WorldWideScience

Sample records for satellite precipitation measurements

  1. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  2. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  3. Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi-Satellite Measurements

    Science.gov (United States)

    Capannolo, L.; Li, W.; Ma, Q.

    2017-12-01

    Electron precipitation into the upper atmosphere is one of the important loss mechanisms in the Earth's inner magnetosphere. Various magnetospheric plasma waves (i.e., chorus, plasmaspheric hiss, electromagnetic ion cyclotron waves, etc.) play an important role in scattering energetic electrons into the loss cone, thus enhance ionization in the upper atmosphere and affect ring current and radiation belt dynamics. The present study evaluates conjunction events where low-earth-orbiting satellites (twin AeroCube-6) and near-equatorial satellites (twin Van Allen Probes) are located roughly along the same magnetic field line. By analyzing electron flux variation at various energies (> 35 keV) measured by AeroCube-6 and wave and electron measurements by Van Allen Probes, together with quasilinear diffusion theory and modeling, we determine the physical process of driving the observed energetic electron precipitation for the identified electron precipitation events. Moreover, the twin AeroCube-6 also helps us understand the spatiotemporal effect and constrain the coherent size of each electron precipitation event.

  4. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  5. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  6. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  7. Merging Satellite Precipitation Products for Improved Streamflow Simulations

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Barbetta, S.; Camici, S.; Brocca, L.

    2017-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. Therefore, we propose to merge SM2RAIN and the widely used TMPA 3B42RT product across Italy for a 6-year period (2010-2015) at daily/0.25deg temporal/spatial scale. Two conceptually different merging techniques are compared to each other and evaluated in terms of different statistical metrics, including hit bias, threat score, false alarm rates, and missed rainfall volumes. The first is based on the maximization of the temporal correlation with a reference dataset, while the second is based on a Bayesian approach, which provides a probabilistic satellite precipitation estimate derived from the joint probability distribution of observations and satellite estimates. The merged precipitation products show a better performance with respect to the parental satellite-based products in terms of categorical

  8. Connecting Satellite-Based Precipitation Estimates to Users

    Science.gov (United States)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric

    2018-01-01

    Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.

  9. A coordinated two-satellite study of energetic electron precipitation events

    International Nuclear Information System (INIS)

    Imhof, W.L.; Nakano, G.H.; Gaines, E.E.; Reagan, J.B.

    1975-01-01

    A new technique for studying the spatial/temporal variations of energetic electron precipitation events is investigated. Data are presented in which precipitating electrons were measured simultaneously on two coordinated polar-orbiting satellites and the bremsstrahlung produced by the electrons precipitating into the atmosphere was observed from one of the satellites. Two electron spectrometers measuring the intensities and energy spectra of electrons of >130 keV were located on the oriented satellite 1971-089A (altitude, approx. =800 km), whereas a single similar spectrometer measuring electrons of >160 keV was located on the spinning low-altitude (approx.750 km) satellite 1972-076B. The X rays of >50 keV were measured with a 50-cm 3 germanium spectrometer placed on the 1972-076B satellite. With the coordinated data a study is made of events in which large fluctuations were observed in the precipitating energetic electron intensities. In the examples presented the satellite X ray data alone demonstrate that the spatially integrated electron influx was constant in time, and when the X ray data are combined with the direct electron measurements from the two satellites, the resulting data suggest that the major features in the flux profiles were primarily spatial in nature. The combination of X ray and electron measurements from two satellites is shown to provide an important method for studying and attempting to resolve spatial and temporal effects

  10. Assessment of satellite-based precipitation estimates over Paraguay

    Science.gov (United States)

    Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián

    2018-04-01

    Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.

  11. Object-Based Assessment of Satellite Precipitation Products

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2016-06-01

    Full Text Available An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, Climate Prediction center MORPHing technique (CMORPH, and Tropical Rainfall Measurement Mission (TRMM Multi-Satellite Precipitation Analysis (TMPA 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season.

  12. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    Science.gov (United States)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  13. Electron precipitation burst in the nighttime slot region measured simultaneously from two satellites

    International Nuclear Information System (INIS)

    Imhof, W.L.; Voss, H.D.; Mobilla, J.; Gaines, E.E.; Evans, D.S.

    1987-01-01

    Based on data acquired in 1982 with the Stimulated Emission of Energetic Particles payload on the low-altitude (170--280 km) S81-1 spacecraft and the Space Environment Monitor instrumentation on the NOAA 6 satellite (800--830 km), a study has been made of short-duration nighttime electron precipitation bursts at L = 2.0--35. From 54 passes of each satellite across the slot region simultaneously in time, 21 bursts were observed on the NOAA 6 spacecraft, and 76 on the S81-1 satellite. Five events, probably associated with lightning, were observed simultaneously from the two spacecraft within 1.2 s, providing a measure of the spatial extent of the bursts. This limited sample indicates that the intensity of precipitation events falls off with width in longitude and L shell but individual events extend as much as 5 0 in invariant latitude and 43 0 in longitude. The number of events above a given flux observed in each satellite was found to be approximately inversely proportional to the flux. The time average energy input to the atmosphere over the longitude range 180 0 E to 360 0 E at a local time of 2230 directly from short-duration bursts spanning a wide range of intensity enhancements was estimated to be about 6 x 10/sup -6/ ergs/cm 2 s in the northern hemisphere and about 1.5 x 10/sup -5/ ergs/cm 2 s in the southern hemisphere. In the south, this energy precipitation rate is lower than that from electrons in the drift loss cone by about 2 orders of magnitude. However, on the basis of these data alone we cannot discount weak bursts from being a major contributor to populating the drift loss cone with electrons which ultimately precipitate into the atmosphere. copyrightAmerican Geophysical Union 1987

  14. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  15. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  16. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    Science.gov (United States)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  17. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    Science.gov (United States)

    Liu, Z.; Su, J.; Acker, J. G.; Huffman, G. J.; Vollmer, B.; Wei, J.; Meyer, D. J.

    2017-12-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. Satellite data at 12 NASA data centers can also be used for STEM activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programing languages, etc. Over the years, many efforts have been developed to improve satellite data access, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses the popular online video sharing web site, YouTube, to access visualization of global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without necessity to learn new software or download data. The dataset in this activity is the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA). The video consists of over 50,000 data files collected since 1998 onwards, covering a zone between 50°N-S. The YouTube video will last 36 minutes for the entire dataset record (over 19 years). Since the time stamp is on each frame of the video, users can begin at any time by dragging the time progress bar. This precipitation animation will allow viewing precipitation events and processes (e.g., hurricanes, fronts, atmospheric rivers, etc.) on a global scale. The next plan is to develop a similar animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellitE Retrievals for GPM (IMERG). The IMERG provides precipitation on a near-global (60°N-S) coverage at half-hourly time interval, showing more details on precipitation processes and development, compared to the 3

  18. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  19. Verification of the Global Precipitation Measurement (GPM) Satellite by the Olympic Mountains Experiment (OLYMPEX)

    Science.gov (United States)

    McMurdie, L. A.; Houze, R.

    2017-12-01

    Measurements of global precipitation are critical for monitoring Earth's water resources and hydrological processes, including flooding and snowpack accumulation. As such, the Global Precipitation Measurement (GPM) Mission `Core' satellite detects precipitation ranging from light snow to heavy downpours in a wide range locations including remote mountainous regions. The Olympic Mountains Experiment (OLYMPEX) during the 2015-2016 fall-winter season in the mountainous Olympic Peninsula of Washington State provide physical and hydrological validation for GPM precipitation algorithms and insight into the modification of midlatitude storms by passage over mountains. The instrumentation included ground-based dual-polarization Doppler radars on the windward and leeward sides of the Olympic Mountains, surface stations that measured precipitation rates, particle size distributions and fall velocities at various altitudes, research aircraft equipped with cloud microphysics probes, radars, lidar, and passive radiometers, supplemental rawinsondes and dropsondes, and autonomous recording cameras that monitored snowpack accumulation. Results based on dropsize distributions (DSDs) and cross-sections of radar reflectivity over the ocean and windward slopes have revealed important considerations for GPM algorithm development. During periods of great precipitation accumulation and enhancement by the mountains on windward slopes, both warm rain and ice-phase processes are present, implying that it is important for GPM retrievals be sensitive to both types of precipitation mechanisms and to represent accurately the concentration of precipitation at the lowest possible altitudes. OLYMPEX data revealed that a given rain rate could be associated with a variety of DSDs, which presents a challenge for GPM precipitation retrievals in extratropical cyclones passing over mountains. Some of the DSD regimes measured during OLYMPEX stratiform periods have the same characteristics found in prior

  20. ASSESSMENT OF SATELLITE PRECIPITATION PRODUCTS IN THE PHILIPPINE ARCHIPELAGO

    Directory of Open Access Journals (Sweden)

    M. D. Ramos

    2016-06-01

    Full Text Available Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1 the Tropical Rainfall Measuring Mission (TRMM, (2 the CPC Morphing technique (CMORPH of NOAA and (3 the Global Satellite Mapping of Precipitation (GSMAP and (4 Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN. Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE and Root Mean Square Error (RMSE. In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  1. Assessment of Satellite Precipitation Products in the Philippine Archipelago

    Science.gov (United States)

    Ramos, M. D.; Tendencia, E.; Espana, K.; Sabido, J.; Bagtasa, G.

    2016-06-01

    Precipitation is the most important weather parameter in the Philippines. Made up of more than 7100 islands, the Philippine archipelago is an agricultural country that depends on rain-fed crops. Located in the western rim of the North West Pacific Ocean, this tropical island country is very vulnerable to tropical cyclones that lead to severe flooding events. Recently, satellite-based precipitation estimates have improved significantly and can serve as alternatives to ground-based observations. These data can be used to fill data gaps not only for climatic studies, but can also be utilized for disaster risk reduction and management activities. This study characterized the statistical errors of daily precipitation from four satellite-based rainfall products from (1) the Tropical Rainfall Measuring Mission (TRMM), (2) the CPC Morphing technique (CMORPH) of NOAA and (3) the Global Satellite Mapping of Precipitation (GSMAP) and (4) Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks (PERSIANN). Precipitation data were compared to 52 synoptic weather stations located all over the Philippines. Results show GSMAP to have over all lower bias and CMORPH with lowest Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In addition, a dichotomous rainfall test reveals GSMAP and CMORPH have low Proportion Correct (PC) for convective and stratiform rainclouds, respectively. TRMM consistently showed high PC for almost all raincloud types. Moreover, all four satellite precipitation showed high Correct Negatives (CN) values for the north-western part of the country during the North-East monsoon and spring monsoonal transition periods.

  2. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    Science.gov (United States)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  3. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan

    Science.gov (United States)

    Anjum, Muhammad Naveed; Ding, Yongjian; Shangguan, Donghui; Ahmad, Ijaz; Ijaz, Muhammad Wajid; Farid, Hafiz Umar; Yagoub, Yousif Elnour; Zaman, Muhammad; Adnan, Muhammad

    2018-06-01

    Recently, the Global Precipitation Measurement (GPM) mission has released the Integrated Multi-satellite Retrievals for GPM (IMERG) at a fine spatial (0.1° × 0.1°) and temporal (half hourly) resolutions. A comprehensive evaluation of this newly launched precipitation product is very important for satellite-based precipitation data users as well as for algorithm developers. The objective of this study was to provide a preliminary and timely performance evaluation of the IMERG product over the northern high lands of Pakistan. For comparison reference, the real-time and post real-time Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) products were also evaluated parallel to the IMERG. All of the selected precipitation products were evaluated at annual, monthly, seasonal and daily time scales using reference gauges data from April 2014 to December 2016. The results showed that: (1) the precipitation estimates from IMERG, 3B42V7 and 3B42RT products correlated well with the reference gauges observations at monthly time scale (CC = 0.93, 0.91, 0.88, respectively), whereas moderately at the daily time scale (CC = 0.67, 0.61, and 0.58, respectively); (2) Compared to the 3B42V7 and 3B42RT, the precipitation estimates from IMERG were more reliable in all seasons particularly in the winter season with lowest relative bias (2.61%) and highest CC (0.87); (3) IMERG showed a clear superiority over 3B42V7 and 3B42RT products in order to capture spatial distribution of precipitation over the northern Pakistan; (4) Relative to the 3B42V7 and 3B42RT, daily precipitation estimates from IMEREG showed lowest relative bias (9.20% vs. 21.40% and 26.10%, respectively) and RMSE (2.05 mm/day vs. 2.49 mm/day and 2.88 mm/day, respectively); and (5) Light precipitation events (0-1 mm/day) were usually overestimated by all said satellite-based precipitation products. In contrast moderate (1-20 mm/day) to heavy (>20 mm/day) precipitation events were

  4. Satellite precipitation estimation over the Tibetan Plateau

    Science.gov (United States)

    Porcu, F.; Gjoka, U.

    2012-04-01

    Precipitation characteristics over the Tibetan Plateau are very little known, given the scarcity of reliable and widely distributed ground observation, thus the satellite approach is a valuable choice for large scale precipitation analysis and hydrological cycle studies. However,the satellite perspective undergoes various shortcomings at the different wavelengths used in atmospheric remote sensing. In the microwave spectrum often the high soil emissivity masks or hides the atmospheric signal upwelling from light-moderate precipitation layers, while low and relatively thin precipitating clouds are not well detected in the visible-infrared, because of their low contrast with cold and bright (if snow covered) background. In this work an IR-based, statistical rainfall estimation technique is trained and applied over the Tibetan Plateau hydrological basin to retrive precipitation intensity at different spatial and temporal scales. The technique is based on a simple artificial neural network scheme trained with two supervised training sets assembled for monsoon season and for the rest of the year. For the monsoon season (estimated from June to September), the ground radar precipitation data for few case studies are used to build the training set: four days in summer 2009 are considered. For the rest of the year, CloudSat-CPR derived snowfall rate has been used as reference precipitation data, following the Kulie and Bennartz (2009) algorithm. METEOSAT-7 infrared channels radiance (at 6.7 and 11 micometers) and derived local variability features (such as local standard deviation and local average) are used as input and the actual rainrate is obtained as output for each satellite slot, every 30 minutes on the satellite grid. The satellite rainrate maps for three years (2008-2010) are computed and compared with available global precipitation products (such as C-MORPH and TMPA products) and with other techniques applied to the Plateau area: similarities and differences are

  5. Evaluation of Satellite and Model Precipitation Products Over Turkey

    Science.gov (United States)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14

  6. Developing Information Services and Tools to Access and Evaluate Data Quality in Global Satellite-based Precipitation Products

    Science.gov (United States)

    Liu, Z.; Shie, C. L.; Meyer, D. J.

    2017-12-01

    Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide precipitation data on a global scale, especially in remote continents and over oceans. Over the years, satellite-based precipitation products have evolved from single sensor and single algorithm to multi-sensors and multi-algorithms. As a result, many satellite-based precipitation products have been enhanced such as spatial and temporal coverages. With inclusion of ground-based measurements, biases of satellite-based precipitation products have been significantly reduced. However, data quality issues still exist and can be caused by many factors such as observations, satellite platform anomaly, algorithms, production, calibration, validation, data services, etc. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As data service providers, it is necessary to provide an easy access to data quality information, however, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present challenges and activities at the GES DISC to address precipitation data quality issues.

  7. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  8. Successes with the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  9. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea

    Directory of Open Access Journals (Sweden)

    Jong Pil Kim

    2016-07-01

    Full Text Available Satellite-derived precipitation can be a potential source of forcing data for assessing water availability and managing water supply in mountainous regions of East Asia. This study investigates the hydrological utility of satellite-derived precipitation and uncertainties attributed to error propagation of satellite products in hydrological modeling. To this end, four satellite precipitation products (tropical rainfall measuring mission (TRMM multi-satellite precipitation analysis (TMPA version 6 (TMPAv6 and version 7 (TMPAv7, the global satellite mapping of precipitation (GSMaP, and the climate prediction center (CPC morphing technique (CMORPH were integrated into a physically-based hydrologic model for the mountainous region of South Korea. The satellite precipitation products displayed different levels of accuracy when compared to the intra- and inter-annual variations of ground-gauged precipitation. As compared to the GSMaP and CMORPH products, superior performances were seen when the TMPA products were used within streamflow simulations. Significant dry (negative biases in the GSMaP and CMORPH products led to large underestimates of streamflow during wet-summer seasons. Although the TMPA products displayed a good level of performance for hydrologic modeling, there were some over/underestimates of precipitation by satellites during the winter season that were induced by snow accumulation and snowmelt processes. These differences resulted in streamflow simulation uncertainties during the winter and spring seasons. This study highlights the crucial need to understand hydrological uncertainties from satellite-derived precipitation for improved water resource management and planning in mountainous basins. Furthermore, it is suggested that a reliable snowfall detection algorithm is necessary for the new global precipitation measurement (GPM mission.

  10. Evaluation of the Performance of Three Satellite Precipitation Products over Africa

    Directory of Open Access Journals (Sweden)

    Aleix Serrat-Capdevila

    2016-10-01

    Full Text Available We present an evaluation of daily estimates from three near real-time quasi-global Satellite Precipitation Products—Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN, and Climate Prediction Center (CPC Morphing Technique (CMORPH—over the African continent, using the Global Precipitation Climatology Project one Degree Day (GPCP-1dd as a reference dataset for years 2001 to 2013. Different types of errors are characterized for each season as a function of spatial classifications (latitudinal bands, climatic zones and topography and in relationship with the main rain-producing mechanisms in the continent: the Intertropical Convergence Zone (ITCZ and the East African Monsoon. A bias correction of the satellite estimates is applied using a probability density function (pdf matching approach, with a bias analysis as a function of rain intensity, season and latitude. The effects of bias correction on different error terms are analyzed, showing an almost elimination of the mean and variance terms in most of the cases. While raw estimates of TMPA show higher efficiency, all products have similar efficiencies after bias correction. PERSIANN consistently shows the smallest median errors when it correctly detects precipitation events. The areas with smallest relative errors and other performance measures follow the position of the ITCZ oscillating seasonally over the equator, illustrating the close relationship between satellite estimates and rainfall regime.

  11. Are satellite products good proxies for gauge precipitation over Singapore?

    Science.gov (United States)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate

  12. Global Precipitation Measurement (GPM) L-6

    Science.gov (United States)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2013-10-01

    The Global Precipitation Measurement (GPM) mission will advance the measurement of global precipitation, making possible high spatial resolution precipitation measurements. GPM will provide the first opportunity to calibrate measurements of global precipitation across tropical, mid-latitude, and polar regions. The GPM mission has the following scientific objectives: (1) Advance precipitation measurement capability from space through combined use of active and passive remote-sensing techniques; (2) Advance understanding of global water/energy cycle variability and fresh water availability; (3) Improve climate prediction by providing the foundation for better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release in the Earth's atmosphere; (4) Advance Numerical Weather Prediction (NWP) skills through more accurate and frequent measurements of instantaneous rain rates; and (5) Improve high impact natural hazard (flood/drought, landslide, and hurricane hazard) prediction capabilities. The GPM mission centers on the deployment of a Core Observatory carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. GPM, jointly led with the Japan Aerospace Exploration Agency (JAXA), involves a partnership with other international space agencies including the French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory is currently being prepared for shipment to Japan for launch. Launch is scheduled for February 2014 from JAXA's Tanegashima Space Center on an H-IIA 202 launch vehicle.

  13. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    Science.gov (United States)

    Gaines, E. E.; Imhof, W. L.; Voss, H. D.; Reagan, J. B.

    1983-07-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of about 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area.

  14. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    International Nuclear Information System (INIS)

    Gaines, E.E.; Imhof, W.L.; Voss, H.D.; Reagan, J.B.

    1983-01-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of approx. 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area. (author)

  15. Improving the Regional Applicability of Satellite Precipitation Products by Ensemble Algorithm

    Directory of Open Access Journals (Sweden)

    Waseem Muhammad

    2018-04-01

    Full Text Available Satellite-based precipitation products (e.g., Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG and its predecessor, Tropical Rainfall Measuring Mission (TRMM are a critical source of precipitation estimation, particularly for a region with less, or no, hydrometric networking. However, the inconsistency in the performance of these products has been observed in different climatic and topographic diverse regions, timescales, and precipitation intensities and there is still room for improvement. Hence, using a projected ensemble algorithm, the regional precipitation estimate (RP is introduced here. The RP concept is mainly based on the regional performance weights derived from the Mean Square Error (MSE and the precipitation estimate from the TRMM product, that is, TRMM 3B42 (TR, real-time (late (IT and the research (post-real-time (IR products of IMERG. The overall results of the selected contingency table (e.g., Probability of detection (POD and statistical indices (e.g., Correlation Coefficient (CC signposted that the proposed RP product has shown an overall better potential to capture the gauge observations compared with the TR, IR, and IT in five different climatic regions of Pakistan from January 2015 to December 2016, at a diurnal time scale. The current study could be the first research providing preliminary feedback from Pakistan for global precipitation measurement researchers by highlighting the need for refinement in the IMERG.

  16. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous Areas of China

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2015-07-01

    Full Text Available Topography is a significant factor influencing the spatial distribution of precipitation. This study developed a new methodology to evaluate and calibrate the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA products by merging geographic and topographic information. In the proposed method, firstly, the consistency rule was introduced to evaluate the fitness of satellite rainfall with measurements on the grids with and without ground gauges. Secondly, in order to improve the consistency rate of satellite rainfall, genetic programming was introduced to mine the relationship between the gauge rainfall and location, elevation and TMPA rainfall. The proof experiment and analysis for the mean annual satellite precipitation from 2001–2012, 3B43 (V7 of TMPA rainfall product, was carried out in eight mountainous areas of China. The result shows that the proposed method is significant and efficient both for the assessment and improvement of satellite precipitation. It is found that the satellite rainfall consistency rates in the gauged and ungauged grids are different in the study area. In addition, the mined correlation of location-elevation-TMPA rainfall can noticeably improve the satellite precipitation, both in the context of the new criterion of the consistency rate and the existing criteria such as Bias and RMSD. The proposed method is also efficient for correcting the monthly and mean monthly rainfall of 3B43 and 3B42RT.

  17. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  18. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  19. Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Stenz, Ronald; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kuligowski, Robert J.

    2016-02-01

    To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.

  20. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  1. Data Analysis of GPM Constellation Satellites-IMERG and ERA-Interim precipitation products over West of Iran

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2016-04-01

    Precipitation is a critical component of the Earth's hydrological cycle. The primary requirement in precipitation measurement is to know where and how much precipitation is falling at any given time. Especially in data sparse regions with insufficient radar coverage, satellite information can provide a spatial and temporal context. Nonetheless, evaluation of satellite precipitation is essential prior to operational use. This is why many previous studies are devoted to the validation of satellite estimation. Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards. In situ observations over mountainous areas are mostly limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. One of the newest and blended methods that use multi-satellites and multi-sensors has been developed for estimating global precipitation. The considered data set known as Integrated Multi-satellitE Retrievals (IMERG) for GPM (Global Precipitation Measurement) is routinely produced by the GPM constellation satellites. Moreover, recent efforts have been put into the improvement of the precipitation products derived from reanalysis systems, which has led to significant progress. One of the best and a worldwide used model is developed by the European Centre for Medium Range Weather Forecasts (ECMWF). They have produced global reanalysis daily precipitation, known as ERA-Interim. This study has evaluated one year of precipitation data from the GPM-IMERG and ERA-Interim reanalysis daily time series over West of Iran. IMERG and ERA-Interim yield underestimate the observed values while IMERG underestimated slightly and performed better when precipitation is greater than 10mm. Furthermore, with respect to evaluation of probability of detection (POD), threat score (TS), false alarm ratio (FAR) and probability

  2. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    Science.gov (United States)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  3. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  4. Precipitation Characteristics in West and East Africa from Satellite and in Situ Observations

    Science.gov (United States)

    Dezfuli, Amin K.; Ichoku, Charles M.; Mohr, Karen I.; Huffman, George J.

    2017-01-01

    Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs).Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG)project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.

  5. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  6. Precipitation characteristics in tropical Africa using satellite and in situ observations

    Science.gov (United States)

    Dezfuli, A. K.; Ichoku, I.; Huffman, G. J.; Mohr, K. I.

    2017-12-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region have not been well-understood, despite their crucial role in regional and global circulation. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) ground-based gauge network to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product based on satellite observations from the Global Precipitation Measurement (GPM) constellation. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TRMM Multi-Satellite Precipitation Analysis (TMPA), and provide higher resolution data, continent-wide comparisons are made between these two products. Due to its improved temporal resolution, IMERG shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  7. An adaptive spatial model for precipitation data from multiple satellites over large regions

    KAUST Repository

    Chakraborty, Avishek

    2015-03-01

    Satellite measurements have of late become an important source of information for climate features such as precipitation due to their near-global coverage. In this article, we look at a precipitation dataset during a 3-hour window over tropical South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision an underlying precipitation surface that influences the observed rain as well as absence of it. The surface is specified using a mean function centered at a set of knot locations, to capture the local patterns in the rainrate, combined with a residual Gaussian process to account for global correlation across sites. To improve over the commonly used pre-fixed knot choices, an efficient reversible jump scheme is used to allow the number of such knots as well as the order and support of associated polynomial terms to be chosen adaptively. To facilitate computation over a large region, a reduced rank approximation for the parent Gaussian process is employed.

  8. PoPSat: The Polar Precipitation Satellite Mission

    Science.gov (United States)

    Binder, Matthias J.; Agten, Dries; Arago-Higueras, Nadia; Borderies, Mary; Diaz-Schümmer, Carlos; Jamali, Maryam; Jimenez-Lluva, David; Kiefer, Joshua; Larsson, Anna; Lopez-Gilabert, Lola; Mione, Michele; Mould, Toby JD; Pavesi, Sara; Roth, Georg; Tomicic, Maja

    2017-04-01

    The terrestrial water cycle is one of many unique regulatory systems on planet Earth. It is directly responsible for sustaining biological life on land and human populations by ensuring sustained crop yields. However, this delicate balanced system continues to be influenced significantly by a changing climate, which has had drastic impacts particularly on the polar regions. Precipitation is a key process in the weather and climate system, due to its storage, transport and release of latent heat in the atmosphere. It has been extensively investigated in low latitudes, in which detailed models have been established for weather prediction. However, a gap has been left in higher latitudes above 65°, which show the strongest response to climate changes and where increasing precipitations have been foreseen in the future. In order to establish a global perspective of atmospheric processes, space observation of high-latitude areas is crucial to produce globally consistent data. The increasing demand for those data has driven a critical need to devise a mission which fills the gaps in current climate models. The authors propose the Polar Precipitation Satellite (PoPSat), an innovative satellite mission to provide enhanced observation of light and medium precipitation, focusing on snowfall and light rain in high latitudes. PoPSat is the first mission aimed to provide high resolution 3D structural information about snow and light precipitation systems and cloud structure in the covered areas. The satellite is equipped with a dual band (Ka and W band) phased-array radar. These antennas provide a horizontal resolution of 2 km and 4 km respectively which will exceed all other observations made to date at high-latitudes, while providing the additional capability to monitor snowfall. The data gathered will be compatible and complementary with measurements made during previous missions. PoPSat has been designed to fly on a sun-synchronous, dawn-dusk orbit at 460 km. This orbit

  9. Systematical estimation of GPM-based global satellite mapping of precipitation products over China

    Science.gov (United States)

    Zhao, Haigen; Yang, Bogang; Yang, Shengtian; Huang, Yingchun; Dong, Guotao; Bai, Juan; Wang, Zhiwei

    2018-03-01

    As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, new version 6 products for Global Satellite Mapping of Precipitation (GSMaP) have been released. However, few studies have systematically evaluated the GSMaP products over mainland China. This study quantitatively evaluated three GPM-based GSMaP version 6 precipitation products for China and eight subregions referring to the Chinese daily Precipitation Analysis Product (CPAP). The GSMaP products included near-real-time (GSMaP_NRT), microwave-infrared reanalyzed (GSMaP_MVK), and gauge-adjusted (GSMaP_Gau) data. Additionally, the gauge-adjusted Integrated Multi-Satellite Retrievals for Global Precipitation Measurement Mission (IMERG_Gau) was also assessed and compared with GSMaP_Gau. The analyses of the selected daily products were carried out at spatiotemporal resolutions of 1/4° for the period of March 2014 to December 2015 in consideration of the resolution of CPAP and the consistency of the coverage periods of the satellite products. The results indicated that GSMaP_MVK and GSMaP_NRT performed comparably and underdetected light rainfall events (Pearson linear correlation coefficient (CC), fractional standard error (FSE), and root-mean-square error (RMSE) metrics during the summer. Compared with GSMaP_NRT and GSMaP_MVK, GSMaP_Gau possessed significantly improved metrics over mainland China and the eight subregions and performed better in terms of CC, RMSE, and FSE but underestimated precipitation to a greater degree than IMERG_Gau. As a quantitative assessment of the GPM-era GSMaP products, these validation results will supply helpful references for both end users and algorithm developers. However, the study findings need to be confirmed over a longer future study period when the longer-period IMERG retrospectively-processed data are available.

  10. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  11. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, Michael J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J.; Nelson, J.; Goldberg, M.; Sjoberg, W.

    2016-01-01

    The ocean prediction center at the national hurricane center's tropical analysis and forecast Branch, the Weather Prediction center and the Satellite analysis branch of NESDIS make up the Satellite Proving Ground for Marine, Precipitation and Satellite Analysis. These centers had early exposure to JPSS products using the S-NPP Satellite that was launched in 2011. Forecasters continue to evaluate new products in anticipation for the launch of JPSS-1 sometime in 2017.

  12. The Effectiveness of Using Limited Gauge Measurements for Bias Adjustment of Satellite-Based Precipitation Estimation over Saudi Arabia

    Science.gov (United States)

    Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2018-01-01

    Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.

  13. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2015-06-01

    Full Text Available This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA, Climate Prediction Center morphing technique (CMORPH, Global Satellite Mapping of Precipitation (GSMaP and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN. All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB (128.17% while GSMaP_Gauge shows consistent high correlation coefficient (CC (>0.8 but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67. Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%, CSI (less than 45% and relatively high FAR (more than 35%.

  14. High-resolution Monthly Satellite Precipitation Product over the Conterminous United States

    Science.gov (United States)

    Hashemi, H.; Fayne, J.; Knight, R. J.; Lakshmi, V.

    2017-12-01

    We present a data set that enhanced the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) monthly product 3B43 in its accuracy and spatial resolution. For this, we developed a correction function to improve the accuracy of TRMM 3B43, spatial resolution of 25 km, by estimating and removing the bias in the satellite data using a ground-based precipitation data set. We observed a strong relationship between the bias and land surface elevation; TRMM 3B43 tends to underestimate the ground-based product at elevations above 1500 m above mean sea level (m.amsl) over the conterminous United States. A relationship was developed between satellite bias and elevation. We then resampled TRMM 3B43 to the Digital Elevation Model (DEM) data set at a spatial resolution of 30 arc second ( 1 km on the ground). The produced high-resolution satellite-based data set was corrected using the developed correction function based on the bias-elevation relationship. Assuming that each rain gauge represents an area of 1 km2, we verified our product against 9,200 rain gauges across the conterminous United States. The new product was compared with the gauges, which have 50, 60, 70, 80, 90, and 100% temporal coverage within the TRMM period of 1998 to 2015. Comparisons between the high-resolution corrected satellite-based data and gauges showed an excellent agreement. The new product captured more detail in the changes in precipitation over the mountainous region than the original TRMM 3B43.

  15. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN from a Geostationary Satellite.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The prediction of the short-term quantitative precipitation nowcasting (QPN from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC; the Horn-Schunck optical-flow scheme (PHS; and the Pyramid Lucas-Kanade Optical Flow method (PPLK, which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6. The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  16. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    Science.gov (United States)

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  17. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew P.; Rajagopalan, Balaji; Kleiber, William; Funk, Christopher C.

    2015-01-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  18. Global daily precipitation fields from bias-corrected rain gauge and satellite observations. Pt. 1. Design and development

    Energy Technology Data Exchange (ETDEWEB)

    Kottek, M.; Rubel, F. [Univ. of Veterinary Medicine, Vienna (Austria). Biometeorology Group

    2007-10-15

    Global daily precipitation analyses are mainly based on satellite estimates, often calibrated with monthly ground analyses or merged with model predictions. We argue here that an essential improvement of their accuracy is only possible by incorporation of daily ground measurements. In this work we apply geostatistical methods to compile a global precipitation product based on daily rain gauge measurements. The raw ground measurements, disseminated via Global Telecommunication System (GTS), are corrected for their systematic measurement errors and interpolated onto a global 1 degree grid. For interpolation ordinary block kriging is applied, with precalculated spatial auto-correlation functions (ACFs). This technique allows to incorporate additional climate information. First, monthly ACFs are calculated from the daily data; second, they are regionalised according to the five main climatic zones of the Koeppen-Geiger climate classification. The interpolation error, a by-product of kriging, is used to flag grid points as missing if the error is above a predefined threshold. But for many applications missing values constitute a problem. Due to a combination of the ground analyses with the daily multi-satellite product of the Global Precipitation Climatology Project (GPCP-1DD) not only these missing values are replaced but also the spatial structure of the satellite estimates is considered. As merging method bivariate ordinary co-kriging is applied. The ACFs necessary for the gauge and the satellite fields as well as the corresponding spatial cross-correlation functions (CCFs) are again precalculated for each of the five main climatic zones and for each individual month. As a result two new global daily data sets for the period 1996 up to today will be available on the Internet (www.gmes-geoland.info): A precipitation product over land, analysed from ground measurements; and a global precipitation product merged from this and the GPCP-1DD multi-satellite product. (orig.)

  19. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Science.gov (United States)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided

  20. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-04-01

    Full Text Available Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome, and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale, and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are

  1. Calibration Plans for the Global Precipitation Measurement (GPM)

    Science.gov (United States)

    Bidwell, S. W.; Flaming, G. M.; Adams, W. J.; Everett, D. F.; Mendelsohn, C. R.; Smith, E. A.; Turk, J.

    2002-01-01

    The Global Precipitation Measurement (GPM) is an international effort led by the National Aeronautics and Space Administration (NASA) of the U.S.A. and the National Space Development Agency of Japan (NASDA) for the purpose of improving research into the global water and energy cycle. GPM will improve climate, weather, and hydrological forecasts through more frequent and more accurate measurement of precipitation world-wide. Comprised of U.S. domestic and international partners, GPM will incorporate and assimilate data streams from many spacecraft with varied orbital characteristics and instrument capabilities. Two of the satellites will be provided directly by GPM, the core satellite and a constellation member. The core satellite, at the heart of GPM, is scheduled for launch in November 2007. The core will carry a conical scanning microwave radiometer, the GPM Microwave Imager (GMI), and a two-frequency cross-track-scanning radar, the Dual-frequency Precipitation Radar (DPR). The passive microwave channels and the two radar frequencies of the core are carefully chosen for investigating the varying character of precipitation over ocean and land, and from the tropics to the high-latitudes. The DPR will enable microphysical characterization and three-dimensional profiling of precipitation. The GPM-provided constellation spacecraft will carry a GMI radiometer identical to that on the core spacecraft. This paper presents calibration plans for the GPM, including on-board instrument calibration, external calibration methods, and the role of ground validation. Particular emphasis is on plans for inter-satellite calibration of the GPM constellation. With its Unique instrument capabilities, the core spacecraft will serve as a calibration transfer standard to the GPM constellation. In particular the Dual-frequency Precipitation Radar aboard the core will check the accuracy of retrievals from the GMI radiometer and will enable improvement of the radiometer retrievals

  2. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal

    Directory of Open Access Journals (Sweden)

    Tarendra Lakhankar

    2013-08-01

    Full Text Available Precipitation in mountain regions is often highly variable and poorly observed, limiting abilities to manage water resource challenges. Here, we evaluate remote sensing and ground station-based gridded precipitation products over Nepal against weather station precipitation observations on a monthly timescale. We find that the Tropical Rainfall Measuring Mission (TRMM 3B-43 precipitation product exhibits little mean bias and reasonable skill in giving precipitation over Nepal. Compared to station observations, the TRMM precipitation product showed an overall Nash-Sutcliffe efficiency of 0.49, which is similar to the skill of the gridded station-based product Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE. The other satellite precipitation products considered (Global Satellite Mapping of Precipitation (GSMaP, the Climate Prediction Center Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS were less skillful, as judged by Nash-Sutcliffe efficiency, and, on average, substantially underestimated precipitation compared to station observations, despite their, in some cases, higher nominal spatial resolution compared to TRMM. None of the products fully captured the dependence of mean precipitation on elevation seen in the station observations. Overall, the TRMM product is promising for use in water resources applications.

  3. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  4. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  5. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  6. Validation and Error Characterization for the Global Precipitation Measurement

    Science.gov (United States)

    Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.

    2003-01-01

    The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration

  7. Geographically weighted regression based methods for merging satellite and gauge precipitation

    Science.gov (United States)

    Chao, Lijun; Zhang, Ke; Li, Zhijia; Zhu, Yuelong; Wang, Jingfeng; Yu, Zhongbo

    2018-03-01

    Real-time precipitation data with high spatiotemporal resolutions are crucial for accurate hydrological forecasting. To improve the spatial resolution and quality of satellite precipitation, a three-step satellite and gauge precipitation merging method was formulated in this study: (1) bilinear interpolation is first applied to downscale coarser satellite precipitation to a finer resolution (PS); (2) the (mixed) geographically weighted regression methods coupled with a weighting function are then used to estimate biases of PS as functions of gauge observations (PO) and PS; and (3) biases of PS are finally corrected to produce a merged precipitation product. Based on the above framework, eight algorithms, a combination of two geographically weighted regression methods and four weighting functions, are developed to merge CMORPH (CPC MORPHing technique) precipitation with station observations on a daily scale in the Ziwuhe Basin of China. The geographical variables (elevation, slope, aspect, surface roughness, and distance to the coastline) and a meteorological variable (wind speed) were used for merging precipitation to avoid the artificial spatial autocorrelation resulting from traditional interpolation methods. The results show that the combination of the MGWR and BI-square function (MGWR-BI) has the best performance (R = 0.863 and RMSE = 7.273 mm/day) among the eight algorithms. The MGWR-BI algorithm was then applied to produce hourly merged precipitation product. Compared to the original CMORPH product (R = 0.208 and RMSE = 1.208 mm/hr), the quality of the merged data is significantly higher (R = 0.724 and RMSE = 0.706 mm/hr). The developed merging method not only improves the spatial resolution and quality of the satellite product but also is easy to implement, which is valuable for hydrological modeling and other applications.

  8. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    Science.gov (United States)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  9. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  10. JPSS Preparations at the Satellite Proving Ground for Marine, Precipitation, and Satellite Analysis

    Science.gov (United States)

    Folmer, M. J.; Berndt, E.; Clark, J.; Orrison, A.; Kibler, J.; Sienkiewicz, J. M.; Nelson, J. A., Jr.; Goldberg, M.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Satellite Proving Ground (PG) for Marine, Precipitation, and Satellite Analysis (MPS) has been demonstrating and evaluating Suomi National Polar-orbiting Partnership (S-NPP) products along with other polar-orbiting satellite platforms in preparation for the Joint Polar Satellite System - 1 (JPSS-1) launch in March 2017. The first S-NPP imagery was made available to the MPS PG during the evolution of Hurricane Sandy in October 2012 and has since been popular in operations. Since this event the MPS PG Satellite Liaison has been working with forecasters on ways to integrate single-channel and multispectral imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR)into operations to complement numerical weather prediction and geostationary satellite savvy National Weather Service (NWS) National Centers. Additional unique products have been introduced to operations to address specific forecast challenges, including the Cooperative Institute for Research in the Atmosphere (CIRA) Layered Precipitable Water, the National Environmental Satellite, Data, and Information Service (NESDIS) Snowfall Rate product, NOAA Unique Combined Atmospheric Processing System (NUCAPS) Soundings, ozone products from the Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder/Advanced Technology Microwave Sounder (CrIS/ATMS), and Infrared Atmospheric Sounding Interferometer (IASI). In addition, new satellite domains have been created to provide forecasters at the NWS Ocean Prediction Center and Weather Prediction Center with better quality imagery at high latitudes. This has led to research projects that are addressing forecast challenges such as tropical to extratropical transition and explosive cyclogenesis. This presentation will provide examples of how the MPS PG has been introducing and integrating

  11. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-03-01

    Full Text Available Satellite precipitation products from the Global Precipitation Measurement (GPM mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG final run and the TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014 to December 2015 was also assessed. Results show that, although IMERG and 3B42V7 can potentially capture the spatiotemporal patterns of historical precipitation, the two products contain considerable errors. Compared with 3B42V7, no significant improvements were found in IMERG. Moreover, 3B42V7 outperformed IMERG at daily and monthly scales and in heavy rain detections at four out of five gauges. The large errors in IMERG and 3B42V7 distinctly propagated to streamflow simulations via the Xinanjiang hydrological model, with a significant underestimation of total runoff and high flows. The bias correction of the satellite precipitation effectively improved the streamflow simulations. The 3B42V7-based streamflow simulations performed better than the gauge-based simulations. In general, IMERG and 3B42V7 are feasible for use in streamflow simulations in the study area, although 3B42V7 is better suited than IMERG.

  12. Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium).

    Science.gov (United States)

    di Diodato, A.; de Leonibus, L.; Zauli, F.; Biron, D.; Melfi, D.

    2009-04-01

    Operational Estimation of Accumulated Precipitation using Satellite Observation, by Eumetsat Satellite Application facility in Support to Hydrology (H-SAF Consortium). Cap. Attilio DI DIODATO(*), T.Col. Luigi DE LEONIBUS(*), T.Col Francesco ZAULI(*), Cap. Daniele BIRON(*), Ten. Davide Melfi(*) Satellite Application Facilities (SAFs) are specialised development and processing centres of the EUMETSAT Distributed Ground Segment. SAFs process level 1b data from meteorological satellites (geostationary and polar ones) in conjunction with all other relevant sources of data and appropriate models to generate services and level 2 products. Each SAF is a consortium of EUMETSAT European partners lead by a host institute responsible for the management of the complete SAF project. The Meteorological Service of Italian Air Force is the host Institute for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF). HSAF has the commitment to develop and to provide, operationally after 2010, products regarding precipitation, soil moisture and snow. HSAF is going to provide information on error structure of its products and validation of the products via their impacts into Hydrological models. To that purpose it has been structured a specific subgroups. Accumulated precipitation is computed by temporal integration of the instantaneous rain rate achieved by the blended LEO/MW and GEO/IR precipitation rate products generated by Rapid Update method available every 15 minutes. The algorithm provides four outputs, consisting in accumulated precipitation in 3, 6, 12 and 24 hours, delivered every 3 hours at the synoptic hours. These outputs are our precipitation background fields. Satellite estimates can cover most of the globe, however, they suffer from errors due to lack of a direct relationship between observation parameters and precipitation, the poor sampling and algorithm imperfections. For this reason the 3 hours accumulated precipitation is

  13. On the performance of satellite precipitation products in riverine flood modeling: A review

    Science.gov (United States)

    Maggioni, Viviana; Massari, Christian

    2018-03-01

    This work is meant to summarize lessons learned on using satellite precipitation products for riverine flood modeling and to propose future directions in this field of research. Firstly, the most common satellite precipitation products (SPPs) during the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) eras are reviewed. Secondly, we discuss the main errors and uncertainty sources in these datasets that have the potential to affect streamflow and runoff model simulations. Thirdly, past studies that focused on using SPPs for predicting streamflow and runoff are analyzed. As the impact of floods depends not only on the characteristics of the flood itself, but also on the characteristics of the region (population density, land use, geophysical and climatic factors), a regional analysis is required to assess the performance of hydrologic models in monitoring and predicting floods. The performance of SPP-forced hydrological models was shown to largely depend on several factors, including precipitation type, seasonality, hydrological model formulation, topography. Across several basins around the world, the bias in SPPs was recognized as a major issue and bias correction methods of different complexity were shown to significantly reduce streamflow errors. Model re-calibration was also raised as a viable option to improve SPP-forced streamflow simulations, but caution is necessary when recalibrating models with SPP, which may result in unrealistic parameter values. From a general standpoint, there is significant potential for using satellite observations in flood forecasting, but the performance of SPP in hydrological modeling is still inadequate for operational purposes.

  14. Characterization of precipitation features over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2013-12-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, surface observations, and models to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets of TMPA 3B42, CMORPH, and PERSIANN. The satellite based QPEs are compared over the concurrent period with the NCEP Stage IV product, which is a near real time product providing precipitation data at the hourly temporal scale gridded at a nominal 4-km spatial resolution. In addition, remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model), which provides gridded precipitation estimates that are used as a baseline for multi-sensor QPE products comparison. The comparisons are performed at the annual, seasonal, monthly, and daily scales with focus on selected river basins (Southeastern US, Pacific Northwest, Great Plains). While, unconditional annual rain rates present a satisfying agreement between all products, results suggest that satellite QPE datasets exhibit important biases in particular at higher rain rates (≥4 mm/day). Conversely, on seasonal scales differences between remotely sensed data and ground surface observations can be greater than 50% and up to 90% for low daily accumulation (≤1 mm/day) such as in the Western US (summer) and Central US (winter). The conditional analysis performed using different daily rainfall accumulation thresholds (from low rainfall intensity to intense precipitation) shows that while intense events measured at the ground are infrequent (around 2% for daily accumulation above 2 inches/day), remotely sensed products displayed differences from 20-50% and up to 90-100%. A discussion on the impact of differing spatial and temporal resolutions with respect to the datasets ability to capture extreme

  15. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  16. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  17. Supporting Hydrometeorological Research and Applications with Global Precipitation Measurement (GPM) Products and Services

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2016-01-01

    Precipitation is an important dataset in hydrometeorological research and applications such as flood modeling, drought monitoring, etc. On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data. The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). GPM products currently available include the following:1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products2. Goddard Profiling Algorithm (GPROF) GMI and partner products (Level-2 and Level-3)3. GPM dual-frequency precipitation radar and their combined products (Level-2 and Level-3)4. Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final run)GPM data can be accessed through a number of data services (e.g., Simple Subset Wizard, OPeNDAP, WMS, WCS, ftp, etc.). A newly released Unified User Interface or UUI is a single interface to provide users seamless access to data, information and services. For example, a search for precipitation products will not only return TRMM and GPM products, but also other global precipitation products such as MERRA (Modern Era Retrospective-Analysis for Research and Applications), GLDAS (Global Land Data Assimilation Systems), etc.New features and capabilities have been recently added in GIOVANNI to allow exploring and inter-comparing GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) half-hourly and monthly precipitation

  18. On Some Aspects of Precipitation over Tropical Indian Ocean Using Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sreejith, O.P.

    The annual and inter-annual variability of precipitation over the tropical Indian Ocean is studied for the period 1979–1997, using satellite data from a variety of sensors. The Climate Prediction Center Merged Analysis Precipitation (CMAP...

  19. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    Science.gov (United States)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  20. Assessment of Precipitation Data Generated by GPM and TRMM Satellites

    Directory of Open Access Journals (Sweden)

    Luísa Carolina Silva Lelis

    Full Text Available Abstract This study aimed to verify the performance of the information produced by the GPM (Global Precipitation Measurement mission and TRMM (Tropical Rainfall Measurement Mission on the eastern region of São Paulo state, based on a comparison of rainfall data from DAEE (Department of Waters and Electric Energy of São Paulo State. The comparison was done by comparing spatially aggregated information from both sources. In order to analyze the results, we measured: (1 Relative Difference, (2 BIAS and (3 Root Mean Square Error (RMSE. It was found that the relative differences were in the range of -20% to 20% for both missions. Analyzing the BIAS for both satellites it was observed that 68% of the measurements were overestimated. The highest agreement was obtained for the mesoregion of Campinas and the lowest for Araraquara. In the TRMM, the lowest RMSE values were found in the Araraquara mesoregion and the highest in Piracicaba. In the GPM the closest measured values were observed in the Piracicaba mesoregion, while the most distant values were identified in Araraquara. All the analyzes of this work demonstrated similarity between the errors generated by both satellites. New comparison studies are needed to better understand the products.

  1. Evaluation of NWP-based Satellite Precipitation Error Correction with Near-Real-Time Model Products and Flood-inducing Storms

    Science.gov (United States)

    Zhang, X.; Anagnostou, E. N.; Schwartz, C. S.

    2017-12-01

    Satellite precipitation products tend to have significant biases over complex terrain. Our research investigates a statistical approach for satellite precipitation adjustment based solely on numerical weather simulations. This approach has been evaluated in two mid-latitude (Zhang et al. 2013*1, Zhang et al. 2016*2) and three topical mountainous regions by using the WRF model to adjust two high-resolution satellite products i) National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center morphing technique (CMORPH) and ii) Global Satellite Mapping of Precipitation (GSMaP). Results show the adjustment effectively reduces the satellite underestimation of high rain rates, which provides a solid proof-of-concept for continuing research of NWP-based satellite correction. In this study we investigate the feasibility of using NCAR Real-time Ensemble Forecasts*3 for adjusting near-real-time satellite precipitation datasets over complex terrain areas in the Continental United States (CONUS) such as Olympic Peninsula, California coastal mountain ranges, Rocky Mountains and South Appalachians. The research will focus on flood-inducing storms occurred from May 2015 to December 2016 and four satellite precipitation products (CMORPH, GSMaP, PERSIANN-CCS and IMERG). The error correction performance evaluation will be based on comparisons against the gauge-adjusted Stage IV precipitation data. *1 Zhang, Xinxuan, et al. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14.6 (2013): 1844-1858. *2 Zhang, Xinxuan, et al. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099. *3 Schwartz, Craig S., et al. "NCAR's experimental real-time convection-allowing ensemble prediction system." Weather and Forecasting 30.6 (2015): 1645-1654.

  2. Variability of Evaporation and Precipitation over the Ocean from Satellite Data

    Science.gov (United States)

    Malinin, V. N.; Gordeeva, S. M.

    2017-12-01

    HOAPS-3 and PMWC satellite archives for 1988-2008 are used to estimate moisture-exchange components between the ocean and atmosphere (evaporation, precipitation, and the difference between them or effective evaporation). Moisture-exchange components for the entire World Ocean and for the North Atlantic Ocean within 30°-60° N are calculated. A strong overestimation of the global values of effective evaporation by HOAPS data (mainly caused by a decrease in precipitation) is shown. In the interannual variability of effective evaporation, there is clearly an overestimated positive trend, which contradicts the real increase in the Global Sea Level. Large systematic errors in moisture-exchange components are revealed for the North Atlantic water area. According to HOAPS data, there is a significant underestimation of evaporation and effective evaporation. According to PMWC data, the amount of precipitation is significantly overestimated and evaporation is underestimated. As a consequence, effective evaporation becomes negative, which is impossible. Low accuracy in the estimation of moisture-exchange components and the need to improve old estimates and develop new evaporation and precipitation databases based on satellite data are noted.

  3. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    Science.gov (United States)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2017-12-01

    Accurate characterization of uncertainties in space-borne precipitation estimates is critical for many applications including water budget studies or prediction of natural hazards at the global scale. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. A surface reference is derived from the MRMS suite of products to be accurate with known uncertainty bounds and measured at a resolution below the pixel sizes of any GPM estimate, providing great flexibility in matching to grid scales or footprints. It provides an independent and consistent reference research framework for directly evaluating GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. The consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification are systematically evaluated. Satellite precipitation retrievals are further investigated in terms of precipitation distributions, systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. non uniform beam filling for DPR) sensors are investigated. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates. Precipitation features previously used to analyze Level II satellite estimates under various precipitation processes are now intoduced for Level III to test several assumptions in the IMERG algorithm. Specifically, the contribution of Level II is

  4. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems

    Science.gov (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William

    2016-01-01

    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  5. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Science.gov (United States)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  6. A Space-Based Perspective of the 2017 Hurricane Season from the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick Jackson, G.; Petersen, W. A.; Huffman, G. J.; Kirschbaum, D.; Wolff, D. B.; Tan, J.; Zavodsky, B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission collected unique, near real time 3-D satellite-based views of hurricanes in 2017 together with estimated precipitation accumulation using merged satellite data for scientific studies and societal applications. Central to GPM is the NASA-JAXA GPM Core Observatory (CO). The GPM-CO carries an advanced dual-frequency precipitation radar (DPR) and a well-calibrated, multi-frequency passive microwave radiometer that together serve as an on orbit reference for precipitation measurements made by the international GPM satellite constellation. GPM-CO overpasses of major Hurricanes such as Harvey, Irma, Maria, and Ophelia revealed intense convective structures in DPR radar reflectivity together with deep ice-phase microphysics in both the eyewalls and outer rain bands. Of considerable scientific interest, and yet to be determined, will be DPR-diagnosed characteristics of the rain drop size distribution as a function of convective structure, intensity and microphysics. The GPM-CO active/passive suite also provided important decision support information. For example, the National Hurricane Center used GPM-CO observations as a tool to inform track and intensity estimates in their forecast briefings. Near-real-time rainfall accumulation from the Integrated Multi-satellitE Retrievals for GPM (IMERG) was also provided via the NASA SPoRT team to Puerto Rico following Hurricane Maria when ground-based radar systems on the island failed. Comparisons between IMERG, NOAA Multi-Radar Multi-Sensor data, and rain gauge rainfall accumulations near Houston, Texas during Hurricane Harvey revealed spatial biases between ground and IMERG satellite estimates, and a general underestimation of IMERG rain accumulations associated with infrared observations, collectively illustrating the difficulty of measuring rainfall in hurricanes.GPM data continue to advance scientific research on tropical cyclone intensification and structure, and contribute to

  7. Precipitation estimates and comparison of satellite rainfall data to in situ rain gauge observations to further develop the watershed-modeling capabilities for the Lower Mekong River Basin

    Science.gov (United States)

    Dandridge, C.; Lakshmi, V.; Sutton, J. R. P.; Bolten, J. D.

    2017-12-01

    This study focuses on the lower region of the Mekong River Basin (MRB), an area including Burma, Cambodia, Vietnam, Laos, and Thailand. This region is home to expansive agriculture that relies heavily on annual precipitation over the basin for its prosperity. Annual precipitation amounts are regulated by the global monsoon system and therefore vary throughout the year. This research will lead to improved prediction of floods and management of floodwaters for the MRB. We compare different satellite estimates of precipitation to each other and to in-situ precipitation estimates for the Mekong River Basin. These comparisons will help us determine which satellite precipitation estimates are better at predicting precipitation in the MRB and will help further our understanding of watershed-modeling capabilities for the basin. In this study we use: 1) NOAA's PERSIANN daily 0.25° precipitation estimate Climate Data Record (CDR), 2) NASA's Tropical Rainfall Measuring Mission (TRMM) daily 0.25° estimate, and 3) NASA's Global Precipitation Measurement (GPM) daily 0.1 estimate and 4) 488 in-situ stations located in the lower MRB provide daily precipitation estimates. The PERSIANN CDR precipitation estimate was able to provide the longest data record because it is available from 1983 to present. The TRMM precipitation estimate is available from 2000 to present and the GPM precipitation estimates are available from 2015 to present. It is for this reason that we provide several comparisons between our precipitation estimates. Comparisons were done between each satellite product and the in-situ precipitation estimates based on geographical location and date using the entire available data record for each satellite product for daily, monthly, and yearly precipitation estimates. We found that monthly PERSIANN precipitation estimates were able to explain up to 90% of the variability in station precipitation depending on station location.

  8. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  9. Evaluating Cloud and Precipitation Processes in Numerical Models using Current and Potential Future Satellite Missions

    Science.gov (United States)

    van den Heever, S. C.; Tao, W. K.; Skofronick Jackson, G.; Tanelli, S.; L'Ecuyer, T. S.; Petersen, W. A.; Kummerow, C. D.

    2015-12-01

    Cloud, aerosol and precipitation processes play a fundamental role in the water and energy cycle. It is critical to accurately represent these microphysical processes in numerical models if we are to better predict cloud and precipitation properties on weather through climate timescales. Much has been learned about cloud properties and precipitation characteristics from NASA satellite missions such as TRMM, CloudSat, and more recently GPM. Furthermore, data from these missions have been successfully utilized in evaluating the microphysical schemes in cloud-resolving models (CRMs) and global models. However, there are still many uncertainties associated with these microphysics schemes. These uncertainties can be attributed, at least in part, to the fact that microphysical processes cannot be directly observed or measured, but instead have to be inferred from those cloud properties that can be measured. Evaluation of microphysical parameterizations are becoming increasingly important as enhanced computational capabilities are facilitating the use of more sophisticated schemes in CRMs, and as future global models are being run on what has traditionally been regarded as cloud-resolving scales using CRM microphysical schemes. In this talk we will demonstrate how TRMM, CloudSat and GPM data have been used to evaluate different aspects of current CRM microphysical schemes, providing examples of where these approaches have been successful. We will also highlight CRM microphysical processes that have not been well evaluated and suggest approaches for addressing such issues. Finally, we will introduce a potential NASA satellite mission, the Cloud and Precipitation Processes Mission (CAPPM), which would facilitate the development and evaluation of different microphysical-dynamical feedbacks in numerical models.

  10. Assessment and Comparison of TMPA Satellite Precipitation Products in Varying Climatic and Topographic Regimes in Morocco

    Directory of Open Access Journals (Sweden)

    Adam Milewski

    2015-05-01

    Full Text Available TRMM Multi-satellite Precipitation Analysis (TMPA satellite precipitation products have been utilized to quantify, forecast, or understand precipitation patterns, climate change, hydrologic models, and drought in numerous scientific investigations. The TMPA products recently went through a series of algorithm developments to enhance the accuracy and reliability of high-quality precipitation measurements, particularly in low rainfall environments and complex terrain. In this study, we evaluated four TMPA products (3B42: V6, V7temp, V7, RTV7 against 125 rain gauges in Northern Morocco to assess the accuracy of TMPA products in various regimes, examine the performance metrics of new algorithm developments, and assess the impact of the processing error in 2012. Results show that the research products outperform the real-time products in all environments within Morocco, and the newest algorithm development (3B42 V7 outperforms the previous version (V6, particularly in low rainfall and high-elevation environments. TMPA products continue to overestimate precipitation in arid environments and underestimate it in high-elevation areas. Lastly, the temporary processing error resulted in little bias except in arid environments. These results corroborate findings from previous studies, provide scientific data for the Middle East, highlight the difficulty of using TMPA products in varying conditions, and present preliminary research for future algorithm development for the GPM mission.

  11. Satellite-Enhanced Regional Downscaling for Applied Studies: Extreme Precipitation Events in Southeastern South America

    Science.gov (United States)

    Nunes, A.; Gomes, G.; Ivanov, V. Y.

    2016-12-01

    Frequently found in southeastern South America during the warm season from October through May, strong and localized precipitation maxima are usually associated with the presence of mesoscale convective complexes (MCCs) travelling across the region. Flashfloods and landslides can be caused by these extremes in precipitation, with damages to the local communities. Heavily populated, southeastern South America hosts many agricultural activities and hydroelectric production. It encompasses one of the most important river basins in South America, the La Plata River Basin. Therefore, insufficient precipitation is equally prejudicial to the region socio-economic activities. MCCs are originated in the warm season of many regions of the world, however South American MCCs are related to the most severe thunderstorms, and have significantly contributed to the precipitation regime. We used the hourly outputs of Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), developed at the Federal University of Rio de Janeiro in Brazil, in the analysis of the dynamics and physical characteristics of MCCs in South America. SRDAS is the 25-km resolution downscaling of a global reanalysis available from January 1998 through December 2010. The Regional Spectral Model is the SRDAS atmospheric component and assimilates satellite-based precipitation estimates from the NOAA/Climate Prediction Center MORPHing technique global precipitation analyses. In this study, the SRDAS atmospheric and land-surface variables, global reanalysis products, infrared satellite imagery, and the physical retrievals from the Atmospheric Infrared Sounder (AIRS), on board of the NASA's Aqua satellite, were used in the evaluation of the MCCs developed in southeastern South America from 2008 and 2010. Low-level circulations and vertical profiles were analyzed together to establish the relevance of the moisture transport in connection with the upper-troposphere dynamics to the development of those MCCs.

  12. Rainfall frequency analysis for ungauged sites using satellite precipitation products

    Science.gov (United States)

    Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh

    2017-11-01

    The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.

  13. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A; Sugimori, Y.; Kubota, M.

    -T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C. 1. Introduction Satellite derived surface-level meteorological parameters are considered to be a better alternative to sparse ship... Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science...

  14. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  15. Evaluation of TRMM 3B42V7 product on extreme precipitation measurements over peninsular Malaysia

    Science.gov (United States)

    Paska, Jacquoelyne; Lau, Alvin M. S.; Tan, Mou Leong; Tan, Kok Chooi

    2017-10-01

    Climate variability has become a matter worth our attention as this issue has unveiled to the extreme water-related disasters such as flood and drought. Increments in heavy precipitation have happened over the past century and future climate scenarios show that it may alter the recurrence, timing, force, and length of these occasions. Satellite precipitation products (SPPs) could be used as representation of precipitation over a large region. This could be useful for the monitoring of the precipitation pattern as well as extreme events. Nevertheless, application of these products in monitoring extreme precipitation is still limited because insufficiency of quality assessment. This study aims to evaluate the performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7 product in capturing the behavior of extreme precipitation events over Peninsular Malaysia from 2000 to 2015. Four extreme precipitation indices, in two general categories of absolute threshold (R10mm, R20mm and R50mm) and maximum (Rx1d) indices that recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) were used. General evaluation has shown that the TRMM 3B42V7 product performed good on the measurements of monthly and annual precipitation. In the respect of extreme precipitation measurements, weak to moderate positive correlations were found between the TRMM 3B42 product and rain gauges over Peninsular Malaysia. The TRMM 3B42V7 product overestimated the R10mm and R20mm indices, while an underestimation was found for the R50mm and Rx1d indices.

  16. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  17. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  18. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  19. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  20. Ionospheric response to daytime auroral electron precipitation: Results and analysis of a coordinated experiment between the AUREOL-3 satellite and the EISCAT radar

    International Nuclear Information System (INIS)

    Stamnes, K.; Roble, R.G.

    1986-01-01

    On June 2, 1982 the Soviet-French polar orbiting satellite AUREOL-3 passed over the EISCAT facility in northern Scandinavia. The EISCAT UHF radar measured electron and ion temperatures, electron density and ion composition, while the satellite measured the incident auroral particle spectra (protons and electrons) presumably giving rise to the densities and temperatures inferred from the radar data. The link between the satellite data obtained well above the atmosphere (at about 1300 km), and the radar measurements is an auroral model that simulates the ionospheric response to auroral particle precipitation and solar EUV radiation and makes predictions of ionospheric properties that 1) can be measured by the radar and 2) are the consequence of the satellite-observed particle precipitation. The analysis shows that there is good agreement between model-predicted and radar-inferred electron and ion temperatures and ion composition. However, inference of the ion composition from the radar data is a non-trivial and time-consuming undertaking which requires very good data (i.e. long integration times). Our initial attempts at analyzing the radar data with a fixed ion composition (as commonly practiced) which greatly simplifies the analysis yielded poor agreement between model predictions and radar measurements. Thus, our analysis demonstrates that the proper ion composition is crucial in order to obtain reliable temperature and density results from the measured autocorrelation functions

  1. Global Precipitation Measurement (GPM) Core Observatory Falling Snow Estimates

    Science.gov (United States)

    Skofronick Jackson, G.; Kulie, M.; Milani, L.; Munchak, S. J.; Wood, N.; Levizzani, V.

    2017-12-01

    Retrievals of falling snow from space represent an important data set for understanding and linking the Earth's atmospheric, hydrological, and energy cycles. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. This work focuses on comparing the first stable falling snow retrieval products (released May 2017) for the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO), which was launched February 2014, and carries both an active dual frequency (Ku- and Ka-band) precipitation radar (DPR) and a passive microwave radiometer (GPM Microwave Imager-GMI). Five separate GPM-CO falling snow retrieval algorithm products are analyzed including those from DPR Matched (Ka+Ku) Scan, DPR Normal Scan (Ku), DPR High Sensitivity Scan (Ka), combined DPR+GMI, and GMI. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new, the different on-orbit instruments don't capture all snow rates equally, and retrieval algorithms differ. Thus a detailed comparison among the GPM-CO products elucidates advantages and disadvantages of the retrievals. GPM and CloudSat global snowfall evaluation exercises are natural investigative pathways to explore, but caution must be undertaken when analyzing these datasets for comparative purposes. This work includes outlining the challenges associated with comparing GPM-CO to CloudSat satellite snow estimates due to the different sampling, algorithms, and instrument capabilities. We will highlight some factors and assumptions that can be altered or statistically normalized and applied in an effort to make comparisons between GPM and CloudSat global satellite falling snow products as equitable as possible.

  2. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia

    Science.gov (United States)

    Tan, Mou Leong; Santo, Harrif

    2018-04-01

    The launch of the Global Precipitation Measurement (GPM) mission has prompted the assessment of the newly released satellite precipitation products (SPPs) in different parts of the world. This study performed an initial comparison of three GPM IMERG products (IMERG_E, IMERG_L and IMERG_F) with its predecessor, the TMPA 3B42 and 3B42RT products, and a long-term PERSIANN-CDR product over Malaysia. The performance of six SPPs was evaluated using 501 precipitation gauges from 12 March 2014 to 29 February 2016. The annual, seasonal, monthly and daily precipitation measurements were validated using three widely used statistical metrics (CC, RMSE and RB). The precipitation detection capability (POD, FAR and CSI), probability density function (PDF) and the 2014-2015 flood event analysis were also considered in this assessment. The results show that all the SPPs perform well in annual and monthly precipitation measurements. The spatial variability of the total annual precipitation in 2015 is well captured by all six SPPs, with high precipitation amount in southern East Malaysia, and low precipitation amount in the middle part of Peninsular Malaysia. In contrast, all the SPPs show moderate correlation at daily precipitation estimations, with better performance during the northeast monsoon season. The performance of all the SPPs is better in eastern Peninsular Malaysia, but poorer in northern Peninsular Malaysia. All the SPPs have good precipitation detection ability, except the PERSIANN-CDR. All the SPPs underestimate the light (0-1 mm/day) and violent (> 50 mm/day) precipitation classes, but overestimate moderate and heavy (1-50 mm/day) precipitation classes. The IMERG is shown to have a better capability in detecting light precipitation (0-1 mm/day) compared to the other SPPs. The PERSIANN-CDR has the worst performance in capturing all the precipitation classes, with significant underestimation of light precipitation (0-1 mm/day) class and overestimation of moderate and

  3. Bias correction of daily satellite precipitation data using genetic algorithm

    Science.gov (United States)

    Pratama, A. W.; Buono, A.; Hidayat, R.; Harsa, H.

    2018-05-01

    Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) was producted by blending Satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) with Stasion observations data. The blending process was aimed to reduce bias of CHIRP. However, Biases of CHIRPS on statistical moment and quantil values were high during wet season over Java Island. This paper presented a bias correction scheme to adjust statistical moment of CHIRP using observation precipitation data. The scheme combined Genetic Algorithm and Nonlinear Power Transformation, the results was evaluated based on different season and different elevation level. The experiment results revealed that the scheme robustly reduced bias on variance around 100% reduction and leaded to reduction of first, and second quantile biases. However, bias on third quantile only reduced during dry months. Based on different level of elevation, the performance of bias correction process is only significantly different on skewness indicators.

  4. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  5. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  6. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  7. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  8. Quantitative measurement of lightning-induced electron precipitation using VLF remote sensing

    Science.gov (United States)

    Peter, William Bolton

    This dissertation examines the detection of lightning-induced energetic electron precipitation via subionospheric Very Low Frequency (VLF) remote sensing. The primary measurement tool used is a distributed set of VLF observing sites, the Holographic Array for Ionospheric/Lightning Research (HAIL), located along the eastern side of the Rocky Mountains in the Central United States. Measurements of the VLF signal perturbations indicate that 90% of the precipitation occurs over a region ˜8 degrees in latitudinal extent, with the peak of the precipitation poleward displaced ˜7 degrees from the causative discharge. A comparison of the VLF signal perturbations recorded on the HAIL array with a comprehensive model of LEP events allows for the quantitative measurement of electron precipitation and ionospheric density enhancement with unprecedented quantitative detail. The model consists of three major components: a test-particle model of gyroresonant whistler-induced electron precipitation; a Monte Carlo simulation of energy deposition into the ionosphere; and a model of VLF subionospheric signal propagation. For the two representative LEP events studied, the model calculates peak VLF amplitude and phase perturbations within a factor of three of those observed, well within the expected variability of radiation belt flux levels. The modeled precipitated energy flux (E>45 keV) peaks at ˜1 x 10-2 [ergs s-1 cm -2], resulting in a peak loss of ˜0.001% from a single flux tube at L˜2.2, consistent with previous satellite measurements of LEP events. Metrics quantifying the ionospheric density enhancement (N ILDE) and the electron precipitation (Gamma) are strongly correlated with the VLF signal perturbations calculated by the model. A conversion ratio Psi relates VLF signal amplitude perturbations (DeltaA) to the time-integrated precipitation (100-300 keV) along the VLF path (Psi=Gamma / DeltaA). The total precipitation (100-300 keV) induced by one of the representative LEP

  9. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  10. A Regional-Scale Assessment of Satellite Derived Precipitable Water Vapor Across The Amazon Basin

    Science.gov (United States)

    DeLiberty, Tracy; Callahan, John; Guillory, Anthony R.; Jedlovec, Gary

    2000-01-01

    Atmospheric water vapor is widely recognized as a key climate variable, linking an assortment of poorly understood and complex processes. It is a major element of the hydrological cycle and provides a mechanism for energy exchange among many of the Earth system components. Reducing uncertainty in our current knowledge of water vapor and its role in the climate system requires accurate measurement, improved modeling techniques, and long-term prediction. Satellites have the potential to satisfy these criteria, as well as provide high resolution measurements that are not available from conventional sources. The focus of this paper is to examine the temporal and mesoscale variations of satellite derived precipitable water vapor (PW) across the Amazon Basin. This region is pivotal in the functioning of the global climate system through its abundant release of latent heat associated with heavy precipitation events. In addition, anthropogenic deforestation and biomass burning activities in recent decades are altering the conditions of the atmosphere, especially in the planetary boundary layer. A physical split-window (PSW) algorithm estimates PW using images from the GOES satellites along with the NCEP/NCAR Reanalysis data that provides the first guess information. Retrievals are made at a three-hourly time step during daylight hours in the Amazon Basin and surrounding areas for the months of June and October in 1988 (dry year) and 1995 (wet year). Spatially continuous fields are generated 5 times daily at 12Z, 15Z, 18Z, 21Z, and 00Z. These fields are then averaged to create monthly and 3 hourly monthly grids. Overall, the PSW estimates PW reasonable well in the Amazon with MAE ranging from 3.0 - 9.0 mm and MAE/observed mean around 20% in comparison to radiosonde observations. The distribution of PW generally mimics that of precipitation. Maximum values (42 - 52 mm) are located in the Northwest whereas minimum values (18 - 27 mm) are found along Brazil's East coast. Aside

  11. Comparison between satellite precipitation product and observation rain gauges in the Red-Thai Binh River Basin

    Science.gov (United States)

    Lakshmi, V.; Le, M. H.; Sutton, J. R. P.; Bui, D. D.; Bolten, J. D.

    2017-12-01

    The Red-ThaiBinh River is the second largest river in Vietnam in terms of economic impact and is home to around 29 million people. The river has been facing challenges for water resources allocation, which require reliable and routine hydrological assessments. However, hydrological analysis is difficult due to insufficient spatial coverage by rain gauges. Satellite-based precipitation estimates are a promising alternative with high-resolution in both time and space. This study aims at investigating the uncertainties in satellite-based precipitation product TRMM 3B42 v7.0 by comparing them against in-situ measurements over the Red-ThaiBinh River basin. The TRMM 3B42 v7.0 are assessed in terms of seasonal, monthly and daily variations over a 17-year period (1998 - 2014). Preliminary results indicate that at a daily scale, except for low Mean Bias Error (MBE), satellite based rainfall product has weak relationship with ground observation data, indicating by average performance of 0.326 and -0.485 for correlation coefficient and Nash Sutcliffe Efficiency (NSE), respectively. At monthly scale, we observe that the TRMM 3B42 v7.0 has higher correlation with the correlation increased significantly to 0.863 and NSE of 0.522. By analyzing wet season (May - October) and dry season (November - April) separately we find that the correlation between the TRMM 3B42 v7.0 with ground observations were higher for wet season than the dry season.

  12. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational 1-Norm Regularization in the Derivative Domain

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2013-01-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients(called 1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a database of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case

  13. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Ruifang Guo

    2016-07-01

    Full Text Available Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipitation is the most important input in basin-scale water balance. This study uses quality-controlled rain gauge data and prevailing satellite products (Tropical Rainfall Measuring Mission (TRMM 3B43, 3B42 and 3B42RT to examine the consistency and discrepancies between them at different scales. Rain gauges and TRMM products were available in the Poyang Lake Basin, China, from 1998 to 2007 (3B42RT: 2000–2007. Our results show that the performance of TRMM products generally increases with increasing spatial scale. At both the monthly and annual scales, the accuracy is highest for TRMM 3B43, with 3B42 second and 3B42RT third. TRMM products generally overestimate precipitation because of a high frequency and degree of overestimation in light and moderate rain cases. At the daily scale, the accuracy is relatively low between TRMM 3B42 and 3B42RT. Meanwhile, the performances of TRMM 3B42 and 3B42RT are highly variable in different seasons. At both the basin and pixel scales, TRMM 3B43 and 3B42 exhibit significant discrepancies from July to September, performing worst in September. For TRMM 3B42RT, all statistical indices fluctuate and are low throughout the year, performing worst in July at the pixel scale and January at the basin scale. Furthermore, the spatial distributions of the statistical indices of TRMM 3B43 and 3B42 performed well, while TRMM 3B42RT displayed a poor performance.

  14. Bias correction of satellite precipitation products for flood forecasting application at the Upper Mahanadi River Basin in Eastern India

    Science.gov (United States)

    Beria, H.; Nanda, T., Sr.; Chatterjee, C.

    2015-12-01

    High resolution satellite precipitation products such as Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts (ECMWF), etc., offer a promising alternative to flood forecasting in data scarce regions. At the current state-of-art, these products cannot be used in the raw form for flood forecasting, even at smaller lead times. In the current study, these precipitation products are bias corrected using statistical techniques, such as additive and multiplicative bias corrections, and wavelet multi-resolution analysis (MRA) with India Meteorological Department (IMD) gridded precipitation product,obtained from gauge-based rainfall estimates. Neural network based rainfall-runoff modeling using these bias corrected products provide encouraging results for flood forecasting upto 48 hours lead time. We will present various statistical and graphical interpretations of catchment response to high rainfall events using both the raw and bias corrected precipitation products at different lead times.

  15. Global Precipitation Measurement. Report 1; Summary of the First GPM Partners Planning Workshop

    Science.gov (United States)

    Shepherd, J. Marshall; Mehta, Amita; Smith, Eric A. (Editor); Adams, W. James (Editor)

    2002-01-01

    This report provides a synopsis of the proceedings of the First Global Precipitation Measurement (GPM) Partners Planning Workshop held at the University of Maryland, College Park, from May 16 to 18, 2001. GPM consists of a multi-member global satellite constellation (i.e., an international set of satellite missions) and the accompanying scientific research program, with the main goal of providing frequent, accurate, and globally distributed precipitation measurements essential in understanding several fundamental issues associated with the global water and energy cycle (GWEC). The exchange of scientific and technical information at this and subsequent GPM workshops between representatives from around the world represents a key step in the formulation phase of GPM mission development. The U.S. National Aeronautics and Space Agency (NASA), the National Space Development Agency of Japan (NASDA), and other interested agencies from nations around the world seek to observe, understand, and model the Earth system to learn how it is changing and what consequences these changes have on life, particularly as they pertain to hydrological processes and the availability of fresh water resources. GWEN processes are central to a broader understanding of the Earth system.

  16. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  17. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  18. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  19. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Realtime and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guojon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 deg latitude-longitude resolution over the latitude range from 50 deg N-50 deg S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  20. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2013-12-01

    Full Text Available The latest Version-7 (V7 Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA products were released by the National Aeronautics and Space Administration (NASA in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7 for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012. Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6 and high CC values (0.88 over the broader Hebei, Beijing and Tianjin (HBT regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.

  1. Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ℓ1-Norm Regularization in the Derivative Domain

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ebtehaj, A. M.; Zhang, S. Q.; Hou, A. Y.

    2014-05-01

    The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying rainfall fields. Of special interest is the reproduction of extreme precipitation intensities and gradients, as these are directly relevant to hazard prediction. In this paper, we present a new formalism for downscaling satellite precipitation observations, which explicitly allows for the preservation of some key geometrical and statistical properties of spatial precipitation. These include sharp intensity gradients (due to high-intensity regions embedded within lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall), and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we pose the downscaling problem as a discrete inverse problem and solve it via a regularized variational approach (variational downscaling) where the regularization term is selected to impose the desired smoothness in the solution while allowing for some steep gradients (called ℓ1-norm or total variation regularization). We demonstrate the duality between this geometrically inspired solution and its Bayesian statistical interpretation, which is equivalent to assuming a Laplace prior distribution for the precipitation intensities in the derivative (wavelet) space. When the observation operator is not known, we discuss the effect of its misspecification and explore a previously proposed dictionary-based sparse inverse downscaling methodology to indirectly learn the observation operator from a data base of coincidental high- and low-resolution observations. The proposed method and ideas are illustrated in case

  2. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2014-10-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets (bias-adjusted TMPA 3B42, near-real time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (± 6%). However, differences at the RFC are more important in particular for near-real time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near real time counterpart 3B42RT. However, large biases remained for 3B42 over the Western US for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in day-1) over the Northwest. Furthermore, the conditional analysis and the contingency analysis conducted illustrated the challenge of retrieving extreme precipitation from remote sensing estimates.

  3. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  4. MSWEP : 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data

    NARCIS (Netherlands)

    Beck, Hylke E.; Van Dijk, Albert I.J.M.; Levizzani, Vincenzo; Schellekens, Jaap; Miralles, Diego G.; Martens, Brecht; De Roo, Ad

    2017-01-01

    Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3-hourly temporal and 0.25° spatial

  5. A review of the PERSIANN family global satellite precipitation data products

    Science.gov (United States)

    Nguyen, P.; Ombadi, M.; Ashouri, H.; Thorstensen, A.; Hsu, K. L.; Braithwaite, D.; Sorooshian, S.; William, L.

    2017-12-01

    Precipitation is an integral part of the hydrologic cycle and plays an important role in the water and energy balance of the Earth. Careful and consistent observation of precipitation is important for several reasons. Over the last two decades, the PERSIANN system of precipitation products have been developed at the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine in collaboration with NASA, NOAA and the UNESCO G-WADI program. The PERSIANN family includes three main satellite-based precipitation estimation products namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. They are accessible through several web-based interfaces maintained by CHRS to serve the needs of researchers, professionals and general public. These interfaces are CHRS iRain, Data Portal and RainSphere, which can be accessed at http://irain.eng.uci.edu, http://chrsdata.eng.uci.edu, and http://rainsphere.eng.uci.edu respectively and can be used for visualization, analysis or download of the data. The main objective of this presentation is to provide a concise and clear summary of the similarities and differences between the three products in terms of attributes and algorithm structure. Moreover, the presentation aims to provide an evaluation of the performance of the products over the Contiguous United States (CONUS) using Climate Prediction Center (CPC) precipitation dataset as a baseline of comparison. Also, an assessment of the behavior of PERSIANN family products over the globe (60°S - 60°N) is performed.

  6. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  7. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China

    Science.gov (United States)

    Deng, Xueliang; Nie, Suping; Deng, Weitao; Cao, Weihua

    2018-04-01

    In this study, we compared the following four different gridded monthly precipitation products: the National Centers for Environmental Prediction version 2 (NCEP-2) reanalysis data, the satellite-based Climate Prediction Center Morphing technique (CMORPH) data, the merged satellite-gauge Global Precipitation Climatology Project (GPCP) data, and the merged satellite-gauge-model data from the Beijing Climate Center Merged Estimation of Precipitation (BMEP). We evaluated the performances of these products using monthly precipitation observations spanning the period of January 2003 to December 2013 from a dense, national, rain gauge network in China. Our assessment involved several statistical techniques, including spatial pattern, temporal variation, bias, root-mean-square error (RMSE), and correlation coefficient (CC) analysis. The results show that NCEP-2, GPCP, and BMEP generally overestimate monthly precipitation at the national scale and CMORPH underestimates it. However, all of the datasets successfully characterized the northwest to southeast increase in the monthly precipitation over China. Because they include precipitation gauge information from the Global Telecommunication System (GTS) network, GPCP and BMEP have much smaller biases, lower RMSEs, and higher CCs than NCEP-2 and CMORPH. When the seasonal and regional variations are considered, NCEP-2 has a larger error over southern China during the summer. CMORPH poorly reproduces the magnitude of the precipitation over southeastern China and the temporal correlation over western and northwestern China during all seasons. BMEP has a lower RMSE and higher CC than GPCP over eastern and southern China, where the station network is dense. In contrast, BMEP has a lower CC than GPCP over western and northwestern China, where the gauge network is relatively sparse.

  8. Hydrological modeling of the Peruvian–Ecuadorian Amazon Basin using GPM-IMERG satellite-based precipitation dataset

    Directory of Open Access Journals (Sweden)

    R. Zubieta

    2017-07-01

    Full Text Available In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM have proven applicable in hydrological studies. The Global Precipitation Measurement (GPM mission, which provides the new generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the Integrated Multi-satellite Retrievals (IMERG (product/final run as input to a distributed hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015 when all datasets are available. TRMM products (TMPA V7 and TMPA RT datasets and a gridded precipitation dataset processed from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed rainfall (by 11.1 and 15.7 %, respectively. In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected ( ∼  20 %. Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali Basin. GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins, probably because of the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon.

  9. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  10. A multi-source precipitation approach to fill gaps over a radar precipitation field

    Science.gov (United States)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  11. Precipitation Characteristics in Tropical Africa Using Satellite and In-Situ Observations

    Science.gov (United States)

    Dezfuli, Amin; Ichoku, Charles; Huffman, George; Mohr, Karen

    2017-01-01

    Tropical Africa receives nearly all its precipitation as a result of convection. The characteristics of rain-producing systems in this region, despite their crucial role in regional and global circulation, have not been well-understood. This is mainly due to the lack of in situ observations. Here, we have used precipitation records from the Trans-African Hydro-Meteorological Observatory (TAHMO) to improve our knowledge about the rainfall systems in the region, and to validate the recently-released IMERG precipitation product. The high temporal resolution of the gauge data has allowed us to identify three classes of rain events based on their duration and intensity. The contribution of each class to the total rainfall and the favorable surface atmospheric conditions for each class have been examined. As IMERG aims to continue the legacy of its predecessor, TMPA, and provide higher resolution data, continent-wide comparisons are made between these two products. IMERG, due to its improved temporal resolution, shows some advantages over TMPA in capturing the diurnal cycle and propagation of the meso-scale convective systems. However, the performance of the two satellite-based products varies by season, region and the evaluation statistics. The results of this study serve as a basis for our ongoing work on the impacts of biomass burning on precipitation processes in Africa.

  12. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  13. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  14. Electromagnetic Modeling of the Propagation Characteristics of Satellite Communications Through Composite Precipitation Layers, Part1: Mathematical Formulation

    Directory of Open Access Journals (Sweden)

    H.M. Al-Rizzo

    2000-12-01

    Full Text Available A systematic and general formulation of a Propagation Simulation Program (PSP is developed for the coherent field of microwave and millimeter wave carrier signals traversing intermediate layered precipitation media, taking into account the random behavior of particle size, orientation, shape and concentration distributions.  Based on a rigorous solution of the volumetric multiple-scattering integral equations, the formalism offers the capability of treating the potential transmission impairments on satellite-earth links and radar remote sensing generated by composite atmospheric layers of precipitation in conjunction with the finite polarization isolation of dual-polarized transmitting and receiving antennas. A multi-layered formulation is employed which encompasses an ensemble of discrete particles comprising an arbitrary mixture of ice crystals, melting snow and raindrops that may exist simultaneously along satellite-earth communication paths.

  15. Mapping global precipitation with satellite borne microwave radiometer and infrared radiometer using Kalman filter

    International Nuclear Information System (INIS)

    Noda, S.; Sasashige, K.; Katagami, D.; Ushio, T.; Kubota, T.; Okamoto, K.; Iida, Y.; Kida, S.; Shige, S.; Shimomura, S.; Aonashi, K.; Inoue, T.; Morimoto, T.; Kawasaki, Z.

    2007-01-01

    Estimates of precipitation at a high time and space resolution are required for many important applications. In this paper, a new global precipitation map with high spatial (0.1 degree) and temporal (1 hour) resolution using Kalman filter technique is presented and evaluated. Infrared radiometer data, which are available globally nearly everywhere and nearly all the time from geostationary orbit, are used with the several microwave radiometers aboard the LEO satellites. IR data is used as a means to move the precipitation estimates from microwave observation during periods when microwave data are not available at a given location. Moving vector is produced by computing correlations on successive images of IR data. When precipitation is moved, the Kalman filter is applied for improving the moving technique in this research. The new approach showed a better score than the technique without Kalman filter. The correlation coefficient was 0.1 better than without the Kalman filter about 6 hours after the last microwave overpasses, and the RMS error was improved about 0.1 mm/h with the Kalman filter technique. This approach is unique in that 1) the precipitation estimates from the microwave radiometer is mainly used, 2) the IR temperature in every hour is also used for the precipitation estimates based on the Kalman filter theory

  16. Errors and Correction of Precipitation Measurements in China

    Institute of Scientific and Technical Information of China (English)

    REN Zhihua; LI Mingqin

    2007-01-01

    In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper.A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.

  17. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    Science.gov (United States)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  18. Validation of satellite based precipitation over diverse topography of Pakistan

    Science.gov (United States)

    Iqbal, Muhammad Farooq; Athar, H.

    2018-03-01

    This study evaluates the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product data with 0.25° × 0.25° spatial and post-real-time 3 h temporal resolution using point-based Surface Precipitation Gauge (SPG) data from 40 stations, for the period 1998-2013, and using gridded Asian Precipitation ˗ Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) data abbreviated as APH data with 0.25° × 0.25° spatial and daily temporal resolution for the period 1998-2007, over vulnerable and data sparse regions of Pakistan (24-37° N and 62-75° E). To evaluate the performance of TMPA relative to SPG and APH, four commonly used statistical indicator metrics including Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC) are employed on daily, monthly, seasonal as well as on annual timescales. The TMPA slightly overestimated both SPG and APH at daily, monthly, and annual timescales, however close results were obtained between TMPA and SPG as compared to those between TMPA and APH, on the same timescale. The TMPA overestimated both SPG and APH during the Pre-Monsoon and Monsoon seasons, whereas it underestimated during the Post-Monsoon and Winter seasons, with different magnitudes. Agreement between TMPA and SPG was good in plain and medium elevation regions, whereas TMPA overestimated APH in 31 stations. The magnitudes of MAE and RMSE were high at daily timescale as compared to monthly and annual timescales. Relatively large MAE was observed in stations located over high elevation regions, whereas minor MAE was recorded in plain area stations at daily, monthly, and annual timescales. A strong positive linear relationship between TMPA and SPG was established at monthly (0.98), seasonal (0.93 to 0.98) and annual (0.97) timescales. Precipitation increased with the increase of elevation, and not only elevation but latitude also affected the

  19. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Alaa Alden Alazzy

    2017-01-01

    Full Text Available In the last few years, satellite-based precipitation datasets are believed to be a potential source for forcing inputs in driving hydrological models, which are important especially in complex terrain areas or ungauged basins where ground gauges are generally sparse or nonexistent. This study aims to comprehensively evaluate the satellite precipitation products, CMORPH-CRT, PERSIANN-CDR, 3B42RT, and 3B42 against gauge-based datasets and to infer their relative potential impacts on hydrological processes simulation using the HEC-HMS model in the Ganzi River Basin (GRB of the Tibetan Plateau. Results from a quantitative statistical comparison reveal that, at annual and seasonal scales, both CMORPH-CRT and 3B42 perform better than PERSIANN-CDR and 3B42RT. The CMORPH-CRT and 3B42 tend to underestimate values at the medium and high precipitation intensities ranges, whereas the opposite tendency is found for PERSIANN-CDR and 3B42RT. Overall, 3B42 exhibits the best performance for streamflow simulations over GRB and even outperforms simulation driven by gauge data during the validation period. PERSIANN-CDR shows the worst overall performance. After recalibrating with input-specific precipitation data, the performance of all satellite precipitation forced simulations is substantially improved, except for PERSIANN-CDR. Furthermore, 3B42 is more suitable to drive hydrological models and can be a potential alternative source of sparse data in Tibetan Plateau basins.

  20. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  1. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  2. Evaluation of Satellite-Based Precipitation Products from IMERG V04A and V03D, CMORPH and TMPA with Gauged Rainfall in Three Climatologic Zones in China

    Directory of Open Access Journals (Sweden)

    Guanghua Wei

    2017-12-01

    Full Text Available A critical evaluation of the newly released precipitation data set is very important for both the end users and data developers. Meanwhile, the evaluation may provide a benchmark for the product’s continued development and future improvement. To these ends, the four precipitation estimates including IMERG (the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement V04A, IMERG V03D, CMORPH (the Climate Prediction Center Morphing technique-CRT and TRMM (the Tropical Rainfall Measuring Mission 3B42 are systematically evaluated against the gauge precipitation estimates at multiple spatiotemporal scales from 1 June 2014 to 30 November 2015 over three different topographic and climatic watersheds in China. Meanwhile, the statistical methods are utilized to quantize the performance of the four satellite-based precipitation estimates. The results show that: (1 over the Tibetan Plateau cold region, among all products, IMERG V04A underestimates precipitation with the largest RB (−46.98% during the study period and the similar results are seen at the seasonal scale. However, IMERG V03D demonstrates the best performance according to RB (7.46%, RMSE (0.44 mm/day and RRMSE (28.37%. Except for in summer, TRMM 3B42 perform better than CMORPH according to RMSEs, RRMSEs and Rs; (2 within the semi-humid Huaihe River Basin, IMERG V04A has a slight advantage over the other three satellite-based precipitation products with the lowest RMSE (0.32 mm/day during the evaluation period and followed by IMERG V03D, TRMM 3B42 and CMORPH orderly; (3 over the arid/semi-arid Weihe River Basin, in comparison with the other three products, TRMM 3B42 demonstrates the best performance with the lowest RMSE (0.1 mm/day, RRMSE (8.44% and highest R (0.92 during the study period. Meanwhile, IMERG V03D perform better than IMERG V04A according all the statistical indicators; (4 in winter, IMERG V04A and IMERG V03D tend to underestimate the total precipitation

  3. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    Science.gov (United States)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong

  4. Study of cloud properties using airborne and satellite measurements

    Science.gov (United States)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  5. GPM Mission Gridded Text Products Providing Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, Owen; Huffman, George; Kummerow, Christian

    2015-04-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar), and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMI/DPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for reseachers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations. This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments - GMI, DPR, and combined GMI/DPR (2) surface precipitation retrievals for the partner

  6. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  7. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  8. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  9. Statistical and Hydrological Evaluation of TRMM-Based Multi-Satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the Latest Satellite Precipitation Products 3B42V7 Ready for Use in Ungauged Basins?

    Science.gov (United States)

    Xue, Xianwu; Hong, Yang; Limaye, Ashutosh S.; Gourley, Jonathan; Huffman, George J.; Khan, Sadiq Ibrahim; Dorji, Chhimi; Chen, Sheng

    2013-01-01

    The objective of this study is to quantitatively evaluate the successive Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products and further to explore the improvements and error propagation of the latest 3B42V7 algorithm relative to its predecessor 3B42V6 using the Coupled Routing and Excess Storage (CREST) hydrologic model in the mountainous Wangchu Basin of Bhutan. First, the comparison to a decade-long (2001-2010) daily rain gauge dataset reveals that: 1) 3B42V7 generally improves upon 3B42V6s underestimation both for the whole basin (bias from -41.15 to -8.38) and for a 0.250.25 grid cell with high-density gauges (bias from -40.25 to 0.04), though with modest enhancement of correlation coefficients (CC) (from 0.36 to 0.40 for basin-wide and from 0.37 to 0.41 for grid); and 2) 3B42V7 also improves its occurrence frequency across the rain intensity spectrum. Using the CREST model that has been calibrated with rain gauge inputs, the 3B42V6-based simulation shows limited hydrologic prediction NSCE skill (0.23 in daily scale and 0.25 in monthly scale) while 3B42V7 performs fairly well (0.66 in daily scale and 0.77 in monthly scale), a comparable skill score with the gauge rainfall simulations. After recalibrating the model with the respective TMPA data, significant improvements are observed for 3B42V6 across all categories, but not as much enhancement for the already well-performing 3B42V7 except for a reduction in bias (from -26.98 to -4.81). In summary, the latest 3B42V7 algorithm reveals a significant upgrade from 3B42V6 both in precipitation accuracy (i.e., correcting the underestimation) thus improving its potential hydrological utility. Forcing the model with 3B42V7 rainfall yields comparable skill scores with in-situ gauges even without recalibration of the hydrological model by the satellite precipitation, a compensating approach often used but not favored by the hydrology community, particularly in ungauged basins.

  10. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  11. Evaluation of Integrated Multi-satellitE Retrievals for GPM with All Weather Gauge Observations over CONUS

    Science.gov (United States)

    Chen, S.; Qi, Y.; Hu, B.; Hu, J.; Hong, Y.

    2015-12-01

    The Global Precipitation Measurement (GPM) mission is composed of an international network of satellites that provide the next-generation global observations of rain and snow. Integrated Multi-satellitE Retrievals for GPM (IMERG) is the state-of-art precipitation products with high spatio-temporal resolution of 0.1°/30min. IMERG unifies precipitation measurements from a constellation of research and operational satellites with the core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI) on board a "Core" satellite. Additionally, IMERG blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. In this study, the final run post real-time IMERG is evaluated with all-weather manual gauge observations over CONUS from June 2014 through May 2015. Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of IMERG. The performance of IMERG in estimating snowfall precipitation is highlighted in the study. This timely evaluation with all-weather gauge observations is expected to offer insights into performance of IMERG and thus provide useful feedback to the algorithm developers as well as the GPM data users.

  12. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  13. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products

    Science.gov (United States)

    Tang, Guoqiang; Behrangi, Ali; Long, Di; Li, Changming; Hong, Yang

    2018-04-01

    Rain gauge observations are commonly used to evaluate the quality of satellite precipitation products. However, the inherent difference between point-scale gauge measurements and areal satellite precipitation, i.e. a point of space in time accumulation v.s. a snapshot of time in space aggregation, has an important effect on the accuracy and precision of qualitative and quantitative evaluation results. This study aims to quantify the uncertainty caused by various combinations of spatiotemporal scales (0.1°-0.8° and 1-24 h) of gauge network designs in the densely gauged and relatively flat Ganjiang River basin, South China, in order to evaluate the state-of-the-art satellite precipitation, the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). For comparison with the dense gauge network serving as "ground truth", 500 sparse gauge networks are generated through random combinations of gauge numbers at each set of spatiotemporal scales. Results show that all sparse gauge networks persistently underestimate the performance of IMERG according to most metrics. However, the probability of detection is overestimated because hit and miss events are more likely fewer than the reference numbers derived from dense gauge networks. A nonlinear error function of spatiotemporal scales and the number of gauges in each grid pixel is developed to estimate the errors of using gauges to evaluate satellite precipitation. Coefficients of determination of the fitting are above 0.9 for most metrics. The error function can also be used to estimate the required minimum number of gauges in each grid pixel to meet a predefined error level. This study suggests that the actual quality of satellite precipitation products could be better than conventionally evaluated or expected, and hopefully enables non-subject-matter-expert researchers to have better understanding of the explicit uncertainties when using point-scale gauge observations to evaluate areal products.

  14. Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China

    Science.gov (United States)

    Cai, Yancong; Jin, Changjie; Wang, Anzhi; Guan, Dexin; Wu, Jiabing; Yuan, Fenghui; Xu, Leilei

    2015-01-01

    Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS). This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998–2012. Comparative analysis at three timescales (daily, monthly and annual scale) indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%). Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these data are

  15. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China.

    Directory of Open Access Journals (Sweden)

    Yancong Cai

    Full Text Available Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS. This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998-2012. Comparative analysis at three timescales (daily, monthly and annual scale indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%. Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these

  16. Merging bottom-up and top-down precipitation products using a stochastic error model

    Science.gov (United States)

    Maggioni, Viviana; Massari, Christian; Brocca, Luca; Ciabatta, Luca

    2017-04-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning, and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season etc…). Recently, Brocca et al. (2014) have proposed an alternative approach (i.e., SM2RAIN) that allows to estimate rainfall from space by using satellite soil moisture observations. In contrast with classical satellite precipitation products which sense the cloud properties to retrieve the instantaneous precipitation, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite passes. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to improve current satellite rainfall estimates via appropriate integration between the products (i.e., SM2RAIN plus a classical satellite rainfall product). However, whether SM2RAIN is able or not to improve the performance of any state-of-the-art satellite rainfall product is much dependent upon an adequate quantification and characterization of the relative errors of the products. In this study, the stochastic rainfall error model SREM2D (Hossain et al. 2006) is used for characterizing the retrieval error of both SM2RAIN and a state-of-the-art satellite precipitation product (i.e., 3B42RT). The error characterization serves for an optimal integration between SM2RAIN and 3B42RT for enhancing the capability of the resulting integrated product (i.e. SM2RAIN+3B42RT) in

  17. SHORT-TERM PRECIPITATION OCCURRENCE PREDICTION FOR STRONG CONVECTIVE WEATHER USING FY2-G SATELLITE DATA: A CASE STUDY OF SHENZHEN,SOUTH CHINA

    Directory of Open Access Journals (Sweden)

    K. Chen

    2016-06-01

    Full Text Available Short-term precipitation commonly occurs in south part of China, which brings intensive precipitation in local region for very short time. Massive water would cause the intensive flood inside of city when precipitation amount beyond the capacity of city drainage system. Thousands people’s life could be influenced by those short-term disasters and the higher city managements are required to facing these challenges. How to predict the occurrence of heavy precipitation accurately is one of the worthwhile scientific questions in meteorology. According to recent studies, the accuracy of short-term precipitation prediction based on numerical simulation model still remains low reliability, in some area where lack of local observations, the accuracy may be as low as 10%. The methodology for short term precipitation occurrence prediction still remains a challenge. In this paper, a machine learning method based on SVM was presented to predict short-term precipitation occurrence by using FY2-G satellite imagery and ground in situ observation data. The results were validated by traditional TS score which commonly used in evaluation of weather prediction. The results indicate that the proposed algorithm can present overall accuracy up to 90% for one-hour to six-hour forecast. The result implies the prediction accuracy could be improved by using machine learning method combining with satellite image. This prediction model can be further used to evaluated to predicted other characteristics of weather in Shenzhen in future.

  18. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    Science.gov (United States)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  19. Opportunities and challenges for evaluating precipitation estimates during GPM mission

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, E. [George Mason Univ. and NASA Goddard Space Flight Center, Greenbelt, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Llort, X.; Sempere-Torres, D. [GRAHI/Univ. Politecnica de Catalunya, Barcelona (Spain)

    2006-10-15

    Data assimilation in conjunction with numerical weather prediction and a variety of hydrologic applications now depend on satellite observations of precipitation. However, providing values of precipitation is not sufficient unless they are accompanied by the associated uncertainty estimates. The main approach of quantifying satellite precipitation uncertainties generally requires establishment of reliable uncertainty estimates for the ground validation rainfall products. This paper discusses several of the relevant validation concepts evolving from the tropical rainfall measuring mission (TRMM) era to the global precipitation measurement mission (GPM) era in the context of determining and reducing uncertainties of ground and space-based radar rainfall estimates. From comparisons of probability distribution functions of rain rates derived from TRMM precipitation radar and co-located ground based radar data - using the new NASA TRMM radar rainfall products (version 6) - this paper provides (1) a brief review of the importance of comparing pdfs of rain rate for statistical and physical verification of space-borne radar estimates of precipitation; (2) a brief review of how well the ground validation estimates compare to the TRMM radar retrieved estimates; and (3) discussion on opportunities and challenges to determine and reduce the uncertainties in space-based and ground-based radar estimates of rain rate distributions. (orig.)

  20. Measurement of γ'precipitates in nimonic PE16

    International Nuclear Information System (INIS)

    Baker, C.; Lobb, R.C.

    1977-09-01

    γ' precipitates in Nimonic PE16 have been examined using bright and dark field imaging techniques in an electron microscope. The validity of these techniques to determine mean precipitate diameters, precipitate density and volume fraction is discussed. It is concluded that bright field imaging techniques are sufficiently accurate to measure γ' precipitate diameters but it is essential to use dark field imaging techniques to determine γ' precipitate density or volume fraction. (author)

  1. Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations (PDMMA-USESGO) for Hydrological Modeling — A Case Study over the Tibetan Plateau

    Science.gov (United States)

    Yang, Z.; Hsu, K. L.; Sorooshian, S.; Xu, X.

    2017-12-01

    Precipitation in mountain regions generally occurs with high-frequency-intensity, whereas it is not well-captured by sparsely distributed rain-gauges imposing a great challenge on water management. Satellite-based Precipitation Estimation (SPE) provides global high-resolution alternative data for hydro-climatic studies, but are subject to considerable biases. In this study, a model named PDMMA-USESGO for Precipitation Data Merging over Mountainous Areas Using Satellite Estimates and Sparse Gauge Observations is developed to support precipitation mapping and hydrological modeling in mountainous catchments. The PDMMA-USESGO framework includes two calculating steps—adjusting SPE biases and merging satellite-gauge estimates—using the quantile mapping approach, a two-dimensional Gaussian weighting scheme (considering elevation effect), and an inverse root mean square error weighting method. The model is applied and evaluated over the Tibetan Plateau (TP) with the PERSIANN-CCS precipitation retrievals (daily, 0.04°×0.04°) and sparse observations from 89 gauges, for the 11-yr period of 2003-2013. To assess the data merging effects on streamflow modeling, a hydrological evaluation is conducted over a watershed in southeast TP based on the Soil and Water Assessment Tool (SWAT). Evaluation results indicate effectiveness of the model in generating high-resolution-accuracy precipitation estimates over mountainous terrain, with the merged estimates (Mer-SG) presenting consistently improved correlation coefficients, root mean square errors and absolute mean biases from original satellite estimates (Ori-CCS). It is found the Mer-SG forced streamflow simulations exhibit great improvements from those simulations using Ori-CCS, with coefficient of determination (R2) and Nash-Sutcliffe efficiency reach to 0.8 and 0.65, respectively. The presented model and case study serve as valuable references for the hydro-climatic applications using remote sensing-gauge information in

  2. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin

    Science.gov (United States)

    Li, Na; Tang, Guoqiang; Zhao, Ping; Hong, Yang; Gou, Yabin; Yang, Kai

    2017-01-01

    This study aims to statistically and hydrologically assess the hydrological utility of the latest Integrated Multi-satellitE Retrievals from Global Precipitation Measurement (IMERG) multi-satellite constellation over the mid-latitude Ganjiang River basin in China. The investigations are conducted at hourly and 0.1° resolutions throughout the rainy season from March 12 to September 30, 2014. Two high-quality quantitative precipitation estimation (QPE) datasets, i.e., a gauge-corrected radar mosaic QPE product (RQPE) and a highly dense network of 1200 rain gauges, are used as the reference. For the implementation of the study, first, we compare IMERG product and RQPE with rain gauge-interpolated data, respectively. The results indicate that both remote sensing products can estimate precipitation fairly well over the basin, while RQPE significantly outperforms IMERG product in almost all the studied cases. The correlation coefficients of RQPE (CC = 0.98 and CC = 0.67) are much higher than those of IMERG product (CC = 0.80 and CC = 0.33) at basin and grid scales, respectively. Then, the hydrological assessment is conducted with the Coupled Routing and Excess Storage (CREST) model under multiple parameterization scenarios, in which the model is calibrated using the rain gauge-interpolated data, RQPE, and IMERG products respectively. During the calibration period (from March 12 to May 31), the simulated streamflow based on rain gauge-interpolated data shows the highest Nash-Sutcliffe coefficient efficiency (NSCE) value (0.92), closely followed by the RQPE (NSCE = 0.84), while IMERG product performs barely acceptable (NSCE = 0.56). During the validation period (from June 1 to September 30), the three rainfall datasets are used to force the CREST model based on all the three calibrated parameter sets (i.e., nine combinations in total). RQPE outperforms rain gauge-interpolated data and IMERG product in all validation scenarios, possibly due to its advantageous capability

  3. Measurements of VLF-particle interactions at the South Atlantic Magnetic Anomaly on board a Brazilian geophysical satellite

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Pinto Junior, O.; Dutra, S.L.G.; Takahashi, H.

    1988-01-01

    A summary of the proposal for measurements of VLF wave-particle interactions, expected to occur at the South Atlantic magnetic anomaly, to be carried out on board a Brazilian geophysical satellite, will be presented. The expected domain of such interactions refers to electromagnetic VLF waves and to energetic-relativistic inner belt electrons, pitch angle diffusing into the atmosphere via cyclotron resonances. The detectors involve a tri-axial search coil magnetometer and a surface barrier silicon telescope. A modified and preliminary version of this proposed experiment will be carried out on board long duration balloon flights, well before the beginning of the intended satellite measurements. For the ballon flights the particle detector will be replaced by an x-ray detector, which can also monitor parameters related to the electron precipitation. (author) [pt

  4. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  5. An adaptive spatial model for precipitation data from multiple satellites over large regions

    KAUST Repository

    Chakraborty, Avishek; De, Swarup; Bowman, Kenneth P.; Sang, Huiyan; Genton, Marc G.; Mallick, Bani K.

    2015-01-01

    South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision

  6. Seasonal to Interannual Variability of Satellite-Based Precipitation Estimates in the Pacific Ocean Associated with ENSO from 1998 to 2014

    Directory of Open Access Journals (Sweden)

    Xueyan Hou

    2016-10-01

    Full Text Available Based on a widely used satellite precipitation product (TRMM Multi-satellite Precipitation Analysis 3B43, we analyzed the spatiotemporal variability of precipitation over the Pacific Ocean for 1998–2014 at seasonal and interannual timescales, separately, using the conventional empirical orthogonal function (EOF and investigated the seasonal patterns associated with El Niño–Southern Oscillation (ENSO cycles using season-reliant empirical orthogonal function (SEOF analysis. Lagged correlation analysis was also applied to derive the lead/lag correlations of the first two SEOF modes for precipitation with Pacific Decadal Oscillation (PDO and two types of El Niño, i.e., central Pacific (CP El Niño and eastern Pacific (EP El Niño. We found that: (1 The first two seasonal EOF modes for precipitation represent the annual cycle of precipitation variations for the Pacific Ocean and the first interannual EOF mode shows the spatiotemporal variability associated with ENSO; (2 The first SEOF mode for precipitation is simultaneously associated with the development of El Niño and most likely coincides with CP El Niño. The second SEOF mode lagged behind ENSO by one year and is associated with post-El Niño years. PDO modulates precipitation variability significantly only when ENSO occurs by strengthening and prolonging the impacts of ENSO; (3 Seasonally evolving patterns of the first two SEOF modes represent the consecutive precipitation patterns associated with the entire development of EP El Niño and the following recovery year. The most significant variation occurs over the tropical Pacific, especially in the Intertropical Convergence Zone (ITCZ and South Pacific Convergence Zone (SPCZ; (4 Dry conditions in the western basin of the warm pool and wet conditions along the ITCZ and SPCZ bands during the mature phase of El Niño are associated with warm sea surface temperatures in the central tropical Pacific, and a subtropical anticyclone dominating

  7. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    Full Text Available GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.

  8. Stochastic error model corrections to improve the performance of bottom-up precipitation products for hydrologic applications

    Science.gov (United States)

    Maggioni, V.; Massari, C.; Ciabatta, L.; Brocca, L.

    2016-12-01

    Accurate quantitative precipitation estimation is of great importance for water resources management, agricultural planning, and forecasting and monitoring of natural hazards such as flash floods and landslides. In situ observations are limited around the Earth, especially in remote areas (e.g., complex terrain, dense vegetation), but currently available satellite precipitation products are able to provide global precipitation estimates with an accuracy that depends upon many factors (e.g., type of storms, temporal sampling, season, etc.). The recent SM2RAIN approach proposes to estimate rainfall by using satellite soil moisture observations. As opposed to traditional satellite precipitation methods, which sense cloud properties to retrieve instantaneous estimates, this new bottom-up approach makes use of two consecutive soil moisture measurements for obtaining an estimate of the fallen precipitation within the interval between two satellite overpasses. As a result, the nature of the measurement is different and complementary to the one of classical precipitation products and could provide a different valid perspective to substitute or improve current rainfall estimates. However, uncertainties in the SM2RAIN product are still not well known and could represent a limitation in utilizing this dataset for hydrological applications. Therefore, quantifying the uncertainty associated with SM2RAIN is necessary for enabling its use. The study is conducted over the Italian territory for a 5-yr period (2010-2014). A number of satellite precipitation error properties, typically used in error modeling, are investigated and include probability of detection, false alarm rates, missed events, spatial correlation of the error, and hit biases. After this preliminary uncertainty analysis, the potential of applying the stochastic rainfall error model SREM2D to correct SM2RAIN and to improve its performance in hydrologic applications is investigated. The use of SREM2D for

  9. The Precipitation Products Generation Chain for the EUMETSAT Hydrological Satellite Application Facility at C.N.M.C.A.

    Science.gov (United States)

    Zauli, Francesco; Biron, Daniele; Melfi, Davide

    2009-11-01

    The EUMETSA T Satellite Application Facility in support to Hydrology (H-SAF) focuses on the development of new geophysical products on precipitation, soil moisture and snow parameters and the utilisation of these parameters in hydrological models, NWP models and water management. The development phase of the H-SAF started in September 2005 under the leadership of Italian Meteorological Service.The Centro Nazionale di Meteorologia e Climatologia Aeronautica (C.N.M.C.A.), the Italian National Weather Centre, that physically hosts the generation chain of precipitation products, developed activities to reach the final target: development of algorithms, validation of results, implementation of operative procedure to supply the service and to monitor the service performances.The paper shows the recent architectural review of H- SAF precipitation group, stressing components of operation for high sustainability, full redundancy, absolute continuity of service.

  10. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Ehsan Sharifi

    2016-02-01

    Full Text Available The new generation of weather observatory satellites, namely Global Precipitation Measurement (GPM constellation satellites, is the lead observatory of the 10 highly advanced earth orbiting weather research satellites. Indeed, GPM is the first satellite that has been designed to measure light rain and snowfall, in addition to heavy tropical rainfall. This work compares the final run of the Integrated Multi-satellitE Retrievals for GPM (IMERG product, the post real time of TRMM and Multi-satellite Precipitation Analysis (TMPA-3B42 and the Era-Interim product from the European Centre for Medium Range Weather Forecasts (ECMWF against the Iran Meteorological Organization (IMO daily precipitation measured by the synoptic rain-gauges over four regions with different topography and climate conditions in Iran. Assessment is implemented for a one-year period from March 2014 to February 2015. Overall, in daily scale the results reveal that all three products lead to underestimation but IMERG performs better than other products and underestimates precipitation slightly in all four regions. Based on monthly and seasonal scale, in Guilan all products, in Bushehr and Kermanshah ERA-Interim and in Tehran IMERG and ERA-Interim tend to underestimate. The correlation coefficient between IMERG and the rain-gauge data in daily scale is far superior to that of Era-Interim and TMPA-3B42. On the basis of daily timescale of bias in comparison with the ground data, the IMERG product far outperforms ERA-Interim and 3B42 products. According to the categorical verification technique in this study, IMERG yields better results for detection of precipitation events on the basis of Probability of Detection (POD, Critical Success Index (CSI and False Alarm Ratio (FAR in those areas with stratiform and orographic precipitation, such as Tehran and Kermanshah, compared with other satellite/model data sets. In particular, for heavy precipitation (>15 mm/day, IMERG is superior to

  11. Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013

    Directory of Open Access Journals (Sweden)

    Qiaolin Zeng

    2018-01-01

    Full Text Available Precipitation is a key aspect of the climate system. In this paper, the dependability of five satellite precipitation products (TRMM [Tropical Rainfall Measuring Mission] 3BV42, PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks] CDR, GSMaP [Global Satellite Mapping of Precipitation] RENALYSIS, CMORPH [Climate Prediction Center’s morphing technique] BLD and CMORPH_RAW were compared with in situ measurements over China for the period of 2005 to 2013. To completely evaluate these precipitation products, the annual, seasonal and monthly precipitation averages were calculated. Overall, the Huaihe River and Qinlin mountains are shown to have heavy precipitation to the southeast and lighter precipitation to the northwest. The comparison results indicate that Gauge correction (CMORPH_BLD improves the quality of the original satellite products (CMORPH_RAW, resulting in the higher correlation coefficient (CC, the low relative bias (BIAS and root mean square error (RMSE. Over China, the GSMaP_RENALYSIS outperforms other products and shows the highest CC (0.91 and lowest RMSE (0.85 mm/day and all products except for PERSIANN_CDR exhibit underestimation. GSMaP_RENALYSIS gives the highest of probability of detection (81%, critical success index (63% and lowest false alarm ratio (36% while TRMM3BV42 gives the highest of frequency bias index (1.00. Over Tibetan Plateau, CMORPH_RAW demonstrates the poorest performance with the biggest BIAS (4.2 mm/month and lowest CC (0.22 in December 2013. GSMaP_RENALYSIS displays quite consistent with in situ measurements in summer. However, GSMaP_RENALYSIS and CMORPH_RAW underestimate precipitation over South China. CMORPH_BLD and TRMM3BV42 show consistent with high CC (>0.8 but relatively large RMSE in summer.

  12. Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002-2012)

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.

    2015-04-01

    We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over the contiguous United States (CONUS) for the period 2002-2012. This comparison effort includes satellite multi-sensor data sets (bias-adjusted TMPA 3B42, near-real-time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation data sets are compared with surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (±6%). However, differences at the RFC are more important in particular for near-real-time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near-real-time counterpart 3B42RT. However, large biases remained for 3B42 over the western USA for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in. day-1) over the Pacific Northwest. Furthermore, the conditional analysis and a contingency analysis conducted illustrated the challenge in retrieving extreme precipitation from remote sensing estimates.

  13. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA performance in the Central Andes region and its dependency on spatial and temporal resolution

    Directory of Open Access Journals (Sweden)

    M. L. M. Scheel

    2011-08-01

    Full Text Available Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, for instance, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM Multi-satellite Precipitation Analysis (TMPA to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio.

    The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance.

    In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed.

    Different sources of errors and uncertainties introduced by the sensors, sensor

  14. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  15. Evaluating the MSG satellite Multi-Sensor Precipitation Estimate for extreme rainfall monitoring over northern Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Dhib

    2017-06-01

    Full Text Available Knowledge and evaluation of extreme precipitation is important for water resources and flood risk management, soil and land degradation, and other environmental issues. Due to the high potential threat to local infrastructure, such as buildings, roads and power supplies, heavy precipitation can have an important social and economic impact on society. At present, satellite derived precipitation estimates are becoming more readily available. This paper aims to investigate the potential use of the Meteosat Second Generation (MSG Multi-Sensor Precipitation Estimate (MPE for extreme rainfall assessment in Tunisia. The MSGMPE data combine microwave rain rate estimations with SEVIRI thermal infrared channel data, using an EUMETSAT production chain in near real time mode. The MPE data can therefore be used in a now-casting mode, and are potentially useful for extreme weather early warning and monitoring. Daily precipitation observed across an in situ gauge network in the north of Tunisia were used during the period 2007–2009 for validation of the MPE extreme event data. As a first test of the MSGMPE product's performance, very light to moderate rainfall classes, occurring between January and October 2007, were evaluated. Extreme rainfall events were then selected, using a threshold criterion for large rainfall depth (>50 mm/day occurring at least at one ground station. Spatial interpolation methods were applied to generate rainfall maps for the drier summer season (from May to October and the wet winter season (from November to April. Interpolated gauge rainfall maps were then compared to MSGMPE data available from the EUMETSAT UMARF archive or from the GEONETCast direct dissemination system. The summation of the MPE data at 5 and/or 15 min time intervals over a 24 h period, provided a basis for comparison. The MSGMPE product was not very effective in the detection of very light and light rain events. Better results were obtained for the slightly

  16. Relationship between satellite microwave radiometric data, antecedent precipitation index, and regional soil moisture

    International Nuclear Information System (INIS)

    Teng, W.L.; Wang, J.R.; Doraiswamy, P.C.

    1993-01-01

    Satellite microwave brightness temperatures (TB 'S) have been shown, in previous studies for semi-arid environments, to correlate well with the antecedent precipitation index (API), a soil moisture indicator. The current study, using the Special Sensor Microwave/Imager (SSM/I), continued this work for parts of the U.S. Corn and Wheat Belts, which included areas with a more humid climate, a denser natural vegetation cover, and a different mix of agricultural crop types. Four years (1987-1990) of SSM/I data at 19 and 37GHz, daily precipitation and temperature data from weather stations, and API calculated from the weather data were processed, geo-referenced, and averaged to equation pending latitude-longitude grid quadrants. Correlation results between TB at 19 GHz and API were highly dependent on geographical location. Correlation coefficients (r values) ranged from —0-6 to —0-85 for the semi-arid parts of the study area and from —03 to —0-7 for the more humid and more densely vegetated parts. R values were also higher for the very dry and very wet years (—0-5 to —085) than for the 'normal’ year (—0-3 to —0-65). Similar to previous results, the Microwave Polarization Difference Index (MPDI), based on the 37 GHz data, was found to correspond to variations in vegetation cover. The MPDI was used to develop a linear regression model to estimate API from TB . Correlation between estimated and calculated APIs was also geographically and time dependent. Comparison of API with some field soil moisture measurements showed a similar trend, which provided some degree of confidence in using API as an indicator of soil moisture

  17. Using NDVI to measure precipitation in semi-arid landscapes

    Science.gov (United States)

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  18. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Science.gov (United States)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C.

    2009-08-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  19. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Directory of Open Access Journals (Sweden)

    L. Fita

    2009-08-01

    Full Text Available The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA. An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity

  20. Effects of assimilating precipitation zones derived from satellite and lightning data on numerical simulations of tropical-like Mediterranean storms

    Energy Technology Data Exchange (ETDEWEB)

    Fita, L.; Romero, R.; Luque, A.; Ramis, C. [Univ. de les Illes Balears, Palma de Mallorca (Spain). Grup de Meteorologia

    2009-07-01

    The scarcity of meteorological observations in maritime areas is a well-known problem that can be an important limitation in the study of different phenomena. Tropical-like storms or medicanes developed over the Mediterranean sea are intense storms with some similarities to the tropical ones. Although they do not reach the hurricane intensity, their potential for damage is very high, due to the densely populated Mediterranean coastal regions. In this study, the two notable cases of medicane development which occurred in the western Mediterranean basin in September 1996 and October 2003, are considered. The capability of mesoscale numerical models to simulate general aspects of such a phenomena has been previously shown. With the aim of improving the numerical results, an adjustment of the humidity vertical profiles in MM5 simulations is performed by means of satellite derived precipitation. Convective and stratiform precipitation types obtained from satellite images are used to individually adjust the profiles. Lightning hits are employed to identify convective grid points. The adjustment of the vertical humidity profiles is carried out in the European Centre for Medium-Range Weather Forecasts (ECMWF) analyses used as initial conditions for the simulations. Analyses nudging to ECMWF analyses and to the satellite-based humidity-corrected version of these analyses has also been applied using Four Dimensional Data Assimilation (FDDA). An additional adjustment is applied as observation nudging of satellite/lightning information at different time and spatial resolutions. Statistical parameters are proposed and tested as an objective way to intercompare satellite-derived and simulated trajectories. Simulations of medicanes exhibit a strong sensitivity to vertical humidity profiles. Trajectories of the storms are improved or worsened by using FDDA. A case dependence is obtained on the characteristics of the humidity-corrected medicanes. FDDA sensitivity on temporal and

  1. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  2. Improving precipitation estimates over the western United States using GOES-R precipitation data

    Science.gov (United States)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  3. Performance Assessment of Multi-Source Weighted-Ensemble Precipitation (MSWEP Product over India

    Directory of Open Access Journals (Sweden)

    Akhilesh S. Nair

    2017-01-01

    Full Text Available Error characterization is vital for the advancement of precipitation algorithms, the evaluation of numerical model outputs, and their integration in various hydro-meteorological applications. The Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA has been a benchmark for successive Global Precipitation Measurement (GPM based products. This has given way to the evolution of many multi-satellite precipitation products. This study evaluates the performance of the newly released multi-satellite Multi-Source Weighted-Ensemble Precipitation (MSWEP product, whose temporal variability was determined based on several data products including TMPA 3B42 RT. The evaluation was conducted over India with respect to the IMD-gauge-based rainfall for pre-monsoon, monsoon, and post monsoon seasons at daily scale for a 35-year (1979–2013 period. The rainfall climatology is examined over India and over four geographical extents within India known to be subject to uniform rainfall. The performance evaluation of rainfall time series was carried out. In addition to this, the performance of the product over different rainfall classes was evaluated along with the contribution of each class to the total rainfall. Further, seasonal evaluation of the MSWEP products was based on the categorical and volumetric indices from the contingency table. Upon evaluation it was observed that the MSWEP products show large errors in detecting the higher quantiles of rainfall (>75th and > 95th quantiles. The MSWEP precipitation product available at a 0.25° × 0.25° spatial resolution and daily temporal resolution matched well with the daily IMD rainfall over India. Overall results suggest that a suitable region and season-dependent bias correction is essential before its integration in hydrological applications. While the MSWEP was observed to perform well for daily rainfall, it suffered from poor detection capabilities for higher quantiles, making

  4. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    Science.gov (United States)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  5. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and

  6. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  7. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  8. Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes

    Science.gov (United States)

    Rodger, Craig J.; Kavanagh, Andrew J.; Clilverd, Mark A.; Marple, Steve R.

    2013-12-01

    electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and comparing the two will clarify their utility in studies of atmospheric change. We determined ionospheric changes produced by the EEP measured by the POES spacecraft in ~250 overpasses of an imaging riometer in northern Finland. The ΔCNA modeled from the POES data is 10-15 times less than the observed ΔCNA when the >30 keV flux is reported as ground-based measurements. The discrepancy occurs mostly during periods of low geomagnetic activity, and we contend that weak diffusion is dominating the pitch angle scattering into the bounce loss cone at these times. A correction to the calculation using measurements of the trapped flux considerably reduces the discrepancy and provides further support to our hypothesis that weak diffusion leads to underestimates of the EEP.

  9. Antecedent precipitation index determined from CST estimates of rainfall

    Science.gov (United States)

    Martin, David W.

    1992-01-01

    This paper deals with an experimental calculation of a satellite-based antecedent precipitation index (API). The index is also derived from daily rain images produced from infrared images using an improved version of GSFC's Convective/Stratiform Technique (CST). API is a measure of soil moisture, and is based on the notion that the amount of moisture in the soil at a given time is related to precipitation at earlier times. Four different CST programs as well as the Geostationary Operational Enviroment Satellite (GOES) Precipitation Index developed by Arkin in 1979 are compared to experimental results, for the Mississippi Valley during the month of July. Rain images are shown for the best CST code and the ARK program. Comparisons are made as to the accuracy and detail of the results for the two codes. This project demonstrates the feasibility of running the CST on a synoptic scale. The Mississippi Valley case is well suited for testing the feasibility of monitoring soil moisture by means of CST. Preliminary comparisons of CST and ARK indicate significant differences in estimates of rain amount and distribution.

  10. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations

    Science.gov (United States)

    Qi, W.; Zhang, C.; Fu, G.; Sweetapple, C.; Zhou, H.

    2016-02-01

    The applicability of six fine-resolution precipitation products, including precipitation radar, infrared, microwave and gauge-based products, using different precipitation computation recipes, is evaluated using statistical and hydrological methods in northeastern China. In addition, a framework quantifying uncertainty contributions of precipitation products, hydrological models, and their interactions to uncertainties in ensemble discharges is proposed. The investigated precipitation products are Tropical Rainfall Measuring Mission (TRMM) products (TRMM3B42 and TRMM3B42RT), Global Land Data Assimilation System (GLDAS)/Noah, Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and a Global Satellite Mapping of Precipitation (GSMAP-MVK+) product. Two hydrological models of different complexities, i.e. a water and energy budget-based distributed hydrological model and a physically based semi-distributed hydrological model, are employed to investigate the influence of hydrological models on simulated discharges. Results show APHRODITE has high accuracy at a monthly scale compared with other products, and GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in relative bias (RB), Nash-Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), correlation coefficient (CC), false alarm ratio, and critical success index. These findings could be very useful for validation, refinement, and future development of satellite-based products (e.g. NASA Global Precipitation Measurement). Although large uncertainty exists in heavy precipitation, hydrological models contribute most of the uncertainty in extreme discharges. Interactions between precipitation products and hydrological models can have the similar magnitude of contribution to discharge uncertainty as the hydrological models. A

  11. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  12. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  13. Preparing Precipitation Data Access, Value-added Services and Scientific Exploration Tools for the Integrated Multi-satellitE Retrievals for GPM (IMERG)

    Science.gov (United States)

    Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.

    2013-12-01

    The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc

  14. First evaluation of the utility of GPM precipitation in global flood monitoring

    Science.gov (United States)

    Wu, H.; Yan, Y.; Gao, Z.

    2017-12-01

    The Global Flood Monitoring System (GFMS) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations (Wu et al., 2014). It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of the Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. Specifically, this study is focused on (1) understanding the difference between the new IMERG products and other existing satellite precipitation products, e.g., TMPA, CMORPH, and ground observations; (2) addressing the challenge in the usage of the IMERG for flood monitoring through hydrologic models, given that only a short period of precipitation data record has been accumulated since the lunch of GPM in 2014; and (3) comparing the statistics of flood simulation based on the DRIVE model with IMERG, TMPA, CMORPH etc. as precipitation inputs respectively. Derivation of a global threshold map is a necessary step to define flood events out of modelling results, which requires a relatively longer historic information. A set of sensitivity tests are conducted by adjusting IMERG's light, moderate, heavy rain to existing precipitation products with long-term records separately, to optimize the strategy of PDF matching. Other aspects are also examined

  15. Relationships between particle precipitation and auroral forms

    International Nuclear Information System (INIS)

    Burch, J.L.; Winningham, J.D.

    1978-01-01

    The present state of knowledge on the relationships between high-latitude particle precipitation and the aurora is reviewed. Attention is focused on the largescale relationships between auroral forms and magnetospheric particle populations, on the relationships between satellite and sounding-rocket measurements, and on the interaction of auroral electrons with the atmosphere. While significant progress is being made in relating the largescale features of the aurora to magnetospheric plasma domains, and in understanding the way in which auroral electrons deposit their energy in the atmosphere, only slight progress has been made in relating satellite data to the small-scale phenomena associated with auroral arcs. (author)

  16. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    Science.gov (United States)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  17. Improving precipitation measurement

    Science.gov (United States)

    Strangeways, Ian

    2004-09-01

    Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.

  18. ULF waves associated with enhanced subauroral proton precipitation

    Science.gov (United States)

    Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.

    Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.

  19. The GNSS polarimetric radio-occultation technique to sense precipitation events: a new concept to be tested aboard PAZ Low Earth Satellite

    Science.gov (United States)

    Tomás, Sergio; Oliveras, Santi; Cardellach, Estel; Rius, Antonio

    2013-04-01

    The Radio Occultation and Heavy Precipitation (ROHP) experiment, to be conducted aboard the Spanish PAZ satellite, consists of a radio occultation (RO) mission provided with dual-polarization capabilities. The research with polarimetric RO data has the goal of assessing the capabilities and limitations of this technique to infer profiles of heavy precipitation. The technique aims to provide vertical profiles of precipitation simultaneously to the vertical profiles of thermodynamic parameters (standard RO products) perfectly collocated both in space and time. If successful, the polarimetric RO will represent the first technique able to provide these complementary information on precipitation. This is a relevant input for studies on heavy and violent rainfall events, which being poorly represented by the current-generation of Numerical Weather Prediction and General Circulation Models appear to be difficult to forecast on all time-scales. The Low Earth Orbiter hosting this experiment, to be launched in 2013, will orbit at 500 km altitude in a near-Polar orbit. The Radio Occulation payload includes a RO GNSS receiver and a dual polarization (H/V) limb oriented antenna to capture the signals of setting GNSS transmitters. NOAA and UCAR participate in the ground-segment of the radiometric experiment to enable near-real time dissemination of the level-1 standard RO products. The space-based GNSS RO technique scans the atmosphere vertically at fine resolution (close to 300 meter in the troposphere) by precisely measure the delay between a GNSS transmitter and a GNSS receiver aboard a Low Earth Orbiter, when the former is setting below or rising above the Earth limb. The standard, thermodynamical, products are extracted from the excess delay induced by the atmosphere at different layers. This presentation will not focus on this well-established application, but a novel concept using polarimetry to also retrieve rain information. The precipitation-measurement principle is

  20. Hydrologic Evaluation of Integrated Multi-satellite Retrivals for GPM over Nanliu River Basin in Southern China

    Science.gov (United States)

    Zhenqing, L.; Sheng, C.; Chaoying, H.

    2017-12-01

    The core satellite of Global Precipitation Measurement (GPM) mission was launched on 27 February2014 with two core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI). The algorithm of Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH) ADDIN EN.CITE ADDIN EN.CITE.DATA , Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS).Therefore, IMERG is deemed to be the state-of-art precipitation product with high spatio-temporal resolution of 0.1°/30min. The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. Early studies about assessment of IMERG with gauge observations or analysis products show that the current version GPM Day-1 product IMERG demonstrates promising performance over China [1], Europe [2], and United States [3]. However, few studies are found to study the IMERG' potentials of hydrologic utility.In this study, the real-time and final run post real-time IMERG products are hydrologically evaluated with gauge analysis product as reference over Nanliu River basin (Fig.1) in Southern China since March 2014 to February 2017 with Xinanjiang model. Statistics metrics Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and Nash-Sutcliffe (NSCE) index will be used to compare the stream flow simulated with IMERG to the observed stream flow. This timely hydrologic evaluation is expected to offer insights into IMERG' potentials in hydrologic utility and thus provide useful feedback to the IMERG algorithm developers and

  1. Implications of a decrease in the precipitation area for the past and the future

    Science.gov (United States)

    Benestad, Rasmus E.

    2018-04-01

    The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.

  2. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  3. Rain detection over land surfaces using passive microwave satellite data

    NARCIS (Netherlands)

    Bauer, P.; Burose, D.; Schulz, J.

    2002-01-01

    An algorithm is presented for the detection of surface rainfall using passive microwave measurements by satellite radiometers. The technique consists of a two-stage approach to distinguish precipitation signatures from other effects: (1) Contributions from slowly varying parameters (surface type and

  4. Passive Microwave Precipitation Retrieval Uncertainty Characterized based on Field Campaign Data over Complex Terrain

    Science.gov (United States)

    Derin, Y.; Anagnostou, E. N.; Anagnostou, M.; Kalogiros, J. A.; Casella, D.; Marra, A. C.; Panegrossi, G.; Sanò, P.

    2017-12-01

    Difficulties in representation of high rainfall variability over mountainous areas using ground based sensors make satellite remote sensing techniques attractive for hydrologic studies over these regions. Even though satellite-based rainfall measurements are quasi global and available at high spatial resolution, these products have uncertainties that necessitate use of error characterization and correction procedures based upon more accurate in situ rainfall measurements. Such measurements can be obtained from field campaigns facilitated by research quality sensors such as locally deployed weather radar and in situ weather stations. This study uses such high quality and resolution rainfall estimates derived from dual-polarization X-band radar (XPOL) observations from three field experiments in Mid-Atlantic US East Coast (NASA IPHEX experiment), the Olympic Peninsula of Washington State (NASA OLYMPEX experiment), and the Mediterranean to characterize the error characteristics of multiple passive microwave (PMW) sensor retrievals. The study first conducts an independent error analysis of the XPOL radar reference rainfall fields against in situ rain gauges and disdrometer observations available by the field experiments. Then the study evaluates different PMW precipitation products using the XPOL datasets (GR) over the three aforementioned complex terrain study areas. We extracted matchups of PMW/GR rainfall based on a matching methodology that identifies GR volume scans coincident with PMW field-of-view sampling volumes, and scaled GR parameters to the satellite products' nominal spatial resolution. The following PMW precipitation retrieval algorithms are evaluated: the NASA Goddard PROFiling algorithm (GPROF), standard and climatology-based products (V 3, 4 and 5) from four PMW sensors (SSMIS, MHS, GMI, and AMSR2), and the precipitation products based on the algorithms Cloud Dynamics and Radiation Database (CDRD) for SSMIS and Passive microwave Neural network

  5. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  6. Terrestrial precipitation and soil moisture: A case study over southern Arizona and data development

    Science.gov (United States)

    Stillman, Susan

    Quantifying climatological precipitation and soil moisture as well as interannual variability and trends requires extensive observation. This work focuses on the analysis of available precipitation and soil moisture data and the development of new ways to estimate these quantities. Precipitation and soil moisture characteristics are highly dependent on the spatial and temporal scales. We begin at the point scale, examining hourly precipitation and soil moisture at individual gauges. First, we focus on the Walnut Gulch Experimental Watershed (WGEW), a 150 km2 area in southern Arizona. The watershed has been measuring rainfall since 1956 with a very high density network of approximately 0.6 gauges per km2. Additionally, there are 19 soil moisture probes at 5 cm depth with data starting in 2002. In order to extend the measurement period, we have developed a water balance model which estimates monsoon season (Jul-Sep) soil moisture using only precipitation for input, and calibrated so that the modeled soil moisture fits best with the soil moisture measured by each of the 19 probes from 2002-2012. This observationally constrained soil moisture is highly correlated with the collocated probes (R=0.88), and extends the measurement period from 10 to 56 years and the number of gauges from 19 to 88. Then, we focus on the spatiotemporal variability within the watershed and the ability to estimate area averaged quantities. Spatially averaged precipitation and observationally constrained soil moisture from the 88 gauges is then used to evaluate various gridded datasets. We find that gauge-based precipitation products perform best followed by reanalyses and then satellite-based products. Coupled Model Intercomparison Project Phase 5 (CMIP5) models perform the worst and overestimate cold season precipitation while offsetting the monsoon peak precipitation forward or backward by a month. Satellite-based soil moisture is the best followed by land data assimilation systems and

  7. Improving User Access to the Integrated Multi-Satellite Retrievals for GPM (IMERG) Products

    Science.gov (United States)

    Huffman, George; Bolvin, David; Nelkin, Eric; Kidd, Christopher

    2016-04-01

    The U.S. Global Precipitation Measurement mission (GPM) team has developed the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm to take advantage of the international constellation of precipitation-relevant satellites and the Global Precipitation Climatology Centre surface precipitation gauge analysis. The goal is to provide a long record of homogeneous, high-resolution quasi-global estimates of precipitation. While expert scientific researchers are major users of the IMERG products, it is clear that many other user communities and disciplines also desire access to the data for wide-ranging applications. Lessons learned during the Tropical Rainfall Measuring Mission, the predecessor to GPM, led to some basic design choices that provided the framework for supporting multiple user bases. For example, two near-real-time "runs" are computed, the Early and Late (currently 5 and 15 hours after observation time, respectively), then the Final Run about 3 months later. The datasets contain multiple fields that provide insight into the computation of the complete precipitation data field, as well as diagnostic (currently) estimates of the precipitation's phase. In parallel with this, the archive sites are working to provide the IMERG data in a variety of formats, and with subsetting and simple interactive analysis to make the data more easily available to non-expert users. The various options for accessing the data are summarized under the pmm.nasa.gov data access page. The talk will end by considering the feasibility of major user requests, including polar coverage, a simplified Data Quality Index, and reduced data latency for the Early Run. In brief, the first two are challenging, but under the team's control. The last requires significant action by some of the satellite data providers.

  8. Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations

    Directory of Open Access Journals (Sweden)

    C. Claud

    2010-10-01

    Full Text Available Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

    Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B/MHS (Microwave Humidity Sounder observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A observations give insights into the larger synoptic-scale environment in which they occur.

    Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

  9. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  10. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    Science.gov (United States)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  11. Retrieval of precipitable water using near infrared channels of Global Imager/Advanced Earth Observing Satellite-II (GLI/ADEOS-II)

    International Nuclear Information System (INIS)

    Kuji, M.; Uchiyama, A.

    2002-01-01

    Retrieval of precipitable water (vertically integrated water vapor amount) is proposed using near infrared channels og Global Imager onboard Advanced Earth Observing Satellite-II (GLI/ADEOS-II). The principle of retrieval algorithm is based upon that adopted with Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observing System (EOS) satellite series. Simulations were carried out with GLI Signal Simulator (GSS) to calculate the radiance ratio between water vapor absorbing bands and non-absorbing bands. As a result, it is found that for the case of high spectral reflectance background (a bright target) such as the land surface, the calibration curves are sensitive to the precipitable water variation. For the case of low albedo background (a dark target) such as the ocean surface, on the contrary, the calibration curve is not very sensitive to its variation under conditions of the large water vapor amount. It turns out that aerosol loading has little influence on the retrieval over a bright target for the aerosol optical thickness less than about 1.0 at 500nm. It is also anticipated that simultaneous retrieval of the water vapor amount using GLI data along with other channels will lead to improved accuracy of the determination of surface geophysical properties, such as vegetation, ocean color, and snow and ice, through the better atmospheric correction

  12. The possible direct use of satellite radiance measurements by the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    1993-03-01

    The Atmospheric Radiation Measurement (ARM) Program is a major research program initiated by the Department of Energy to improve our understanding of radiative and cloud processes critical to predicting the Earth's climate and its changes. Central to this concept is the use of four to six intensively instrumented sites for long-term study and characterization of the processes of interest. The instrumentation suites will include ground-based, high-accuracy radiometers for measuring the short and longwave surface flux, as well as an extensive set of ground-and air-based instrumentation for characterizing the intervening atmospheric column. Satellite-based measurements are expected to play a very important role in providing top-of-the-atmosphere measurements. In this study, we examine the possibility of comparing ARM outputs directly with satellite measurements, thereby ensuring the independence of these two important data sets. Thus we focused on what do satellites really measure and how well do they measure it. On what can we do about the general lack of adequate visible channel calibration. On what is the best way for ARM to obtain near-real-time access to this unprocessed data. And on what is the optimum way for ARM to make use of satellite data

  13. TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product (TRMM Product 2A21) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  14. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    Science.gov (United States)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  15. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    Science.gov (United States)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global

  16. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  17. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  18. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  19. Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Lei Bai

    2018-02-01

    Full Text Available Precipitation is the main component of global water cycle. At present, satellite quantitative precipitation estimates (QPEs are widely applied in the scientific community. However, the evaluations of satellite QPEs have some limitations in terms of the deficiency in observation, evaluation methodology, the selection of time windows for evaluation and short periods for evaluation. The objective of this work is to make some improvements by evaluating the spatio-temporal pattern of the long-terms Climate Hazard Group InfraRed Precipitation Satellite’s (CHIRPS’s QPEs over mainland China. In this study, we compared the daily precipitation estimates from CHIRPS with 2480 rain gauges across China and gridded observation using several statistical metrics in the long-term period of 1981–2014. The results show that there is significant difference between point evaluation and grid evaluation for CHIRPS. CHIRPS has better performance for a large amount of precipitation than it does for arid and semi-arid land. The change in good performance zones has strong relationship with monsoon’s movement. Therefore, CHIRPS performs better in river basins of southern China and exhibits poor performance in river basins in northwestern and northern China. Moreover, CHIRPS exhibits better in warm season than in Winter, owing to its limited ability to detect snowfall. Nevertheless, CHIRPS is moderately sensitive to the precipitation from typhoon weather systems. The limitations for CHIRPS result from the Tropical Rainfall Measuring Mission (TRMM 3B42 estimates’ accuracy and valid spatial coverage.

  20. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    Science.gov (United States)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  1. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    Science.gov (United States)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one

  2. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    Science.gov (United States)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  3. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  4. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) MANUAL PRECIPITATION MEASUREMENTS GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Manual Precipitation Measurements GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  5. In-place measurement of specific electric resistance during precipitation of γ'-precipitating Ni base alloys

    International Nuclear Information System (INIS)

    Silomon, M.

    1991-01-01

    During precipitation and coarsening of a second phase, the electric resistance of an alloy changes. Continuous resistance measurement is possible during heat treatment and can be conducted with limited experimental effort; any metallographic determination of the temperature and time dependencies of structural changes, however, requires very high effort. For this reason, an instrument was set up which permits continuous measurement of the resistance at precipitation temperature and during heating or cooling, while providing sufficient resolution for minor changes. Both measuring methods are conducted on technologically relevant alloys such as Nimonic PE 16 and those based on Ni-20 At.% Cr with deliberately varied additions of Al and Ti (accompanying investigations: TEM, SANS, and calorimetry). Their usefulness for alloy development is discussed within the scope of current concepts of demixing kinetics and resistance of alloys. Essential results concern the matrix/γ'-phase mismatch, the Ni 2 Cr short range order, and determination of the γ'-solvus temperature. (orig.) With 53 figs., 4 tabs [de

  6. Augmenting Satellite Precipitation Estimation with Lightning Information

    Energy Technology Data Exchange (ETDEWEB)

    Mahrooghy, Majid [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Younan, Nicolas H. [Mississippi State University (MSU); Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, AL; Hsu, Kuo-Lin [University of California, Irvine; Behrangi, Ali [Jet Propulsion Laboratory, Pasadena, CA; Aanstoos, James [Mississippi State University (MSU)

    2013-01-01

    We have used lightning information to augment the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network - Cloud Classification System (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from GOES-12 infrared data, into either electrified (EL) or non-electrified (NEL) patches. A set of features is extracted separately for the EL and NEL cloud patches. The features for the EL cloud patches include new features based on the lightning information. The cloud patches are classified and clustered using self-organizing maps (SOM). Then brightness temperature and rain rate (T-R) relationships are derived for the different clusters. Rain rates are estimated for the cloud patches based on their representative T-R relationship. The Equitable Threat Score (ETS) for daily precipitation estimates is improved by almost 12% for the winter season. In the summer, no significant improvements in ETS are noted.

  7. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  8. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    Science.gov (United States)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF

  9. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    International Nuclear Information System (INIS)

    Abdelaziz, G; Guebsi, R; Flamant, C; Guessoum, N

    2017-01-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region. (paper)

  10. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  11. Assessing water availability over peninsular Malaysia using public domain satellite data products

    International Nuclear Information System (INIS)

    Ali, M I; Hashim, M; Zin, H S M

    2014-01-01

    Water availability monitoring is an essential task for water resource sustainability and security. In this paper, the assessment of satellite remote sensing technique for determining water availability is reported. The water-balance analysis is used to compute the spatio-temporal water availability with main inputs; the precipitation and actual evapotranspiration rate (AET), both fully derived from public-domain satellite products of Tropical Rainfall Measurement Mission (TRMM) and MODIS, respectively. Both these satellite products were first subjected to calibration to suit corresponding selected local precipitation and AET samples. Multi-temporal data sets acquired 2000-2010 were used in this study. The results of study, indicated strong agreement of monthly water availability with the basin flow rate (r 2 = 0.5, p < 0.001). Similar agreements were also noted between the estimated annual average water availability with the in-situ measurement. It is therefore concluded that the method devised in this study provide a new alternative for water availability mapping over large area, hence offers the only timely and cost-effective method apart from providing comprehensive spatio-temporal patterns, crucial in water resource planning to ensure water security

  12. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  13. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia

    OpenAIRE

    Ayehu, Getachew Tesfaye; Tadesse, Tsegaye; Gessesse, Berhan; Dinku, Tufa

    2018-01-01

    Accurate measurement of rainfall is vital to analyze the spatial and temporal patterns of precipitation at various scales. However, the conventional rain gauge observations in many parts of the world such as Ethiopia are sparse and unevenly distributed. An alternative to traditional rain gauge observations could be satellite-based rainfall estimates. Satellite rainfall estimates could be used as a sole product (e.g., in areas with no (or poor) ground observations) or through...

  14. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    Science.gov (United States)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  15. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  16. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  17. Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity

  18. UC Irvine CHRS Real-time Global Satellite Precipitation Monitoring System (G-WADI PERSIANN-CCS GeoServer) for Hydrometeorological Applications

    Science.gov (United States)

    Sorooshian, S.; Hsu, K. L.; Gao, X.; Imam, B.; Nguyen, P.; Braithwaite, D.; Logan, W. S.; Mishra, A.

    2015-12-01

    The G-WADI Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) GeoServer has been successfully developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine in collaboration with the UNESCO's International Hydrological Programme (IHP) and a number of its international centers. The system employs state-of-the-art technologies in remote sensing and artificial intelligence to estimate precipitation globally from satellite imagery in real-time and high spatiotemporal resolution (4km, hourly). It offers graphical tools and data service to help the user in emergency planning and management for natural disasters related to hydrological processes. The G-WADI PERSIANN-CCS GeoServer has been upgraded with new user-friendly functionalities. The precipitation data generated by the GeoServer is disseminated to the user community through support provided by ICIWaRM (The International Center for Integrated Water Resources Management), UNESCO and UC Irvine. Recently a number of new applications for mobile devices have been developed by our students. The RainMapper has been available on App Store and Google Play for the real-time PERSIANN-CCS observations. A global crowd sourced rainfall reporting system named iRain has also been developed to engage the public globally to provide qualitative information about real-time precipitation in their location which will be useful in improving the quality of the PERSIANN-CCS data. A number of recent examples of the application and use of the G-WADI PERSIANN-CCS GeoServer information will also be presented.

  19. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  20. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  1. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  2. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  3. Variations of Precipitation Structure and Microwave Tbs During the Evolution of a Hailstorm from TRMM Observations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.

  4. Precipitation measurements for earth-space communications: Accuracy requirements and ground-truth techniques

    Science.gov (United States)

    Ippolito, L. J.; Kaul, R.

    1981-01-01

    Rainfall which is regarded as one of the more important observations for the measurements of this most variable parameter was made continuously, across large areas and over the sea. Ships could not provide the needed resolution nor could available radars provide the needed breadth of coverage. Microwave observations from the Nimbus-5 satellite offered some hope. Another possibility was suggested by the results of many comparisons between rainfall and the clouds seen in satellite pictures. Sequences of pictures from the first geostationary satellites were employed and a general correspondence between rain and the convective clouds visible in satellite pictures was found. It was demonstrated that the agreement was best for growing clouds. The development methods to infer GATE rainfall from geostationary satellite images are examined.

  5. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    Science.gov (United States)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  6. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  7. Using High Energy Precipitation for Magnetic Mapping in the Nightside Transition Region During Dynamic Events

    Science.gov (United States)

    Spanswick, E.

    2017-12-01

    Identifying the magnetic footprint of a satellite can be done using the in situ observations together with some ionospheric or low-altitude satellite observation to argue that the two measurements were made on the same field line. Nishimura et al. [2011], e.g., correlated a time series of chorus wave power near the magnetic equator with the time series of intensities of every pixel of a is roughly magnetically conjugate ASI. Often, the pattern of correlation shows a well-defined peak at the location of the satellite's magnetic footprint. Their results cannot be replicated during dynamic events (e.g., substorms), because the required auroral forms do not occur at such times. It would be important if we could make mappings with such confidence during active times. The Transition Region Explorer (TREx), which is presently being implemented, is a new ground-based facility that will remote sense electron precipitation across 3 hours of MLT and 12 degrees of magnetic latitude spanning the auroral zone in western Canada. TREx includes the world's first imaging riometers array with a contiguous field of view large enough to seamlessly track the spatio-temporal evolution of high energy electron precipitation at mesoscales. Two studies motivated the TREx riometers array. First, Baker et al. [1981] demonstrated riometer absorption is an excellent proxy for the electron energy flux integrated from 30 keV to 200keV keV at the magnetic equator on the flux tube corresponding to the location of that riometers. Second, Spanswick et al. [2007] showed the correlation between the riometers absorption and the integrated electron energy flux near the magnetic equator peaked when the satellite was nearest to conjugate to the riometers. Here we present observations using CANOPUS single beam riometers and CRRES MEB to illustrate how the relative closeness of the footpoint of an equatorial spacecraft can be assessed using high energy precipitation. As well, we present the capabilities of

  8. Validation of Satellite Precipitation Products Using Local Rain Gauges to Support Water Assessment in Cochabamba, Bolivia

    Science.gov (United States)

    Saavedra, O.

    2017-12-01

    The metropolitan region of Cochabamba has been struggling for a consistent water supply master plan for years. The limited precipitation intensities and growing water demand have led to severe water conflicts since 2000 when the fight for water had international visibility. A new dam has just placed into operation, located at the mountain range north of the city, which is the hope to fulfill partially water demand in the region. Looking for feasible water sources and projects are essential to fulfill demand. However, the limited monitoring network composed by conventional rain gauges are not enough to come up with the proper aerial precipitation patterns. This study explores the capabilities of GSMaP-GPM satellite products combined with local rain gauge network to obtain an enhanced product with spatial and temporal resolution. A simple methodology based on penalty factors is proposed to adjust GSMaP-GPM intensities on grid-by-grid basis. The distance of an evaluated grid to the surrounding rain gauges was taken into account. The final correcting factors were obtained by iteration, at this particular case of study four iterations were enough to reduce the relative error. A distributed hydrological model was forced with the enhanced precipitation product to simulate the inflow to the new operating dam. Once the model parameters were calibrated and validated, forecast simulations were run. For the short term, the precipitation trend was projected using exponential equation. As for the long term projection, precipitation and temperature from the hadGEM2 and MIROC global circulation model outputs were used where the last one was found in closer agreement of predictions in the past. Overall, we found out that the amount of 1000 l/s for water supply to the region should be possible to fulfill till 2030. Beyond this year, the intake of two neighboring basins should be constructed to increase the stored volume. This is study was found particularly useful to forecast river

  9. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  10. The effect of energetic electron precipitation on the nitric oxide density in the lower thermosphere

    International Nuclear Information System (INIS)

    Saetre, Camilla

    2006-12-01

    The objective of this thesis has been the study of the chemical effects of the electron precipitation in the upper atmosphere, and mainly the increase of thermospheric nitric oxide (NO). NO plays an important role in the temperature balance for the mesosphere and thermosphere.In this project auroral electron precipitation data, derived from the Polar Ionospheric X-ray Imaging Experiment (PIXIE) and the Ultraviolet Imager (UVI) on board the Polar satellite, have been used together with NO density measurements from the Student Nitric Oxide Explorer (SNOE)

  11. Analysis of precipitation teleconnections in CMIP models as a measure of model fidelity in simulating precipitation

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J.; Meyerson, J.

    2011-12-01

    The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.

  12. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    Science.gov (United States)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  13. Global precipitations and climate change. Proceedings

    International Nuclear Information System (INIS)

    Desbois, M.; Desalmand, F.

    1994-01-01

    The workshop reviewed the present status of knowledge concerning the past and present evolution of the distribution of precipitations at global scale, related to climate evolution at different time scales. This review was intended to assess the availability and quality of data which could help, through validation and initialization of model studies, to improve our understanding of the processes determining these precipitation changes. On another hand, the modelling specialists presented their actual use of precipitation data. Exchanges of views between the modelling and observing communities were thus made possible, leading to a set of recommendations for future studies. Sessions were then devoted to specific themes: 1) Paleoclimatology, 2) data collection, history and statistics, programmes, 3) methodologies and accuracy of large scale estimation of precipitation from conventional data, 4) estimation of precipitation from satellite data, 5) modelling studies. (orig.)

  14. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [University of North Dakota

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellite program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.

  15. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  16. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  17. Beryllium-7 and 210Pb atmospheric deposition measured in moss and dependence on cumulative precipitation

    International Nuclear Information System (INIS)

    Krmar, M.; Mihailović, D.T.; Arsenić, I.; Radnović, D.; Pap, I.

    2016-01-01

    This paper focuses on analysis of the time series of 7 Be and 210 Pb activity measured in moss, and the amount, as well as duration of precipitation, to gain a better understanding of the possible relationships between airborne radionuclide deposition and precipitation. Here we consider whether the amount of these airborne radionuclides in moss samples is a cumulative measure of radionuclide deposition and decay, and a new approach for analyses of the relationships between precipitation and moss activity concentrations is suggested. Through these analyses it was shown that comparison of cumulative activity measured at one location using moss, normalized by values of cumulative amount or duration of precipitation, showed different regimes of airborne radionuclide deposition. - Graphical abstract: Correlation between cumulative activity of 7 Be and 210 Pb measured in moss samples normalized by the cumulative precipitation. - Highlights: • Use of mosses in measurement of airborne radionuclides deposition was investigated • Prior work indicated 7 Be and 210 Pb activities were not correlated with precipitation • This is unusual since radionuclides moss tissues depends on depositional fluxes. • A new method for study of 7 Be and 210 Pb depositional dynamics was developed • Different seasonal regimes of 7 Be deposition are more noticeable in new technique

  18. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    Science.gov (United States)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable

  19. Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020 (Belgium); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Idrissi, Hosni [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020 (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Sha, Gang [Gleiter Institute of Nano-science, Nanjing University of Science and Technology, Nanjing 210094 (China); Song, Min, E-mail: msong@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lu, Jiangbo [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020 (Belgium); Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China); Shi, Hui [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020 (Belgium); ArcelorMittal Global R& D Gent, Pres. J.F. Kennedylaan 3 Zelzate, Ghent B-9060 (Belgium); Wang, Wanlin [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Ringer, Simon P. [Australian Institute for Nanoscale Science and Technology, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Schryvers, Dominique [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp B-2020 (Belgium)

    2016-08-15

    Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.

  20. Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) consists of monthly satellite-gauge and associated precipitation error estimates and covers the period January...

  1. GPM Precipitation Estimates over the Walnut Gulch Experimental Watershed/LTAR site in Southeastern Arizona

    Science.gov (United States)

    Goodrich, D. C.; Tan, J.; Petersen, W. A.; Unkrich, C. C.; Demaria, E. M.; Hazenberg, P.; Lakshmi, V.

    2017-12-01

    Precipitation profiles from the GPM Core Observatory Dual-frequency Precipitation Radar (DPR) form part of the a priori database used in GPM Goddard Profiling (GPROF) algorithm passive microwave radiometer retrievals of rainfall. The GPROF retrievals are in turn used as high quality precipitation estimates in gridded products such as IMERG. Due to the variability in and high surface emissivity of land surfaces, GPROF performs precipitation retrievals as a function of surface classes. As such, different surface types may possess different error characteristics, especially over arid regions where high quality ground measurements are often lacking. Importantly, the emissive properties of land also result in GPROF rainfall estimates being driven primarily by the higher frequency radiometer channels (e.g., > 89 GHz) where precipitation signals are most sensitive to coupling between the ice-phase and rainfall production. In this study, we evaluate the rainfall estimates from the Ku channel of the DPR as well as GPROF estimates from various passive microwave sensors. Our evaluation is conducted at the level of individual satellite pixels (5 to 15 km in diameter), against a dense network of weighing rain gauges (90 in 150 km2) in the USDA-ARS Walnut Gulch Experimental Watershed and Long-Term Agroecosystem Research (LTAR) site in southeastern Arizona. The multiple gauges in each satellite pixel and precise accumulation about the overpass time allow a spatially and temporally representative comparison between the satellite estimates and ground reference. Over Walnut Gulch, both the Ku and GPROF estimates are challenged to delineate between rain and no-rain. Probabilities of detection are relatively high, but false alarm ratios are also high. The rain intensities possess a negative bias across nearly all sensors. It is likely that storm types, arid conditions and the highly variable precipitation regime present a challenge to both rainfall retrieval algorithms. An array of

  2. Bias Correction of Satellite Precipitation Products (SPPs) using a User-friendly Tool: A Step in Enhancing Technical Capacity

    Science.gov (United States)

    Rushi, B. R.; Ellenburg, W. L.; Adams, E. C.; Flores, A.; Limaye, A. S.; Valdés-Pineda, R.; Roy, T.; Valdés, J. B.; Mithieu, F.; Omondi, S.

    2017-12-01

    SERVIR, a joint NASA-USAID initiative, works to build capacity in Earth observation technologies in developing countries for improved environmental decision making in the arena of: weather and climate, water and disasters, food security and land use/land cover. SERVIR partners with leading regional organizations in Eastern and Southern Africa, Hindu Kush-Himalaya, Mekong region, and West Africa to achieve its objectives. SERVIR develops hydrological applications to address specific needs articulated by key stakeholders and daily rainfall estimates are a vital input for these applications. Satellite-derived rainfall is subjected to systemic biases which need to be corrected before it can be used for any hydrologic application such as real-time or seasonal forecasting. SERVIR and the SWAAT team at the University of Arizona, have co-developed an open-source and user friendly tool of rainfall bias correction approaches for SPPs. Bias correction tools were developed based on Linear Scaling and Quantile Mapping techniques. A set of SPPs, such as PERSIANN-CCS, TMPA-RT, and CMORPH, are bias corrected using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data which incorporates ground based precipitation observations. This bias correction tools also contains a component, which is included to improve monthly mean of CHIRPS using precipitation products of the Global Surface Summary of the Day (GSOD) database developed by the National Climatic Data Center (NCDC). This tool takes input from command-line which makes it user-friendly and applicable in any operating platform without prior programming skills. This presentation will focus on this bias-correction tool for SPPs, including application scenarios.

  3. Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    Science.gov (United States)

    Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping

    2014-05-01

    The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.

  4. Advantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape

    NARCIS (Netherlands)

    Chen, T.; McVicar, T.R.; Wang, G.J.; Chen, X.; de Jeu, R.A.M.; Liu, Y.; Shen, H.; Zhang, F.; Dolman, A.J.

    2016-01-01

    To improve the understanding of water-vegetation relationships, direct comparative studies assessing the utility of satellite remotely sensed soil moisture, gridded precipitation products, and land surface model output are needed. A case study was investigated for a water-limited, lateral inflow

  5. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  6. Estimations of natural variability between satellite measurements of trace species concentrations

    Science.gov (United States)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  7. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  8. Precipitation-generated oscillations in open cellular cloud fields.

    Science.gov (United States)

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  9. Mapping Precipitation in the Lower Mekong River Basin and the U.S. Affiliated Pacific Islands

    Science.gov (United States)

    Lakshmi, V.; Sutton, J. R. P.; Bolten, J. D.

    2017-12-01

    Mapping and quantifying precipitation across varying temporal and spatial scales is of utmost importance in understanding, monitoring, and predicting flooding and drought. While there exists many in-situ precipitation gages that can accurately estimate precipitation in a given location, there are still many areas that lack in-situ gages. Many of these locations do not have precipitation gages because they are rural and/or topographically complex. The purpose of our research was to compare different remotely sensed satellite precipitation estimates with in-situ estimates across topographically complex and rural terrain within the United States Affiliated Pacific Islands (USAPI) and the Lower Mekong River Basin (LMRB). We utilize the publicly available Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Climate Data Record (CDR) from NOAA and two remotely sensed precipitation products from NASA; the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM). These precipitation estimates were compared with each other and to the available in-situ precipitation estimates from station gages. We also utilize NASA Landsat data to determine the land cover types of these study areas. Using the precipitation estimates, topography, and the land cover of the study areas, we were able to show areas experiencing differing amounts of rainfall and their agreement with in-situ estimates. Additionally, we study the seasonal and spatial trends in precipitation. These analyses can be used to help understand areas that are experience frequent flood or drought.

  10. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  11. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events

    International Nuclear Information System (INIS)

    Battiston, Roberto; Vitale, Vincenzo

    2013-01-01

    We present the result for the search of correlations between the precipitation of low energy electrons (E>0.3MeV) trapped within the Van Allen Belts and earthquakes with magnitude above 5 Richter scale. We used the electron data measured by the NOAA POES 15,16,17 and 18 satellites collected during a period of 13 years, corresponding to about 18 thousands M>5 earthquakes registered in the NEIC catalog of the U.S. Geological Survey. We defined Particle Burst (PB) the fluctuations of electrons counting rate having a probability −6 of being a statistical fluctuation. The observed correlation involves about 1.410 −3 of the earthquakes in that period of time. It provides the first statistically convincing evidence for the existence of a detectable coupling mechanism between the lithosphere and the magnetosphere having well defined time characteristics

  12. Seasonal analysis of precipitation, drought and Vegetation index in Indonesian paddy field based on remote sensing data

    International Nuclear Information System (INIS)

    Darmawan, S; Takeuchi, W; Shofiyati, R; Sari, D K; Wikantika, K

    2014-01-01

    Paddy field is important agriculture crop in Indonesia. Rice is a food staple for 237,6 million Indonesian people. Paddy field growth is strongly influenced by water, but the amount of precipitation is unpredictable. Annual and interannual climate variability in Indonesia is unusual. In recent years remote sensing data has been used for measurement and monitoring of precipitation, drought and Vegetation index such as Global Satellite Mapping of Precipitation (GSMaP), Multi-purpose Transmission SATellite (MTSAT) and Moderate Resolution Imaging Spectroradiometer (MODIS). The objective of this research is to investigate seasonal variability of precipitation, drought and Vegetation index in Indonesian paddy field based on remote sensing data. The methodology consists of collecting of enhanced vegetation index (EVI) from MODIS data, mosaicking of image, collecting of region of interest of paddy field, collecting of precipitation and drought index based on Keetch Bryam Drought Index (KBDI) from GSMaP and MTSAT, and seasonal analysis. The result of this research has showed seasonal variability of precipitation, KBDI and EVI on Indonesia paddy field from 2007 until 2012. Precipitation begins from January until May and October until December, and KBDI begins to increase from June and peak in September only in South Sumatera precipitation almost in all month. Seasonal analysis has showed precipitation and KBDI affect on EVI that can indicate variety phenology of Indonesian paddy field. Peak of EVI occurs before peak of KBDI occurs and increasing of KBDI followed by decreasing of EVI. In 2010 all province got higher precipitation and smaller KBDI so EVI has three peaks such as in West Java that can indicated increasing of rice production

  13. Validating GPM-based Multi-satellite IMERG Products Over South Korea

    Science.gov (United States)

    Wang, J.; Petersen, W. A.; Wolff, D. B.; Ryu, G. H.

    2017-12-01

    Accurate precipitation estimates derived from space-borne satellite measurements are critical for a wide variety of applications such as water budget studies, and prevention or mitigation of natural hazards caused by extreme precipitation events. This study validates the near-real-time Early Run, Late Run and the research-quality Final Run Integrated Multi-Satellite Retrievals for GPM (IMERG) using Korean Quantitative Precipitation Estimation (QPE). The Korean QPE data are at a 1-hour temporal resolution and 1-km by 1-km spatial resolution, and were developed by Korea Meteorological Administration (KMA) from a Real-time ADjusted Radar-AWS (Automatic Weather Station) Rainrate (RAD-RAR) system utilizing eleven radars over the Republic of Korea. The validation is conducted by comparing Version-04A IMERG (Early, Late and Final Runs) with Korean QPE over the area (124.5E-130.5E, 32.5N-39N) at various spatial and temporal scales during March 2014 through November 2016. The comparisons demonstrate the reasonably good ability of Version-04A IMERG products in estimating precipitation over South Korea's complex topography that consists mainly of hills and mountains, as well as large coastal plains. Based on this data, the Early Run, Late Run and Final Run IMERG precipitation estimates higher than 0.1mm h-1 are about 20.1%, 7.5% and 6.1% higher than Korean QPE at 0.1o and 1-hour resolutions. Detailed comparison results are available at https://wallops-prf.gsfc.nasa.gov/KoreanQPE.V04/index.html

  14. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  15. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    2003-03-01

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data. The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  16. Estimating Next Primary Productivity using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, B. J.

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (Ag) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of Ag, viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process- based approach has been taken to calculate Ag and R using satellite and ancillary data. Ag has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite

  17. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    Science.gov (United States)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  18. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.

    Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  19. Substorm related changes in precipitation in the dayside auroral zone – a multi instrument case study

    Directory of Open Access Journals (Sweden)

    A. J. Kavanagh

    2002-09-01

    Full Text Available A period (08:10–14:40 MLT, 11 February 1997 of enhanced electron density in the D- and E-regions is investigated using EISCAT, IRIS and other complementary instruments. The precipitation is determined to be due to substorm processes occurring close to magnetic midnight. Energetic electrons drift eastward after substorm injection and precipitate in the morning sector. The precipitation is triggered by small pulses in the solar wind pressure, which drive wave particle interactions. The characteristic energy of precipitation is inferred from drift timing on different L-shells and apparently verified by EISCAT measurements. The IMF influence on the precipitation in the auroral zone is also briefly discussed. A large change in the precipitation spectrum is attributed to increased numbers of ions and much reduced electron fluxes. These are detected by a close passing DMSP satellite. The possibility that these ions are from the low latitude boundary layer (LLBL is discussed with reference to structured narrow band Pc1 waves observed by a search coil magnetometer, co-located with IRIS. The intensity of the waves grows with increased distance equatorward of the cusp position (determined by both satellite and HF radar, contrary to expectations if the precipitation is linked to the LLBL. It is suggested that the ion precipitation is, instead, due to the recovery phase of a small geomagnetic storm, following on from very active conditions. The movement of absorption in the later stages of the event is compared with observations of the ionospheric convection velocities. A good agreement is found to exist in this time interval suggesting that E × B drift has become the dominant drift mechanism over the gradient-curvature drift separation of the moving absorption patches observed at the beginning of the morning precipitation event.Key words. Ionosphere (auroral ionosphere; particle precipitation Magnetospheric physics (storms and substorms

  20. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  1. Assessment of Observational Uncertainty in Extreme Precipitation Events over the Continental United States

    Science.gov (United States)

    Slinskey, E. A.; Loikith, P. C.; Waliser, D. E.; Goodman, A.

    2017-12-01

    Extreme precipitation events are associated with numerous societal and environmental impacts. Furthermore, anthropogenic climate change is projected to alter precipitation intensity across portions of the Continental United States (CONUS). Therefore, a spatial understanding and intuitive means of monitoring extreme precipitation over time is critical. Towards this end, we apply an event-based indicator, developed as a part of NASA's support of the ongoing efforts of the US National Climate Assessment, which assigns categories to extreme precipitation events based on 3-day storm totals as a basis for dataset intercomparison. To assess observational uncertainty across a wide range of historical precipitation measurement approaches, we intercompare in situ station data from the Global Historical Climatology Network (GHCN), satellite-derived precipitation data from NASA's Tropical Rainfall Measuring Mission (TRMM), gridded in situ station data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), global reanalysis from NASA's Modern Era Retrospective-Analysis version 2 (MERRA 2), and regional reanalysis with gauge data assimilation from NCEP's North American Regional Reanalysis (NARR). Results suggest considerable variability across the five-dataset suite in the frequency, spatial extent, and magnitude of extreme precipitation events. Consistent with expectations, higher resolution datasets were found to resemble station data best and capture a greater frequency of high-end extreme events relative to lower spatial resolution datasets. The degree of dataset agreement varies regionally, however all datasets successfully capture the seasonal cycle of precipitation extremes across the CONUS. These intercomparison results provide additional insight about observational uncertainty and the ability of a range of precipitation measurement and analysis products to capture extreme precipitation event climatology. While the event category threshold is fixed

  2. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  3. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  4. The concurrent multiplicative-additive approach for gauge-radar/satellite multisensor precipitation estimates

    Science.gov (United States)

    Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.

    2010-12-01

    Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential

  5. Comparison of satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based Evaporative Stress Index for 2003-2013

    Science.gov (United States)

    Anderson, Martha C.; Zolin, Cornelio A.; Hain, Christopher R.; Semmens, Kathryn; Tugrul Yilmaz, M.; Gao, Feng

    2015-07-01

    Shortwave vegetation index (VI) and leaf area index (LAI) remote sensing products yield inconsistent depictions of biophysical response to drought and pluvial events that have occurred in Brazil over the past decade. Conflicting reports of severity of drought impacts on vegetation health and functioning have been attributed to cloud and aerosol contamination of shortwave reflectance composites, particularly over the rainforested regions of the Amazon basin which are subject to prolonged periods of cloud cover and episodes of intense biomass burning. This study compares timeseries of satellite-derived maps of LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Tropical Rainfall Mapping Mission (TRMM) with a diagnostic Evaporative Stress Index (ESI) retrieved using thermal infrared remote sensing over South America for the period 2003-2013. This period includes several severe droughts and floods that occurred both over the Amazon and over unforested savanna and agricultural areas in Brazil. Cross-correlations between absolute values and standardized anomalies in monthly LAI and precipitation composites as well as the actual-to-reference evapotranspiration (ET) ratio used in the ESI were computed for representative forested and agricultural regions. The correlation analyses reveal strong apparent anticorrelation between MODIS LAI and TRMM precipitation anomalies over the Amazon, but better coupling over regions vegetated with shorter grass and crop canopies. The ESI was more consistently correlated with precipitation patterns over both landcover types. Temporal comparisons between ESI and TRMM anomalies suggest longer moisture buffering timescales in the deeper rooted rainforest systems. Diagnostic thermal-based retrievals of ET and ET anomalies, such as used in the ESI, provide independent information on the impacts of extreme hydrologic events on vegetation health in comparison with VI and precipitation-based drought

  6. Analysis of dual polarization images of precipitating clouds collected by the COSMO SkyMed constellation

    Science.gov (United States)

    Baldini, Luca; Roberto, Nicoletta; Gorgucci, Eugenio; Fritz, Jason; Chandrasekar, V.

    2014-07-01

    Currently, several satellite missions are employing X-band synthetic aperture radars (SAR) with polarimetric capabilities. In images collected over land by X-band SAR, precipitation results mainly in evident attenuation of the surface returns. Effects of precipitation in polarimetric SAR images and how to exploit them for precipitation studies are emerging topics of interest. This paper investigates polarimetric signatures of precipitation in images collected by the X-band SARs of the Italian Space Agency COSMO SkyMed constellation using the HH-VV alternate polarimetric mode. Analyzed images were collected in 2010 when the constellation was composed of three satellites and operated in the “tandem like” interferometric configuration, which allowed acquisition of the same scene with the same viewing geometry and a minimum decorrelation time of one day. Observations collected in Piedmont (Italy) and Tampa Bay (Florida, US) have been analyzed along with coincident observations collected by operational weather radars, used to reconstruct the component of SAR returns due to precipitation at horizontal and vertical polarization states. Different techniques are used depending on the different characteristics of terrestrial radars. SAR observations reconstructed from terrestrial measurements are in fairly good agreement with actual SAR observations. Results confirm that the attenuation signature in SAR images collected over land is particularly pronounced in the presence of precipitation cells and can be related to the radar reflectivity integrated along the same path. The difference between copolar HH and VV power measurements reveals a differential attenuation due to anisotropy of precipitation, whose range is limited when the SAR incidence angle is low. A specific feature observed in the CosmoSkyMed alternate polarization implementation is the presence of the scalloping effect, a periodic effect along the azimuth direction that cannot always be removed by standard de

  7. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  8. Total Discharge Estimation in the Korean Peninsula Using Multi-Satellite Products

    Directory of Open Access Journals (Sweden)

    Jae Young Seo

    2017-07-01

    Full Text Available Estimation of total discharge is necessary to understand the hydrological cycle and to manage water resources efficiently. However, the task is problematic in an area where ground observations are limited. The North Korea region is one example. Here, the total discharge was estimated based on the water balance using multiple satellite products. They are the terrestrial water storage changes (TWSC derived from the Gravity Recovery and Climate Experiment (GRACE, precipitation from the Tropical Rainfall Measuring Mission (TRMM, and evapotranspiration from the Moderate Resolution Imaging Spectroradiometer (MODIS. The satellite-based discharge was compared with land surface model products of the Global Land Data Assimilation System (GLDAS, and a positive relationship between the results was obtained (r = 0.70–0.86; bias = −9.08–16.99 mm/month; RMSE = 36.90–62.56 mm/month; NSE = 0.01–0.62. Among the four land surface models of GLDAS (CLM, Mosaic, Noah, and VIC, CLM corresponded best with the satellite-based discharge, satellite-based discharge has a tendency to slightly overestimate compared to model-based discharge (CLM, Mosaic, Noah, and VIC in the dry season. Also, the total discharge data based on the Precipitation-Runoff Modeling System (PRMS and the in situ discharge for major five river basins in South Korea show comparable seasonality and high correlation with the satellite-based discharge. In spite of the relatively low spatial resolution of GRACE, and loss of information incurred during the process of integrating three different satellite products, the proposed methodology can be a practical tool to estimate the total discharge with reasonable accuracy, especially in a region with scarce hydrologic data.

  9. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    Science.gov (United States)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the

  10. Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-05-01

    Full Text Available We compare the ionospheric electron precipitation morphology and power from a global MHD simulation (GUMICS-4 with direct measurements of auroral energy flux during a pair of substorms on 28-29 March 1998. The electron precipitation power is computed directly from global images of auroral light observed by the Polar satellite ultraviolet imager (UVI. Independent of the Polar UVI measurements, the electron precipitation energy is determined from SNOE satellite observations on the thermospheric nitric oxide (NO density. We find that the GUMICS-4 simulation reproduces the spatial variation of the global aurora rather reliably in the sense that the onset of the substorm is shown in GUMICS-4 simulation as enhanced precipitation in the right location at the right time. The total integrated precipitation power in the GUMICS-4 simulation is in quantitative agreement with the observations during quiet times, i.e., before the two substorm intensifications. We find that during active times the GUMICS-4 integrated precipitation is a factor of 5 lower than the observations indicate. However, we also find factor of 2-3 differences in the precipitation power among the three different UVI processing methods tested here. The findings of this paper are used to complete an earlier objective, in which the total ionospheric power deposition in the simulation is forecasted from a mathematical expression, which is a function of solar wind density, velocity and magnetic field. We find that during this event, the correlation coefficient between the outcome of the forecasting expression and the simulation results is 0.83. During the event, the simulation result on the total ionospheric power deposition agrees with observations (correlation coefficient 0.8 and the AE index (0.85.

  11. A satellite simulator for TRMM PR applied to climate model simulations

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  12. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    Science.gov (United States)

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  13. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    T. Cohen Liechti

    2012-02-01

    Full Text Available In the framework of the African DAms ProjecT (ADAPT, an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin.

    Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42, the Famine Early Warning System product 2.0 (FEWS RFE2.0 and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC morphing technique (CMORPH are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps.

    The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each sub-basin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular meshes.

    In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating the rainfall by nearly 50%. The statistics of TRMM and FEWS estimates show quite similar results.

    Due to its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin.

  14. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  15. Analyzing coastal precipitation using TRMM observations

    Directory of Open Access Journals (Sweden)

    R. H. Heiblum

    2011-12-01

    Full Text Available The interaction between breezes and synoptic gradient winds, and surface friction increase in transition from sea to land can create persistent convergence zones nearby coastlines. The low level convergence of moist air promotes the dynamical and microphysical processes responsible for the formation of clouds and precipitation.

    Our work focuses on the winter seasons of 1998–2011 in the Eastern Mediterranean. During the winter the Mediterranean sea is usually warmer than the adjacent land, resulting in frequent occurrence of land breeze that opposes the common synoptic winds. Using rain-rate vertical profiles from the Tropical Rainfall Measurement Mission (TRMM satellite, we examined the spatial and temporal distribution of average hydrometeor mass in clouds as a function of the distance from coastlines.

    Results show that coastlines in the Eastern Mediterranean are indeed favored areas for precipitation formation. The intra-seasonal and diurnal changes in the distribution of hydrometeor mass indicate that the land breeze may likely be the main responsible mechanism behind our results.

  16. Regional model simulation of the North Atlantic cyclone "Caroline" and comparisons with satellite data

    Directory of Open Access Journals (Sweden)

    E. Keup-Thiel

    Full Text Available An individual regional model simulation of cyclone "Caroline" has been carried out to study water cycle components over the North Atlantic Ocean. The uncertainties associated with quantitative estimates of the water cycle components are highlighted by a comparison of the model results with SSM/I (Special Sensor Microwave Imager satellite data.

    The vertically integrated water vapor of the REgional MOdel REMO is in good agreement with the SSM/I satellite data. The simulation results for other water budget components like the vertically integrated liquid water content and precipitation compare also reasonably well within the frontal system. However, the high precipitation rate in the cold air outbreak on the backside of the cold front derived from SSM/I satellite data is generally underestimated by REMO. This results in a considerable deficit of the total precipitation amount accumulated for the cyclone "Caroline". While REMO simulates 24.3 108 m3 h-1 for 09:00 UTC, the total areal precipitation from SSM/I satellite data amounts to 54.7 08 m3 h-1.

    Key words. Meteorology and atmospheric dynamics (precipitation; mesoscale meteorology – Radio science (remote sensing

  17. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    Directory of Open Access Journals (Sweden)

    J. Zörner

    2016-07-01

    Full Text Available We present a top-down approach to infer and quantify rain-induced emission pulses of NOx ( ≡  NO + NO2, stemming from biotic emissions of NO from soils, from satellite-borne measurements of NO2. This is achieved by synchronizing time series at single grid pixels according to the first day of rain after a dry spell of prescribed duration. The full track of the temporal evolution several weeks before and after a rain pulse is retained with daily resolution. These are needed for a sophisticated background correction, which accounts for seasonal variations in the time series and allows for improved quantification of rain-induced soil emissions. The method is applied globally and provides constraints on pulsed soil emissions of NOx in regions where the NOx budget is seasonally dominated by soil emissions. We find strong peaks of enhanced NO2 vertical column densities (VCDs induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Detailed investigations show that the rain-induced NO2 pulse detected by the OMI (Ozone Monitoring Instrument, GOME-2 and SCIAMACHY satellite instruments could not be explained by other sources, such as biomass burning or lightning, or by retrieval artefacts (e.g. due to clouds. For the Sahel region, absolute enhancements of the NO2 VCDs on the first day of rain based on OMI measurements 2007–2010 are on average 4 × 1014  molec cm−2 and exceed 1 × 1015  molec cm−2 for individual grid cells. Assuming a NOx lifetime of 4 h, this corresponds to soil NOx emissions in the range of 6 up to 65 ng N m−2 s−1, which is in good agreement with literature values. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced (2 × 1014  molec cm−2 compared to the background over the following 2 weeks, suggesting potential further emissions during that period of about 3.3 ng N m−2

  18. Performance of Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau

    Science.gov (United States)

    Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua

    2018-01-01

    Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.

  19. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported.

  20. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  1. Energetic electron precipitation characteristics observed from Antarctica during a flux dropout event

    Science.gov (United States)

    Clilverd, Mark A.; Cobbett, Neil; Rodger, Craig J.; Brundell, James B.; Denton, Michael H.; Hartley, David P.; Rodriguez, Juan V.; Danskin, Donald; Raita, Tero; Spanswick, Emma L.

    2013-11-01

    from two autonomous VLF radio receiver systems installed in a remote region of the Antarctic in 2012 is used to take advantage of the juxtaposition of the L = 4.6 contour, and the Hawaii-Halley, Antarctica, great circle path as it passes over thick Antarctic ice shelf. The ice sheet conductivity leads to high sensitivity to changing D region conditions, and the quasi constant L shell highlights outer radiation belt processes. The ground-based instruments observed several energetic electron precipitation events over a moderately active 24 h period, during which the outer radiation belt electron flux declined at most energies and subsequently recovered. Combining the ground-based data with low and geosynchronous orbiting satellite observations on 27 February 2012, different driving mechanisms were observed for three precipitation events with clear signatures in phase space density and electron anisotropy. Comparison between flux measurements made by Polar-orbiting Operational Environmental Satellites (POES) in low Earth orbit and by the Antarctic instrumentation provides evidence of different cases of weak and strong diffusion into the bounce loss cone, helping to understand the physical mechanisms controlling the precipitation of energetic electrons into the atmosphere. Strong diffusion events occurred as the bounce loss cone. Two events had a factor of about 3 to 10 times more >30 keV flux than was reported by POES, more consistent with strong diffusion conditions.

  2. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  3. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  4. Beryllium-7 and {sup 210}Pb atmospheric deposition measured in moss and dependence on cumulative precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Krmar, M., E-mail: krmar@df.uns.ac.rs [Faculty of Science, Physics Department, Trg Dositeja Obradovića 4, Novi Sad (Serbia); Mihailović, D.T.; Arsenić, I. [Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad (Serbia); Radnović, D. [Faculty of Science, Biology Department, Trg Dositeja Obradovića 4, Novi Sad (Serbia); Pap, I. [Faculty of Agriculture, Trg Dositeja Obradovića 8, Novi Sad (Serbia)

    2016-01-15

    This paper focuses on analysis of the time series of {sup 7}Be and {sup 210}Pb activity measured in moss, and the amount, as well as duration of precipitation, to gain a better understanding of the possible relationships between airborne radionuclide deposition and precipitation. Here we consider whether the amount of these airborne radionuclides in moss samples is a cumulative measure of radionuclide deposition and decay, and a new approach for analyses of the relationships between precipitation and moss activity concentrations is suggested. Through these analyses it was shown that comparison of cumulative activity measured at one location using moss, normalized by values of cumulative amount or duration of precipitation, showed different regimes of airborne radionuclide deposition. - Graphical abstract: Correlation between cumulative activity of {sup 7}Be and {sup 210}Pb measured in moss samples normalized by the cumulative precipitation. - Highlights: • Use of mosses in measurement of airborne radionuclides deposition was investigated • Prior work indicated {sup 7}Be and {sup 210}Pb activities were not correlated with precipitation • This is unusual since radionuclides moss tissues depends on depositional fluxes. • A new method for study of {sup 7}Be and {sup 210}Pb depositional dynamics was developed • Different seasonal regimes of {sup 7}Be deposition are more noticeable in new technique.

  5. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light

    Science.gov (United States)

    Jütten, Thomas; Jackisch, Dominik; Diekkrüger, Bernd; Kusche, Jürgen; Eicker, Annette; Springer, Anne

    2016-04-01

    Water is one of the most crucial natural resources in West Africa, where the livelihoods of large parts of the population rely heavily on rain-fed agriculture. Therefore, the modelling of the water balance is an important tool to aid in water resource management. Precipitation is one of most important atmospheric drivers of hydrological models. However, ground-based observation networks are sparse in Western Africa and a further decline in station numbers due to a variety of reasons such as the deterioration of stations or political unrest has been observed in recent years. In ungauged river basins, or basins with insufficiently available precipitation data, several studies have shown that remotely sensed or reanalysed precipitation data may be used to compliment or replace missing information. However, the uncertainties of these datasets over Western Africa are not well examined and a need for further studies is apparent. For validation purposes, precipitation datasets are traditionally compared to in-situ ground measurements. This is not possible in ungauged basins. A new approach to assess the quality of satellite and reanalysis data which is gaining popularity among researchers compares different precipitation datasets using hydrological models. In this so-called hydrological evaluation, ground-truth data is no longer necessary in order to validate a product. The chosen model is calibrated for different precipitation products and the simulated streamflow generated for each product is compared to the measured streamflow. Multiple state of the art satellite and reanalysis precipitation datasets with various spatial resolutions were used in this study, namely: CFSR (0.3125°), CHIRPS (0.05°), CMORPH (0.25°), PERSIANN (0.25°), RFE 2.0 (0.1°), TAMSAT (0.0375°), TRMM 3B42 v7 (0.25°) and TRMM 3B42RT (real time) (0.25°). These datasets were evaluated at the regional as well as local scale using the HBV light conceptual hydrological model for several basins

  6. The Effects of Weather Patterns on the Spatio-Temporal Distribution of SO2 over East Asia as Seen from Satellite Measurements

    Science.gov (United States)

    Dunlap, L.; Li, C.; Dickerson, R. R.; Krotkov, N. A.

    2015-12-01

    Weather systems, particularly mid-latitude wave cyclones, have been known to play an important role in the short-term variation of near-surface air pollution. Ground measurements and model simulations have demonstrated that stagnant air and minimal precipitation associated with high pressure systems are conducive to pollutant accumulation. With the passage of a cold front, built up pollution is transported downwind of the emission sources or washed out by precipitation. This concept is important to note when studying long-term changes in spatio-temporal pollution distribution, but has not been studied in detail from space. In this study, we focus on East Asia (especially the industrialized eastern China), where numerous large power plants and other point sources as well as area sources emit large amounts of SO2, an important gaseous pollutant and a precursor of aerosols. Using data from the Aura Ozone Monitoring Instrument (OMI) we show that such weather driven distribution can indeed be discerned from satellite data by utilizing probability distribution functions (PDFs) of SO2 column content. These PDFs are multimodal and give insight into the background pollution level at a given location and contribution from local and upwind emission sources. From these PDFs it is possible to determine the frequency for a given region to have SO2 loading that exceeds the background amount. By comparing OMI-observed long-term change in the frequency with meteorological data, we can gain insights into the effects of climate change (e.g., the weakening of Asian monsoon) on regional air quality. Such insight allows for better interpretation of satellite measurements as well as better prediction of future pollution distribution as a changing climate gives way to changing weather patterns.

  7. Some observations on precipitation measurement on forested experimental watersheds

    Science.gov (United States)

    Raymond E. Leonard; Kenneth G. Reinhart

    1963-01-01

    Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...

  8. Introducing the VISAGE project - Visualization for Integrated Satellite, Airborne, and Ground-based data Exploration

    Science.gov (United States)

    Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.

    2017-12-01

    A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.

  9. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  10. The NASA CYGNSS Small Satellite Constellation

    Science.gov (United States)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  11. Estimating and forecasting the precipitable water vapor from GOES satellite data at high altitude sites

    Science.gov (United States)

    Marín, Julio C.; Pozo, Diana; Curé, Michel

    2015-01-01

    In this work, we describe a method to estimate the precipitable water vapor (PWV) from Geostationary Observational Environmental Satellite (GOES) data at high altitude sites. The method was applied at Atacama Pathfinder Experiment (APEX) and Cerro Toco sites, located above 5000 m altitude in the Chajnantor plateau, in the north of Chile. It was validated using GOES-12 satellite data over the range 0-1.2 mm since submillimeter/millimeter astronomical observations are only useful within this PWV range. The PWV estimated from GOES and the Final Analyses (FNL) at APEX for 2007 and 2009 show root mean square error values of 0.23 mm and 0.36 mm over the ranges 0-0.4 mm and 0.4-1.2 mm, respectively. However, absolute relative errors of 51% and 33% were shown over these PWV ranges, respectively. We recommend using high-resolution thermodynamic profiles from the Global Forecast System (GFS) model to estimate the PWV from GOES data since they are available every three hours and at an earlier time than the FNL data. The estimated PWV from GOES/GFS agrees better with the observed PWV at both sites during night time. The largest errors are shown during daytime. Short-term PWV forecasts were implemented at both sites, applying a simple persistence method to the PWV estimated from GOES/GFS. The 12 h and 24 h PWV forecasts evaluated from August to October 2009 indicates that 25% of them show a very good agreement with observations whereas 50% of them show reasonably good agreement with observations. Transmission uncertainties calculated for PWV estimations and forecasts over the studied sites are larger over the range 0-0.4 mm than over the range 0.4-1.2 mm. Thus, the method can be used over the latter interval with more confidence.

  12. MSU (Microwave Sounding Unit) Daily Troposphere Temperatures and Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of two MSU tropospheric temperatures levels and precipitation which are described in detail below. The NOAA satellites contributing to this...

  13. Northwestcape-induced Electron Precipitation and Theoretica Simulation

    Science.gov (United States)

    Zhang, Z.; Li, X.; Wang, C.; Chen, L.

    2017-12-01

    Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced > 100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100- 300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range, in contrast to the 100-300-keVelectronswhichareatL=1.67-1.9. ThisisconsistentwiththeperspectivethattheenergyoftheVLF-waveinducedelectronfluxenhancementdecreaseswithhigherL-shellvalues. Weexpandupontherationalityofthesimultaneous enhancementofthe30-100-and100-300-keVelectronfluxesthroughcomparisonwiththecyclotronresonancetheoryfor the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in northand south hemisphere by ray tracing model. Finally, we present considerable discussionand showthat good agreement exists between the observation of satellites and theory.

  14. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  15. Enhanced Research Opportunity to Study the Atmospheric Forcing by High-Energy Particle Precipitation at High Latitudes: Emerging New Satellite Data and the new Ground-Based Observations in Northern Scandinavia, including the EISCAT_3D Incoherent Scatter Facility.

    Science.gov (United States)

    Turunen, E. S.; Ulich, T.; Kero, A.; Tero, R.; Verronen, P. T.; Norberg, J.; Miyoshi, Y.; Oyama, S. I.; Saito, S.; Hosokawa, K.; Ogawa, Y.

    2017-12-01

    Recent observational and model results on the particle precipitation as source of atmospheric variability challenge us to implement better and continuously monitoring observational infrastructure for middle and upper atmospheric research. An example is the effect of high-energy electron precipitation during pulsating aurora on mesospheric ozone, the concentration of which may be reduced by several tens of percent, similarily as during some solar proton events, which are known to occur more rarely than pulsating aurora. So far the Assessment Reports by the Intergovernmental Panel on Climate Change did not include explicitely the particle forcing of middle and upper atmosphere in their climate model scenarios. This will appear for the first time in the upcoming climate simulations. We review recent results related to atmospheric forcing by particle precipitation via effects on chemical composition. We also show the research potential of new ground-based radio measurement techniques, such as spectral riometry and incoherent scatter by new phased-array radars, such as EISCAT_3D, which will be a volumetric, 3- dimensionally imaging radar, distributed in Norway, Sweden, and Finland. It is expected to be operational from 2020 onwards, surpassing all the current IS radars of the world in technology. It will be able to produce continuous information of ionospheric plasma parameters in a volume, including 3D-vector plasma velocities. For the first time we will be able to map the 3D electric currents in ionosphere, as well as we will have continuous vector wind measurements in mesosphere. The geographical area covered by the EISCAT_3D measurements can be expanded by suitably selected other continuous observations, such as optical and satellite tomography networks. A new 100 Hz all-sky camera network was recently installed in Northern Scandinavia in order to support the Japanese Arase satellite mission. In near future the ground-based measurement network will also include new

  16. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.R.; Zou, X.; Kuo, Y.H. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  17. EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment

    Directory of Open Access Journals (Sweden)

    J. C. Bergès

    2010-01-01

    Full Text Available This paper presents a new rainfall estimation method, EPSAT-SG which is a frame for method design. The first implementation has been carried out to meet the requirement of the AMMA database on a West African domain. The rainfall estimation relies on two intermediate products: a rainfall probability and a rainfall potential intensity. The first one is computed from MSG/SEVIRI by a feed forward neural network. First evaluation results show better properties than direct precipitation intensity assessment by geostationary satellite infra-red sensors. The second product can be interpreted as a conditional rainfall intensity and, in the described implementation, it is extracted from GPCP-1dd. Various implementation options are discussed and comparison of this embedded product with 3B42 estimates demonstrates the importance of properly managing the temporal discontinuity. The resulting accumulated rainfall field can be presented as a GPCP downscaling. A validation based on ground data supplied by AGRHYMET (Niamey indicates that the estimation error has been reduced in this process. The described method could be easily adapted to other geographical area and operational environment.

  18. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  19. Increasing importance of precipitation variability on global livestock grazing lands

    Science.gov (United States)

    Sloat, Lindsey L.; Gerber, James S.; Samberg, Leah H.; Smith, William K.; Herrero, Mario; Ferreira, Laerte G.; Godde, Cécile M.; West, Paul C.

    2018-03-01

    Pastures and rangelands underpin global meat and milk production and are a critical resource for millions of people dependent on livestock for food security1,2. Forage growth, which is highly climate dependent3,4, is potentially vulnerable to climate change, although precisely where and to what extent remains relatively unexplored. In this study, we assess climate-based threats to global pastures, with a specific focus on changes in within- and between-year precipitation variability (precipitation concentration index (PCI) and coefficient of variation of precipitation (CVP), respectively). Relating global satellite measures of vegetation greenness (such as the Normalized Difference Vegetation Index; NDVI) to key climatic factors reveals that CVP is a significant, yet often overlooked, constraint on vegetation productivity across global pastures. Using independent stocking data, we found that areas with high CVP support lower livestock densities than less-variable regions. Globally, pastures experience about a 25% greater year-to-year precipitation variation (CVP = 0.27) than the average global land surface area (0.21). Over the past century, CVP has generally increased across pasture areas, although both positive (49% of pasture area) and negative (31% of pasture area) trends exist. We identify regions in which livestock grazing is important for local food access and economies, and discuss the potential for pasture intensification in the context of long-term regional trends in precipitation variability.

  20. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System †

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  1. Mid-latitude electron precipitation into the atmosphere and related geophysical phenomena

    International Nuclear Information System (INIS)

    Chang, Y.C.

    1976-01-01

    Balloon observations of the x-ray flux of photons with energies greater than 25 keV, measured at an atmospheric depth of 8 g/cm at Roberval, Quebec (L=4.2) and satellite observations of the flux of electrons with energies greater than 35 keV in the dawn sector from L=4.2 to L=5.3 were analyzed. A differently structured cross-correlation curve was found during the first five minutes immediately after the onset of enhancement of the X-ray intensity. The technique of power spectral analysis was used to investigate periodicities in the flux. A dominant peak at the period of 0.83 second was found in the power spectral density of the counting rate of the greater than 200 keV channel during a relatively quiet-period of time from the point of view of electron precipitation. The precipitation of intermediate energy (250-500 keV) electrons responsible for the greater than 200 keV X rays was modulated at the bounce period of low energy (65-90 keV) electrons. The mechanism for the precipitation was pitch angle diffusion due to the electron-whistler mode wave interaction. Waves generated by low energy electrons in the equatorial region propagated outside of the region of growth. These waves could interact with higher energy electrons and modulate the flux of these electrons. A correlation study of the enhancement seen in the low energy channels of the S 3 satellite electron detector with the enhancement of X-ray fluxes during a substorm was made. The satellite data were used to locate where and when the injections occurred. Two sets of enhancements observed by the satellite were found to be injected at different local times at the same time which was within a few minutes of the onset of geomagnetic bays at several near-midnight ground stations. A model based on convection due to a static westward electric field and azimuthal drift due to the gradient and curvature of B was used to explain the energy dispersion and time delay of the substorm associated observations

  2. Effects of 4D-Var Data Assimilation Using Remote Sensing Precipitation Products in a WRF Model over the Complex Terrain of an Arid Region River Basin

    Directory of Open Access Journals (Sweden)

    Xiaoduo Pan

    2017-09-01

    Full Text Available Individually, ground-based, in situ observations, remote sensing, and regional climate modeling cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrains. Data assimilation techniques can be used to bridge the gap between observations and models by assimilating ground observations and remote sensing products into models to improve precipitation simulation and forecasting. However, only a small portion of satellite-retrieved precipitation products assimilation research has been implemented over complex terrains in an arid region. Here, we used the weather research and forecasting (WRF model to assimilate two satellite precipitation products (The Tropical Rainfall Measuring Mission: TRMM 3B42 and Fengyun-2D: FY-2D using the 4D-Var data assimilation method for a typical inland river basin in northwest China’s arid region, the Heihe River Basin, where terrains are very complex. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly over regions with complex terrains.

  3. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  4. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS LPVEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  5. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    Science.gov (United States)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  6. Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event

    Science.gov (United States)

    Pham, K. H.; Tu, W.; Xiang, Z.

    2017-12-01

    Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.

  7. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

    International Nuclear Information System (INIS)

    Ciufolini, I.

    1986-01-01

    We describe a new method of measuring the Lense-Thirring relativistic nodal drag using LAGEOS together with another high-altitude, laser-ranged, similar satellite with appropriately chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II have an inclination supplementary to that of LAGEOS. The experiment proposed here would provide a method for experimental verification of the general relativistic formulation of Mach's principle and measurement of the gravitomagnetic field

  8. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Science.gov (United States)

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  9. Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons

    Science.gov (United States)

    Hudson, M. K.; Qin, M.; Millan, R. M.; Woodger, L. A.; Shekhar, S.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed as an effective way to scatter relativistic electrons into the atmospheric loss cone. In our study, however, among the total 399 coincidence events when NOAA satellites goes through the region of EMIC wave activity, only 103 are associated with Relativistic Electron Precipitation (REP) events, which indicates that the link between EMIC waves and relativistic electrons is much weaker than expected. Most of the studies so far have been focused on the He+ band EMIC waves, and H+ band EMIC waves have been regarded as less important to the precipitation of electrons. In our study, we demonstrate that among the 103 EMIC wave events detected by Van Allen Probes that are in close conjunction with relativistic electron precipitation observed by POES satellites, the occurrence rate of H+ and He+ band EMIC waves coincident with REP is comparable, suggesting closer examination of the range of ΔL and ΔMLT used to determine coincidence between Van Allen Probes EMIC waves and POES precipitation observation.

  10. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  11. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  12. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander

    2017-04-01

    The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of

  13. Challenges in complementing data from ground-based sensors with satellite-derived products to measure ecological changes in relation to climate – lessons from temperate wetland-upland landscapes

    Science.gov (United States)

    Gallant, Alisa L.; Sadinski, Walter J.; Brown, Jesslyn F.; Senay, Gabriel B.; Roth, Mark F.

    2018-01-01

    Assessing climate-related ecological changes across spatiotemporal scales meaningful to resource managers is challenging because no one method reliably produces essential data at both fine and broad scales. We recently confronted such challenges while integrating data from ground- and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest. We examined relations between temperature and precipitation and a set of variables measured on the ground at individual wetlands and another set measured via satellite sensors within surrounding 4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity. We used sensors on the ground to coincidentally measure surface-water availability and amphibian calling activity at individual wetlands within blocks. Responses of landscape blocks generally paralleled changes in conditions measured on the ground, but the latter were more dynamic, and changes in ecological conditions on the ground that were critical for biota were not always apparent in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions and assumptions we made in applying the remotely sensed data for the assessment and the value of integrating observations across scales, sensors, and disciplines.

  14. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    Science.gov (United States)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  15. Exploring Database Improvements for GPM Constellation Precipitation Retrievals

    Science.gov (United States)

    Ringerud, S.; Kidd, C.; Skofronick Jackson, G.

    2017-12-01

    The Global Precipitation Measurement Mission (GPM) offers an unprecedented opportunity for understanding and mapping of liquid and frozen precipitation on a global scale. GPM mission development of physically based retrieval algorithms, for application consistently across the constellation radiometers, relies on combined active-passive retrievals from the GPM core satellite as a transfer standard. Radiative transfer modeling is then utilized to compute a priori databases at the frequency and footprint geometry of each individual radiometer. The Goddard Profiling Algorithm (GPROF) performs constellation retrievals across the GPM databases in a Bayesian framework, constraining searches using model data on a pixel-by-pixel basis. This work explores how the retrieval might be enhanced with additional information available within the brightness temperature observations themselves. In order to better exploit available information content, model water vapor is replaced with retrieved water vapor. Rather than treating each footprint as a 1D profile alone in space, information regarding Tb variability in the horizontal is added as well as variability in the time dimension. This additional information is tested and evaluated for retrieval improvement in the context of the Bayesian retrieval scheme. Retrieval differences are presented as a function of precipitation and surface type for evaluation of where the added information proves most effective.

  16. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  17. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    global model and with high-resolution TRMM Multi-satellite Precipitation Analysis (TMPA) data is ongoing work. The climatological probability distribution of these precipitation data is calculated in preparation for the use of the proposed transformation algorithm. The impact of using an efficient precipitation assimilation in real global analyses and forecasts will be investigated.

  18. Synoptic Disturbances Found in Precipitable Water Fields North of Equatorial Africa

    National Research Council Canada - National Science Library

    Patla, Jason

    1999-01-01

    The origin and structure of tropical synoptic scale precipitable water (PW) anomalies estimated from TOVS satellite observations are analyzed as they propagate eastward across northern Africa during MAM 1988...

  19. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    Science.gov (United States)

    Sheffield, J.; Lobell, D. B.; Wood, E. F.

    2010-12-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including

  20. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  1. A Prognostic Methodology for Precipitation Phase Detection using GPM Microwave Observations —With Focus on Snow Cover

    Science.gov (United States)

    Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.

    2017-12-01

    Improving satellite retrieval of precipitation requires increased understanding of its passive microwave signature over different land surfaces. Passive microwave signals over snow-covered surfaces are notoriously difficult to interpret because they record both emission from the land below and absorption/scattering from the liquid/ice crystals. Using data from the Global Precipitation Measurement (GPM) core satellite, we demonstrate that the microwave brightness temperatures of rain and snowfall shifts from a scattering to an emission regime from summer to winter, due to expansion of the less emissive snow cover underneath. We present evidence that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The study also examines a prognostic nearest neighbor matching method for the detection of precipitation and its phase from passive microwave observations using GPM data. The nearest neighbor uses the weighted Euclidean distance metric to search through an a priori database that is populated with coincident GPM radiometer and radar data as well as ancillary snow cover fraction. The results demonstrate prognostic capabilities of the proposed method in detection of terrestrial snowfall. At the global scale, the average probability of hit and false alarm reaches to 0.80 and remains below 0.10, respectively. Surprisingly, the results show that the snow cover may help to better detect precipitation as the detection rate of terrestrial precipitation is increased from 0.75 (no snow cover) to 0.84 (snow-covered surfaces). For solid precipitation, this increased rate of detection is larger than its liquid counterpart by almost 8%. The main reasons are found to be related to the multi-frequency capabilities of the nearest neighbor matching that can properly isolate the atmospheric signal from the background emission and the fact that the precipitation can exhibit an emission-like (warmer

  2. Correlation between auroral kilometric radiation and inverted v electron precipitation

    International Nuclear Information System (INIS)

    Green, J.L.; Gurnfti, D.A.; Hoffmans, R.A.

    1979-01-01

    Simultaneous observations of energetic electron precipitations and auroral kilometric radiation (AKR) were obtained from the polar orbiting satellites AE-D and Hawkeye. The Hawkeye observations were restricted to periods when the satellite was in the AKR emission cone in the northern hemisphere an at radial distances > or approx. =7 R/sub E/ to avoid local propagation cutoff effects. In addition, the AE-D measurements were restricted to complete passes across the auroral oval in the evening to midnight local time sector (from 20 to 01 hours magnetic local time). This is the local time region where the most intense bursts of AKR are believed to originate. A qualitative survey of AKR and electron precipitation than with plasma sheet precipitation. Quantitatively, a good correlation is found between the AKR intensity and the peak energy of inverted V events. In addition, in the tail of the most field-aligned portion (approx.O 0 pitch angle) of the distribution functions of the inverted V events,systematic changes are indicated as the associated AKR intensity increases. When the AKR power flux is weak ( -17 W/(m 2 Hz)). From a determination of the simultaneous power in the inverted V events and the AKR bursts, the efficiency of converting the charge particle energy into EM radiation increases to a maximum of about 1% for the most intense AKR bursts. However, conversion efficiencies as low as 10 -5 % are also found. There is some evidence which suggests that the tail temperature, T in F (V) of the inverted V events, may play an important role in the efficient generation or amplification of auroral kilometric radiation

  3. Day 1 for the Integrated Multi-Satellite Retrievals for GPM (IMERG) Data Sets

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K. L.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2014-12-01

    The Integrated Multi-satellitE Retrievals for GPM (IMERG) is designed to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG was developed to use GPM Core Observatory data as a reference for the international constellation of satellites of opportunity that constitute the GPM virtual constellation. Computationally, IMERG is a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design, development, testing, and current status. IMERG provides 0.1°x0.1° half-hourly data, and will be run at multiple times, providing successively more accurate estimates: 4 hours, 8 hours, and 2 months after observation time. In Day 1 the spatial extent is 60°N-S, for the period March 2014 to the present. In subsequent reprocessing the data will extend to fully global, covering the period 1998 to the present. Both the set of input data set retrievals and the IMERG system are substantially different than those used in previous U.S. products. The input passive microwave data are all being produced with GPROF2014, which is substantially upgraded compared to previous versions. For the first time, this includes microwave sounders. Accordingly, there is a strong need to carefully check the initial test data sets for performance. IMERG output will be illustrated using pre-operational test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. Finally, we will summarize the expected release of various output products, and the subsequent reprocessing sequence.

  4. Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement.

    Science.gov (United States)

    Giannetti, Filippo; Reggiannini, Ruggero; Moretti, Marco; Adirosi, Elisa; Baldini, Luca; Facheris, Luca; Antonini, Andrea; Melani, Samantha; Bacci, Giacomo; Petrolino, Antonio; Vaccaro, Attilio

    2017-08-12

    We present the NEFOCAST project (named by the contraction of "Nefele", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

  5. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  6. Arsenic speciation in water by precipitation with APDC and EDXRF measurements

    International Nuclear Information System (INIS)

    Valcarcel, L.; Estevez, J.; Montero, A.; Pupo, I.

    2006-01-01

    A method for the determination of As (III) by precipitation with APDC and EDXRF measurements was developed. A reduction step with sodium thiosulphate is necessary in order to determine the As(V) concentration. Recoveries of As(III) and As(V) were approximately 95-96%

  7. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  8. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.; Phillips, T. J.

    2014-02-01

    The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies, and biases for both entire distributions and their upper tails. The results of the volumetric hit index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas but that their replication of observed precipitation over arid regions and certain subcontinental regions (e.g., northern Eurasia, eastern Russia, and central Australia) is problematical. Overall, the VHI of the multimodel ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and Central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g., western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, intermodel variations in bias over Australia and Amazonia are considerable. The quantile bias analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple mean field bias removal improves the overall B and VHI values but does not make a significant improvement at high quantiles of precipitation.

  9. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    Science.gov (United States)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  10. Remote Sensing of Clouds And Precipitation: Event-Based Characterization, Life Cycle Evolution, and Aerosol Influences

    Science.gov (United States)

    Esmaili, Rebekah Bradley

    Global climate models, numerical weather prediction, and flood models rely on accurate satellite precipitation products, which are the only datasets that are continuous in time and space across the globe. While there are more earth observing satellites than ever before, gaps in precipitation retrievals exist due to sensor and orbital limitations of low-earth (LEO) satellites, which are overcome by merging data from different sensors in satellite precipitation products (SPPs). Using cloud tracking at higher resolutions than the spatio-temporal scales of LEO satellites, this thesis examines how clouds typically form in the atmosphere, the rate that cloud size and temperature evolve over the life cycle, and the time of day that cloud development take place. This thesis found that cloud evolution was non-linear, which disagrees with the linear interpolation schemes used in SPPs. Longer lasting clouds tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lasting clouds. Over the ocean, longer lasting clouds were found to occur more frequently at night, while shorter lasting clouds were more common during the daytime. This thesis also examines whether large-scale Saharan dust outbreaks can impact the trajectories and intensity of cloud clusters in the tropical Atlantic, which is predicted by modeling studies. The presented results show that proximity to Saharan dust outbreaks shifts Atlantic cloud development northward and intense storms becoming more common, whereas on days with low dust loading small-scale, warmer clouds are more common. A simplified view of cloud evolution in merged rainfall retrievals is a possible source of errors, which can propagate into higher level analysis. This thesis investigates the difference in the intensity, duration, and frequency of precipitation in IMERG, a next-generation satellite precipitation product with ground radar observations over the

  11. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  12. Evaluation of precipitation extremes over the Asian domain: observation and modelling studies

    Science.gov (United States)

    Kim, In-Won; Oh, Jaiho; Woo, Sumin; Kripalani, R. H.

    2018-04-01

    In this study, a comparison in the precipitation extremes as exhibited by the seven reference datasets is made to ascertain whether the inferences based on these datasets agree or they differ. These seven datasets, roughly grouped in three categories i.e. rain-gauge based (APHRODITE, CPC-UNI), satellite-based (TRMM, GPCP1DD) and reanalysis based (ERA-Interim, MERRA, and JRA55), having a common data period 1998-2007 are considered. Focus is to examine precipitation extremes in the summer monsoon rainfall over South Asia, East Asia and Southeast Asia. Measures of extreme precipitation include the percentile thresholds, frequency of extreme precipitation events and other quantities. Results reveal that the differences in displaying extremes among the datasets are small over South Asia and East Asia but large differences among the datasets are displayed over the Southeast Asian region including the maritime continent. Furthermore, precipitation data appear to be more consistent over East Asia among the seven datasets. Decadal trends in extreme precipitation are consistent with known results over South and East Asia. No trends in extreme precipitation events are exhibited over Southeast Asia. Outputs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulation data are categorized as high, medium and low-resolution models. The regions displaying maximum intensity of extreme precipitation appear to be dependent on model resolution. High-resolution models simulate maximum intensity of extreme precipitation over the Indian sub-continent, medium-resolution models over northeast India and South China and the low-resolution models over Bangladesh, Myanmar and Thailand. In summary, there are differences in displaying extreme precipitation statistics among the seven datasets considered here and among the 29 CMIP5 model data outputs.

  13. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  14. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  15. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  16. Improving snow water equivalent simulations in an alpine basin using blended gage precipitation and snow pillow measurements

    Science.gov (United States)

    Sohrabi, M.; Safeeq, M.; Conklin, M. H.

    2017-12-01

    Snowpack is a critical freshwater reservoir that sustains ecosystem, natural habitat, hydropower, agriculture, and urban water supply in many areas around the world. Accurate estimation of basin scale snow water equivalent (SWE), through both measurement and modeling, has been significantly recognized to improve regional water resource management. Recent advances in remote data acquisition techniques have improved snow measurements but our ability to model snowpack evolution is largely hampered by poor knowledge of inherently variable high-elevation precipitation patterns. For a variety of reasons, majority of the precipitation gages are located in low and mid-elevation range and function as drivers for basin scale hydrologic modeling. Here, we blend observed gage precipitation from low and mid-elevation with point observations of SWE from high-elevation snow pillow into a physically based snow evolution model (SnowModel) to better represent the basin-scale precipitation field and improve snow simulations. To do this, we constructed two scenarios that differed in only precipitation. In WTH scenario, we forced the SnowModel using spatially distributed gage precipitation data. In WTH+SP scenario, the model was forced with spatially distributed precipitation data derived from gage precipitation along with observed precipitation from snow pillows. Since snow pillows do not directly measure precipitation, we uses positive change in SWE as a proxy for precipitation. The SnowModel was implemented at daily time step and 100 m resolution for the Kings River Basin, USA over 2000-2014. Our results show an improvement in snow simulation under WTH+SP as compared to WTH scenario, which can be attributed to better representation in high-elevation precipitation patterns under WTH+SP. The average Nash Sutcliffe efficiency over all snow pillow and course sites was substantially higher for WTH+SP (0.77) than for WTH scenario (0.47). The maximum difference in observed and simulated

  17. California Wintertime Precipitation in Regional and Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  18. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS TWP-ICE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  19. Getting water right: A case study in water yield modelling based on precipitation data.

    Science.gov (United States)

    Pessacg, Natalia; Flaherty, Silvia; Brandizi, Laura; Solman, Silvina; Pascual, Miguel

    2015-12-15

    Water yield is a key ecosystem service in river basins and especially in dry regions around the World. In this study we carry out a modelling analysis of water yields in the Chubut River basin, located in one of the driest districts of Patagonia, Argentina. We focus on the uncertainty around precipitation data, a driver of paramount importance for water yield. The objectives of this study are to: i) explore the spatial and numeric differences among six widely used global precipitation datasets for this region, ii) test them against data from independent ground stations, and iii) explore the effects of precipitation data uncertainty on simulations of water yield. The simulations were performed using the ecosystem services model InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) with each of the six different precipitation datasets as input. Our results show marked differences among datasets for the Chubut watershed region, both in the magnitude of precipitations and their spatial arrangement. Five of the precipitation databases overestimate the precipitation over the basin by 50% or more, particularly over the more humid western range. Meanwhile, the remaining dataset (Tropical Rainfall Measuring Mission - TRMM), based on satellite measurements, adjusts well to the observed rainfall in different stations throughout the watershed and provides a better representation of the precipitation gradient characteristic of the rain shadow of the Andes. The observed differences among datasets in the representation of the rainfall gradient translate into large differences in water yield simulations. Errors in precipitation of +30% (-30%) amplify to water yield errors ranging from 50 to 150% (-45 to -60%) in some sub-basins. These results highlight the importance of assessing uncertainties in main input data when quantifying and mapping ecosystem services with biophysical models and cautions about the undisputed use of global environmental datasets. Copyright

  20. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  1. Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data

    Science.gov (United States)

    Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce

    2018-01-01

    We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.

  2. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  3. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  4. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  5. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  6. Control of particle precipitation by energy transfer from solar wind

    Science.gov (United States)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  7. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  8. On the coordination of EISCAT measurements with rocket and satellite observations

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1977-01-01

    The scientific interest of combining EISCAT measurements of the thermal ionospheric plasma with sounding rocket and/or satellite measurements of the hot plasma distribution function and other variables is discussed briefly. Some examples are presented where such coordinated measurements are of great interest. The importance of being able to launch rockets through, or at least quite close to, the radar beam is emphasized. (Auth.)

  9. Satellite Monitoring of Vegetation Response to Precipitation and Dust Storm Outbreaks in Gobi Desert Regions

    Directory of Open Access Journals (Sweden)

    Yuki Sofue

    2018-02-01

    Full Text Available Recently, droughts have become widespread in the Northern Hemisphere, including in Mongolia. The ground surface condition, particularly vegetation coverage, affects the occurrence of dust storms. The main sources of dust storms in the Asian region are the Taklimakan and Mongolian Gobi desert regions. In these regions, precipitation is one of the most important factors for growth of plants especially in arid and semi-arid land. The purpose of this study is to clarify the relationship between precipitation and vegetation cover dynamics over 29 years in the Gobi region. We compared the patterns between precipitation and Normalized Difference Vegetation Index (NDVI for a period of 29 years. The precipitation and vegetation datasets were examined to investigate the trends during 1985–2013. Cross correlation analysis between the precipitation and the NDVI anomalies was performed. Data analysis showed that the variations of NDVI anomalies in the east region correspond well with the precipitation anomalies during this period. However, in the southwest region of the Gobi region, the NDVI had decreased regardless of the precipitation amount, especially since 2010. This result showed that vegetation in this region was more degraded than in the other areas.

  10. NWP-Based Adjustment of IMERG Precipitation for Flood-Inducing Complex Terrain Storms: Evaluation over CONUS

    Directory of Open Access Journals (Sweden)

    Xinxuan Zhang

    2018-04-01

    Full Text Available This paper evaluates the use of precipitation forecasts from a numerical weather prediction (NWP model for near-real-time satellite precipitation adjustment based on 81 flood-inducing heavy precipitation events in seven mountainous regions over the conterminous United States. The study is facilitated by the National Center for Atmospheric Research (NCAR real-time ensemble forecasts (called model, the Integrated Multi-satellitE Retrievals for GPM (IMERG near-real-time precipitation product (called raw IMERG and the Stage IV multi-radar/multi-sensor precipitation product (called Stage IV used as a reference. We evaluated four precipitation datasets (the model forecasts, raw IMERG, gauge-adjusted IMERG and model-adjusted IMERG through comparisons against Stage IV at six-hourly and event length scales. The raw IMERG product consistently underestimated heavy precipitation in all study regions, while the domain average rainfall magnitudes exhibited by the model were fairly accurate. The model exhibited error in the locations of intense precipitation over inland regions, however, while the IMERG product generally showed correct spatial precipitation patterns. Overall, the model-adjusted IMERG product performed best over inland regions by taking advantage of the more accurate rainfall magnitude from NWP and the spatial distribution from IMERG. In coastal regions, although model-based adjustment effectively improved the performance of the raw IMERG product, the model forecast performed even better. The IMERG product could benefit from gauge-based adjustment, as well, but the improvement from model-based adjustment was consistently more significant.

  11. The evening diffuse radio aurora, field-aligned currents and particle precipitation

    International Nuclear Information System (INIS)

    Unwin, R.S.

    1980-01-01

    The relationship of the afternoon/evening diffuse radio aurora, proton and electron precipitation and field-aligned currents is studied with data from the auroral radar at Slope Point, New Zealand, and the ISIS 2 satellite. It is shown that there is a very close association between the radio aurora and (primarily downward) field-aligned currents, which confirms and extends previous work, but that there is no clear relation with either proton or electron precipitation. (author)

  12. Establishing best practices for the validation of atmospheric composition measurements from satellites

    Science.gov (United States)

    Lambert, Jean-Christopher

    As a contribution to the implementation of the Global Earth Observation System of Systems (GEOSS), the Committee on Earth Observation Satellites (CEOS) is developing a data quality strategy for satellite measurements. To achieve GEOSS requirements of consistency and interoperability (e.g. for comparison and for integrated interpretation) of the measurements and their derived data products, proper uncertainty assessment is essential and needs to be continuously monitored and traceable to standards. Therefore, CEOS has undertaken the task to establish a set of best practices and guidelines for satellite validation, starting with current practices that could be improved with time. Best practices are not intended to be imposed as firm requirements, but rather to be suggested as a baseline for comparing against, which could be used by the widest community and provide guidance to newcomers. The present paper reviews the current development of best practices and guidelines for the validation of atmospheric composition satellites. Terminologies and general principles of validation are reminded. Going beyond elementary definitions of validation like the assessment of uncertainties, the specific GEOSS context calls also for validation of individual service components and against user requirements. This paper insists on two important aspects. First one, the question of the "collocation". Validation generally involves comparisons with "reference" measurements of the same quantities, and the question of what constitutes a valid comparison is not the least of the challenges faced. We present a tentative scheme for defining the validity of a comparison and of the necessary "collocation" criteria. Second focus of this paper: the information content of the data product. Validation against user requirements, or the verification of the "fitness for purpose" of both the data products and their validation, needs to identify what information, in the final product, is contributed really

  13. Continuous and simultaneous measurements of precipitation and vapor isotopes over two monsoon seasons during 2016-2017 in Singapore

    Science.gov (United States)

    Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.

    2017-12-01

    Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.

  14. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  15. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS C3VP V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  16. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  17. Application of Observed Precipitation in NCEP Global and Regional Data Assimilation Systems, Including Reanalysis and Land Data Assimilation

    Science.gov (United States)

    Mitchell, K. E.

    2006-12-01

    The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global

  18. Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China.

    Science.gov (United States)

    Zhao, Yinjun; Xie, Qiongying; Lu, Yuan; Hu, Baoqing

    2017-06-01

    The accuracy of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) daily accumulated precipitation products (3B42RTV7 and 3B42V7) was evaluated for a small basin (the Nanliu river basin). A direct comparison was performed against gauge observations from a period of 9 years (2000-2009) at temporal and spatial scales. The results show that the temporal-spatial precipitation characteristics of the Nanliu river basin are highly consistent with 3B42V7 relative to 3B42RTV7, with higher correlation coefficient (CC) approximately 0.9 at all temporal scales except for the daily scale and a lower relative bias percentage. 3B42V7 slightly overestimates precipitation at all temporal scales except the yearly scale; it slightly underestimates the precipitation at the daily spatial scale. The results also reveal that the precision of TMPA products increases with longer time-aggregated data, and the detection capability of daily TMPA precipitation products are enhanced by augmentation with daily precipitation rates. In addition, daily TMPA products were input into the Xin'anjiang hydrologic model; the results show that 3B42V7-based simulated outputs were well in line with actual stream flow observations, with a high CC (0.90) and Nash-Sutcliffe efficiency coefficient (NSE, 0.79), and the results adequately captured the pattern of the observed flow curve.

  19. Climatic Analysis of Oceanic Water Vapor Transports Based on Satellite E-P Datasets

    Science.gov (United States)

    Smith, Eric A.; Sohn, Byung-Ju; Mehta, Vikram

    2004-01-01

    Understanding the climatically varying properties of water vapor transports from a robust observational perspective is an essential step in calibrating climate models. This is tantamount to measuring year-to-year changes of monthly- or seasonally-averaged, divergent water vapor transport distributions. This cannot be done effectively with conventional radiosonde data over ocean regions where sounding data are generally sparse. This talk describes how a methodology designed to derive atmospheric water vapor transports over the world oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets circumvents the problem of inadequate sampling. Ultimately, the method is intended to take advantage of the relatively complete and consistent coverage, as well as continuity in sampling, associated with E and P datasets obtained from satellite measurements. Independent P and E retrievals from Special Sensor Microwave Imager (SSM/I) measurements, along with P retrievals from Tropical Rainfall Measuring Mission (TRMM) measurements, are used to obtain transports by solving a potential function for the divergence of water vapor transport as balanced by large scale E - P conditions.

  20. Insight into the Global Carbon Cycle from Assimilation of Satellite CO2 measurements

    Science.gov (United States)

    Baker, D. F.

    2017-12-01

    A key goal of satellite CO2 measurements is to provide sufficient spatio-temporal coverage to constrain portions of the globe poorly observed by the in situ network, especially the tropical land regions. While systematic errors in both measurements and modeling remain a challenge, these satellite data are providing new insight into the functioning of the global carbon cycle, most notably across the recent 2015-16 En Niño. Here we interpret CO2 measurements from the GOSAT and OCO-2 satellites, as well as from the global in situ network (both surface sites and routine aircraft profiles), using a 4DVar-based global CO2 flux inversion across 2009-2017. The GOSAT data indicate that the tropical land regions are responsible for most of the observed global variability in CO2 across the last 8+ years. For the most recent couple of years where they overlap, the OCO-2 data give the same result, an +2 PgC/yr shift towards CO2 release in the ENSO warm phase, while disagreeing somewhat on the absolute value of the flux. The variability given by both these satellites disagrees with that given by an in situ-only inversion across the recent 2015-16 El Niño: the +2 PgC/yr shift from the satellites is double that given by the in situ data alone, suggesting that the more complete coverage is providing a more accurate view. For the current release of OCO-2 data (version 7), however, the flux results given by the OCO-2 land data (from both nadir- and glint-viewing modes) disagree significantly with those given by the ocean glint data; we examine the soon-to-be-released v8 data to assess whether these systematic retrieval errors have been reduced, and whether the corrected OCO-2 ocean data support the result from the land data. We discuss finer-scale features flux results given by the satellite data, and examine the importance of the flux prior, as well.

  1. Nitrogen oxides in the troposphere – What have we learned from satellite measurements?

    Directory of Open Access Journals (Sweden)

    Richter A.

    2009-02-01

    Full Text Available Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2 , some examples of typical applications and an outlook on future prospects.

  2. Development of new index for forest fire risk using satellite images in Indonesia through the direct spectral measurements of soil

    Science.gov (United States)

    Hashimoto, A.; Akita, M.; Takahashi, Y.; Suzuki, H.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In recent years, the smoke caused by the forest fires in Indonesia has become a serious problem. Most of the land in Indonesia is covered with peat moss, which occurs the expanding of fires due to the burning itself. Thus, the surface soil water, reflecting the amount of precipitation in the area, can become the indication of the risk of fires. This study aims to develop a new index reflecting the risk of forest fires in Indonesia using satellite remote sensing through the direct spectral measurements of peat moss soil.We have prepared the peat moss in 7 steps of soil water content measured at an accuracy of ±15 percent (Field pro, WD-3). We obtained spectra between 400nm and 1050nm (Source: halogen lamp, spectroscope: self-made space time, spectral analysis kit) from the peat moss.The obtained spectra show the difference from the previous spectral measurement for the soil in various water content. There are the features, especially, in the wavelength range of ultraviolet (400-450nm) and infrared (530-800nm) as shown in the figure; the more the soil water increases, the lower the reflectance becomes. We have developed a new index using the New deep blue band (433 453nm and NIR band 845 885nm of Landsat 8. The resulting satellite images calculated by our original index appears to reflect the risk of forest fires rather than well-known indices such as Normalized Difference Water Index and Normalized difference Soil Index.In conclusion, we have created a new index that highly reflects to the degree of soil water of a peat soil in Indonesia.

  3. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  4. Poynting flux measurements on a satellite: A diagnostic tool for space research

    International Nuclear Information System (INIS)

    Kelley, M.C.; Knudsen, D.J.; Vickery, J.F.

    1991-01-01

    The first satellite observations of the total field-aligned component of the quasi-dc Poynting flux are presented for two passes over the polar region, one in the noon sector and one in the afternoon. The energy input due to electron precipitation is also presented. In the noon pass the downward Poynting flux in the auroral oval was comparable to the kinetic energy input rate. The peak electromagnetic energy input rate of 6 ergs/(cm 2 s) equaled the peak particle input while the integrated electromagnetic value along the trajectory was 60% that of the particles. In the afternoon pass the peak electromagnetic energy input was also about 6 ergs/(cm 2 s), but the peak particle energy was 6 times this value. The average electromagnetic input was 10% of the particle input for the pass. In this study, the authors can measure the Poynting flux only over a limited range of scale sizes; thus the contribution to the total energy budget in the polar cap cannot be determined. Both passes show small regions characterized by upward Poynting flux suggesting a neutral wind dynamo. There is also evidence during part of the noontime pass that the external generator acted in opposition to an existing wind field since the Poynting flux was greater than the estimate of Joule heating from the electric field measurement alone (i.e., from Σ p E 2 ). In the course of deriving Poynting's theorem for the geophysical case they also present a proof that ground magnetometer systems respond primarily to the Hall current which does not depend upon geometric cancellation between the field generated by Pedersen and field-aligned currents

  5. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  6. Assessing Changes in Precipitation and Impacts on Groundwater in Southeastern Brazil using Regional Hydroclimate Reconstruction

    Science.gov (United States)

    Nunes, A.; Fernandes, M.; Silva, G. C., Jr.

    2017-12-01

    Aquifers can be key players in regional water resources. Precipitation infiltration is the most relevant process in recharging the aquifers. In that regard, understanding precipitation changes and impacts on the hydrological cycle helps in the assessment of groundwater availability from the aquifers. Regional modeling systems can provide precipitation, near-surface air temperature, together with soil moisture at different ground levels from coupled land-surface schemes. More accurate those variables are better the evaluation of the precipitation impact on the groundwater. Downscaling of global reanalysis very often employs regional modeling systems, in order to give more detailed information for impact assessment studies at regional scales. In particular, the regional modeling system, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), might improve the accuracy of hydrometeorological variables in regions with spatial and temporal scarcity of in-situ observations. SRDAS combines assimilation of precipitation estimates from gauge-corrected satellite-based products with spectral nudging technique. The SRDAS hourly outputs provide monthly means of atmospheric and land-surface variables, including precipitation, used in the calculations of the hydrological budget terms. Results show the impact of changes in precipitation on groundwater in the aquifer located near the southeastern coastline of Brazil, through the assessment of the water-cycle terms, using a hydrological model during dry and rainy periods found in the 15-year numerical integration of SRDAS.

  7. An Investigation of Multi-Satellite Stratospheric Measurements on Tropospheric Weather Predictions over Continental United States

    Science.gov (United States)

    Shao, Min

    ' propagation. The major improvements made by the extended stratospheric layers and measurements are located in the tropopause. An averaged extra 5% forecast skill is obtained by raising the model lid from 10-mb to 1-mb. An extra 7% forecast skill is obtained in the tropospheric humidity by assimilating stratospheric measurements. Significant improvements in the tropopause and tropospheric predictions are observed when multi-satellite stratospheric measurements extended to 1-mb are assimilated in regional NWP system. Major positive impacts on the tropospheric weather predictions are observed in the first 72-h forecast lead times due to the downward propagation of the microwave stratospheric measurements. A two-season comparison study shows that the assimilation of microwave stratospheric measurements extended to 1-mb will lead to an adjusted stratospheric temperature distribution which may related to an adjusted BDC. Small impacts on the tropospheric general circulations are also found. The tropospheric forecast skills are slightly improved in response to the stratospheric initial conditions and adjusted tropospheric general circulations. For the prediction of heavy precipitation events, an extra 14% forecast skill is obtained when the microwave stratospheric measurements extend to 1-mb are assimilated. The results obtained in this thesis indicate that the assimilation of satellite microwave measurements has the advantages for short-term regional weather forecast using ensemble related data assimilation scheme. Also, this thesis proposed that the assimilation of microwave stratospheric measurements extended to 1-mb can slightly improve the tropospheric weather forecast skills as a result of the tropospheric general circulations responded to the adjusted stratospheric initials.

  8. Utilizing a suite of satellite missions to address poorly constrained hydrological fluxes

    Science.gov (United States)

    Singh, A.; Behrangi, A.; Fisher, J.; Reager, J. T., II; Gardner, A. S.

    2017-12-01

    The amount of water stored in a given region (total water storage) changes in response to changes in the hydrologic balance (inputs minus outputs). Closing this balance is exceedingly difficult due to the sparsity of field observation, large uncertainties in satellite derived estimates and model limitation. Different regions have distinct reliability on different hydrological parameters. For example, at a higher latitude precipitation is more uncertain than evapotranspiration (ET) while at lower/middle latitude the opposite is true. This study explores alternative estimates of regional hydrological fluxes by integrating the total water storage estimated by the GRACE gravity fields, and improved estimates lake storage variation by Landsat based land-water classification and satellite altimetry based water height measurements. In particular, an alternative ET estimate is generated for the Aral Sea region by integrating multi-sensor remote sensing data. In an endorheic lake like the Aral Sea, its volumetric variations are predominately governed by changes in inflow, evaporation from the water body and precipitation on the lake. The Aral Sea water volume is estimated at a monthly time step by the combination of Landsat land-water classification and ocean radar altimetry (Jason 1 and Jason 2) observations using truncated pyramid method. Considering gauge based river runoff as a true observation and given the fact that there is less variability between multiple precipitation datasets (TRMM, GPCP, GPCC, and ERA), ET can be considered as a most uncertain parameter in this region. The estimated lake volume acts as a controlling factor to estimate ET as the residual of the changes in TWS minus inflow plus precipitation. The estimated ET is compared with the MODIS-based evaporation observations.

  9. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  10. Test particle modeling of wave-induced energetic electron precipitation

    International Nuclear Information System (INIS)

    Chang, H.C.; Inan, U.S.

    1985-01-01

    A test particle computer model of the precipitation of radiation belt electrons is extended to compute the dynamic energy spectrum of transient electron fluxes induced by short-duration VLF wave packets traveling along the geomagnetic field lines. The model is adapted to estimate the count rate and associated spectrum of precipitated electrons that would be observed by satellite-based particle detectors with given geometric factor and orientation with respect to the magnetic field. A constant-frequency wave pulse and a lightning-induced whistler wave packet are used as examples of the stimulating wave signals. The effects of asymmetry of particle mirror heights in the two hemispheres and the atmospheric backscatter of loss cone particles on the computed precipitated fluxes are discussed

  11. The Relationships Between Insoluble Precipitation Residues, Clouds, and Precipitation Over California's Southern Sierra Nevada During Winter Storms

    Science.gov (United States)

    Creamean, Jessie M.; White, Allen B.; Minnis, Patrick; Palikonda, Rabindra; Spangenberg, Douglas A.; Prather, Kimberly A.

    2016-01-01

    Ice formation in orographic mixed-phase clouds can enhance precipitation and depends on the type of aerosols that serve as ice nucleating particles (INP). The resulting precipitation from these clouds is a viable source of water, especially for regions such as the California Sierra Nevada. Thus, a better understanding of the sources of INP that impact orographic clouds is important for assessing water availability in California. This study presents a multi-site, multi-year analysis of single particle insoluble residues in precipitation samples that likely influenced cloud ice and precipitation formation above Yosemite National Park. Dust and biological particles represented the dominant fraction of the residues (64% on average). Cloud glaciation, determined using GOES satellite observations, not only depended on high cloud tops (greater than 6.2 km) and low temperatures (less than -26 C), but also on the composition of the dust and biological residues. The greatest prevalence of ice-phase clouds occurred in conjunction with biologically-rich residues and mineral dust rich in calcium, followed by iron and aluminosilicates. Dust and biological particles are known to be efficient INP, thus these residues are what likely influenced ice formation in clouds above the sites and subsequent precipitation quantities reaching the surface during events with similar meteorology. The goal of this study is to use precipitation chemistry information to gain a better understanding of the potential sources of INP in the south-central Sierra Nevada, where cloud-aerosol-precipitation interactions are under-studied and where mixed-phase orographic clouds represent a key element in the generation of precipitation and thus the water supply in California.

  12. Enabling Global Observations of Clouds and Precipitation on Fine Spatio-Temporal Scales from CubeSat Constellations: Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D)

    Science.gov (United States)

    Reising, S. C.; Todd, G.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Kummerow, C.; Chandra, C. V.; Berg, W. K.; Brown, S. T.; Pallas, M.; Radhakrishnan, C.

    2017-12-01

    The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class satellites observing storms at 5 millimeter-wave frequencies with 5-10 minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. Such a small satellite mission would enable the first global measurements of clouds and precipitation on the time scale of tens of minutes and the corresponding spatial scale of a few km. TEMPEST is designed to improve the understanding of cloud processes by providing critical information on temporal signatures of precipitation and helping to constrain one of the largest sources of uncertainty in cloud models. TEMPEST millimeter-wave radiometers are able to perform remote observations of the cloud interior to observe microphysical changes as the cloud begins to precipitate or ice accumulates inside the storm. The TEMPEST technology demonstration (TEMPEST-D) mission is in progress to raise the TRL of the instrument and spacecraft systems from 6 to 9 as well as to demonstrate radiometer measurement and differential drag capabilities required to deploy a constellation of 6U-Class satellites in a single orbital plane. The TEMPEST-D millimeter-wave radiometer instrument provides observations at 89, 165, 176, 180 and 182 GHz using a single compact instrument designed for 6U-Class satellites. The direct-detection topology of the radiometer receiver substantially reduces both its power consumption and design complexity compared to heterodyne receivers. The TEMPEST-D instrument performs precise, end-to-end calibration using a cross-track scanning reflector to view an ambient blackbody calibration target and cosmic microwave background every scan period. The TEMPEST-D radiometer instrument has been fabricated and successfully tested under environmental conditions (vibration, thermal cycling and vacuum) expected in low-Earth orbit. TEMPEST-D began in Aug. 2015, with a

  13. Estimation of solar radiation over Cambodia from long-term satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand); Kitichantaropas, P. [Department of Alternative Energy Development and Efficiency, Ministry of Energy, 17 Rama 1 Road, Patumwan, Bangkok 10330 (Thailand)

    2011-04-15

    In this work, monthly average daily global solar irradiation over Cambodia was estimated from a long-term satellite data. A 14-year period (1995-2008) of visible channel data from GMS5, GOES9 and MTSAT-1R satellites were used to provide earth-atmospheric reflectivity. A satellite-based solar radiation model developed for a tropical environment was used to estimate surface solar radiation. The model relates the satellite-derived earth-atmospheric reflectivity to absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation due to water vapour was calculated from precipitable water derived from ambient relative humidity and temperature. Ozone data from the TOMS and OMI satellite data were employed to compute the solar radiation absorption by ozone. The depletion of radiation due to aerosols was estimated from the visibility data. Five new solar radiation measuring stations were established at Cambodian cities, namely Siem Reap (13.87 N, 103.85 E), Kompong Thom (12.68 N, 104.88 E), Phnom Penh (11.55 N, 104.83 E), Sihanouke Ville (10.67 N, 103.63 E) and Kampot (10.70 N, 104.28 E). Global solar radiation measured at these stations was used to validate the model. The validation was also carried out by using solar radiation measured at four Thai meteorological stations. These stations are situated near the Cambodian border. Monthly average daily global irradiation from these stations was compared with that calculated from the model. The measured and calculated irradiation is in good agreement, with the root mean square difference of 6.3%, with respect to the mean values. After the validation, the model was used to calculate monthly average daily global solar irradiation over Cambodia. Based on this satellite-derived irradiation, solar radiation maps for Cambodia were generated. These maps show that solar radiation climate of this country is strongly influenced by the monsoons. A solar radiation database was also generated

  14. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  15. Inter-comparison of Rainfall Estimation from Radar and Satellite During 2016 June 23 Yancheng Tornado Event over Eastern China

    Science.gov (United States)

    Huang, C.; Chen, S.; Liang, Z.; Hu, B.

    2017-12-01

    ABSTRACT: On the afternoon of June 23, 2016, Yancheng city in eastern China was hit by a severe thunderstorm that produced a devastating tornado. This tornado was ranked as an EF4 on the Enhanced Fujita scale by China Meteorological Administration, and killed at least 99 people and injured 846 others (152 seriously). This study evaluates rainfall estimates from ground radar network and four satellite algorithms with a relatively dense rain gauge network over eastern China including Jiangsu province and its adjacent regions for the Yancheng June 23 Tornado extreme convective storm in different spatiotemporal scales (from 0.04° to 0.1° and hourly to event total accumulation). The radar network is composed of about 6 S-band Doppler weather radars. Satellite precipitation products include Integrated Multi-satellitE Retrievals for GPM (IMERG), Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), and Global Satellite Mapping of Precipitation (GSMap). Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) are used to quantify the performance of these precipitation products.

  16. A global gridded dataset of daily precipitation going back to 1950, ideal for analysing precipitation extremes

    Science.gov (United States)

    Contractor, S.; Donat, M.; Alexander, L. V.

    2017-12-01

    Reliable observations of precipitation are necessary to determine past changes in precipitation and validate models, allowing for reliable future projections. Existing gauge based gridded datasets of daily precipitation and satellite based observations contain artefacts and have a short length of record, making them unsuitable to analyse precipitation extremes. The largest limiting factor for the gauge based datasets is a dense and reliable station network. Currently, there are two major data archives of global in situ daily rainfall data, first is Global Historical Station Network (GHCN-Daily) hosted by National Oceanic and Atmospheric Administration (NOAA) and the other by Global Precipitation Climatology Centre (GPCC) part of the Deutsche Wetterdienst (DWD). We combine the two data archives and use automated quality control techniques to create a reliable long term network of raw station data, which we then interpolate using block kriging to create a global gridded dataset of daily precipitation going back to 1950. We compare our interpolated dataset with existing global gridded data of daily precipitation: NOAA Climate Prediction Centre (CPC) Global V1.0 and GPCC Full Data Daily Version 1.0, as well as various regional datasets. We find that our raw station density is much higher than other datasets. To avoid artefacts due to station network variability, we provide multiple versions of our dataset based on various completeness criteria, as well as provide the standard deviation, kriging error and number of stations for each grid cell and timestep to encourage responsible use of our dataset. Despite our efforts to increase the raw data density, the in situ station network remains sparse in India after the 1960s and in Africa throughout the timespan of the dataset. Our dataset would allow for more reliable global analyses of rainfall including its extremes and pave the way for better global precipitation observations with lower and more transparent uncertainties.

  17. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  18. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment

    Science.gov (United States)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; hide

    2015-01-01

    Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-sampled remote marine environment The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21 month (April 2009- December 2010) comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1- 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from at Graciosa are being compared with short-range forecasts made a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a

  19. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-03-01

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

  20. Measuring the relativistic perigee advance with satellite laser ranging

    International Nuclear Information System (INIS)

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 -2 -10 -3 . In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 -3 . With the corresponding measured value of (2 + 2γ - β)/3, by using η = 4β - γ - 3 from lunar laser ranging, we could get an estimate of the PPN parameters γ and β with an accuracy of the order of 10 -2 -10 -3 . Nevertheless, these accuracies would be substantially improved in the near future with the new Earth gravity field models by the CHAMP and GRACE missions. The use of the perigee of LARES (LAser RElativity Satellite), with a suitable combination of orbital residuals including also the node and the perigee of LAGEOS II, would also further improve the accuracy of the proposed measurement

  1. An assessment of the impact of ATMS and CrIS data assimilation on precipitation prediction over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Xue

    2017-07-01

    Full Text Available Using the National Oceanic and Atmospheric Administration's Gridpoint Statistical Interpolation data assimilation system and the National Center for Atmospheric Research's Advanced Research Weather Research and Forecasting (WRF-ARW regional model, the impact of assimilating Advanced Technology Microwave Sounder (ATMS and Cross-track Infrared Sounder (CrIS satellite data on precipitation prediction over the Tibetan Plateau in July 2015 was evaluated. Four experiments were designed: a control experiment and three data assimilation experiments with different data sets injected: conventional data only, a combination of conventional and ATMS satellite data, and a combination of conventional and CrIS satellite data. The results showed that the monthly mean of precipitation is shifted northward in the simulations and showed an orographic bias described as an overestimation upwind of the mountains and an underestimation in the south of the rain belt. The rain shadow mainly influenced prediction of the quantity of precipitation, although the main rainfall pattern was well simulated. For the first 24 h and last 24 h of accumulated daily precipitation, the model generally overestimated the amount of precipitation, but it was underestimated in the heavy-rainfall periods of 3–5, 13–16, and 22–25 July. The observed water vapor conveyance from the southeastern Tibetan Plateau was larger than in the model simulations, which induced inaccuracies in the forecast of heavy rain on 3–5 July. The data assimilation experiments, particularly the ATMS assimilation, were closer to the observations for the heavy-rainfall process than the control. Overall, based on the experiments in July 2015, the satellite data assimilation improved to some extent the prediction of the precipitation pattern over the Tibetan Plateau, although the simulation of the rain belt without data assimilation shows the regional shifting.

  2. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  3. The Lightning Mapping Imager (LMI) on the FY-4 satellite and a typical application experiment using the LMI data

    Science.gov (United States)

    Huang, F.; Hui, W.; Li, X.; Liu, R.; Zhang, Z.; Zheng, Y.; Kang, N.

    2017-12-01

    The Lightning Mapping Imager (LMI) on the FY-4A satellite, which was launched successfully in December 2016, is the first satellite-based lightning detector from space independently developed in China, and one of the world's first two stationary satellite LMIs. The optical imaging technique with a 400x600 CCD array plane and a frequency of 500 frames/s is adopted in the FY-4A LMI to perform real-time and continuous observation of total lightening in the Chinese mainland and adjacent areas. As of July 2017, the in-orbit test shows that the lightening observation date could be accurately obtained by the FY-4A LMI, and that the geo-location could be verified by the ground lightening observation network over China. Since the beginning of the 2017 flood season, every process of strong thunderstorms has been monitored by the FY-4A LMI throughout the various areas of China, and of these are used as a typical application case in this talk. On April 8 and 9, 2017, a strong convective precipitation process occurred in the middle-lower reaches of the Yangtze River, China. The observation data of the FY-4A LMI are used to monitor the occurrence, development, shift and extinction of the thunderstorm track. By means of analyzing the station's synchronous precipitation observation data, it is indicated that the moving track of the thunderstorm is not completely consistent with that of the precipitation center, and while the distribution areas of thunderstorm and precipitation are consistent to a certain extent, a significant difference also exists. This difference is mainly caused by the convective precipitation and stratus precipitation area during the precipitation process. Through comparative analysis, the preliminary satellite and foundation lightening observation data show a higher consistency. However, the time of lightening activity observed by satellite is one hour earlier than that of the ground observation, which is likely related to the total lightning observation by

  4. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  5. Measurement of apolipoprotein B radioactivity in whole blood plasma by precipitation with isopropanol

    International Nuclear Information System (INIS)

    Yamada, N.; Havel, R.J.

    1986-01-01

    A method to measure apolipoprotein B radioactivity in whole blood plasma is described that is suitable for routine use in kinetic experiments in vivo. Radiolabeled apolipoprotein B is precipitated from plasma diluted 15- to 30-fold in the presence of carrier low density lipoproteins by 50% isopropanol. The amount of radioiodine in apoB is estimated from the difference between total radioiodine concentration in whole plasma and the fraction soluble in 50% isopropanol. Addition of up to 100 microliters of plasma to radioiodinated lipoproteins did not alter the percent of radioiodine precipitated in 1500 microliters of 50% isopropanol. The percent of radioiodine precipitated by isopropanol 3 min after intravenous injection of homologous radioiodinated very low density lipoproteins, intermediate density lipoproteins, and low density lipoproteins into rabbits was almost identical to that in the injected lipoproteins (y = 1.009 X +/- 0.462; r = 0.997)

  6. Laboratory Measurements of the Dielectronic Recombination Satellite Transitions of He-Like FE XXV and H-Like FE XXVI

    Science.gov (United States)

    Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,

    2012-01-01

    We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.

  7. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  8. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-08-29

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5mm.day-1, RMSE of 6.4mm.day-1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50mm.day-1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25mm.day-1), but show noticeably less skill in producing both light (<1mm.day-1) and heavy rainfall thresholds (more than 50mm.day-1). Given the complexity of the terrain and the associated high spatial variability of precipitation in north-eastern Iberia, the results reveal that TMPA-3B42 data provide an

  9. Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia

    KAUST Repository

    El Kenawy, Ahmed M.; Lopez-Moreno, Juan I.; McCabe, Matthew; Vicente-Serrano, Sergio M.

    2015-01-01

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5mm.day-1, RMSE of 6.4mm.day-1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50mm.day-1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25mm.day-1), but show noticeably less skill in producing both light (<1mm.day-1) and heavy rainfall thresholds (more than 50mm.day-1). Given the complexity of the terrain and the associated high spatial variability of precipitation in north-eastern Iberia, the results reveal that TMPA-3B42 data provide an

  10. Transportation Satellite Accounts : A New Way of Measuring Transportation Services in America

    Science.gov (United States)

    2011-01-01

    Transportation Satellite Accounts (TSA), produced by the Bureau of Economic Analysis and the Bureau of Transportation Statistics, provides measures of national transportation output. TSA includes both in-house and for-hire transportation services. Fo...

  11. Online Tools for Uncovering Data Quality (DQ) Issues in Satellite-Based Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Heo, Gil

    2015-01-01

    Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.

  12. Constraining precipitation amount and distribution over cold regions using GRACE

    Science.gov (United States)

    Behrangi, A.; Reager, J. T., II; Gardner, A. S.; Fisher, J.

    2017-12-01

    Current quantitative knowledge on the amount and distribution of precipitation in high-elevation and high latitude regions is limited due to instrumental and retrieval shortcomings. Here we demonstrate how that satellite gravimetry (Gravity Recovery and Climate Experiment, GRACE) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger error. We also observed that as near surface temperature decreases products tend to underestimate accumulated precipitation retrieved from GRACE. The analysis performed using various products such as GPCP, GPCC, TRMM, and gridded station data over vast regions in high latitudes and two large endorheic basins in High Mountain Asia. Based on the analysis over High Mountain Asia it was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, GPCP showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basin.

  13. Characteristics of cloud occurrence using ceilometer measurements and its relationship to precipitation over Seoul

    Science.gov (United States)

    Lee, Sanghee; Hwang, Seung-On; Kim, Jhoon; Ahn, Myoung-Hwan

    2018-03-01

    Clouds are an important component of the atmosphere that affects both climate and weather, however, their contributions can be very difficult to determine. Ceilometer measurements can provide high resolution information on atmospheric conditions such as cloud base height (CBH) and vertical frequency of cloud occurrence (CVF). This study presents the first comprehensive analysis of CBH and CVF derived using Vaisala CL51 ceilometers at two urban stations in Seoul, Korea, during a three-year period from January 2014 to December 2016. The average frequency of cloud occurrence detected by the ceilometers is 54.3%. It is found that the CL51 is better able to capture CBH as compared to another ceilometer CL31 at a nearby meteorological station because it could detect high clouds more accurately. Frequency distributions for CBH up to 13,000 m providing detailed vertical features with 500-m interval show 55% of CBHs below 2 km for aggregated CBHs. A bimodal frequency distribution was observed for three-layers CBHs. A monthly variation of CVF reveals that frequency concentration of lower clouds is found in summer and winter, and higher clouds more often detected in spring and autumn. Monthly distribution features of cloud occurrence and precipitation are depending on seasons and it might be easy to define their relationship due to higher degree of variability of precipitation than cloud occurrence. However, a fluctuation of cloud occurrence frequency in summer is similar to precipitation in trend, whereas clouds in winter are relatively frequent but precipitation is not accompanied. In addition, recent decrease of summer precipitation could be mostly explained by a decrease of cloud occurrence. Anomalous precipitation recorded sometimes is considerably related to corresponding cloud occurrence. The diurnal and daily variations of CBH and CVF from ceilometer observations and the analysis of microwave radiometer measurements for two typical cloudiness cases are also reviewed

  14. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  15. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    Science.gov (United States)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  16. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  17. Re-examining the Non-Linear Moisture-Precipitation Relationship over the Tropical Oceans.

    Science.gov (United States)

    Rushley, S S; Kim, D; Bretherton, C S; Ahn, M-S

    2018-01-28

    Bretherton et al. (2004) used the Special Sensor Microwave Imager (SSM/I) version 5 product to derive an exponential curve that describes the relationship between precipitation and column relative humidity (CRH) over the tropical oceans. The curve, which features a precipitation pickup at a CRH of about 0.75 and a rapid increase of precipitation with CRH after the pickup, has been widely used in the studies of the tropical atmosphere. This study re-examines the moisture-precipitation relationship by using the version 7 SSM/I data, in which several biases in the previous version are corrected, and evaluates the relationship in the Coupled Model Intercomparison Project phase 5 (CMIP5) models. In the revised exponential curve derived using the updated satellite data, the precipitation pick-up occurs at a higher CRH (~0.8), and precipitation increases more slowly with CRH than in the previous curve. In most CMIP5 models, the precipitation pickup is too early due to the common model bias of overestimated (underestimated) precipitation in the dry (wet) regime.

  18. Development of a daily gridded precipitation data set for the Middle East

    Directory of Open Access Journals (Sweden)

    A. Yatagai

    2008-03-01

    Full Text Available We show an algorithm to construct a rain-gauge-based analysis of daily precipitation for the Middle East. One of the key points of our algorithm is to construct an accurate distribution of climatology. One possible advantage of this product is to validate high-resolution climate models and/or to diagnose the impact of climate changes on local hydrological resources. Many users are familiar with a monthly precipitation dataset (New et al., 1999 and a satellite-based daily precipitation dataset (Huffman et al., 2001, yet our data set, unlike theirs, clearly shows the effect of orography on daily precipitation and other extreme events, especially over the Fertile Crescent region. Currently the Middle-East precipitation analysis product is consisting of a 25-year data set for 1979–2003 based on more than 1300 stations.

  19. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model

    Science.gov (United States)

    Wang, C.; Hong, Y.

    2017-12-01

    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  20. Relativistic effects on earth satellites and their measurement

    International Nuclear Information System (INIS)

    Bertotti, B.

    1988-01-01

    There are three kinds of relativistic effects on earth satellites: those due post newtonian corrections in the field of the earth; the relativistic corrections in the field of the sun; and the precession of the local frames with respect to far away bodies. The authors point out that it is not possible to eliminate the second kind by decreasing the distance of the satellite and the earth; in other words, the effect of the sun is not entirely tidal and a generalized principle of equivalence does hold exactly. Concerning the third kind, the motion of the moon and the measurements of its distance from the earth by lunar laser ranging provides a way to establish experimentally the two connections between the three fundamental frames one should consider: the local frame, determined geometrically by parallel transport; the planetary dynamical frame; and the kinematical frame defined by extragalactic radio sources. According to general relativity the first two frames are related by de Sitter's precision; the last two coincide. It shown that the connections between the first two frames and the first and third frame are already hidden in the existing data

  1. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    Science.gov (United States)

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  2. Performance of High Resolution Satellite Rainfall Products over Data Scarce Parts of Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Shimelis B. Gebere

    2015-09-01

    Full Text Available Accurate estimation of rainfall in mountainous areas is necessary for various water resource-related applications. Though rain gauges accurately measure rainfall, they are rarely found in mountainous regions and satellite rainfall data can be used as an alternative source over these regions. This study evaluated the performance of three high-resolution satellite rainfall products, the Tropical Rainfall Measuring Mission (TRMM 3B42, the Global Satellite Mapping of Precipitation (GSMaP_MVK+, and the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Networks (PERSIANN at daily, monthly, and seasonal time scales against rain gauge records over data-scarce parts of Eastern Ethiopia. TRMM 3B42 rain products show relatively better performance at the three time scales, while PERSIANN did much better than GSMaP. At the daily time scale, TRMM correctly detected 88% of the rainfall from the rain gauge. The correlation at the monthly time scale also revealed that the TRMM has captured the observed rainfall better than the other two. For Belg (short rain and Kiremt (long rain seasons, the TRMM did better than the others by far. However, during Bega (dry season, PERSIANN showed a relatively good estimate. At all-time scales, noticing the bias, TRMM tends to overestimate, while PERSIANN and GSMaP tend to underestimate the rainfall. The overall result suggests that monthly and seasonal TRMM rainfall performed better than daily rainfall. It has also been found that both GSMaP and PERSIANN performed better in relatively flat areas than mountainous areas. Before the practical use of TRMM, the RMSE value needs to be improved by considering the topography of the study area or adjusting the bias.

  3. observation and analysis of the structure of winter precipitation-generating clouds using ground-based sensor measurements

    Science.gov (United States)

    Menéndez José Luis, Marcos; Gómez José Luis, Sánchez; Campano Laura, López; Ortega Eduardo, García; Suances Andrés, Merino; González Sergio, Fernández; Salvador Estíbaliz, Gascón; González Lucía, Hermida

    2015-04-01

    In this study, we used a 28-day database corresponding to December, January and February of 2011/2012 and 2012/2013 campaigns to analyze cloud structure that produced precipitation in the Sierra Norte near Madrid, Spain. We used remote sensing measurements, both active type like the K-band Micro Rain Radar (MRR) and passive type like the Radiometrics MP-3000A multichannel microwave radiometer. Using reflectivity data from the MRR, we determined the important microphysical parameters of Ice Water Content (IWC) and its integrated value over the atmospheric column, or Ice Water Path (IWP). Among the measurements taken by the MP-3000A were Liquid Water Path (LWP) and Integrated Water Vapor (IWV). By representing these data together, sharp declines in LWP and IWV were evident, coincident with IWP increases. This result indicates the ability of a K-band radar to measure the amount of ice in the atmospheric column, simultaneously revealing the Wegener-Bergeron-Findeisen mechanism. We also used a Present Weather Sensor (VPF-730; Biral Ltd., Bristol, UK) to determine the type and amount of precipitation at the surface. With these data, we used regression equations to establish the relationship between visibility and precipitation intensity. In addition, through theoretical precipitation visibility-intensity relationships, we estimated the type of crystal, degree of accretion (riming), and moisture content of fallen snow crystals.

  4. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    Science.gov (United States)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  5. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    Science.gov (United States)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  6. Evaluating precipitation in a regional climate model using ground-based radar measurements in Dronning Maud Land, East Antarctica

    Science.gov (United States)

    Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole

    2017-04-01

    Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR

  7. MEASUREMENTS OF ELECTROMAGNETIC ULF FIELD ONBOARD THE MAGION-4 SATELLITE: ULF EXPERIMENT

    Czech Academy of Sciences Publication Activity Database

    Tříska, Pavel; Vojta, Jaroslav; Czapek, Alexandr; Chum, Jaroslav; Teodosiev, D.; Galev, G.; Shibaev, I.

    2003-01-01

    Roč. 17, - (2003), s. 47-53 ISSN 0861-1432 Institutional research plan: CEZ:AV0Z3042911 Keywords : Satellite * measurement * electromagnetic field * ULF Subject RIV: JV - Space Technology http://www.space.bas.bg/astro/eng.html

  8. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  9. A precipitation database of station-based daily and monthly measurements for West Africa: Overview, quality control and harmonization

    Science.gov (United States)

    Bliefernicht, Jan; Waongo, Moussa; Annor, Thompson; Laux, Patrick; Lorenz, Manuel; Salack, Seyni; Kunstmann, Harald

    2017-04-01

    West Africa is a data sparse region. High quality and long-term precipitation data are often not readily available for applications in hydrology, agriculture, meteorology and other needs. To close this gap, we use multiple data sources to develop a precipitation database with long-term daily and monthly time series. This database was compiled from 16 archives including global databases e.g. from the Global Historical Climatology Network (GHCN), databases from research projects (e.g. the AMMA database) and databases of the national meteorological services of some West African countries. The collection consists of more than 2000 precipitation gauges with measurements dating from 1850 to 2015. Due to erroneous measurements (e.g. temporal offsets, unit conversion errors), missing values and inconsistent meta-data, the merging of this precipitation dataset is not straightforward and requires a thorough quality control and harmonization. To this end, we developed geostatistical-based algorithms for quality control of individual databases and harmonization to a joint database. The algorithms are based on a pairwise comparison of the correspondence of precipitation time series in dependence to the distance between stations. They were tested for precipitation time series from gages located in a rectangular domain covering Burkina Faso, Ghana, Benin and Togo. This harmonized and quality controlled precipitation database was recently used for several applications such as the validation of a high resolution regional climate model and the bias correction of precipitation projections provided the Coordinated Regional Climate Downscaling Experiment (CORDEX). In this presentation, we will give an overview of the novel daily and monthly precipitation database and the algorithms used for quality control and harmonization. We will also highlight the quality of global and regional archives (e.g. GHCN, GSOD, AMMA database) in comparison to the precipitation databases provided by the

  10. Comparison of filter papers and an electrostatic precipitator for measurements on radioactive aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, R

    1958-06-15

    Measurements in which electrostatic precipitators have been compared with filter papers for collection of air-borne radioactivity as to the accuracy in alpha and beta measurements have been made. The results show that the filter paper method is as good as the electrostatic method in determining beta-activity disregarding clogging and moisture sensitivity of the filter paper but it is inferior for alpha measurements. Experimental values of the alpha absorption factor for different types of filter papers are given.

  11. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  12. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2015-03-01

    Full Text Available Based on the satellite data from the Climate Prediction Center morphing (CMORPH at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta (PRD metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency (ratio of rainy hours, about 3 days per year less; however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.

  13. Sensitivities of simulated satellite views of clouds to subgrid-scale overlap and condensate heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, Benjamin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marchand, Roger T. [Univ. of Washington, Seattle, WA (United States); Ackerman, Thomas P. [Univ. of Washington, Seattle, WA (United States)

    2017-08-01

    Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4 km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.

  14. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  15. PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays

    Science.gov (United States)

    Bongi, M.; Adriani, O.; Ambriola, M.; Bakaldin, A.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G.; Bellotti, R.; Bencardino, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongiorno, L.; Bonvicini, V.; Boscherini, M.; Cafagna, F. S.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Furano, G.; Galper, A. M.; Giglietto, N.; Grigorjeva, A.; Koldashov, S. V.; Korotkov, M. G.; Krut'kov, S. Y.; Lund, J.; Lundquist, J.; Menicucci, A.; Menn, W.; Mikhailov, V. V.; Minori, M.; Mirizzi, N.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Mukhametshin, R.; Orsi, S.; Osteria, G.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Romita, M.; Rossi, G.; Russo, S.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Spinelli, P.; Stochaj, S. J.; Stozhkov, Y.; Straulino, S.; Streitmatter, R. E.; Taccetti, F.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Wischnewski, R.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2004-06-01

    PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10/sup -8/. The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.

  16. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  17. Short-duration Electron Precipitation Studied by Test Particle Simulation

    Directory of Open Access Journals (Sweden)

    Jaejin Lee

    2015-12-01

    Full Text Available Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km polar-orbiting Korean STSAT-1 (Science and Technology SATellite. These measurements have revealed two important characteristics unique to the microbursts: (1 They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2 The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

  18. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  19. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  20. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  1. Comparison of TRMM and Global Precipitation Climatology Project (GPCP) Precipitation Analyses

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool in a merged analysis on a 1 x 1' latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product is compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates fairly close agreement with the GPCP estimates. The GPCP analysis is done at 2.5 degree latitude/longitude resolution and interpolated to a 1 degree grid for comparison with the TRMM analysis. As expected the same features are evident in both panels, but there are subtle differences in the magnitudes. Focusing on the Pacific Ocean Inter-Tropical Convergence Zone (ITCZ) one can see the TRMM-based estimates having higher peak values and lower values in the ITCZ periphery. These attributes also show up in the statistics, where GPCP>TRMM at low values (below 10 mm/d) and TRMM>GPCP at high values (greater than 15 mm/d). The area in the Indian Ocean which shows consistently higher values of TRMM over GPCP needs to be examined carefully to determine if the lack of geosynchronous data has led to a difference in the two analyses. By the time of the meeting over a year of TRMM products will be available for

  2. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Assessing satellite-based start-of-season trends in the US High Plains

    International Nuclear Information System (INIS)

    Lin, X; Sassenrath, G F; Hubbard, K G; Mahmood, R

    2014-01-01

    To adequately assess the effects of global warming it is necessary to address trends and impacts at the local level. This study examines phenological changes in the start-of-season (SOS) derived from satellite observations from 1982–2008 in the US High Plains region. The surface climate-based SOS was also evaluated. The averaged profiles of SOS from 37° to 49°N latitude by satellite- and climate-based methods were in reasonable agreement, especially for areas where croplands were masked out and an additional frost date threshold was adopted. The statistically significant trends of satellite-based SOS show a later spring arrival ranging from 0.1 to 4.9 days decade −1 over nine Level III ecoregions. We found the croplands generally exhibited larger trends (later arrival) than the non-croplands. The area-averaged satellite-based SOS for non-croplands (i.e. mostly grasslands) showed no significant trends. We examined the trends of temperatures, precipitation, and standardized precipitation index (SPI), as well as the strength of correlation between the satellite-based SOS and these climatic drivers. Our results indicate that satellite-based SOS trends are spatially and primarily related to annual maximum normalized difference vegetation index (NDVI, mostly in summertime) and/or annual minimum NDVI (mostly in wintertime) and these trends showed the best correlation with six-month SPI over the period 1982–2008 in the US High Plains region. (letter)

  4. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  5. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    International Nuclear Information System (INIS)

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  6. A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2017-05-01

    Full Text Available Besides 2 m - temperature and precipitation, sunshine duration is one of the most important and commonly used parameter in climatology, with measured time series of partly more than 100 years in length. EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF presents a climate data record for daily and monthly sunshine duration (SDU for Europe and Africa. Basis for the advanced retrieval is a highly resolved satellite product of the direct solar radiation from measurements by Meteosat satellites 2 to 10. The data record covers the time period 1983 to 2015 with a spatial resolution of 0.05° × 0.05°. The comparison against ground-based data shows high agreement but also some regional differences. Sunshine duration is overestimated by the satellite-based data in many regions, compared to surface data. In West and Central Africa, low clouds seem to be the reason for a stronger overestimation of sunshine duration in this region (up to 20% for monthly sums. For most stations, the overestimation is low, with a bias below 7.5 h for monthly sums and below 0.4 h for daily sums. A high correlation of 0.91 for daily SDU and 0.96 for monthly SDU also proved the high agreement with station data. As SDU is based on a stable and homogeneous climate data record of more than 30 years length, it is highly suitable for climate applications, such as trend estimates.

  7. Contemporary ground-based and satellite precipitating system characterization for desertification studies in Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Casazza

    2008-07-01

    Full Text Available During the research project RIADE (Ricerca Integrata per l'Applicazione di tecnologie e processi innovativi per la lotta alla DEsertificazione, devoted to the study on the potential risk of desertification in Southern Italy, a particular attention has been paid also to the analysis of precipitations from three surface stations (Licata, Sicily; Rotondella, Basilicata; Surigheddu, Sardinia in order to improve the knowledge derived from the most modern climatological studies related to this subject. The point of view adopted is to better define the precipitation microphysical properties (in particular, the Drop Size Distribution, DSD, and its moments, which are deeply related to the cloud system that generates the precipitation events. In particular we have used a newly introduced Convective Stratiform discrimination technique, that allowed us to observe a prevalence of events, concentrated along Winter (Wi season, of different microphysical nature. In fact the prevailing Stratiform nature is related to Licata station, while for Surigheddu and for Rotondella the nature is mainly Convective. This distinction is related to the presence of drops of bigger dimensions and more intense precipitations in the latter case, while, in the former case, a prevalence of smaller drops and a less intense precipitation is recorded. This confirms the distinctive belonging to three different climatic regions, as indicated in the study by Brunetti et al. (2006. Our findings are important in the framework of desertification studies, because the cause of desertification can be related either to fertile soils removal (in the case of Convective events or to lack of precipitated water (in the case of Stratiform events. We have also analysed a sub-set of ten events, with contemporary presence of data from VIS/IR channels of METEOSAT-7, SSM/I data from F13 and MODIS data from Terra platform. This has been done both to confirm the findings of PLUDIX data analysis (which

  8. Contemporary ground-based and satellite precipitating system characterization for desertification studies in Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Casazza

    2008-07-01

    Full Text Available During the research project RIADE (Ricerca Integrata per l'Applicazione di tecnologie e processi innovativi per la lotta alla DEsertificazione, devoted to the study on the potential risk of desertification in Southern Italy, a particular attention has been paid also to the analysis of precipitations from three surface stations (Licata, Sicily; Rotondella, Basilicata; Surigheddu, Sardinia in order to improve the knowledge derived from the most modern climatological studies related to this subject. The point of view adopted is to better define the precipitation microphysical properties (in particular, the Drop Size Distribution, DSD, and its moments, which are deeply related to the cloud system that generates the precipitation events. In particular we have used a newly introduced Convective Stratiform discrimination technique, that allowed us to observe a prevalence of events, concentrated along Winter (Wi season, of different microphysical nature. In fact the prevailing Stratiform nature is related to Licata station, while for Surigheddu and for Rotondella the nature is mainly Convective. This distinction is related to the presence of drops of bigger dimensions and more intense precipitations in the latter case, while, in the former case, a prevalence of smaller drops and a less intense precipitation is recorded. This confirms the distinctive belonging to three different climatic regions, as indicated in the study by Brunetti et al. (2006. Our findings are important in the framework of desertification studies, because the cause of desertification can be related either to fertile soils removal (in the case of Convective events or to lack of precipitated water (in the case of Stratiform events. We have also analysed a sub-set of ten events, with contemporary presence of data from VIS/IR channels of METEOSAT-7, SSM/I data from F13 and MODIS data from Terra platform. This has been done both to confirm the findings of PLUDIX data analysis (which is

  9. Evaluation of Heavy Precipitation Simulated by the WRF Model Using 4D-Var Data Assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Lu Yi

    2018-04-01

    Full Text Available To obtain independent, consecutive, and high-resolution precipitation data, the four-dimensional variational (4D-Var method was applied to directly assimilate satellite precipitation products into the Weather Research and Forecasting (WRF model. The precipitation products of the Tropical Rainfall Measuring Mission 3B42 (TRMM 3B42 and its successor, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM IMERG were assimilated in this study. Two heavy precipitation events that occurred over the Huaihe River basin in eastern China were studied. Before assimilation, the WRF model simulations were first performed with different forcing data to select more suitable forcing data and determine the control experiments for the subsequent assimilation experiments. Then, TRMM 3B42 and GPM IMERG were separately assimilated into the WRF. The simulated precipitation results in the outer domain (D01, with a 27-km resolution, and the inner domain (D02, with a 9-km resolution, were evaluated in detail. The assessments showed that (1 4D-Var with TRMM 3B42 or GPM IMERG could both significantly improve WRF precipitation predictions at a time interval of approximately 12 h; (2 the WRF simulated precipitation assimilated with GPM IMERG outperformed the one with TRMM 3B42; (3 for the WRF output precipitation assimilated with GPM IMERG over D02, which has spatiotemporal resolutions of 9 km and 50 s, the correlation coefficients of the studied events in August and November were 0.74 and 0.51, respectively, at the point and daily scales, and the mean Heidke skill scores for the two studied events both reached 0.31 at the grid and hourly scales. This study can provide references for the assimilation of TRMM 3B42 or GPM IMERG into the WRF model using 4D-Var, which is especially valuable for hydrological applications of GPM IMERG during the transition period from the TRMM era into the GPM era.

  10. Meteorological utilization of measurements of the artificial radioactivity on the air and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Neuwirth, R

    1955-01-01

    German, French, and American measurements of the rainfall and air activity are being evaluated. For that purpose, trajectories from the experimental grounds for bomb tests in Nevada to Western Germany are drawn. By means of intermediate values, the test possibilities of air paths first only scheduled are given. The so-called deposit spaces and meridional circulations, which are significant particularly in divergence regions, prove to be of especial importance. The mechanism of activation of precipitation is discussed. A connexion between the activity of precipitation and air masses could only be found in individual cases. But it seems that semitropical air masses dispose of a higher specific activity in comparison with the polar air masses.

  11. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  12. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  13. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  14. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  15. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  16. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  17. North west cape-induced electron precipitation and theoretical simulation

    Science.gov (United States)

    Zhang, Zhen-xia; Li, Xin-qiao; Wang, Chen-Yu; Chen, Lun-Jin

    2016-11-01

    Enhancement of the electron fluxes in the inner radiation belt, which is induced by the powerful North West Cape (NWC) very-low-frequency (VLF) transmitter, have been observed and analyzed by several research groups. However, all of the previous publications have focused on NWC-induced > 100-keV electrons only, based on observations from the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) and the Geostationary Operational Environmental Satellite (GOES) satellites. Here, we present flux enhancements with 30-100-keV electrons related to NWC transmitter for the first time, which were observed by the GOES satellite at night. Similar to the 100-300-keV precipitated-electron behavior, the low energy 30-100-keV electron precipitation is primarily located east of the transmitter. However, the latter does not drift eastward to the same extent as the former, possibly because of the lower electron velocity. The 30-100-keV electrons are distributed in the L = 1.8-2.1 L-shell range, in contrast to the 100-300-keV electrons which are at L = 1.67-1.9. This is consistent with the perspective that the energy of the VLF-wave-induced electron flux enhancement decreases with higher L-shell values. We expand upon the rationality of the simultaneous enhancement of the 30-100- and 100-300-keV electron fluxes through comparison with the cyclotron resonance theory for the quasi-linear wave-particle interaction. In addition, we interpret the asymmetry characteristics of NWC electric power distribution in north and south hemisphere by ray tracing model. Finally, we present considerable discussion and show that good agreement exists between the observation of satellites and theory. Supported by the China Seismo-Electromagnetic Satellite Mission Ground-Based Verification Project of the Administration of Science, Technology, and Industry for National Defense and Asia-Pacific Space Cooperation Organization Project (APSCO-SP/PM-EARTHQUAKE).

  18. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  19. Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 3 – Identification of optimal meteorological tags

    Directory of Open Access Journals (Sweden)

    E. A. Smith

    2013-05-01

    Full Text Available In the first two parts of this study we have presented a performance analysis of our new Cloud Dynamics and Radiation Database (CDRD satellite precipitation retrieval algorithm on various convective and stratiform rainfall case studies verified with precision radar ground truth data, and an exposition of the algorithm's detailed design in conjunction with a proof-of-concept analysis vis-à-vis its theoretical underpinnings. In this third part of the study, we present the underlying analysis used to identify what we refer to as the optimal metrological and geophysical tags, which are the optimally effective atmospheric and geographic parameters that are used to refine the selection of candidate microphysical profiles used for the Bayesian retrieval. These tags enable extending beyond the conventional Cloud Radiation Database (CRD algorithm by invoking meteorological-geophysical guidance, drawn from a simulated database, which affect and are in congruence with the observed precipitation states. This is guidance beyond the restrictive control provided by only simulated radiative transfer equation (RTE model-derived database brightness temperature (TB vector proximity information in seeking to relate physically consistent precipitation profile solutions to individual satellite-observed TB vectors. The first two parts of the study have rigorously demonstrated that the optimal tags effectively mitigate against solution ambiguity, where use of only a CRD framework (TB guidance only leads to pervasive non-uniqueness problems in finding rainfall solutions. Alternatively, a CDRD framework (TB + tag guidance mitigates against non-uniqueness problems through improved constraints. It remains to show how these optimal tags are identified. By use of three statistical analysis procedures applied to a database from 120 North American atmospheric simulations of precipitating storms (independent of the 60 simulations for the European-Mediterranean basin region

  20. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  1. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  2. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  3. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  4. Challenge and opportunities of space-based precipitation radar for spatio-temporal hydrology analysis in tropical maritime influenced catchment: Case study on the hilly tropical watershed of Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mahmud, M R; Numata, S; Matsuyama, H; Hashim, M; Hosaka, T

    2014-01-01

    This paper highlights two critical issues regarding hilly watershed in Peninsular Malaysia; (1) current status of spatio-temporal condition of rain gauge based measurement, and (2) potential of space-based precipitation radar to study the rainfall dynamics. Two analyses were carried out represent each issue consecutively. First, the spatial distribution and efficiency of rain gauge in hilly watershed Peninsular Malaysia is evaluated with respect to the land use and elevation information using Geographical Information System (GIS) approach. Second, the spatial pattern of rainfall changes is analysed using the Tropical Rainfall Measuring Mission (TRMM) satellite information. The spatial analysis revealed that the rain gauge distribution had sparse coverage on hilly watershed and possessed inadequate efficiency for effective spatial based assessment. Significant monthly rainfall changes identified by TRMM satellite on the upper part of the watershed had occurred occasionally in 1999, 2000, 2001, 2006, and 2009 went undetected by conventional rain gauge. This study informed the potential and opportunities of space-based precipitation radar to fill the gaps of knowledge on spatio-temporal rainfall patterns for hydrology and related fields in tropical region

  5. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  6. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  7. Beyond rain: Advances in measurements of solid or mixed phase precipitation using a 2D-Video-Distrometer

    Science.gov (United States)

    Schwinzerl, Martin; Schönhuber, Michael; Lammer, Günter

    2015-04-01

    The requirement to estimate for each individual hydrometeor precipitation parameters such as shape, equi-voluminous diameter, fall velocity, height to width ratio, and canting angle gave rise to the development of the family of 2D-Video-Distrometer (2DVD) measurement devices. The measurement principle of the 2DVD is based upon the ability to acquire a side- and front view onto each particle by virtue of two orthogonally arranged high-speed line-scan cameras. The cameras are displaced vertically towards each other by a precisely determined distance in the ballpark of 6 mm, thus allowing the estimation of the vertical fall velocity in-situ on a per-particle basis. The geometrical and velocity information, sampled over a measurement surface of approx. 100 x 100 mm in this way, is then used to derive observables like rain rate and the accumulated equivalent amount of precipitation with a high degree of statistical relevance. One of the biggest assets of this measurement principle is the ability to perform measurements without relying on any externally provided model or phenomenological relationship between observables like particle shape and velocity. For liquid precipitation in the form of natural rain, this allows for example to verify whether established relationships - like, for example, the tabulated values for diameter vs. vertical velocity provided by Gunn & Kinzer - can be reproduced in sampled datasets. For mixed-phase and solid precipitation, different types of hydrometeors like for example different snow flake families, hail and graupel yield - depending on parameters like for example the water content and therefor, in turn, the density of the particle - very diverse results with respect to expected fall velocity, oblateness, or general shape for a given diameter class. The ability of the 2DVD to capture these parameters directly and without reliance on externally provided relationships, has contributed to the attractiveness of this measurement device for in

  8. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  9. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    International Nuclear Information System (INIS)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A S

    2013-01-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately

  10. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  11. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    Science.gov (United States)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  12. Evaluation of short-period rainfall estimates from Kalpana-1 satellite

    Indian Academy of Sciences (India)

    The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study ...

  13. Airborne gamma-radiation snow water-equivalent and soil-moisture measurements and satellite areal extent of snow-cover measurements. A user's guide. Version 3.0

    International Nuclear Information System (INIS)

    Carroll, T.; Allen, M.

    1988-01-01

    The National Remote Sensing Hydrology Program is managed by the Office of Hydrology and consists of the Airborne Snow Survey Section and the Satellite Hydrology Section. The Airborne Snow Survey Section makes airborne snow water-equivalent and soil-moisture measurements over large areas of the country subject to a severe and chronic snowmelt flooding threat. The User's Guide is intended primarily to provide field hydrologists with some background on the technical and administrative aspects of the National Remote Sensing Hydrology Program. The guide summarizes the techniques and procedures used to make and distribute real-time, operational airborne snow water-equivalent measurements and satellite areal extent of snow-cover measurements made over large areas of the country. The current airborne and satellite databases are summarized, and procedures to access the real-time observations through both AFOS and through a commercial, electronic bulletin board system are given in the appendices

  14. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  15. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  16. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  17. Precipitation measurement and derivation of precipitation inclination in a windy mountainous area in northern Costa Rica. Scientific Briefing.

    NARCIS (Netherlands)

    Frumau, K.F.A.; Bruijnzeel, L.A.; Tobón, C.

    2011-01-01

    Over small-scale topography in windy areas, precipitation tends to be redistributed by wind through the modification of precipitation inclination. The latter is often derived from wind speed and conventional rain gauge records by application of relations-derived mainly for convective rainfall

  18. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  19. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  20. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  1. Radon concentration and exhalation measurements with semiconductor detector and electrostatic precipitator working in a closed circulation system

    International Nuclear Information System (INIS)

    Wojcik, M.; Morawska, L.

    1982-01-01

    An apparatus is described and a method presented for the determination of concentration of radon emanated from solid and liquid samples. In this method an object or a sample of air is closed in an hermetically sealed chamber. The air contaminated by radon and its daughters is circulated in a closed system a few times through an electrostatic precipitator mounted in one housing with a semiconductor Si Li detector. The concentration of radon is determined by the alpha activity measurement of its daughters. The sensitivity of the apparatus is very high. While calculating a radon concentration from an activity measurement of RaA (fast method) the sensitivity is about 0.07 pCi/l and when measuring the activity of RaC' (slow method) it is 0.008 pCi/l. Due to the application of an electrostatic precipitator and a silicon detector it is possible to perform alpha spectrometric measurements and thus separate activities of RaA, RaC', and ThC and to calculate 222 Rn or 220 Rn concentrations. The efficiency of RaA, RaB, RaC, ThB and ThC collection is constant, due to the method involving the circulation of the air through the electrostatic precipitator several times. (author)

  2. 228Ra and 226Ra measurement on a BaSO4 co-precipitation source

    International Nuclear Information System (INIS)

    Medley, Peter; Martin, Paul; Bollhöfer, Andreas; Parry, David

    2015-01-01

    One of the most commonly-used methods for determination of 226 Ra, particularly in water samples, utilises co-precipitation of Ra with BaSO 4 , followed by microfiltration to produce a source for alpha counting. This paper describes two extensions to BaSO 4 co-precipitation methods which enable determination of 228 Ra using the same source. The adaptations presented here do not introduce any contaminants that will affect the separation of radium or alpha counting for 226 Ra, and can be used for re-analysis of already existing sources prepared by BaSO 4 co-precipitation. The first adaptation uses detection of 228 Ac on the source by gamma spectrometry. The detection efficiency is high, allowing analysis of water samples at sufficiently low activity to be suitable in testing for compliance with drinking water quality standards. As 228 Ac grows in quickly, taking less than 2 days to reach equilibrium with the 228 Ra parent, this can also be useful in radiological emergency response situations. The second adaptation incorporates a method for the digestion of BaSO 4 sources, allowing separation of thorium and subsequent determination of 228 Th activity. Although ingrowth periods for 228 Th can be lengthy, very low detection limits for 228 Ra can be achieved with this technique. - Highlights: • We developed two methods for 228 Ra measurement on Ba(Ra)SO 4 co-precipitation sources. • Measurement by gamma spectrometry using the daughter 228 Ac is rapid. • Detection limits are suitable for assessment of drinking water quality. • The second approach uses alpha spectrometry on a separated Th fraction. • This is more sensitive than gamma spectrometry after an ingrowth period greater than about 1 month

  3. Linking climate change and health outcomes: Examining the relationship between temperature, precipitation and birth weight in Africa

    Science.gov (United States)

    Grace, Kathryn; Davenport, Frank; Hanson, Heidi; Funk, Christopher C.; Shukla, Shraddhanand

    2015-01-01

    This paper examined the relationship between birth weight, precipitation, and temperature in 19 African countries. We matched recorded birth weights from Demographic and Health Surveys covering 1986 through 2010 with gridded monthly precipitation and temperature data derived from satellite and ground-based weather stations. Observed weather patterns during various stages of pregnancy were also used to examine the effect of temperature and precipitation on birth weight outcomes. In our empirical model we allowed the effect of weather factors to vary by the dominant food production strategy (livelihood zone) in a given region as well as by household wealth, mother's education and birth season. This allowed us to determine if certain populations are more or less vulnerable to unexpected weather changes after adjusting for known covariates. Finally we measured effect size by observing differences in birth weight outcomes in women who have one low birth weight experience and at least one healthy birth weight baby. The results indicated that climate does indeed impact birth weight and at a level comparable, in some cases, to the impact of increasing women's education or household electricity status.

  4. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  5. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  6. Wildfire Dynamics and Occasional Precipitation during Active Fire Season in Tropical Lowland of Nepal

    Directory of Open Access Journals (Sweden)

    Krishna Bahadur Bhujel

    2017-10-01

    Full Text Available Occasional precipitation plays a vital role in reducing the effect of wildfire. This precipitation is especially important for countries like Nepal, where wildfires are a common seasonal event. Approximately 0.1 million hectare of forest area is affected annually due to wildfires in active fire season. The study on the relation of these forms of occasional precipitation with wildfire incidence is still lacking. This research was objectively carried out to examine the correlation of occasional precipitation with wildfire incidence and burnt area. The Moderate Resolution Imaging Spector-Radiometer (MODIS satellite images and precipitation records for 15 years gathered from Department of Hydrology and Metrology were used as input data for this study. The images were analyzed by using ArcGIS function while the precipitation records were analyzed by using Statistical Package for the Social Science (SPSS program. The linear regression model was applied to find correlation of occasional precipitation with wildfire incidence and burnt area. Analysis revealed decreasing trend of precipitation in study area. We found significant correlation (p<0.05 of precipitation with wildfire incidence and burnt area. Findings will be useful for policy makers, implementers and researchers to manage wildfire in sustainable basis.

  7. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  8. Modeling water and heat balance components of large territory for vegetation season using information from polar-orbital and geostationary meteorological satellites

    Science.gov (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2015-04-01

    To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009

  9. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  10. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  11. A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

    Science.gov (United States)

    Podrascanin, Z.; Balog, I.; Jankovic, A.; Mijatovic, Z.; Nadj, Z.

    2017-12-01

    In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer's facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.

  12. Early drought detection by spectral analysis of satellite time series of precipitation and Normalized Difference Vegetation Index (NDVI)

    NARCIS (Netherlands)

    Van Hoek, Mattijn; Jia, Li; Zhou, J.; Zheng, Chaolei; Menenti, M.

    2016-01-01

    The time lag between anomalies in precipitation and vegetation activity plays a critical role in early drought detection as agricultural droughts are caused by precipitation shortages. The aim of this study is to explore a new approach to estimate the time lag between a forcing (precipitation)

  13. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  14. Measuring the relativistic perigee advance with satellite laser ranging

    CERN Document Server

    Iorio, L; Pavlis, E C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 sup - sup 2 -10 sup - sup 3. In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 sup 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 sup - sup 3. With the corresponding measured value of (2 + 2 gamma - beta)/3, ...

  15. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2002-01-01

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  16. Energetic electron precipitation and VLF phase disturbances at middle latitudes following the magnetic storm of December 6, 1971

    International Nuclear Information System (INIS)

    Larsen, T.R.; Potemra, T.A.; Imhof, W.L.; Reagan, J.B.

    1977-01-01

    Enhanced fluxes of electrons precipitating over middle latitudes (L approx. 3--4) were detected by the polar-orbiting satellite 1971-089A following a period of magnetic activity starting on December 16, 1971. The electron fluxes measured in 256 differential channels between 130 and 2800 keV have been coordinated with phase observations of VLF radio waves propagating in the earth-ionosphere waveguide. The VLF paths in question, NLK (near Seattle, Washington) and GBR (at Rugby, England) to APL (near Washington, D. C.), cover approx. =120 0 in longitude and range from L approx. 2.5 to L approx. 4.0 in invariant latitude. These paths showed marked daytime and nighttime phase advances from 1650 UT on December 17 (in excess of 10 μs during maximum disturbance). The phase values did not return to prestorm levels before December 22--23. The unusual presence of these daytime VLF disturbances is offered as evidence for the widespread precipitation at low L shell vales of nearly relativistic electrons (E/sub e/> approx.200 keV) which would be required to penetrate below approx.70-km altitude to affect the daytime VLF transmissions. Wave guide mode calculations using D region electron density profiles deduced from the satellite particle data predict phase advances which agree reasonably well with the observed values. It is concluded that the observed long-lived VLF phase disturbances can be explained by excess D region ionization caused by energetic electrons precipitating from the earth's radiation belt following their injection deep into the magnetosphere during the magnetic storm

  17. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  18. A quantitative comparison of lightning-induced electron precipitation and VLF signal perturbations

    Science.gov (United States)

    Peter, W. B.; Inan, U. S.

    2007-12-01

    VLF signal perturbations recorded on the Holographic Array for Ionospheric/Lightning Research (HAIL) are quantitatively related to a comprehensive model of lightning-induced electron precipitation (LEP) events. The model consists of three major components: a test-particle model of gyroresonant whistler-induced electron precipitation, a Monte Carlo simulation of energy deposition into the ionosphere, and a model of VLF subionospheric signal propagation. For the two representative LEP events studied, the model calculates peak VLF amplitude perturbations within a factor of three of those observed, well within the expected variability of radiation belt flux levels. The phase response of the observed VLF signal to precipitation varied dramatically over the course of the two nights and this variability in phase response is not properly reproduced by the model. The model calculates a peak in the precipitation that is poleward displaced ~6° from the causative lightning flash, consistent with observations. The modeled precipitated energy flux (E > 45 keV) peaks at ~1 × 10-2 (ergs s-1 cm-2), resulting in a peak loss of ~0.001% from a single flux tube at L ~ 2.2, consistent with previous satellite measurements of LEP events. The precipitation calculated by the model is highly dependent on the near-loss-cone trapped radiation belt flux levels assumed, and hence our main objective is not to compare the model calculations and the VLF signal observations on an absolute basis but is rather to develop metrics with which we can characterize the VLF signal perturbations recorded on HAIL in terms of the associated precipitation flux. Metrics quantifying the ionospheric density enhancement (N ILDE) and the electron precipitation (Γ) along a VLF signal path are strongly correlated with the VLF signal perturbations calculated by the model. A conversion ratio Ψ, relating VLF signal amplitude perturbations (ΔA) to the time-integrated precipitation (100-300 keV) along the VLF path (

  19. Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat

    International Nuclear Information System (INIS)

    Rapp, Anita D; Lebsock, Matthew; L’Ecuyer, Tristan

    2013-01-01

    A climatology of low cloud surface precipitation occurrence and intensity from the new CloudSat 2C-RAIN-PROFILE algorithm is presented from June 2006 through December 2010 for the southeastern Pacific region of marine stratocumulus. Results show that over 70% of low cloud precipitation falls as drizzle. Application of an empirical evaporation model suggests that 50–80% of the precipitation evaporates before it reaches the surface. Segregation of the CloudSat ascending and descending overpasses shows that the majority of precipitation occurs at night. Examination of the seasonal cycle shows that the precipitation is most frequent during the austral winter and spring; however there is considerable regional variability. Conditional rain rates increase from east to west with a maximum occurring in the region influenced by the South Pacific Convergence Zone. Area average rain rates are highest in the region where precipitation rates are moderate, but most frequent. The area average surface rain rate for low cloud precipitation for this region is ∼0.22 mm d −1 , in good agreement with in situ estimates, and is greatly improved over earlier CloudSat precipitation products. These results provide a much-needed quantification of surface precipitation in a region that is currently underestimated in existing satellite-based precipitation climatologies. (letter)

  20. Ground water level, Water storage, Soil moisture, Precipitation Variability Using Multi Satellite Data during 2003-2016 Associated with California Drought

    Science.gov (United States)

    Li, J. W.; Singh, R. P.

    2017-12-01

    The agricultural market of California is a multi-billion-dollar industry, however in the recent years, the state is facing severe drought. It is important to have a deeper understanding of how the agriculture is affected by the amount of rainfall as well as the ground conditions in California. We have considered 5 regions (each 2 degree by 2 degree) covering whole of California. Multi satellite (MODIS Terra, GRACE, GLDAS) data through NASA Giovanni portal were used to study long period variability 2003 - 2016 of ground water level and storage, soil moisture, root zone moisture level, precipitation and normalized vegetation index (NDVI) in these 5 regions. Our detailed analysis of these parameters show a strong correlation between the NDVI and some of these parameters. NDVI represents greenness showing strong drought conditions during the period 2011-2016 due to poor rainfall and recharge of ground water in the mid and southern parts of California. Effect of ground water level and underground storage will be also discussed on the frequency of earthquakes in five regions of California. The mid and southern parts of California show increasing frequency of small earthquakes during drought periods.