoT satellite

    Science.gov (United States)

    Diago, P. D.; Gutierrez-Soto, J.; Fabregat, J.; Suso, J.; COROT Be Team

    2011-11-01

    The CoRoT space mission, launched in December 2006, is a spacecraft devoted to the study of the stellar interiors and the exo-planet search. Concerning the seismology of the Be stars, the presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. In this field, the CoRoT satellite is providing data with an unprecedent quality and precision that is confirming non-radial pulsations in Be stars. The CoRoT Be Team is an international collaboration composed by members from France, Spain, Brazil and Belgium and is in charge of the exploitation and analysis of the Be stars data. In this work we present the highlighted results of the observed Be stars by CoRoT and the future prospects of the CoRoT Be Team. These results include the detection of the Be star HD 49 330 during an outburst phase and the measurement of the change in the oscillation spectrum during this rare event. These observations gave insight into the nature of the explosion. It will help to solve a question that has been pending for years: are oscillations the cause of the outbursts? Moreover, for the first time, the CoRoT satellite has detected simultaneously the rotational and the pulsational frequencies for the Be star HD 50 209, which constitutes a proof of the presence of pulsations in the Be stars. %J Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society (SEA), held in Madrid, September 13 - 17, 2010, Eds.: M. R. Zapatero Osorio, J. Gorgas, J. Maiz Apellaniz, J. R. Pardo, and A. Gil de Paz., p. 531-531

  11. Study on the detection of red-tide outbreaks using big satellite database

    Science.gov (United States)

    Son, Young Baek; Eun, Yoon Joo; Park, Kyongseok; Lee, Sanghwan; Lee, Ryong; Kim, Sang-Hyun; Yoo, Sinjae

    2014-11-01

    Satellite remote sensing has been successfully employed to monitor and detect the increasing incidence of harmful algal blooms (HABs) under various water conditions. In this study, to establish a comprehensive monitoring system of HAB outbreaks (particularly Cochlodinium polykrikoides blooms) in the southern coast of Korea (SCK), we tested the several proposed red-tide detection methods using SeaWiFS and MODIS ocean color data. Temporal and spatial information of red tide events from 2002 to 2013 were obtained from the National Fisheries Research and Development of Korea (NFRDI), which were matched with synchronously obtained satellite-derived ocean color data. The spectral characteristics of C. polykrikoides red tides were that increased phytoplankton absorption at 443 nm and pigment backscattering 555 nm resulted in a steeper slope between 488 and 555 nm with a hinge point at 488 (or 490) nm. On the other hand, non-red tide water, typically were presented by broader radiance spectra between the blue and green bands were associated with reduced pigment absorption and backscattering. The analysis of ocean color imageries that captured C. polykrikoides red tide blooms showed discolored waters with enhanced pigment concentrations, high chlorophyll, fluorescence, absorption at 443 nm. However, most red tide detection algorithms found a large number of false positive but only a small number of true positive areas. These proposed algorithms are not useful to distinguish true red tide water from complex non-red tide water. Our proposed method substantially reduces the false signal rate (false positive) from strong absorption at short wavelengths and provide a more reliable and robust detection of C. polykrikoides blooms in the SCK from the space.

  12. Calculations of precursor propagation in dispersive dielectrics.

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Larry Donald

    2003-08-01

    The present study is a numerical investigation of the propagation of electromagnetic transients in dispersive media. It considers propagation in water using Debye and composite Rocard-Powles-Lorentz models for the complex permittivity. The study addresses this question: For practical transmitted spectra, does precursor propagation provide any features that can be used to advantage over conventional signal propagation in models of dispersive media of interest? A companion experimental study is currently in progress that will attempt to measure the effects studied here.

  13. The determinations of remote sensing satellite data delivery service quality: A positivistic case study in Chinese context

    Science.gov (United States)

    Jin, Jiahua; Yan, Xiangbin; Tan, Qiaoqiao; Li, Yijun

    2014-03-01

    With the development of remote sensing technology, remote-sensing satellite has been widely used in many aspects of national construction. Big data with different standards and massive users with different needs, make the satellite data delivery service to be a complex giant system. How to deliver remote-sensing satellite data efficiently and effectively is a big challenge. Based on customer service theory, this paper proposes a hierarchy conceptual model for examining the determinations of remote-sensing satellite data delivery service quality in the Chinese context. Three main dimensions: service expectation, service perception and service environment, and 8 sub-dimensions are included in the model. Large amount of first-hand data on the remote-sensing satellite data delivery service have been obtained through field research, semi-structured questionnaire and focused interview. A positivist case study is conducted to validate and develop the proposed model, as well as to investigate the service status and related influence mechanisms. Findings from the analysis demonstrate the explanatory validity of the model, and provide potentially helpful insights for future practice.

  14. The behaviour of satellite cells in response to exercise: what have we learned from human studies?

    DEFF Research Database (Denmark)

    Kadi, Fawzi; Olsen, Steen Schytte

    2005-01-01

    Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards the underst......Understanding the complex role played by satellite cells in the adaptive response to exercise in human skeletal muscle has just begun. The development of reliable markers for the identification of satellite cell status (quiescence/activation/proliferation) is an important step towards...... the understanding of satellite cell behaviour in exercised human muscles. It is hypothesised currently that exercise in humans can induce (1) the activation of satellite cells without proliferation, (2) proliferation and withdrawal from differentiation, (3) proliferation and differentiation to provide myonuclei...... and (4) proliferation and differentiation to generate new muscle fibres or to repair segmental fibre injuries. In humans, the satellite cell pool can increase as early as 4 days following a single bout of exercise and is maintained at higher level following several weeks of training. Cessation...

  15. Study of the turbulence in the central plasma sheet using the CLUSTER satellite data

    Science.gov (United States)

    Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.

    2008-05-01

    Recent studies are shown that the turbulent processes in the space plasmas are very important. It includes the behavior of the plasma sheet plasma during geomagnetic substorms and storms. Study of the plasma turbulence in the central plasma sheet was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the plasma bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the plasma sheet. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of plasma turbulence inside the sheet differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.

  16. DROMO propagator revisited

    Science.gov (United States)

    Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2016-01-01

    In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.

  17. Forest fires detection in Indonesia using satellite Himawari-8 (case study: Sumatera and Kalimantan on august-october 2015)

    Science.gov (United States)

    Fatkhuroyan; Wati, Trinah; Panjaitan, Andersen

    2017-01-01

    Forest fires in Indonesia are serious problem affecting widely in material losses, health and environment. Himawari-8 as one of meteorological satellites with high resolution 0,5 km x 0,5 km can be used for forest fire monitoring and detection. Combination between 3, 4 and 6 channels using Sataid (Satellite Animation and Interactive Diagnosis) software will visualize forest fire in the study site. Monitoring which used Himawari-8 data on August, September and October 2015 can detect the distribution of smoke and the extents of forest fire in Sumatera and Kalimantan. The result showed the extent of forest fire can be identified for anticipation in the next step.

  18. Chromosphere to 1 AU Simulation of the 2011 March 7th Event: A Comprehensive Study of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Jin, M.; Manchester, W. B.; van der Holst, B.; Sokolov, I.; Tóth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2017-01-01

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R⊙. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).

  19. 3-D anatomy of an active fault-propagation fold: A multidisciplinary case study from Tsaishi, western Caucasus (Georgia)

    Science.gov (United States)

    Tibaldi, A.; Russo, E.; Bonali, F. L.; Alania, V.; Chabukiani, A.; Enukidze, O.; Tsereteli, N.

    2017-10-01

    Ongoing deformation processes combining fault propagation and folding are the cause of diffuse seismicity in many areas of the world. A detailed understanding of the structural evolution of tectonically active folds is crucial for the evaluation of seismic hazard. This paper proposes an integrated analysis of an active fold, consisting in the development of a 3D model by combination of geomorphological observations, field geological-structural data and seismic reflection sections. Our case study is the Tsaishi anticline, located at the southwestern tip of the Rioni Basin uplifted area, at the foothill of Greater Caucasus (Western Georgia). We recognized that the fold started to form since the beginning of the middle Miocene, although preliminary data suggest the possibility of initial local uplift in the Oligocene. Folding process continues up to nowadays giving rise to a south-vergent anticline, as shown by upwarped late Quaternary river deposits. The fold backlimb is affected by three main back-thrusts, whereas at the foot of the forelimb a main north-dipping thrust comes very close to the surface based on seismic sections. Here, field data show the presence of a 13-km-long fault scarp (or fold scarp). Along the scarp is located the epicenter of the strongest earthquake to date: the MS 6.0 Tsaishi earthquake that struck the area in 1614 CE. Based on our results, we propose that the overall structure can be classified as an active fault-propagation fold. The recognition of its very recent growing associated with a major, underlying active fault, represents also a major contribution to the seismic hazard assessment of this populated area.

  20. Study to forecast and determine characteristics of world satellite communications market

    Science.gov (United States)

    Filep, R. T.; Schnapf, A.; Fordyce, S. W.

    1983-01-01

    The world commercial communications satellite market during the spring and summer of 1983 was examined and characteristics and forecasts of the market extending to the year 2000 were developed. Past, present and planned satellites were documented in relation to frequencies, procurement and launch dates, costs, transponders, and prime contractor. Characteristics of the market are outlined for the periods 1965 - 1985, 1986 - 1989, and 1990 - 2000. Market share forecasts, discussions of potential competitors in various world markets, and profiles of major communication satellite manufacturing and user countries are documented.

  1. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  2. Satellite and ship studies of phytoplankton along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Gomes, H.; Kumar, A; Gouveia, A; Devassy, V.P.; Parulekar, A; Rao, L.V.G.

    AidEd. by a sequence of chlorophyll images from the Coastal Zone Color Scanner on board the Nimbus-7 satellite and extensive shipboard observations, a descriptive analysis of the factors influencing the distribution and production of phytoplankton...

  3. Exploration of satellite-derived data products for atmospheric turbulence studies

    CSIR Research Space (South Africa)

    Griffith, DJ

    2014-09-01

    Full Text Available layer. This has included all satellite data products that are relevant to the surface energy balance such as surface reflectance, temperature and emissivity. It was also important to identify active archive data services that can provide preprocessed...

  4. Qualification study of LiF flight crystals for the objective crystal spectrometer on the SPECTRUM-X-GAMMA satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Rasmussen, I.; Schnopper, Herbert W.;

    1992-01-01

    The Objective Crystal Spectrometer (OXS) on the SPECTRUM-X-GAMMA satellite will carry these types of natural crystals LiF(220), Ge(111) and RAP(001). They will be used to study, among others, the H- and the He-like emission from the cosmically important elements Fe, S, Ar and O. More than 300 Li...

  5. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite

    Science.gov (United States)

    Surkov, V. V.; Pilipenko, V. A.

    2016-03-01

    Interference of an incident and reflected Alfvén pulses propagating inside the ionospheric Alfvén resonator (IAR) is studied on the basis of a simple one-dimensional model. Particular emphasis has been placed on the analysis of spectral features of ultralow frequency (˜1-15 Hz) electric perturbations recently observed by Communications/Navigation Outage Forecasting System satellite. This "fingerprint" multiband spectral structure was observed when satellite descended in the terminator vicinity. Among factors affecting spectral structure the satellite position and distance from the IAR boundaries are most significant. It is concluded that the observed spectrograms exhibit modulation with "period" depending on propagation delay time of reflected Alfvén pulses in such a way that this effect can mask a spectral resonance structure resulted from excitation of IAR eigenmodes. The proposed interference effect is capable to produce a spectral pattern resembling a fingerprint which is compatible with the satellite observations.

  6. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  7. Atomistic study of crack propagation and dislocation emission in Cu-Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Clinedinst, J.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-09-01

    The authors present atomistic simulations of the crack tip configuration in multilayered Cu-Ni materials. The simulations were carried out using molecular statics and EAM potentials. The atomistic structure of the interface was studied first for a totally coherent structure. Cracks were simulated near a Griffith condition in different possible configurations of the crack plane and front with respect to the axis of the layers. Results show that interface effects predominantly control the mechanical behavior of the system studied.

  8. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Directory of Open Access Journals (Sweden)

    Afaf M. Abd El-Hameed

    2015-12-01

    Full Text Available The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si, and gallium arsenide (GaAs. These materials are used for receivers’ manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  9. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    Science.gov (United States)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  10. Online self-service processing system of ZY-3 satellite: a prospective study of image cloud services

    Science.gov (United States)

    Wang, Hongyan; Wang, Huabin; Shi, Shaoyu

    2015-12-01

    The strong demands for satellite images are increasing not only in professional fields, but also in the non-professionals. But the online map services with up-to-date satellite images can serve few demands. One challenge is how to provide online processing service, which need to handle real-time online data-intensive geospatial computation and visualization. Under the background of the development of cloud computing technology, the problem can be figured out partly. The other challenge is how to implement user-customized online processing without professional background and knowledge. An online self-service processing system of ZY-3 Satellite images is designed to implement an on-demand service mode in this paper. It will work with only some simple parameters being set up for the non-professionals without having to care about the specific processing steps. And the professionals can assemble the basic processing services to a service chain, which can work out a more complex processing and a better result. This intelligent self-service online system for satellite images processing, which is called the prototype of satellite image cloud service in this paper, is accelerated under the development of cloud computing technology and researches on data-intensive computing. To realize the goal, the service mode and framework of the online self-service processing system of ZY-3 Satellite images are figured out in this paper. The details of key technologies are also discussed, including user space virtualization management, algorithm-level parallel image processing, image service chain construction, etc. And the experimental system is built up as a prospective study of image cloud services.

  11. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Science.gov (United States)

    Furano, G.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Iannucci, A.; Morselli, A.; Picozza, P.; Reali, E.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, M.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Mazzenga, G.; Ricci, M.; Castellini, G.; Barbiellini, M.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.

    The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000-2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff.

  12. Acoustic propagational characteristics and tomography studies of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Somayajulu, Y.K.; Murty, T.V.R.

    The results of the acoustic tomographic studies carried out in five sections of the Northern Indian Ocean is given. The characteristics of the sound speed field of the northern Indian Ocean comprising of the Arabian Sea and the Bay of Bengal...

  13. Relationships between lightning activity and various thundercloud parameters: satellite and modelling studies

    Science.gov (United States)

    Baker, M. B.; Blyth, A. M.; Christian, H. J.; Latham, J.; Miller, K. L.; Gadian, A. M.

    The lightning frequency model developed by Baker et al. [Baker, M.B., Christian, H.J., Latham, J., 1995. A computational study of the relationships linking lightning frequency and other thundercloud parameters, Q. J. R. Meteorol. Soc., 121, 1525-1548] has been refined and extended, in an effort to provide a more realistic framework from which to examine computationally the relationships that might exist between lightning frequency f (which is now being routinely measured from a satellite, using the NASA/MSFC Optical Transient Detector (OTD)) and a variety of cloud physical parameters. Specifically, superior or more comprehensive representations were utilised of: (1) glaciation via the Hallett-Mossop (H-M) process; (2) the updraught structure of the model cloud; (3) the liquid-water-content structure of the model cloud; (4) the role of the reversal temperature Trev in influencing lightning characteristics; (5) the critical breakdown field for lightning initiation; and (6) the electrical characteristics of the ice crystal anvil of the model cloud. Although our extended studies yielded some new insights into the problem, the basic pattern of relationships between f and the other parameters was very close to that reported by Baker et al. (1995). The more elaborate treatment of Trev restricted somewhat the range of conditions under which reverse-polarity lightning could be produced if the cloud glaciated via H-M, but confirmed the earlier conclusion that such lightning would not occur if the glaciation was of the Fletcher type. The computations yielded preliminary support for the hypothesis that satellite measurements of f might be used to determine values of the ice-content of cumulonimbus anvils: a parameter of climatological importance. The successful launch and continuing satisfactory functioning of the OTD [Christian, H.J., Goodman, S., 1992. Global observations of lightning from space, Proc. 9th Int. Conf. on Atmospheric Electricity, St. Petersburg, pp. 316

  14. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  15. Study on the volcanic ash cloud with Feng Yun-3 meteorological satellite data

    Science.gov (United States)

    Gong, Cai-lan T.; Jiang, Shan; Hu, Yong; Meng, Peng

    2013-09-01

    Volcano eruption can produce a mass of volcanic ash floating in the air for a long period, which will seriously threaten the aerial planes safety, and cause the air pollution, it could do harm to people's living environment and their health. Take the Iceland Eyjafjallajokull volcano as an example which erupted in April to May 2010, the volcano ash cloud were derived with the visible and infrared scanning radiometer of FengYun-3(FY-3 VIRR) meteorological satellite data. The medium wave infrared (MWIR) and the thermal infrared split windows (THIR-SW) data were used separately. the MODIS THIR-SW data were also be used to retrieve ash cloud to test the results derived from FY-3 VIRR data. It showed that the MWIR was more applicable for the ash cloud retrieving than the THIR-SW with FY-3 VIRR data, and the threshold value should be adjusted to around negative 1 rather than 0 for VIRR THIR-SW data. And the threshold should be adjusted with the THIR-SW of FY-3. The ash cloud radiation and bright temperature(BT), spatial distribution characteristics were also analyzed quantitatively with the two channels data. The study could provide parameters for the prediction of volcanic ash cloud dispersion simulate. When the real temperature of lava flow were high enough, the sensor will show a false bright temperature, how to retrieve the real temperature of the higher lava flow is a problem need to be studied in the future.

  16. Real time deforestation detection using ann and satellite images the Amazon rainforest study case

    CERN Document Server

    Nunes Kehl, Thiago; Roberto Veronez, Maurício; Cesar Cazella, Silvio

    2015-01-01

    The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not bee...

  17. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS.

    Science.gov (United States)

    Mahmood, Khalid; Batool, Syeda Adila; Chaudhry, Muhammad Nawaz

    2016-09-01

    Estimating negative impacts of MSW dumps on its surrounding environment is the key requirement for any remedial measures. This study has been undertaken to map bio-thermal effects of MSW dumping at and around dumping facilities (non-engineered) using satellite imagery for Faisalabad, Pakistan. Thirty images of Landsat 8 have been selected after validation for the accuracy of their observational details from April 2013 to October 2015. Land Surface Temperature (LST), NDVI, SAVI and MSAVI have been derived from these images through Digital Image Processing (DIP) and have been subjected to spatio-temporal analysis in GIS environment. MSW dump has been found with average temperature elevation of 4.3K and 2.78K from nearby agriculture land and urban settlement respectively. Vegetation health has been used as the bio-indicator of MSW effects and is implemented through NDVI, SAVI, MSAVI. Spatial analyses have been used to mark boundary of bio-thermally affected zone around dumped MSW and measure 700m. Seasonal fluctuations of elevated temperatures and boundary of the bio-thermally affected zones have also been discussed. Based on the direct relation found between vegetation vigor and the level of deterioration within the bio-thermally affected region, use of crops with heavy vigor is recommended to study MSW hazard influence using bio-indicators of vegetation health.

  18. Numerical Study of Interaction of Propagated Shock with Boundary Layer Behind Contact Surface in Ducts

    Institute of Scientific and Technical Information of China (English)

    Kazuyuki Kage; Katsuya Ishimatsu; Toyoyasu Okubayashi

    2003-01-01

    The interactions of the shock with the boundary layer of the cold gas behind the contact in many different conditions, i.e. three kinds of test gases and three kinds of sound speed ratios across the contact, were explored by numerical study. The trajectories of the transmitted shock in cold gas flow and the development of shock bifurcation in the process of interaction with boundary layer are illustrated by many kinds of figures (e.g. the time-distance diagrams of the acoustic impedance contours on the axis, the pressure and density contours and the static pressure distributions on the axis).

  19. Computational study of shock waves propagating through air-plastic-water interfaces

    CERN Document Server

    Del Razo, Mauricio J

    2015-01-01

    The following study is motivated by experimental studies in traumatic brain injury (TBI). Recent research has demonstrated that low intensity non-impact blast wave exposure frequently leads to mild traumatic brain injury (mTBI); however, the mechanisms connecting the blast waves and the mTBI remain unclear. Collaborators at the Seattle VA Hospital are doing experiments to understand how blast waves can produce mTBI. In order to gain insight that is hard to obtain by experimental means, we have developed conservative finite volume methods for interface-shock wave interaction to simulate these experiments. A 1D model of their experimental setup has been implemented using Euler equations for compressible fluids. These equations are coupled with a Tammann equation of state (EOS) that allows us to model compressible gas along with almost incompressible fluids or elastic solids. A hybrid HLLC-exact Eulerian-Lagrangian Riemann solver for Tammann EOS with a jump in the parameters has been developed. The model has sho...

  20. Several thoughts for using new satellite remote sensing and global modeling for aerosol and cloud climate studies

    Science.gov (United States)

    Nakajima, Teruyuki; Hashimoto, Makiko; Takenaka, Hideaki; Goto, Daisuke; Oikawa, Eiji; Suzuki, Kentaroh; Uchida, Junya; Dai, Tie; Shi, Chong

    2017-04-01

    The rapid growth of satellite remote sensing technologies in the last two decades widened the utility of satellite data for understanding climate impacts of aerosols and clouds. The climate modeling community also has received the benefit of the earth observation and nowadays closed-collaboration of the two communities make us possible to challenge various applications for societal problems, such as for global warming and global-scale air pollution and others. I like to give several thoughts of new algorithm developments, model use of satellite data for climate impact studies and societal applications related with aerosols and clouds. Important issues are 1) Better aerosol detection and solar energy application using expanded observation ability of the third generation geostationary satellites, i.e. Himawari-8, GOES-R and future MTG, 2) Various observation functions by directional, polarimetric, and high resolution near-UV band by MISR, POLDER&PARASOL, GOSAT/CAI and future GOSAT2/CAI2, 3) Various applications of general purpose-imagers, MODIS, VIIRS and future GCOM-C/SGLI, and 4) Climate studies of aerosol and cloud stratification and convection with active and passive sensors, especially climate impact of BC aerosols using CLOUDSAT&CALIPSO and future Earth Explorer/EarthCARE.

  1. Case study of a fast propagating bacteriogenically induced concrete corrosion in an Austrian sewer system

    Science.gov (United States)

    Grengg, Cyrill; Mittermayr, Florian; Baldermann, Andre; Böttcher, Michael; Leis, Albrecht; Koraimann, Günther; Dietzel, Martin

    2015-04-01

    Reaction mechanisms leading to microbially induced concrete corrosion (MICC) are highly complex and often not fully understood. The aim of the present case study is to contribute to a deeper understanding of reaction paths, environmental controls, and corrosion rates related to MICC in a modern Austrian sewer system by introducing an advanced multi proxy approach that comprises gaseous, hydro-geochemical, bacteriological, and mineralogical analyses. Various crucial parameters for detecting alteration features were determined in the field and laboratory, including (i) temperature, pH, alkalinity, chemical compositions of the solutions, (ii) chemical and mineralogical composition of solids, (iii) bacterial analysis, and (iv) concentrations of gaseous H2S, CH4 and CO2 within the sewer pipe atmosphere. An overview of the field site and analytical results, focusing on reaction mechanisms causing the corrosion, as well as possible remediation strategies will be presented.

  2. Preface to the Special Issue on "Geophysical and Climate Change Studies in Tibet, Xinjiang, and Siberia (TibXS from Satellite Geodesy"

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2013-01-01

    Full Text Available This special issue publishes papers on recent results in geophysical and climate change studies over Tibet, Xinjiang and Siberia (TibXS based upon some of the key sensors used in satellite geodesy, including satellite gravimetric sensors (GRACE and GOCE, satellite altimeters (TOPEX, Jason-1 and -2, and ENVISAT, and Global Positioning System satellites. Results from ground- and airborne-based geodetic observations, notably those based on airborne gravimeter, superconducting gravimeter (SG and seismometers are also included in the special issue. In all, 22 papers were submitted for this special issue; 17 papers were accepted.

  3. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    Science.gov (United States)

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  4. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  5. A STUDY ON THE EFFECT OF RADIAL INERTIA ON THE ELASTO-PLASTIC COMBINED STRESS WAVE PROPAGATION IN THIN-WALLED TUBES

    Institute of Scientific and Technical Information of China (English)

    Li Yongchi; Huang Chengyi; Yuan Fuping; Jin Yongmei

    2001-01-01

    An in-depth analysis of propagation characteristics of elasto-plastic combined stress waves in circular thin-walled tubes has been made. In obtaining the simple-wave solution, however,most researches have ignored the influence of the circumferential stressrelated to the radial inertial effect in the tubes. In this paper the incremental elasto-plastic constitutive relations which are convenient for dynamic numerical analysis are adopted, and the finite-difference method is used to study the evolution and propagation of elasto-plastic combined stress waves in a thin-walled tube with the radial inertial effect of the tube considered. The calculation results are compared with those obtained when the radial inertial effect is not considered. The calculation results show that the radial inertial effect of a tube has a fairly great influence on the propagation of elasto-plastic combined stress waves.

  6. Preliminary study on direct assimilation of cloud-affected satellite microwave brightness temperatures

    Science.gov (United States)

    Zhang, Sibo; Guan, Li

    2017-02-01

    Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics parameters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are applied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind analysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.

  7. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  8. Object-oriented industrial solid waste identification using HJ satellite imagery: a case study of phosphogypsum

    Science.gov (United States)

    Fu, Zhuo; Shen, Wenming; Xiao, Rulin; Xiong, Wencheng; Shi, Yuanli; Chen, Baisong

    2012-10-01

    The increasing volume of industrial solid wastes presents a critical problem for the global environment. In the detection and monitoring of these industrial solid wastes, the traditional field methods are generally expensive and time consuming. With the advantages of quick observations taken at a large area, remote sensing provides an effective means for detecting and monitoring the industrial solid wastes in a large scale. In this paper, we employ an object-oriented method for detecting the industrial solid waste from HJ satellite imagery. We select phosphogypsum which is a typical industrial solid waste as our target. Our study area is located in Fuquan in Guizhou province of China. The object oriented method we adopted consists of the following steps: 1) Multiresolution segmentation method is adopted to segment the remote sensing images for obtaining the object-based images. 2) Build the feature knowledge set of the object types. 3) Detect the industrial solid wastes based on the object-oriented decision tree rule set. We analyze the heterogeneity in features of different objects. According to the feature heterogeneity, an object-oriented decision tree rule set is then built for aiding the identification of industrial solid waste. Then, based on this decision tree rule set, the industrial solid waste can be identified automatically from remote sensing images. Finally, the identified results are validated using ground survey data. Experiments and results indicate that the object-oriented method provides an effective method for detecting industrial solid wastes.

  9. Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study.

    Science.gov (United States)

    Yao, Yifei; Da Ong, Lucas Xian; Li, Xiaotong; Wan, Kinlun; Mak, Arthur F T

    2017-03-01

    Deep tissue injuries occur in muscle tissues around bony prominences under mechanical loading leading to severe pressure ulcers. Tissue compression can potentially compromise lymphatic transport and cause accumulation of metabolic biowastes, which may cause further cell damage under continuous mechanical loading. In this study, we hypothesized that biowastes released by mechanically damaged muscle cells could be toxic to the surrounding muscle cells and could compromise the capability of the surrounding muscle cells to withstand further mechanical loadings. In vitro, we applied prolonged low compressive stress (PLCS) and short-term high compressive stress to myoblasts to cause cell damage and collected the biowastes released by the damaged cells under the respective loading scenarios. In silico, we used COMSOL to simulate the compressive stress distribution and the diffusion of biowastes in a semi-3D buttock finite element model. In vitro results showed that biowastes collected from cells damaged under PLCS were more toxic and could compromise the capability of normal myoblasts to resist compressive damage. In silico results showed that higher biowastes diffusion coefficient, higher biowastes release rate, lower biowastes tolerance threshold and earlier timeline of releasing biowastes would cause faster propagation of tissue damage. This study highlighted the importance of biowastes in the development of deep tissue injury to clinical pressure ulcers under prolonged skeletal compression.

  10. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  11. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    Science.gov (United States)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  12. Confining crack propagation in defective graphene.

    Science.gov (United States)

    López-Polín, Guillermo; Gómez-Herrero, Julio; Gómez-Navarro, Cristina

    2015-03-11

    Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.

  13. Satellite theory

    Science.gov (United States)

    Kozai, Y.

    1981-04-01

    The dynamical characteristics of the natural satellite of Mars, Jupiter, Saturn, Uranus and Neptune are analyzed on the basis of the solar tidal perturbation factor and the oblateness factor of the primary planet for each satellite. For the inner satellites, for which the value of the solar tidal factor is much smaller than the planetary oblateness factor, it is shown that the eccentricity and inclination of satellite orbits are generally very small and almost constant; several pairs of inner satellites are also found to exhibit commensurable mean motions, or secular accelerations in mean longitude. In the case of the outer satellites, for which solar perturbations are dominant, secular perturbations and long-period perturbations may be derived by the solution of equations of motion reduced to one degree of freedom. The existence of a few satellites, termed intermediary satellites, for which the solar tidal perturbation is on the order of the planetary oblateness factor, is also observed, and the pole of the orbital plane of the satellite is noted to execute a complex motion around the pole of the planet or the orbital plane of the planet.

  14. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  15. Study of a two-dimension transient heat propagation in cylindrical coordinates by means of two finite difference methods

    Science.gov (United States)

    Dumencu, A.; Horbaniuc, B.; Dumitraşcu, G.

    2016-08-01

    The analytical approach of unsteady conduction heat transfer under actual conditions represent a very difficult (if not insurmountable) problem due to the issues related to finding analytical solutions for the conduction heat transfer equation. Various techniques have been developed in order to overcome these difficulties, among which the alternate directions method and the decomposition method. Both of them are particularly suited for two-dimension heat propagation. The paper deals with both techniques in order to verify whether the results provided are in good accordance. The studied case consists of a long hollow cylinder, and considers that the time-dependent temperature field varies both in the radial and the axial directions. The implicit technique is used in both methods and involves the simultaneous solving of a set of equations for all of the nodes for each time step successively for each of the two directions. Gauss elimination is used to obtain the solution of the set, representing the nodal temperatures. After using the two techniques the results show a very good agreement, and since the decomposition is easier to use in terms of computer code and running time, this technique seems to be more recommendable.

  16. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Wormit, M.; Dreuw, A. [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany); Soshnikov, D. Yu.; Trofimov, A. B., E-mail: abtrof@mail.ru [Favorsky’s Institute of Chemistry, SB RAS, 664033 Irkutsk (Russian Federation); Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk (Russian Federation); Holland, D. M. P. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Powis, I., E-mail: ivan.powis@nottingham.ac.uk [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C. [Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  17. Maturation of interhemispheric signal propagation in autism spectrum disorder and typically developing controls: a TMS-EEG study.

    Science.gov (United States)

    Jarczok, Tomasz A; Fritsch, Merve; Kröger, Anne; Schneider, Anna Lisa; Althen, Heike; Siniatchkin, Michael; Freitag, Christine M; Bender, Stephan

    2016-08-01

    Brain maturation from childhood to adulthood is associated with changes in structural and functional connectivity between remote brain regions. Altered connectivity plays an important role in the pathology of autism spectrum disorder (ASD), a severe neurodevelopmental disorder. ASD is associated with abnormal brain development and structurally altered interhemispheric connections. Cortico-cortical connectivity can be studied by a combination of transcranial magnetic stimulation (TMS) with concurrent EEG (TMS-EEG). TMS-evoked Interhemispheric Signal Propagation (ISP) is a correlate of interhemispheric connectivity related to the microstructure of the corpus callosum (CC). We used TMS-EEG to measure ISP in 22 ASD subjects (10-21 years) and 22 typically developing control subjects (9-19 years). We expected (1) maturational changes of ISP from childhood to young adulthood and also (2) reduced interhemispheric signal transfer in ASD. ISP was positively correlated with age in both ASD and typically developing control subjects. No difference in ISP between ASD and typically developing controls was found. Our findings demonstrate maturation of effective interhemispheric connectivity during adolescence. As ISP is related to the microstructure of the CC, the developmental change of ISP likely reflects maturation of the CC during the second life decade. The results support ISP as a valid parameter reflecting functional interhemispheric connectivity. Our results do not support a global deficit of interhemispheric connectivity in ASD.

  18. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  19. Particle propagation in cosmological backgrounds

    CERN Document Server

    Arteaga, Daniel

    2007-01-01

    We study the quantum propagation of particles in cosmological backgrounds, by considering a doublet of massive scalar fields propagating in an expanding universe, possibly filled with radiation. We focus on the dissipative effects related to the expansion rate. At first order, we recover the expected result that the decay rate is determined by the local temperature. Beyond linear order, the decay rate has an additional contribution governed by the expansion parameter. This latter contribution is present even for stable particles in the vacuum. Finally, we analyze the long time behaviour of the propagator and briefly discuss applications to the trans-Planckian question.

  20. TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES

    Directory of Open Access Journals (Sweden)

    Andrei G. Marchuk

    2009-01-01

    Full Text Available This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat sloping sides, using the wave rays method. During propagation along such waveguide the single tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which have various model profiles, is investigated numerically with the help of finite difference method. Results of numerical experiments show that the highest waves are detected above a ridge with flat sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are presented.

  1. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  2. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    Science.gov (United States)

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  3. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    Science.gov (United States)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  4. Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, Dušan, E-mail: dusan.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Zemun (Serbia); Fedele, Renato, E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II,” M.S. Angelo, Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, Napoli (Italy); Belić, Milivoj, E-mail: milivoj.belic@qatar.tamu.edu [Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); De Nicola, Sergio, E-mail: sergio.denicola@spin.cnr.it [SPIN-CNR, Complesso Universitario di M.S. Angelo, Napoli (Italy)

    2015-04-15

    The interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in a regime with ultrarelativistic electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The study is applied to a laser wakefield acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse. These have fundamentally different dispersive properties since in the core the electrons are almost completely expelled by a very strong ponderomotive force, and the electromagnetic wave packet is imbedded in a vacuum channel, thus having (almost) linear properties. Conversely, at the pulse edges, the laser amplitude is smaller, and the wave is weakly nonlinear and dispersive. New nonlinear terms in the wave equation, introduced by the nonlinear phase, describe without the violation of imposed scaling laws a smooth transition to a nondispersive electromagnetic wave at very large intensities and a simultaneous saturation of the (initially cubic) nonlocal nonlinearity. The temporal evolution of the laser pulse is studied both analytically and by numerically solving the model equations in a two-dimensional geometry, with the spot diameter presently used in some laser acceleration experiments. The most stable initial pulse length is estimated to exceed ≳1.5–2 μm. Moderate stretching of the pulse in the direction of propagation is observed, followed by the development of a vacuum channel and of a very large

  5. Customer premise service study for 30/20 GHz satellite system

    Science.gov (United States)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  6. Satellite Altimetry and GRACE Gravimetry for Studies of Annual Water Storage Variations in Bangladesh

    Directory of Open Access Journals (Sweden)

    Ole Andersen

    2008-01-01

    Full Text Available Four different data sources have been compared with respect to observations of the annual water storage variations in the region of Bangladesh. Data from satellite altimeters and river gauges estimates the variation in surface water storage in the major rivers of Bangladesh.

  7. Simultaneous optical and satellite observations of auroras in the mantle: Case study

    Science.gov (United States)

    Safargaleev, V. V.; Mitrofanov, V. M.; Roldugin, A. V.

    2016-11-01

    The all-sky camera data obtained in Barentsburg (Spitsbergen Archipelago) are compared with specific features of electron and ion precipitations on the DMSP F18 satellite during its flight within the camera field of view on December 15, 2012. Before arriving at the cusp from the mantle side, the satellite detects two outbursts of precipitating particles. The burst of mantle precipitations far from the cusp is observed simultaneously in both ionic and electronic components. In the ionosphere related to the satellite, no auroras are detected, which is likely due to the low intensity of the flux of precipitating electrons and their low energy (80 eV). Near the cusp, a more intensive burst of precipitations of higher-energy electrons (140 eV) is accompanied by an almost complete "locking" of ions. This burst of mantle precipitations is related to the faint luminous structure in the ionosphere. The ion locking is indicative of the accelerating potential difference in the force tube, which is based on the glowing region. The luminous structure is an element of the so-called "polewar moving auroral forms," which is related in the literature to the reconnection in the daytime magnetopause. The possible relation of the observed phenomena to the reconnected magnetic force tubes, which drift from the cusp in the antisolar direction, is also confirmed by the dispersion of ionic precipitations, i.e., an increase in ion energy as the satellite approaches to the cusp.

  8. NanoSAR – Case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.S.; Sundaramoorthy, P.P.; Gill, E.K.A.; Meijer, R.J.; Verhoeven, C.J.M.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite’s payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  9. Conjunction of tail satellites for substorm study: ISTP event of 1997 January 2

    DEFF Research Database (Denmark)

    Lui, A.T.Y.; Liou, K.; Newell, P.T.;

    2000-01-01

    dipolarization at Geotail and highly fluctuating magnetic field (mostly northward B-z) at IMP-8. Observations for this substorm showed no indication of mid-tail activities occurring prior to auroral brightening for both onset and intensification even though the satellites observed activities subsequently. Close...

  10. Initializing HYSPLIT with satellite observations of volcanic ash: A case study of the 2008 Kasatochi eruption

    Science.gov (United States)

    Crawford, Alice M.; Stunder, Barbara J. B.; Ngan, Fong; Pavolonis, Michael J.

    2016-09-01

    The current work focuses on improving volcanic ash forecasts by integrating satellite observations of ash into the Lagrangian transport and dispersion model, HYSPLIT. The accuracy of HYSPLIT output is dependent on the accuracy of the initialization: the initial position, size distribution, and amount of ash as a function of time. Satellite observations from passive infrared, IR, sensors are used both to construct the initialization term and for verification. Space-based lidar observations are used for further verification. We compare model output produced using different initializations for the 2008 eruption of Kasatochi in the Aleutian Islands. Simple source terms, such as a uniform vertical line or cylindrical source above the vent, are compared to initializations derived from satellite measurements of position, mass loading, effective radius, and height of the downwind ash cloud. Using satellite measurements of column mass loading of ash to constrain the source term produces better long-term predictions than using an empirical equation relating mass eruption rate and plume height above the vent. Even though some quantities, such as the cloud thickness, must be estimated, initializations which release particles at the position of the observed ash cloud produce model output which is comparable to or better than the model output produced with source terms located above and around the vent. Space-based lidar data, passive IR retrievals of ash cloud top height, and model output agree well with each other, and all suggest that the Kasatochi ash cloud evolved into a complex three-dimensional structure.

  11. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  12. Fractional calculus approach to study temperature distribution within a spinning satellite

    Directory of Open Access Journals (Sweden)

    Jyotindra C. Prajapati

    2016-09-01

    Full Text Available This paper deals with the temperature distribution within spinning satellites and problem is formulated in terms of fractional differential equation. Applying fractional calculus approach, solution of this equation is obtained in terms of Wright generalized hypergeometric function, a generalization of exponential function.

  13. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  14. Quest for learning: A study of teachers' perceptions of the Satellite Education and Environmental Research Program

    Science.gov (United States)

    Ahern, Kathryn A.

    The purpose of this study was to examine the perceptions of teachers who participated in the Satellite Education and Environmental Research (SEER) Program Water Project, a curriculum design course developed at the University of Nebraska-Lincoln. The distance education course was a complex intervention which used the Nebraska Mathematics and Science Initiative's Model Program criteria for inquiry-based curriculum. Teachers formed communities of inquiry, experienced scientific inquiry processes, integrated different disciplines to create new thematic science curricula, and were encouraged to employ innovative pedagogical practices. National Science Education Standards and Nebraska Mathematics and Science Frameworks were consulted to develop important science process skills and concepts. Multicultural science education was addressed through investigation of local water issues. Teachers were encouraged to form community partnerships, supported with testing materials for conducting scientific research, and expected to use computer technology. Grounded theory was used to examine interviews of 26 participants for their perceptions of the effects of the intervention on their teaching strategies. The self-reports were triangulated through the external evaluation report, classroom artifacts, and a limited number of observations of classroom and field activities. Open coding was used to categorize the interview responses and to propose relationships among them. The central phenomenon that emerged from the axial and select coding was the changed focus: teaching science more thematically. Three theoretical propositions were posed to guide further inquiry: (1) teachers need opportunities and resources to experience science as an authentic, tenable, and realistic process if they are to develop curriculum and focus classroom activities on scientific inquiry; (2) autonomous learning communities must be fostered at downlink sites if distance learning experiences are to affect

  15. A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Tollerud, Erik J.; Ho, Nhung [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06510 (United States)

    2015-06-20

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity–metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  16. Photometric and spectroscopic study of the ultra-faint Milky Way satellite Pegasus III

    Science.gov (United States)

    Kim, Dongwon; Jerjen, Helmut; Geha, Marla C.; Chiti, Anirudh; Milone, Antonino; Da Costa, Gary S.; Mackey, Dougal; Frebel, Anna; Conn, Blair

    2017-01-01

    Pegasus III (Peg III) is one of the few known ultra-faint dwarf (UFD) satellite galaxies in the outer halo (R >150 kpc) of the Milky Way (MW). We present results from a recent study of Peg III using Magellan/IMACS and Keck/DEIMOS. Our newly-measured structural parameters confirm that Peg III is large (rh = 53±14pc), elongated (∈ = 0.38+0.22-0.38 ), and faint (MV=-3.4±0.4 mag) — indicative of its nature as a dwarf rather than a globular cluster. In the color-magnitude diagram, Peg III is well described by an old (>12Gyr) and metal-poor ([Fe/H]measurements of individual stars, we identify seven kinematic members of Peg III. The Ca II triplet lines of the brightest members verify that Peg III indeed contains stars with metallicity as low as [Fe/H]=-2.55±0.15 dex. The systemic velocity and velocity dispersion of Peg III are -222.9±2.6 km/s and 5.4+3.0-2.5 km/s, respectively. The inferred dynamical mass within the half-light radius of 1.4+3.0-1.1×106M⊙, and the mass-to-light ratio of M/LV = 1470+5660-1240M⊙/L⊙ provide further evidence that Peg III is a bona fide UFD. Peg III and another distant UFD Pisces II lie relatively close to each other (△dspatial=43±19 kpc) and share similar systemic radial velocities (△vGSR=12.3±3.7 km/s), which suggests that they may share a common origin.

  17. A Deep Study of the Dwarf Satellites Andromeda XXVIII and Andromeda XXIX

    Science.gov (United States)

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.; Tollerud, Erik J.; Ho, Nhung

    2015-06-01

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity-metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  18. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  19. Constraining local UV field geometry at reionization using Milky Way satellites

    Directory of Open Access Journals (Sweden)

    Aubert D.

    2012-02-01

    Full Text Available We present a new semi-analytical model of the population of satellite galaxies of the Milky Way, aimed at estimating the effect of the geometry of reionization at galaxy scale on the properties of the satellites. In this model reionization can be either: (A externally-driven and uniform, or (B internally-driven, by the most massive progenitor of the Milky Way. In the latter scenario the propagation of the ionisation front and photon dilution introduce a delay in the photo-evaporation of the outer satellites’ gas with respect to the inner satellites. As a consequence, outer satellites experience a longer period of star formation than those in the inner halo. We use simple models to account for star formation, the propagation of the ionisation front, photo-evaporation and observational biases. Both scenarios yield a model satellite population that matches the observed luminosity function and mass-to-light ratios. However, the predicted population for scenario (B is significantly more extended spatially than for scenario (A, by about 0.3 dex in distance, resulting in a much better match to the observations. The survival of the signature left by the local UV field during reionization on the radial distribution of satellites makes it a promising tool for studying the reionization epoch at galaxy scale in the Milky Way and nearby galaxies resolved in stars with forthcoming large surveys.

  20. A study of possible sea state information in the sample and hold gate statistics for the GEOS-3 satellite altimeter

    Science.gov (United States)

    Wells, W. T.; Borman, K. L.; Mitchell, R. D.; Dempsey, D. J.

    1979-01-01

    The statistical variations in the sample gate outputs of the GEOS-3 satellite altimeter were studied for possible sea state information. After examination of a large number of statistical characteristics of the altimeter waveforms, it was found that the best sea predictor for H-1/3 in the range of 0 to 3 meters was the 75th percentile of sample and hold gate number 11.

  1. Application of Advection-Diffusion Routing Model to Flood Wave Propagation:A Case Study on Big Piney River, Missouri USA

    Institute of Scientific and Technical Information of China (English)

    Yang Yang; Theodore A Endreny; David J Nowak

    2016-01-01

    Flood wave propagation modeling is of critical importance to advancing water re-sources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long down-stream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph’s rising limb and not to the falling limb. The downstream hydrograph’s falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advection-diffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.

  2. Experimental study on the impact-induced seismic wave propagating through granular materials: Implications for a future asteroid mission

    Science.gov (United States)

    Yasui, M.; Matsumoto, E.; Arakawa, M.; Matsue, K.; Kobayashi, N.

    2014-07-01

    Introduction: A seismic wave survey is a direct method to investigate the sub-surface structures of solid bodies, so we measured and analyzed these seismic waves propagating through these interiors. Earthquake and Moonquake are the only two phenomena that have been observed to explore these interiors until now, while the future surveys on the other bodies, (solid planets and/or asteroids) are now planned. To complete a seismic wave survey during the mission period, an artificial method that activates the seismic wave is necessary and one candidate is a projectile collision on the target body. However, to utilize the artificial seismic wave generated on the target body, the relationship between the impact energy and the amplitude and the decay process of the seismic wave should be examined. If these relationships are clarified, we can estimate the required sensitivity of seismometers installed on the target body and the possible distance from the seismic origin measurable for the seismometer. Furthermore, if we can estimate the impact energy from the observed seismic wave, we expect to be able to estimate the impact flux of impactors that collided on the target body. McGarr et al. (1969) did impact experiments by using the lexan projectile and two targets, quartz sand and sand bonded by epoxy cement, at 0.8-7 km/s. They found a difference of seismic wave properties between the two targets, and calculated the conversion efficiency to discuss the capability of detection of seismic waves on the Moon. However, they did not examine the excitation and propagation properties of the seismic waves in detail. In this study, we carried out impact experiments in the laboratory to observe the seismic waves by accelerometers, and examined the effects of projectile properties on the excitation and propagation properties of the seismic waves. Experimental methods: We made impact experiments by using a one-stage gas gun at Kobe University. Projectiles were a polycarbonate cylinder

  3. Studies and analyses of the space shuttle main engine: High-pressure oxidizer turbopump failure information propagation model

    Science.gov (United States)

    Glover, R. C.; Rudy, S. W.; Tischer, A. E.

    1987-01-01

    The high-pressure oxidizer turbopump (HPOTP) failure information propagation model (FIPM) is presented. The text includes a brief discussion of the FIPM methodology and the various elements which comprise a model. Specific details of the HPOTP FIPM are described. Listings of all the HPOTP data records are included as appendices.

  4. Design optimization studies for large-scale contoured beam deployable satellite antennas

    Science.gov (United States)

    Tanaka, Hiroaki

    2006-05-01

    Satellite communications systems over the past two decades have become more sophisticated and evolved new applications that require much higher flux densities. These new requirements to provide high data rate services to very small user terminals have in turn led to the need for large aperture space antenna systems with higher gain. Conventional parabolic reflectors constructed of metal have become, over time, too massive to support these new missions in a cost effective manner and also have posed problems of fitting within the constrained volume of launch vehicles. Designers of new space antenna systems have thus begun to explore new design options. These design options for advanced space communications networks include such alternatives as inflatable antennas using polyimide materials, antennas constructed of piezo-electric materials, phased array antenna systems (especially in the EHF bands) and deployable antenna systems constructed of wire mesh or cabling systems. This article updates studies being conducted in Japan of such deployable space antenna systems [H. Tanaka, M.C. Natori, Shape control of space antennas consisting of cable networks, Acta Astronautica 55 (2004) 519-527]. In particular, this study shows how the design of such large-scale deployable antenna systems can be optimized based on various factors including the frequency bands to be employed with such innovative reflector design. In particular, this study investigates how contoured beam space antennas can be effective by constructed out of so-called cable networks or mesh-like reflectors. This design can be accomplished via "plane wave synthesis" and by the "force density method" and then to iterate the design to achieve the optimum solution. We have concluded that the best design is achieved by plane wave synthesis. Further, we demonstrate that the nodes on the reflector are best determined by a pseudo-inverse calculation of the matrix that can be interpolated so as to achieve the minimum

  5. Viscothermal wave propagation

    NARCIS (Netherlands)

    Nijhof, Marten Jozef Johannes

    2010-01-01

    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a

  6. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone

    Science.gov (United States)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.

    2015-08-01

    Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  7. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    Science.gov (United States)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of

  8. Transparent Gap Filler Solution over a DVB-RCS2 Satellite Platform in a Railway Scenario: Performance Evaluation Study

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2015-01-01

    Full Text Available In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path.

  9. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  10. Propagation in Diagonal Anisotropic Chirowaveguides

    Directory of Open Access Journals (Sweden)

    S. Aib

    2017-01-01

    Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

  11. Flood hazard and flood risk assessment using a time series of satellite images: a case study in Namibia.

    Science.gov (United States)

    Skakun, Sergii; Kussul, Nataliia; Shelestov, Andrii; Kussul, Olga

    2014-08-01

    In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood-prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov-Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat-5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.

  12. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  13. Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days

    Directory of Open Access Journals (Sweden)

    K. H. Lee

    2010-12-01

    Full Text Available In East Asia, satellite observation is important because aerosols from natural and anthropogenic sources have been recognized as a major source of regional and global air pollution. However, retrieving aerosols properties from satellite observations over land can be difficult because of the surface reflection, complex aerosol composition, and aerosol absorption. In this study, a new aerosol retrieval method called as the Moderate Resolution Imaging Spectroradiometer (MODIS satellite aerosol retrieval (MSTAR was developed and applied to three different aerosol event cases over East Asia. MSTAR uses a separation technique that can distinguish aerosol reflectance from top-of-atmosphere (TOA reflectance. The aerosol optical thickness (AOT was determined by comparing this aerosol reflectance with pre-calculated values. Three case studies show how the methodology identifies discrepancies between measured and calculated values to retrieve more accurate AOT. The comparison between MODIS and the Aerosol Robotic Network (AERONET showed improvement using the suggested methodology with the cluster-based look-up-tables (LUTs (linear slope = 0.94, R = 0.92 than using operational MODIS collection 5 aerosol products (linear slope = 0.78, R = 0.87. In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering of the observation data in East Asia.

  14. A satellite constellation optimization for a regional GNSS remote sensing mission

    Science.gov (United States)

    Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud

    2017-04-01

    Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.

  15. Study of landwater variation over Chao Phraya river basin using GRACE, satellite altimetry and in situ data

    Science.gov (United States)

    Yamamoto, K.; Fukuda, Y.; Nakaegawa, T.; Taniguchi, M.

    2009-12-01

    A project to assess the effects of human activities on the subsurface environment in Asian developing cities has been in progress (Research Institute for Humanity and Nature, Japan, 2009). Bangkok, Thailand is one of the study cities in this project. Using GRACE satellite gravity data, we previously recovered landwater mass variation over the Chao Phraya river basin, where Bangkok is located on downstream. However, mainly because of insufficient spatial resolution of the GRACE data then released, it was difficult to distinguish mass variation over the Chao Phraya basin with the ones of the neighboring Mekong, Irrawaddy and Salween river basins. Recently, some new versions of GRACE data sets have been available, and thus we estimated again the mass variations over these basins using version 2 of CNS/GRGS data set. The result shows that mass variations of the each basin could be distinguished due to improvement of the spatial resolution of the data. One of the interesting things is that a negative interannual mass trend is observed only over the Chao Phraya river basin, while the other basins show positive trend values. One of our concerns was which of the landwater components were decreasing. Because GRACE can only detect total terrestrial water storage, we further used satellite altimeter data to separate surface- and groundwater components. EnviSat data were mainly used as satellite altimetry data in this study, because the mission period is overlapping with GRACE mission and the ground track separation is relatively small. River water levels were recovered from satellite altimetry data, and converted to river water storage. Estimated river water storage was subtracted from the GRACE data. Thus, interannual surface- and groundwater trends were discussed separately. Another concern is whether the landwater decrease is caused by meteorological factors or factors of human activities. Thus, we also compared above results with global hydrological simulation model and

  16. A Cusp Density Enhancement Study using e-POP Satellite Data

    Science.gov (United States)

    Sadler, B.

    2015-12-01

    CHAMP satellite observations have confirmed neutral density enhancements which are localized to the high latitude polar cusp region. These small-scale density structures are consistently correlated with strong fine-scale field-aligned currents. A possible driver of these density enhancements is soft electron precipitation which, through processes associated with ion-outflow, results in a density enhancement in the cusp vicinity at the altitudes observed by CHAMP. We investigate this mechanism with recent observations from the CASSIOPE / e-POP satellite and numerical simulations. In-situ data for selected cusp transit events are presented. Numerical simulation predictions are discussed comparing two electron-precipitation models: a fine-scale ion-outflow model and a global-scale Joule heating / increased conductivity model (CMIT).

  17. Satellite Altimetry and GRACE Gravimetry for Studies of Annual Water Storage Variations in Bangladesh

    Directory of Open Access Journals (Sweden)

    Ole Andersen

    2008-01-01

    Full Text Available Four different data sources have been compared with respect to observations of the annual water storage variations in the region of Bangladesh. Data from satellite altimeters and river gauges estimates the variation in surface water storage in the major rivers of Bangladesh. The GRACE satellites measure the integrated mass change and hence the terrestrial soil moisture variations, which can also be estimated by a hydrological model (GLDAS. These types of observations enable the derivation of the integrated water storage in the entire region of Bangladesh. For all data types, the annual signal has been estimated from a common dataset spanning the period 2003 and 2004. All four different data observe that water storage in Bangladesh is largely dominated by an annual signal with a phase peaking in early September. The annual variations in river level peaks roughly two weeks earlier than terrestrial soil moisture observations by GRACE observations and GLDAS model output.

  18. Feasibility study of a solar power satellite system configured by formation flying

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Noboru; Ueno, Hiroshi; Oda, Mitsushige [Japan Aerospace Exploration Agency (JAXA), Inst. of Space Technology and Aeronautics, Tsukuba, Ibaraki (Japan)

    2005-11-15

    This paper presents a new concept of a solar power satellite system configured by formation flying. In this concept, the solar power satellite system consists of sunlight reflectors and an energy generator-transmitter. The energy generator- transmitter is on a common GEO, and the reflectors are placed on the north and south by using solar pressure to raise their orbits from GEO. Therefore, the orbits of the reflectors and that of the energy generator-transmitter make three parallel GEOs. The feasibility of the concept and its requirements are also discussed, focusing on the orbital and attitude mechanics of the reflector. Because the tilt angle of the sunlight changes with the turning of the seasons, it is sometimes necessary to raise the orbit by thrusters especially around the solstice. For attitude dynamics, spin stabilization and thruster control are discussed as the attitude control strategies against the gravity gradient torque, which acts as a persistent periodic disturbance. (Author)

  19. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering

    Science.gov (United States)

    Hanley, G. M.

    1980-09-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.

  20. Satellite Power Systems (SPS) concept definition study. Volume 2, part 2: System engineering. [cost and programmatics

    Science.gov (United States)

    Hanley, G. M.

    1980-01-01

    The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.